xref: /haiku/src/system/boot/arch/m68k/mmu.cpp (revision 323b65468e5836bb27a5e373b14027d902349437)
1 /*
2  * Copyright 2004-2007, Axel Dörfler, axeld@pinc-software.de.
3  * Based on code written by Travis Geiselbrecht for NewOS.
4  *
5  * Distributed under the terms of the MIT License.
6  */
7 
8 
9 #include "atari_memory_map.h"
10 #include "toscalls.h"
11 #include "mmu.h"
12 
13 #include <boot/platform.h>
14 #include <boot/stdio.h>
15 #include <boot/kernel_args.h>
16 #include <boot/stage2.h>
17 #include <arch/cpu.h>
18 #include <arch_kernel.h>
19 #include <kernel.h>
20 
21 #include <OS.h>
22 
23 #include <string.h>
24 
25 
26 //XXX: x86
27 /** The (physical) memory layout of the boot loader is currently as follows:
28  *	  0x0500 - 0x10000	protected mode stack
29  *	  0x0500 - 0x09000	real mode stack
30  *	 0x10000 - ?		code (up to ~500 kB)
31  *	 0x90000			1st temporary page table (identity maps 0-4 MB)
32  *	 0x91000			2nd (4-8 MB)
33  *	 0x92000 - 0x92000	further page tables
34  *	 0x9e000 - 0xa0000	SMP trampoline code
35  *	[0xa0000 - 0x100000	BIOS/ROM/reserved area]
36  *	0x100000			page directory
37  *	     ...			boot loader heap (32 kB)
38  *	     ...			free physical memory
39  *
40  *	The first 8 MB are identity mapped (0x0 - 0x0800000); paging is turned
41  *	on. The kernel is mapped at 0x80000000, all other stuff mapped by the
42  *	loader (kernel args, modules, driver settings, ...) comes after
43  *	0x81000000 which means that there is currently only 1 MB reserved for
44  *	the kernel itself (see kMaxKernelSize).
45  */
46 
47 // notes m68k:
48 /** The (physical) memory layout of the boot loader is currently as follows:
49  *	  0x0800 - 0x10000	supervisor mode stack (1) XXX: more ? x86 starts at 500
50  *	 0x10000 - ?		code (up to ~500 kB)
51  *  0x100000 or FAST_RAM_BASE if any:
52  *	     ...			page root directory
53  *	     ...			interrupt vectors (VBR)
54  *	     ...			page directory
55  *	     ...			boot loader heap (32 kB)
56  *	     ...			free physical memory
57  *  0xdNNNNN			video buffer usually there, as per v_bas_ad
58  *						(=Logbase() but Physbase() is better)
59  *
60  *	The first 32 MB (2) are identity mapped (0x0 - 0x1000000); paging
61  *	is turned on. The kernel is mapped at 0x80000000, all other stuff
62  *	mapped by the loader (kernel args, modules, driver settings, ...)
63  *	comes after 0x81000000 which means that there is currently only
64  *	1 MB reserved for the kernel itself (see kMaxKernelSize).
65  *
66  *	(1) no need for user stack, we are already in supervisor mode in the
67  *	loader.
68  *	(2) maps the whole regular ST space; transparent translation registers
69  *	have larger granularity anyway.
