xref: /haiku/src/system/boot/loader/elf.cpp (revision 1deede7388b04dbeec5af85cae7164735ea9e70d)
1 /*
2  * Copyright 2002-2008, Axel Dörfler, axeld@pinc-software.de. All rights reserved.
3  * Copyright 2012, Alex Smith, alex@alex-smith.me.uk.
4  * Distributed under the terms of the MIT License.
5  */
6 
7 
8 #include "elf.h"
9 
10 #include <boot/arch.h>
11 #include <boot/platform.h>
12 #include <boot/stage2.h>
13 #include <driver_settings.h>
14 #include <elf_private.h>
15 #include <kernel.h>
16 #include <SupportDefs.h>
17 
18 #include <errno.h>
19 #include <unistd.h>
20 #include <string.h>
21 #include <stdlib.h>
22 
23 //#define TRACE_ELF
24 #ifdef TRACE_ELF
25 #	define TRACE(x) dprintf x
26 #else
27 #	define TRACE(x) ;
28 #endif
29 
30 
31 static bool sLoadElfSymbols = true;
32 
33 
34 // #pragma mark - Generic ELF loader
35 
36 
37 template<typename Class>
38 class ELFLoader {
39 private:
40 	typedef typename Class::ImageType	ImageType;
41 	typedef typename Class::RegionType	RegionType;
42 	typedef typename Class::AddrType	AddrType;
43 	typedef typename Class::EhdrType	EhdrType;
44 	typedef typename Class::PhdrType	PhdrType;
45 	typedef typename Class::ShdrType	ShdrType;
46 	typedef typename Class::DynType		DynType;
47 	typedef typename Class::SymType		SymType;
48 	typedef typename Class::RelType		RelType;
49 	typedef typename Class::RelaType	RelaType;
50 
51 public:
52 	static	status_t	Create(int fd, preloaded_image** _image);
53 	static	status_t	Load(int fd, preloaded_image* image);
54 	static	status_t	Relocate(preloaded_image* image);
55 	static	status_t	Resolve(ImageType* image, SymType* symbol,
56 							AddrType* symbolAddress);
57 
58 private:
59 	static	status_t	_LoadSymbolTable(int fd, ImageType* image);
60 	static	status_t	_ParseDynamicSection(ImageType* image);
61 };
62 
63 
64 #ifdef BOOT_SUPPORT_ELF32
65 struct ELF32Class {
66 	static const uint8 kIdentClass = ELFCLASS32;
67 
68 	typedef preloaded_elf32_image	ImageType;
69 	typedef elf32_region			RegionType;
70 	typedef Elf32_Addr				AddrType;
71 	typedef Elf32_Ehdr				EhdrType;
72 	typedef Elf32_Phdr				PhdrType;
73 	typedef Elf32_Shdr				ShdrType;
74 	typedef Elf32_Dyn				DynType;
75 	typedef Elf32_Sym				SymType;
76 	typedef Elf32_Rel				RelType;
77 	typedef Elf32_Rela				RelaType;
78 
79 	static inline status_t
80 	AllocateRegion(AddrType* _address, AddrType size, uint8 protection,
81 		void** _mappedAddress)
82 	{
83 		status_t status = platform_allocate_region((void**)_address, size,
84 			protection, false);
85 		if (status != B_OK)
86 			return status;
87 
88 		*_mappedAddress = (void*)*_address;
89 		return B_OK;
90 	}
91 
92 	static inline void*
93 	Map(AddrType address)
94 	{
95 		return (void*)address;
96 	}
97 };
98 
99 typedef ELFLoader<ELF32Class> ELF32Loader;
100 #endif
101 
102 
103 #ifdef BOOT_SUPPORT_ELF64
104 struct ELF64Class {
105 	static const uint8 kIdentClass = ELFCLASS64;
106 
107 	typedef preloaded_elf64_image	ImageType;
108 	typedef elf64_region			RegionType;
109 	typedef Elf64_Addr				AddrType;
110 	typedef Elf64_Ehdr				EhdrType;
111 	typedef Elf64_Phdr				PhdrType;
112 	typedef Elf64_Shdr				ShdrType;
113 	typedef Elf64_Dyn				DynType;
114 	typedef Elf64_Sym				SymType;
115 	typedef Elf64_Rel				RelType;
116 	typedef Elf64_Rela				RelaType;
117 
118 	static inline status_t
119 	AllocateRegion(AddrType* _address, AddrType size, uint8 protection,
120 		void **_mappedAddress)
121 	{
122 #if defined(_BOOT_PLATFORM_BIOS)
123 		// Assume the real 64-bit base address is KERNEL_LOAD_BASE_64_BIT and
124 		// the mappings in the loader address space are at KERNEL_LOAD_BASE.
