1 /* 2 * Copyright 2004-2007, Axel Dörfler, axeld@pinc-software.de. 3 * Based on code written by Travis Geiselbrecht for NewOS. 4 * 5 * Distributed under the terms of the MIT License. 6 */ 7 8 9 #include "atari_memory_map.h" 10 #include "toscalls.h" 11 #include "mmu.h" 12 13 #include <boot/platform.h> 14 #include <boot/stdio.h> 15 #include <boot/kernel_args.h> 16 #include <boot/stage2.h> 17 #include <arch/cpu.h> 18 #include <arch_kernel.h> 19 #include <kernel.h> 20 21 #include <OS.h> 22 23 #include <string.h> 24 25 26 //XXX: x86 27 /** The (physical) memory layout of the boot loader is currently as follows: 28 * 0x0500 - 0x10000 protected mode stack 29 * 0x0500 - 0x09000 real mode stack 30 * 0x10000 - ? code (up to ~500 kB) 31 * 0x90000 1st temporary page table (identity maps 0-4 MB) 32 * 0x91000 2nd (4-8 MB) 33 * 0x92000 - 0x92000 further page tables 34 * 0x9e000 - 0xa0000 SMP trampoline code 35 * [0xa0000 - 0x100000 BIOS/ROM/reserved area] 36 * 0x100000 page directory 37 * ... boot loader heap (32 kB) 38 * ... free physical memory 39 * 40 * The first 8 MB are identity mapped (0x0 - 0x0800000); paging is turned 41 * on. The kernel is mapped at 0x80000000, all other stuff mapped by the 42 * loader (kernel args, modules, driver settings, ...) comes after 43 * 0x81000000 which means that there is currently only 1 MB reserved for 44 * the kernel itself (see kMaxKernelSize). 45 */ 46 47 // notes m68k: 48 /** The (physical) memory layout of the boot loader is currently as follows: 49 * 0x0800 - 0x10000 supervisor mode stack (1) XXX: more ? x86 starts at 500 50 * 0x10000 - ? code (up to ~500 kB) 51 * 0x100000 or FAST_RAM_BASE if any: 52 * ... page root directory 53 * ... interrupt vectors (VBR) 54 * ... page directory 55 * ... boot loader heap (32 kB) 56 * ... free physical memory 57 * 0xdNNNNN video buffer usually there, as per v_bas_ad 58 * (=Logbase() but Physbase() is better) 59 * 60 * The first 32 MB (2) are identity mapped (0x0 - 0x1000000); paging 61 * is turned on. The kernel is mapped at 0x80000000, all other stuff 62 * mapped by the loader (kernel args, modules, driver settings, ...) 63 * comes after 0x81000000 which means that there is currently only 64 * 1 MB reserved for the kernel itself (see kMaxKernelSize). 65 * 66 * (1) no need for user stack, we are already in supervisor mode in the 67 * loader. 68 * (2) maps the whole regular ST space; transparent translation registers 69 * have larger granularity anyway. 70 */ 71 #warning M68K: check for Physbase() < ST_RAM_TOP 72 73 //#define TRACE_MMU 74 #ifdef TRACE_MMU 75 # define TRACE(x) dprintf x 76 #else 77 # define TRACE(x) ; 78 #endif 79 80 81 // since the page root directory doesn't take a full page (1k) 82 // we stuff some other stuff after it, like the interrupt vectors (1k) 83 #define VBR_PAGE_OFFSET 1024 84 85 static const uint32 kDefaultPageTableFlags = 0x07; // present, user, R/W 86 static const size_t kMaxKernelSize = 0x100000; // 1 MB for the kernel 87 88 // working page directory and page table 89 addr_t gPageRoot = 0; 90 91 static addr_t sNextPhysicalAddress = 0x100000; 92 static addr_t sNextVirtualAddress = KERNEL_BASE + kMaxKernelSize; 93 static addr_t sMaxVirtualAddress = KERNEL_BASE /*+ 0x400000*/; 94 95 #if 0 96 static addr_t sNextPageTableAddress = 0x90000; 97 static const uint32 kPageTableRegionEnd = 0x9e000; 98 // we need to reserve 2 pages for the SMP trampoline code XXX:no 99 #endif 100 101 static const struct boot_mmu_ops *gMMUOps; 102 103 static addr_t 104 get_next_virtual_address(size_t size) 105 { 106 addr_t address = sNextVirtualAddress; 107 sNextVirtualAddress += size; 108 109 TRACE(("%s(%d): %08x\n", __FUNCTION__, size, address)); 110 return address; 111 } 112 113 114 static addr_t 115 get_next_physical_address(size_t size) 116 { 117 addr_t address = sNextPhysicalAddress; 118 sNextPhysicalAddress += size; 119 120 TRACE(("%s(%d): %08x\n", __FUNCTION__, size, address)); 121 return address; 122 } 123 124 125 static addr_t 126 get_next_virtual_page() 127 { 128 TRACE(("%s\n", __FUNCTION__)); 129 return get_next_virtual_address(B_PAGE_SIZE); 130 } 131 132 133 static addr_t 134 get_next_physical_page() 135 { 136 TRACE(("%s\n", __FUNCTION__)); 137 return get_next_physical_address(B_PAGE_SIZE); 138 } 139 140 141 // allocate a page worth of page dir or tables 142 extern "C" addr_t 143 mmu_get_next_page_tables() 144 { 145 #if 0 146 TRACE(("mmu_get_next_page_tables, sNextPageTableAddress %p, kPageTableRegionEnd %p\n", 147 sNextPageTableAddress, kPageTableRegionEnd)); 148 149 addr_t address = sNextPageTableAddress; 150 if (address >= kPageTableRegionEnd) 151 return (uint32 *)get_next_physical_page(); 152 153 sNextPageTableAddress += B_PAGE_SIZE; 154 return (uint32 *)address; 155 #endif 156 addr_t tbl = get_next_physical_page(); 157 if (!tbl) 158 return tbl; 159 // shouldn't we fill this ? 160 //gKernelArgs.arch_args.pgtables[gKernelArgs.arch_args.num_pgtables++] = (uint32)pageTable; 161 162 #if 0 163 // clear them 164 uint32 *p = (uint32 *)tbl; 165 for (int32 i = 0; i < 1024; i++) 166 p[i] = 0; 167 #endif 168 return tbl; 169 } 170 171 #if 0 172 /** Adds a new page table for the specified base address */ 173 174 static void 175 add_page_table(addr_t base) 176 { 177 TRACE(("add_page_table(base = %p)\n", (void *)base)); 178 #if 0 179 180 // Get new page table and clear it out 181 uint32 *pageTable = mmu_get_next_page_tables(); 182 if (pageTable > (uint32 *)(8 * 1024 * 1024)) 183 panic("tried to add page table beyond the indentity mapped 8 MB region\n"); 184 185 gKernelArgs.arch_args.pgtables[gKernelArgs.arch_args.num_pgtables++] = (uint32)pageTable; 186 187 for (int32 i = 0; i < 1024; i++) 188 pageTable[i] = 0; 189 190 // put the new page table into the page directory 191 gPageRoot[base/(4*1024*1024)] = (uint32)pageTable | kDefaultPageTableFlags; 192 #endif 193 } 194 #endif 195 196 197 static void 198 unmap_page(addr_t virtualAddress) 199 { 200 gMMUOps->unmap_page(virtualAddress); 201 } 202 203 204 /** Creates an entry to map the specified virtualAddress to the given 205 * physicalAddress. 206 * If the mapping goes beyond the current page table, it will allocate 207 * a new one. If it cannot map the requested page, it panics. 208 */ 209 210 static void 211 map_page(addr_t virtualAddress, addr_t physicalAddress, uint32 flags) 212 { 213 TRACE(("map_page: vaddr 0x%lx, paddr 0x%lx\n", virtualAddress, physicalAddress)); 214 215 if (virtualAddress < KERNEL_BASE) 216 panic("map_page: asked to map invalid page %p!