70  */
71 #warning M68K: check for Physbase() < ST_RAM_TOP
72 
73 //#define TRACE_MMU
74 #ifdef TRACE_MMU
75 #	define TRACE(x) dprintf x
76 #else
77 #	define TRACE(x) ;
78 #endif
79 
80 
81 // since the page root directory doesn't take a full page (1k)
82 // we stuff some other stuff after it, like the interrupt vectors (1k)
83 #define VBR_PAGE_OFFSET 1024
84 
85 static const uint32 kDefaultPageTableFlags = 0x07;	// present, user, R/W
86 static const size_t kMaxKernelSize = 0x100000;		// 1 MB for the kernel
87 
88 // working page directory and page table
89 addr_t gPageRoot = 0;
90 
91 static addr_t sNextPhysicalAddress = 0x100000;
92 static addr_t sNextVirtualAddress = KERNEL_BASE + kMaxKernelSize;
93 static addr_t sMaxVirtualAddress = KERNEL_BASE /*+ 0x400000*/;
94 
95 #if 0
96 static addr_t sNextPageTableAddress = 0x90000;
97 static const uint32 kPageTableRegionEnd = 0x9e000;
98 	// we need to reserve 2 pages for the SMP trampoline code XXX:no
99 #endif
100 
101 static const struct boot_mmu_ops *gMMUOps;
102 
103 static addr_t
104 get_next_virtual_address(size_t size)
105 {
106 	addr_t address = sNextVirtualAddress;
107 	sNextVirtualAddress += size;
108 
109 	TRACE(("%s(%d): %08x\n", __FUNCTION__, size, address));
110 	return address;
111 }
112 
113 
114 static addr_t
115 get_next_physical_address(size_t size)
116 {
117 	addr_t address = sNextPhysicalAddress;
118 	sNextPhysicalAddress += size;
119 
120 	TRACE(("%s(%d): %08x\n", __FUNCTION__, size, address));
121 	return address;
122 }
123 
124 
125 static addr_t
126 get_next_virtual_page()
127 {
128 	TRACE(("%s\n", __FUNCTION__));
129 	return get_next_virtual_address(B_PAGE_SIZE);
130 }
131 
132 
133 static addr_t
134 get_next_physical_page()
135 {
136 	TRACE(("%s\n", __FUNCTION__));
137 	return get_next_physical_address(B_PAGE_SIZE);
138 }
139 
140 
141 // allocate a page worth of page dir or tables
142 extern "C" addr_t
143 mmu_get_next_page_tables()
144 {
145 #if 0
146 	TRACE(("mmu_get_next_page_tables, sNextPageTableAddress %p, kPageTableRegionEnd %p\n",
147 		sNextPageTableAddress, kPageTableRegionEnd));
148 
149 	addr_t address = sNextPageTableAddress;
150 	if (address >= kPageTableRegionEnd)
151 		return (uint32 *)get_next_physical_page();
152 
153 	sNextPageTableAddress += B_PAGE_SIZE;
154 	return (uint32 *)address;
155 #endif
156 	addr_t tbl = get_next_physical_page();
157 	if (!tbl)
158 		return tbl;
159 	// shouldn't we fill this ?
160 	//gKernelArgs.arch_args.pgtables[gKernelArgs.arch_args.num_pgtables++] = (uint32)pageTable;
161 
162 #if 0
163 	// clear them
164 	uint32 *p = (uint32 *)tbl;
165 	for (int32 i = 0; i < 1024; i++)
166 		p[i] = 0;
167 #endif
168 	return tbl;
169 }
170 
171 #if 0
172 /**	Adds a new page table for the specified base address */
173 
174 static void
175 add_page_table(addr_t base)
176 {
177 	TRACE(("add_page_table(base = %p)\n", (void *)base));
178 #if 0
179 
180 	// Get new page table and clear it out
181 	uint32 *pageTable = mmu_get_next_page_tables();
182 	if (pageTable > (uint32 *)(8 * 1024 * 1024))
183 		panic("tried to add page table beyond the indentity mapped 8 MB region\n");
184 
185 	gKernelArgs.arch_args.pgtables[gKernelArgs.arch_args.num_pgtables++] = (uint32)pageTable;
186 
187 	for (int32 i = 0; i < 1024; i++)
188 		pageTable[i] = 0;
189 
190 	// put the new page table into the page directory
191 	gPageRoot[base/(4*1024*1024)] = (uint32)pageTable | kDefaultPageTableFlags;
192 #endif
193 }
194 #endif
195 
196 
197 static void
198 unmap_page(addr_t virtualAddress)
199 {
200 	gMMUOps->unmap_page(virtualAddress);
201 }
202 
203 
204 /** Creates an entry to map the specified virtualAddress to the given
205  *	physicalAddress.