125 
126 		void* address = (void*)(addr_t)(*_address & 0xffffffff);
127 #else
128 		void* address = (void*)*_address;
129 #endif
130 
131 		status_t status = platform_allocate_region(&address, size, protection,
132 			false);
133 		if (status != B_OK)
134 			return status;
135 
136 		*_mappedAddress = address;
137 #if defined(_BOOT_PLATFORM_BIOS)
138 		*_address = (AddrType)(addr_t)address + KERNEL_LOAD_BASE_64_BIT
139 			- KERNEL_LOAD_BASE;
140 #else
141 		platform_bootloader_address_to_kernel_address(address, _address);
142 #endif
143 		return B_OK;
144 	}
145 
146 	static inline void*
147 	Map(AddrType address)
148 	{
149 #ifdef _BOOT_PLATFORM_BIOS
150 		return (void*)(addr_t)(address - KERNEL_LOAD_BASE_64_BIT
151 			+ KERNEL_LOAD_BASE);
152 #else
153 		void *result;
154 		if (platform_kernel_address_to_bootloader_address(address, &result) != B_OK) {
155 			panic("Couldn't convert address %#" PRIx64, address);
156 		}
157 		return result;
158 #endif
159 	}
160 };
161 
162 typedef ELFLoader<ELF64Class> ELF64Loader;
163 #endif
164 
165 
166 template<typename Class>
167 /*static*/ status_t
168 ELFLoader<Class>::Create(int fd, preloaded_image** _image)
169 {
170 	ImageType* image = (ImageType*)kernel_args_malloc(sizeof(ImageType));
171 	if (image == NULL)
172 		return B_NO_MEMORY;
173 
174 	ssize_t length = read_pos(fd, 0, &image->elf_header, sizeof(EhdrType));
175 	if (length < (ssize_t)sizeof(EhdrType)) {
176 		kernel_args_free(image);
177 		return B_BAD_TYPE;
178 	}
179 
180 	const EhdrType& elfHeader = image->elf_header;
181 
182 	if (memcmp(elfHeader.e_ident, ELFMAG, 4) != 0
183 		|| elfHeader.e_ident[4] != Class::kIdentClass
184 		|| elfHeader.e_phoff == 0
185 		|| !elfHeader.IsHostEndian()
186 		|| elfHeader.e_phentsize != sizeof(PhdrType)) {
187 		kernel_args_free(image);
188 		return B_BAD_TYPE;
189 	}
190 
191 	image->elf_class = elfHeader.e_ident[EI_CLASS];
192 
193 	*_image = image;
194 	return B_OK;
195 }
196 
197 
198 template<typename Class>
199 /*static*/ status_t
200 ELFLoader<Class>::Load(int fd, preloaded_image* _image)
201 {
202 	size_t totalSize;
203 	ssize_t length;
204 	status_t status;
205 	void* mappedRegion = NULL;
206 
207 	ImageType* image = static_cast<ImageType*>(_image);
208 	const EhdrType& elfHeader = image->elf_header;
209 
210 	ssize_t size = elfHeader.e_phnum * elfHeader.e_phentsize;
211 	PhdrType* programHeaders = (PhdrType*)malloc(size);
212 	if (programHeaders == NULL) {
213 		dprintf("error allocating space for program headers\n");
214 		status = B_NO_MEMORY;
215 		goto error1;
216 	}
217 
218 	length = read_pos(fd, elfHeader.e_phoff, programHeaders, size);
219 	if (length < size) {
220 		TRACE(("error reading in program headers\n"));
221 		status = B_ERROR;
222 		goto error1;
223 	}
224 
225 	// create an area large enough to hold the image
226 
227 	image->data_region.size = 0;
228 	image->text_region.size = 0;
229 
230 	for (int32 i = 0; i < elfHeader.e_phnum; i++) {
231 		PhdrType& header = programHeaders[i];
232 
233 		switch (header.p_type) {
234 			case PT_LOAD:
235 				break;
236 			case PT_DYNAMIC:
237 				image->dynamic_section.start = header.p_vaddr;
238 				image->dynamic_section.size = header.p_memsz;
239 				continue;
240 			case PT_INTERP:
241 			case PT_PHDR:
242 			case PT_ARM_UNWIND:
243 				// known but unused type
244 				continue;
245 			default:
246 				dprintf("unhandled pheader type 0x%" B_PRIx32 "\n", header.p_type);
247 				continue;
248 		}
249 
250 		RegionType* region;
251 		if (header.IsReadWrite()) {
252 			if (image->data_region.size != 0) {
253 				dprintf("elf: rw already handled!\n");
254 				continue;
255 			}
256 			region = &image->data_region;
257 		} else if (header.IsExecutable()) {
258 			if (image->text_region.size != 0) {
259 				dprintf("elf: ro already handled!\n");
260 				continue;
261 			}
262 			region = &image->text_region;
263 		} else
264 			continue;
265 
266 		region->start = ROUNDDOWN(header.p_vaddr, B_PAGE_SIZE);
267 		region->size = ROUNDUP(header.p_memsz + (header.p_vaddr % B_PAGE_SIZE),
268 			B_PAGE_SIZE);
269 		region->delta = -region->start;
270 
271 		TRACE(("segment %" B_PRId32 ": start = 0x%" B_PRIx64 ", size = %"
272 			B_PRIu64 ", delta = %" B_PRIx64 "\n", i, (uint64)region->start,
273 			(uint64)region->size, (int64)(AddrType)region->delta));
274 	}
275 
276 
277 	// found both, text and data?
278 	if (image->data_region.size == 0 || image->text_region.size == 0) {
279 		dprintf("Couldn't find both text and data segment!\n");
280 		status = B_BAD_DATA;
281 		goto error1;
282 	}
283 
284 	// get the segment order
285 	RegionType* firstRegion;
286 	RegionType* secondRegion;
287 	if (image->text_region.start < image->data_region.start) {
288 		firstRegion = &image->text_region;
289 		secondRegion = &image->data_region;
290 	} else {
291 		firstRegion = &image->data_region;
292 		secondRegion = &image->text_region;
293 	}
294 
295 	// The kernel and the modules are relocatable, thus AllocateRegion()
296 	// can automatically allocate an address, but shall prefer the specified
297 	// base address.