206  *	If the mapping goes beyond the current page table, it will allocate
207  *	a new one. If it cannot map the requested page, it panics.
208  */
209 
210 static void
211 map_page(addr_t virtualAddress, addr_t physicalAddress, uint32 flags)
212 {
213 	TRACE(("map_page: vaddr 0x%lx, paddr 0x%lx\n", virtualAddress, physicalAddress));
214 
215 	if (virtualAddress < KERNEL_BASE)
216 		panic("map_page: asked to map invalid page %p!\n", (void *)virtualAddress);
217 
218 	// slow but I'm too lazy to fix the code below
219 	gMMUOps->add_page_table(virtualAddress);
220 #if 0
221 	if (virtualAddress >= sMaxVirtualAddress) {
222 		// we need to add a new page table
223 
224 		gMMUOps->add_page_table(sMaxVirtualAddress);
225 		// 64 pages / page table
226 		sMaxVirtualAddress += B_PAGE_SIZE * 64;
227 
228 		if (virtualAddress >= sMaxVirtualAddress)
229 			panic("map_page: asked to map a page to %p\n", (void *)virtualAddress);
230 	}
231 #endif
232 
233 	physicalAddress &= ~(B_PAGE_SIZE - 1);
234 
235 	// map the page to the correct page table
236 	gMMUOps->map_page(virtualAddress, physicalAddress, flags);
237 }
238 
239 
240 static void
241 init_page_directory(void)
242 {
243 	TRACE(("init_page_directory\n"));
244 
245 	// allocate a new pg root dir
246 	gPageRoot = get_next_physical_page();
247 	gKernelArgs.arch_args.phys_pgroot = (uint32)gPageRoot;
248 	gKernelArgs.arch_args.phys_vbr = (uint32)gPageRoot + VBR_PAGE_OFFSET;
249 
250 	// set the root pointers
251 	gMMUOps->load_rp(gPageRoot);
252 	// allocate second level tables for kernel space
253 	// this will simplify mmu code a lot, and only wastes 32KB
254 	gMMUOps->allocate_kernel_pgdirs();
255 	// enable mmu translation
256 	gMMUOps->enable_paging();
257 	//XXX: check for errors
258 
259 	//gKernelArgs.arch_args.num_pgtables = 0;
260 	gMMUOps->add_page_table(KERNEL_BASE);
261 
262 #if 0
263 
264 
265 	// clear out the pgdir
266 	for (int32 i = 0; i < 1024; i++) {
267 		gPageRoot[i] = 0;
268 	}
269 
270 	// Identity map the first 8 MB of memory so that their
271 	// physical and virtual address are the same.
272 	// These page tables won't be taken over into the kernel.
273 
274 	// make the first page table at the first free spot
275 	uint32 *pageTable = mmu_get_next_page_tables();
276 
277 	for (int32 i = 0; i < 1024; i++) {
278 		pageTable[i] = (i * 0x1000) | kDefaultPageFlags;
279 	}
280 
281 	gPageRoot[0] = (uint32)pageTable | kDefaultPageFlags;
282 
283 	// make the second page table
284 	pageTable = mmu_get_next_page_tables();
285 
286 	for (int32 i = 0; i < 1024; i++) {
287 		pageTable[i] = (i * 0x1000 + 0x400000) | kDefaultPageFlags;
288 	}
289 
290 	gPageRoot[1] = (uint32)pageTable | kDefaultPageFlags;
291 
292 	gKernelArgs.arch_args.num_pgtables = 0;
293 	add_page_table(KERNEL_BASE);
294 
295 	// switch to the new pgdir and enable paging
296 	asm("movl %0, %%eax;"
297 		"movl %%eax, %%cr3;" : : "m" (gPageRoot) : "eax");
298 	// Important.  Make sure supervisor threads can fault on read only pages...