298 	totalSize = secondRegion->start + secondRegion->size - firstRegion->start;
299 	{
300 		AddrType address = firstRegion->start;
301 		if (Class::AllocateRegion(&address, totalSize,
302 				B_READ_AREA | B_WRITE_AREA, &mappedRegion) != B_OK) {
303 			status = B_NO_MEMORY;
304 			goto error1;
305 		}
306 		firstRegion->start = address;
307 	}
308 
309 	// initialize the region pointers to the allocated region
310 	secondRegion->start += firstRegion->start + firstRegion->delta;
311 
312 	image->data_region.delta += image->data_region.start;
313 	image->text_region.delta += image->text_region.start;
314 
315 	TRACE(("text: start 0x%" B_PRIx64 ", size 0x%" B_PRIx64 ", delta 0x%"
316 		B_PRIx64 "\n", (uint64)image->text_region.start,
317 		(uint64)image->text_region.size,
318 		(int64)(AddrType)image->text_region.delta));
319 	TRACE(("data: start 0x%" B_PRIx64 ", size 0x%" B_PRIx64 ", delta 0x%"
320 		B_PRIx64 "\n", (uint64)image->data_region.start,
321 		(uint64)image->data_region.size,
322 		(int64)(AddrType)image->data_region.delta));
323 
324 	// load program data
325 
326 	for (int32 i = 0; i < elfHeader.e_phnum; i++) {
327 		PhdrType& header = programHeaders[i];
328 
329 		if (header.p_type != PT_LOAD)
330 			continue;
331 
332 		RegionType* region;
333 		if (header.IsReadWrite())
334 			region = &image->data_region;
335 		else if (header.IsExecutable())
336 			region = &image->text_region;
337 		else
338 			continue;
339 
340 		TRACE(("load segment %" PRId32 " (%" PRIu64 " bytes) mapped at %p...\n",
341 			i, (uint64)header.p_filesz, Class::Map(region->start)));
342 
343 		length = read_pos(fd, header.p_offset,
344 			Class::Map(region->start + (header.p_vaddr % B_PAGE_SIZE)),
345 			header.p_filesz);
346 		if (length < (ssize_t)header.p_filesz) {
347 			status = B_BAD_DATA;
348 			dprintf("error reading in seg %" B_PRId32 "\n", i);
349 			goto error2;
350 		}
351 
352 		// Clear anything above the file size (that may also contain the BSS
353 		// area)
354 
355 		uint32 offset = (header.p_vaddr % B_PAGE_SIZE) + header.p_filesz;
356 		if (offset < region->size)
357 			memset(Class::Map(region->start + offset), 0, region->size - offset);
358 	}
359 
360 	// offset dynamic section, and program entry addresses by the delta of the
361 	// regions
362 	image->dynamic_section.start += image->text_region.delta;
363 	image->elf_header.e_entry += image->text_region.delta;
364 
365 	image->num_debug_symbols = 0;
366 	image->debug_symbols = NULL;
367 	image->debug_string_table = NULL;
368 
369 	if (sLoadElfSymbols)
370 		_LoadSymbolTable(fd, image);
371 
372 	free(programHeaders);
373 
374 	return B_OK;
375 
376 error2:
377 	if (mappedRegion != NULL)
378 		platform_free_region(mappedRegion, totalSize);
379 error1:
380 	free(programHeaders);
381 	kernel_args_free(image);
382 
383 	return status;
384 }
385 
386 
387 template<typename Class>
388 /*static*/ status_t
389 ELFLoader<Class>::Relocate(preloaded_image* _image)
390 {
391 	ImageType* image = static_cast<ImageType*>(_image);
392 
393 	status_t status = _ParseDynamicSection(image);
394 	if (status != B_OK)
395 		return status;
396 
397 	// deal with the rels first
398 	if (image->rel) {
399 		TRACE(("total %i relocs\n",
400 			(int)image->rel_len / (int)sizeof(RelType)));
401 
402 		status = boot_arch_elf_relocate_rel(image, image->rel, image->rel_len);
403 		if (status != B_OK)
404 			return status;
405 	}
406 
407 	if (image->pltrel) {
408 		RelType* pltrel = image->pltrel;
409 		if (image->pltrel_type == DT_REL) {
410 			TRACE(("total %i plt-relocs\n",
411 				(int)image->pltrel_len / (int)sizeof(RelType)));
412 
413 			status = boot_arch_elf_relocate_rel(image, pltrel,
414 				image->pltrel_len);
415 		} else {
416 			TRACE(("total %i plt-relocs\n",
417 				(int)image->pltrel_len / (int)sizeof(RelaType)));
418 
419 			status = boot_arch_elf_relocate_rela(image, (RelaType*)pltrel,
420 				image->pltrel_len);
421 		}
422 		if (status != B_OK)
423 			return status;
424 	}
425 
426 	if (image->rela) {
427 		TRACE(("total %i rela relocs\n",
428 			(int)image->rela_len / (int)sizeof(RelaType)));
429 		status = boot_arch_elf_relocate_rela(image, image->rela,
430 			image->rela_len);
431 		if (status != B_OK)
432 			return status;
433 	}
434 
435 	return B_OK;
436 }
437 
438 template<typename Class>
439 /*static*/ status_t
440 ELFLoader<Class>::Resolve(ImageType* image, SymType* symbol,
441 	AddrType* symbolAddress)
442 {
443 	switch (symbol->st_shndx) {
444 		case SHN_UNDEF:
445 			// Since we do that only for the kernel, there shouldn't be
446 			// undefined symbols.