299 	asm("movl %%eax, %%cr0" : : "a" ((1 << 31) | (1 << 16) | (1 << 5) | 1));
300 #endif
301 }
302 
303 
304 //	#pragma mark -
305 
306 
307 extern "C" addr_t
308 mmu_map_physical_memory(addr_t physicalAddress, size_t size, uint32 flags)
309 {
310 	addr_t address = sNextVirtualAddress;
311 	addr_t pageOffset = physicalAddress & (B_PAGE_SIZE - 1);
312 
313 	physicalAddress -= pageOffset;
314 
315 	for (addr_t offset = 0; offset < size; offset += B_PAGE_SIZE) {
316 		map_page(get_next_virtual_page(), physicalAddress + offset, flags);
317 	}
318 
319 	return address + pageOffset;
320 }
321 
322 
323 extern "C" void *
324 mmu_allocate(void *virtualAddress, size_t size)
325 {
326 	TRACE(("mmu_allocate: requested vaddr: %p, next free vaddr: 0x%lx, size: %ld\n",
327 		virtualAddress, sNextVirtualAddress, size));
328 
329 	size = (size + B_PAGE_SIZE - 1) / B_PAGE_SIZE;
330 		// get number of pages to map
331 
332 	if (virtualAddress != NULL) {
333 		// This special path is almost only useful for loading the
334 		// kernel into memory; it will only allow you to map the
335 		// 1 MB following the kernel base address.
336 		// Also, it won't check for already mapped addresses, so
337 		// you better know why you are here :)
338 		addr_t address = (addr_t)virtualAddress;
339 
340 		// is the address within the valid range?
341 		if (address < KERNEL_BASE || address + size >= KERNEL_BASE + kMaxKernelSize)
342 			return NULL;
343 
344 		for (uint32 i = 0; i < size; i++) {
345 			map_page(address, get_next_physical_page(), kDefaultPageFlags);
346 			address += B_PAGE_SIZE;
347 		}
348 
349 		TRACE(("mmu_allocate(KERNEL, %d): done\n", size));
350 		return virtualAddress;
351 	}
352 
353 	void *address = (void *)sNextVirtualAddress;
354 
355 	for (uint32 i = 0; i < size; i++) {
356 		map_page(get_next_virtual_page(), get_next_physical_page(), kDefaultPageFlags);
357 	}
358 
359 	TRACE(("mmu_allocate(NULL, %d): %p\n", size, address));
360 	return address;
361 }
362 
363 
364 /**	This will unmap the allocated chunk of memory from the virtual
365  *	address space. It might not actually free memory (as its implementation
366  *	is very simple), but it might.
367  */
368 
369 extern "C" void
370 mmu_free(void *virtualAddress, size_t size)
371 {
372 	TRACE(("mmu_free(virtualAddress = %p, size: %ld)\n", virtualAddress, size));
373 
374 	addr_t address = (addr_t)virtualAddress;
375 	size = (size + B_PAGE_SIZE - 1) / B_PAGE_SIZE;
376 		// get number of pages to map
377 
378 	// is the address within the valid range?
379 	if (address < KERNEL_BASE
380 		|| address + size >= KERNEL_BASE + kMaxKernelSize) {
381 		panic("mmu_free: asked to unmap out of range region (%p, size %lx)\n",
382 			(void *)address, size);
383 	}
384 
385 	// unmap all pages within the range
386 	for (uint32 i = 0; i < size; i++) {
387 		unmap_page(address);
388 		address += B_PAGE_SIZE;
389 	}
390 
391 	if (address == sNextVirtualAddress) {
392 		// we can actually reuse the virtual address space
393 		sNextVirtualAddress -= size;
394 	}
395 }
396 
397 
398 /** Sets up the final and kernel accessible GDT and IDT tables.
399  *	BIOS calls won't work any longer after this function has
400  *	been called.
401  */
402 
403 extern "C" void
404 mmu_init_for_kernel(void)
405 {
406 	TRACE(("mmu_init_for_kernel\n"));
407 
408 
409 
410 
411 	// remove identity mapping of ST space
412 	// actually done by the kernel when it's done using query_early
413 	//gMMUOps->set_tt(0, NULL, 0, 0);
414 
415 #if 0
416 	// set up a new idt
417 	{
418 		struct gdt_idt_descr idtDescriptor;
419 		uint32 *idt;
420 
421 		// find a new idt
422 		idt = (uint32 *)get_next_physical_page();
423 		gKernelArgs.arch_args.phys_idt = (uint32)idt;
424 
425 		TRACE(("idt at %p\n", idt));
426 
427 		// map the idt into virtual space
428 		gKernelArgs.arch_args.vir_idt = (uint32)get_next_virtual_page();
429 		map_page(gKernelArgs.arch_args.vir_idt, (uint32)idt, kDefaultPageFlags);
430 
431 		// clear it out
432 		uint32* virtualIDT = (uint32*)gKernelArgs.arch_args.vir_idt;
433 		for (int32 i = 0; i < IDT_LIMIT / 4; i++) {
434 			virtualIDT[i] = 0;
435 		}
436 
437 		// load the idt
438 		idtDescriptor.limit = IDT_LIMIT - 1;
439 		idtDescriptor.base = (uint32 *)gKernelArgs.arch_args.vir_idt;
440 
441 		asm("lidt	%0;"
442 			: : "m" (idtDescriptor));
443 
444 		TRACE(("idt at virtual address 0x%lx\n", gKernelArgs.arch_args.vir_idt));
445 	}
446 
447 	// set up a new gdt
448 	{
449 		struct gdt_idt_descr gdtDescriptor;
450 		segment_descriptor *gdt;
451 
452 		// find a new gdt
453 		gdt = (segment_descriptor *)get_next_physical_page();
454 		gKernelArgs.arch_args.phys_gdt = (uint32)gdt;
455 
456 		TRACE(("gdt at %p\n", gdt));
457 
458 		// map the gdt into virtual space
459 		gKernelArgs.arch_args.vir_gdt = (uint32)get_next_virtual_page();
460 		map_page(gKernelArgs.arch_args.vir_gdt, (uint32)gdt, kDefaultPageFlags);
461 
462 		// put standard segment descriptors in it
463 		segment_descriptor* virtualGDT
464 			= (segment_descriptor*)gKernelArgs.arch_args.vir_gdt;
465 		clear_segment_descriptor(&virtualGDT[0]);
466 
467 		// seg 0x08 - kernel 4GB code
468 		set_segment_descriptor(&virtualGDT[1], 0, 0xffffffff, DT_CODE_READABLE,
469 			DPL_KERNEL);
470 
471 		// seg 0x10 - kernel 4GB data
472 		set_segment_descriptor(&virtualGDT[2], 0, 0xffffffff, DT_DATA_WRITEABLE,
473 			DPL_KERNEL);
474 
475 		// seg 0x1b - ring 3 user 4GB code
476 		set_segment_descriptor(&virtualGDT[3], 0, 0xffffffff, DT_CODE_READABLE,
477 			DPL_USER);
478 
479 		// seg 0x23 - ring 3 user 4GB data
480 		set_segment_descriptor(&virtualGDT[4], 0, 0xffffffff, DT_DATA_WRITEABLE,
481 			DPL_USER);
482 
483 		// virtualGDT[5] and above will be filled later by the kernel
484 		// to contain the TSS descriptors, and for TLS (one for every CPU)
485 
486 		// load the GDT
487 		gdtDescriptor.limit = GDT_LIMIT - 1;
488 		gdtDescriptor.base = (uint32 *)gKernelArgs.arch_args.vir_gdt;
489 
490 		asm("lgdt	%0;"
491 			: : "m" (gdtDescriptor));
492 
493 		TRACE(("gdt at virtual address %p\n", (void *)gKernelArgs.arch_args.vir_gdt));
494 	}
495 #endif
496 
497 	// save the memory we've physically allocated
498 	gKernelArgs.physical_allocated_range[0].size = sNextPhysicalAddress - gKernelArgs.physical_allocated_range[0].start;
499 
500 	// save the memory we've virtually allocated (for the kernel and other stuff)