447 			TRACE(("elf_resolve_symbol: undefined symbol\n"));
448 			return B_MISSING_SYMBOL;
449 		case SHN_ABS:
450 			*symbolAddress = symbol->st_value;
451 			return B_NO_ERROR;
452 		case SHN_COMMON:
453 			// ToDo: finish this
454 			TRACE(("elf_resolve_symbol: COMMON symbol, finish me!\n"));
455 			return B_ERROR;
456 		default:
457 			// standard symbol
458 			*symbolAddress = symbol->st_value + image->text_region.delta;
459 			return B_OK;
460 	}
461 }
462 
463 
464 template<typename Class>
465 /*static*/ status_t
466 ELFLoader<Class>::_LoadSymbolTable(int fd, ImageType* image)
467 {
468 	const EhdrType& elfHeader = image->elf_header;
469 	SymType* symbolTable = NULL;
470 	ShdrType* stringHeader = NULL;
471 	uint32 numSymbols = 0;
472 	char* stringTable;
473 	status_t status;
474 
475 	// get section headers
476 
477 	ssize_t size = elfHeader.e_shnum * elfHeader.e_shentsize;
478 	ShdrType* sectionHeaders = (ShdrType*)malloc(size);
479 	if (sectionHeaders == NULL) {
480 		dprintf("error allocating space for section headers\n");
481 		return B_NO_MEMORY;
482 	}
483 
484 	ssize_t length = read_pos(fd, elfHeader.e_shoff, sectionHeaders, size);
485 	if (length < size) {
486 		TRACE(("error reading in program headers\n"));
487 		status = B_ERROR;
488 		goto error1;
489 	}
490 
491 	// find symbol table in section headers
492 
493 	for (int32 i = 0; i < elfHeader.e_shnum; i++) {
494 		if (sectionHeaders[i].sh_type == SHT_SYMTAB) {
495 			stringHeader = &sectionHeaders[sectionHeaders[i].sh_link];
496 
497 			if (stringHeader->sh_type != SHT_STRTAB) {
498 				TRACE(("doesn't link to string table\n"));
499 				status = B_BAD_DATA;
500 				goto error1;
501 			}
502 
503 			// read in symbol table
504 			size = sectionHeaders[i].sh_size;
505 			symbolTable = (SymType*)kernel_args_malloc(size);
506 			if (symbolTable == NULL) {
507 				status = B_NO_MEMORY;
508 				goto error1;
509 			}
510 
511 			length = read_pos(fd, sectionHeaders[i].sh_offset, symbolTable,
512 				size);
513 			if (length < size) {
514 				TRACE(("error reading in symbol table\n"));
515 				status = B_ERROR;
516 				goto error1;
517 			}
518 
519 			numSymbols = size / sizeof(SymType);
520 			break;
521 		}
522 	}
523 
524 	if (symbolTable == NULL) {
525 		TRACE(("no symbol table\n"));
526 		status = B_BAD_VALUE;
527 		goto error1;
528 	}
529 
530 	// read in string table
531 
532 	size = stringHeader->sh_size;
533 	stringTable = (char*)kernel_args_malloc(size);
534 	if (stringTable == NULL) {
535 		status = B_NO_MEMORY;
536 		goto error2;
537 	}
538 
539 	length = read_pos(fd, stringHeader->sh_offset, stringTable, size);
540 	if (length < size) {
541 		TRACE(("error reading in string table\n"));
542 		status = B_ERROR;
543 		goto error3;