501 	gKernelArgs.virtual_allocated_range[0].start = KERNEL_BASE;
502 	gKernelArgs.virtual_allocated_range[0].size = sNextVirtualAddress - KERNEL_BASE;
503 	gKernelArgs.num_virtual_allocated_ranges = 1;
504 
505 	// sort the address ranges
506 	sort_physical_address_ranges(gKernelArgs.physical_memory_range,
507 		gKernelArgs.num_physical_memory_ranges);
508 	sort_physical_address_ranges(gKernelArgs.physical_allocated_range,
509 		gKernelArgs.num_physical_allocated_ranges);
510 	sort_address_ranges(gKernelArgs.virtual_allocated_range,
511 		gKernelArgs.num_virtual_allocated_ranges);
512 
513 #ifdef TRACE_MMU
514 	{
515 		uint32 i;
516 
517 		dprintf("phys memory ranges:\n");
518 		for (i = 0; i < gKernelArgs.num_physical_memory_ranges; i++) {
519 			dprintf("    base 0x%08lx, length 0x%08lx\n", gKernelArgs.physical_memory_range[i].start, gKernelArgs.physical_memory_range[i].size);
520 		}
521 
522 		dprintf("allocated phys memory ranges:\n");
523 		for (i = 0; i < gKernelArgs.num_physical_allocated_ranges; i++) {
524 			dprintf("    base 0x%08lx, length 0x%08lx\n", gKernelArgs.physical_allocated_range[i].start, gKernelArgs.physical_allocated_range[i].size);
525 		}
526 
527 		dprintf("allocated virt memory ranges:\n");
528 		for (i = 0; i < gKernelArgs.num_virtual_allocated_ranges; i++) {
529 			dprintf("    base 0x%08lx, length 0x%08lx\n", gKernelArgs.virtual_allocated_range[i].start, gKernelArgs.virtual_allocated_range[i].size);
530 		}
531 	}
532 #endif
533 }
534 
535 
536 extern "C" void
537 mmu_init(void)
538 {
539 	TRACE(("mmu_init\n"));
540 	switch (gKernelArgs.arch_args.mmu_type) {
541 #if 0
542 		case 68851:
543 			gMMUOps = &k851MMUOps;
544 			break;
545 #endif
546 		case 68030:
547 			gMMUOps = &k030MMUOps;
548 			break;
549 		case 68040:
550 			gMMUOps = &k040MMUOps;
551 			break;
552 #if 0
553 		case 68060:
554 			gMMUOps = &k060MMUOps;
555 			break;
556 #endif
557 		default:
558 			panic("unknown mmu type %d\n", gKernelArgs.arch_args.mmu_type);
559 	}
560 
561 	gMMUOps->initialize();
562 
563 	addr_t fastram_top = 0;
564 	if (*TOSVARramvalid == TOSVARramvalid_MAGIC)
565 		fastram_top = *TOSVARramtop;
566 	if (fastram_top) {
567 		// we have some fastram, use it first
568 		sNextPhysicalAddress = ATARI_FASTRAM_BASE;
569 	}
570 
571 	gKernelArgs.physical_allocated_range[0].start = sNextPhysicalAddress;
572 	gKernelArgs.physical_allocated_range[0].size = 0;
573 	gKernelArgs.num_physical_allocated_ranges = 1;
574 		// remember the start of the allocated physical pages
575 
576 	// enable transparent translation of the first 256 MB
577 	gMMUOps->set_tt(0, ATARI_CHIPRAM_BASE, 0x10000000, 0);
578 	// enable transparent translation of the 16MB ST shadow range for I/O
579 	gMMUOps->set_tt(1, ATARI_SHADOW_BASE, 0x01000000, 0);
580 
581 	init_page_directory();
582 #if 0//XXX:HOLE
583 
584 	// Map the page directory into kernel space at 0xffc00000-0xffffffff
585 	// this enables a mmu trick where the 4 MB region that this pgdir entry
586 	// represents now maps the 4MB of potential pagetables that the pgdir
587 	// points to. Thrown away later in VM bringup, but useful for now.