544 	}
545 
546 	TRACE(("loaded %" B_PRIu32 " debug symbols\n", numSymbols));
547 
548 	// insert tables into image
549 	image->debug_symbols = symbolTable;
550 	image->num_debug_symbols = numSymbols;
551 	image->debug_string_table = stringTable;
552 	image->debug_string_table_size = size;
553 
554 	free(sectionHeaders);
555 	return B_OK;
556 
557 error3:
558 	kernel_args_free(stringTable);
559 error2:
560 	kernel_args_free(symbolTable);
561 error1:
562 	free(sectionHeaders);
563 
564 	return status;
565 }
566 
567 
568 template<typename Class>
569 /*static*/ status_t
570 ELFLoader<Class>::_ParseDynamicSection(ImageType* image)
571 {
572 	image->syms = 0;
573 	image->rel = 0;
574 	image->rel_len = 0;
575 	image->rela = 0;
576 	image->rela_len = 0;
577 	image->pltrel = 0;
578 	image->pltrel_len = 0;
579 	image->pltrel_type = 0;
580 
581 	if(image->dynamic_section.start == 0)
582 		return B_ERROR;
583 
584 	DynType* d = (DynType*)Class::Map(image->dynamic_section.start);
585 
586 	for (int i = 0; d[i].d_tag != DT_NULL; i++) {
587 		switch (d[i].d_tag) {
588 			case DT_HASH:
589 			case DT_STRTAB:
590 				break;
591 			case DT_SYMTAB:
592 				image->syms = (SymType*)Class::Map(d[i].d_un.d_ptr
593 					+ image->text_region.delta);
594 				break;
595 			case DT_REL:
596 				image->rel = (RelType*)Class::Map(d[i].d_un.d_ptr
597 					+ image->text_region.delta);
598 				break;
599 			case DT_RELSZ:
600 				image->rel_len = d[i].d_un.d_val;
601 				break;
602 			case DT_RELA:
603 				image->rela = (RelaType*)Class::Map(d[i].d_un.d_ptr
604 					+ image->text_region.delta);
605 				break;
606 			case DT_RELASZ:
607 				image->rela_len = d[i].d_un.d_val;
608 				break;
609 			case DT_JMPREL:
610 				image->pltrel = (RelType*)Class::Map(d[i].d_un.d_ptr
611 					+ image->text_region.delta);
612 				break;
613 			case DT_PLTRELSZ:
614 				image->pltrel_len = d[i].d_un.d_val;
615 				break;
616 			case DT_PLTREL:
617 				image->pltrel_type = d[i].d_un.d_val;
618 				break;
619 
620 			default:
621 				continue;
622 		}
623 	}
624 
625 	// lets make sure we found all the required sections
626 	if (image->syms == NULL)
627 		return B_ERROR;
628 
629 	return B_OK;
630 }
631 
632 
633 // #pragma mark -
634 
635 
636 void
637 elf_init()
638 {
639 	void* settings = load_driver_settings("kernel");
640 	if (settings == NULL)
641 		return;
642 
643 	sLoadElfSymbols = get_driver_boolean_parameter(settings, "load_symbols",
644 		false, false);
645 
646 	unload_driver_settings(settings);
647 }
648 
649 
650 status_t
651 elf_load_image(int fd, preloaded_image** _image)
652 {
653 	status_t status = B_ERROR;
654 
655 	TRACE(("elf_load_image(fd = %d, _image = %p)\n", fd, _image));
656 
657 #if BOOT_SUPPORT_ELF64