588 	gPageRoot[1023] = (uint32)gPageRoot | kDefaultPageFlags;
589 #endif
590 
591 	// also map it on the next vpage
592 	gKernelArgs.arch_args.vir_pgroot = get_next_virtual_page();
593 	map_page(gKernelArgs.arch_args.vir_pgroot, (uint32)gPageRoot, kDefaultPageFlags);
594 
595 	// set virtual addr for interrupt vector table
596 	gKernelArgs.arch_args.vir_vbr = gKernelArgs.arch_args.vir_pgroot
597 		+ VBR_PAGE_OFFSET;
598 
599 	// map in a kernel stack
600 	gKernelArgs.cpu_kstack[0].start = (addr_t)mmu_allocate(NULL,
601 		KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE);
602 	gKernelArgs.cpu_kstack[0].size = KERNEL_STACK_SIZE
603 		+ KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE;
604 
605 	TRACE(("kernel stack at 0x%lx to 0x%lx\n", gKernelArgs.cpu_kstack[0].start,
606 		gKernelArgs.cpu_kstack[0].start + gKernelArgs.cpu_kstack[0].size));
607 
608 	// st ram as 1st range
609 	gKernelArgs.physical_memory_range[0].start = ATARI_CHIPRAM_BASE;
610 	gKernelArgs.physical_memory_range[0].size = *TOSVARphystop - ATARI_CHIPRAM_BASE;
611 	gKernelArgs.num_physical_memory_ranges = 1;
612 
613 	// fast ram as 2nd range
614 	if (fastram_top) {
615 		gKernelArgs.physical_memory_range[1].start =
616 			ATARI_FASTRAM_BASE;
617 		gKernelArgs.physical_memory_range[1].size =
618 			fastram_top - ATARI_FASTRAM_BASE;
619 		gKernelArgs.num_physical_memory_ranges++;
620 
621 	}
622 
623 	// mark the video area allocated
624 	addr_t video_base = *TOSVAR_memtop;
625 	video_base &= ~(B_PAGE_SIZE-1);
626 	gKernelArgs.physical_allocated_range[gKernelArgs.num_physical_allocated_ranges].start = video_base;
627 	gKernelArgs.physical_allocated_range[gKernelArgs.num_physical_allocated_ranges].size = *TOSVARphystop - video_base;
628 	gKernelArgs.num_physical_allocated_ranges++;
629 
630 
631 	gKernelArgs.arch_args.plat_args.atari.nat_feat.nf_page =
632 		get_next_physical_page() /*| 0xff000000*/;
633 
634 }
635 
636 
637 //	#pragma mark -
638 
639 
640 extern "C" status_t
641 platform_allocate_region(void **_address, size_t size, uint8 protection,
642 	bool /*exactAddress*/)
643 {
644 	void *address = mmu_allocate(*_address, size);
645 	if (address == NULL)
646 		return B_NO_MEMORY;
647 
648 	*_address = address;
649 	return B_OK;
650 }
651 
652 
653 extern "C" status_t
654 platform_free_region(void *address, size_t size)
655 {
656 	mmu_free(address, size);
657 	return B_OK;
658 }
659 
660 
661 void
662 platform_release_heap(struct stage2_args *args, void *base)
663 {
664 	// It will be freed automatically, since it is in the
665 	// identity mapped region, and not stored in the kernel's
666 	// page tables.
667 }
668 
669 
670 status_t
671 platform_init_heap(struct stage2_args *args, void **_base, void **_top)
672 {
673 	void *heap = (void *)get_next_physical_address(args->heap_size);
674 	if (heap == NULL)
675 		return B_NO_MEMORY;
676 
677 	*_base = heap;
678 	*_top = (void *)((int8 *)heap + args->heap_size);
679 	return B_OK;
680 }
681 
682 
683