658 	if (gKernelArgs.kernel_image == NULL
659 		|| gKernelArgs.kernel_image->elf_class == ELFCLASS64) {
660 		status = ELF64Loader::Create(fd, _image);
661 		if (status == B_OK)
662 			return ELF64Loader::Load(fd, *_image);
663 		else if (status != B_BAD_TYPE)
664 			return status;
665 	}
666 #endif
667 #if BOOT_SUPPORT_ELF32
668 	if (gKernelArgs.kernel_image == NULL
669 		|| gKernelArgs.kernel_image->elf_class == ELFCLASS32) {
670 		status = ELF32Loader::Create(fd, _image);
671 		if (status == B_OK)
672 			return ELF32Loader::Load(fd, *_image);
673 	}
674 #endif
675 
676 	return status;
677 }
678 
679 
680 status_t
681 elf_load_image(Directory* directory, const char* path)
682 {
683 	preloaded_image* image;
684 
685 	TRACE(("elf_load_image(directory = %p, \"%s\")\n", directory, path));
686 
687 	int fd = open_from(directory, path, O_RDONLY);
688 	if (fd < 0)
689 		return fd;
690 
691 	// check if this file has already been loaded
692 
693 	struct stat stat;
694 	if (fstat(fd, &stat) < 0)
695 		return errno;
696 
697 	image = gKernelArgs.preloaded_images;
698 	for (; image != NULL; image = image->next) {
699 		if (image->inode == stat.st_ino) {
700 			// file has already been loaded, no need to load it twice!
701 			close(fd);
702 			return B_OK;
703 		}
704 	}
705 
706 	// we still need to load it, so do it
707 
708 	status_t status = elf_load_image(fd, &image);
709 	if (status == B_OK) {
710 		image->name = kernel_args_strdup(path);
711 		image->inode = stat.st_ino;
712 
713 		// insert to kernel args
714 		image->next = gKernelArgs.preloaded_images;
715 		gKernelArgs.preloaded_images = image;
716 	} else
717 		kernel_args_free(image);
718 
719 	close(fd);
720 	return status;
721 }
722 
723 
724 status_t
725 elf_relocate_image(preloaded_image* image)
726 {
727 #ifdef BOOT_SUPPORT_ELF64
728 	if (image->elf_class == ELFCLASS64)
729 		return ELF64Loader::Relocate(image);
730 	else
731 #endif
732 #ifdef BOOT_SUPPORT_ELF32
733 		return ELF32Loader::Relocate(image);
734 #else
735 		return B_ERROR;
736 #endif
737 }
738 
739 
740 #ifdef BOOT_SUPPORT_ELF32
741 status_t
742 boot_elf_resolve_symbol(preloaded_elf32_image* image, Elf32_Sym* symbol,
743 	Elf32_Addr* symbolAddress)
744 {
745 	return ELF32Loader::Resolve(image, symbol, symbolAddress);
746 }
747 #endif
748 
749 
750 #ifdef BOOT_SUPPORT_ELF64
751 status_t
752 boot_elf_resolve_symbol(preloaded_elf64_image* image, Elf64_Sym* symbol,
753 	Elf64_Addr* symbolAddress)
754 {
755 	return ELF64Loader::Resolve(image, symbol, symbolAddress);
756 }
757 
758 void
759 boot_elf64_set_relocation(Elf64_Addr resolveAddress, Elf64_Addr finalAddress)
760 {
761 	Elf64_Addr* dest = (Elf64_Addr*)ELF64Class::Map(resolveAddress);
762 	*dest = finalAddress;
763 }
764 #endif
765