\n", (void *)virtualAddress); 217 218 // slow but I'm too lazy to fix the code below 219 gMMUOps->add_page_table(virtualAddress); 220 #if 0 221 if (virtualAddress >= sMaxVirtualAddress) { 222 // we need to add a new page table 223 224 gMMUOps->add_page_table(sMaxVirtualAddress); 225 // 64 pages / page table 226 sMaxVirtualAddress += B_PAGE_SIZE * 64; 227 228 if (virtualAddress >= sMaxVirtualAddress) 229 panic("map_page: asked to map a page to %p\n", (void *)virtualAddress); 230 } 231 #endif 232 233 physicalAddress &= ~(B_PAGE_SIZE - 1); 234 235 // map the page to the correct page table 236 gMMUOps->map_page(virtualAddress, physicalAddress, flags); 237 } 238 239 240 static void 241 init_page_directory(void) 242 { 243 TRACE(("init_page_directory\n")); 244 245 // allocate a new pg root dir 246 gPageRoot = get_next_physical_page(); 247 gKernelArgs.arch_args.phys_pgroot = (uint32)gPageRoot; 248 gKernelArgs.arch_args.phys_vbr = (uint32)gPageRoot + VBR_PAGE_OFFSET; 249 250 // set the root pointers 251 gMMUOps->load_rp(gPageRoot); 252 // allocate second level tables for kernel space 253 // this will simplify mmu code a lot, and only wastes 32KB 254 gMMUOps->allocate_kernel_pgdirs(); 255 // enable mmu translation 256 gMMUOps->enable_paging(); 257 //XXX: check for errors 258 259 //gKernelArgs.arch_args.num_pgtables = 0; 260 gMMUOps->add_page_table(KERNEL_BASE); 261 262 #if 0 263 264 265 // clear out the pgdir 266 for (int32 i = 0; i < 1024; i++) { 267 gPageRoot[i] = 0; 268 } 269 270 // Identity map the first 8 MB of memory so that their 271 // physical and virtual address are the same. 272 // These page tables won't be taken over into the kernel. 273 274 // make the first page table at the first free spot 275 uint32 *pageTable = mmu_get_next_page_tables(); 276 277 for (int32 i = 0; i < 1024; i++) { 278 pageTable[i] = (i * 0x1000) | kDefaultPageFlags; 279 } 280 281 gPageRoot[0] = (uint32)pageTable | kDefaultPageFlags; 282 283 // make the second page table 284 pageTable = mmu_get_next_page_tables(); 285 286 for (int32 i = 0; i < 1024; i++) { 287 pageTable[i] = (i * 0x1000 + 0x400000) | kDefaultPageFlags; 288 } 289 290 gPageRoot[1] = (uint32)pageTable | kDefaultPageFlags; 291 292 gKernelArgs.arch_args.num_pgtables = 0; 293 add_page_table(KERNEL_BASE); 294 295 // switch to the new pgdir and enable paging 296 asm("movl %0, %%eax;" 297 "movl %%eax, %%cr3;" : : "m" (gPageRoot) : "eax"); 298 // Important. Make sure supervisor threads can fault on read only pages... 299 asm("movl %%eax, %%cr0" : : "a" ((1 << 31) | (1 << 16) | (1 << 5) | 1)); 300 #endif 301 } 302 303 304 // #pragma mark - 305 306 307 extern "C" addr_t 308 mmu_map_physical_memory(addr_t physicalAddress, size_t size, uint32 flags) 309 { 310 addr_t address = sNextVirtualAddress; 311 addr_t pageOffset = physicalAddress & (B_PAGE_SIZE - 1); 312 313 physicalAddress -= pageOffset; 314 315 for (addr_t offset = 0; offset < size; offset += B_PAGE_SIZE) { 316 map_page(get_next_virtual_page(), physicalAddress + offset, flags); 317 } 318 319 return address + pageOffset; 320 } 321 322 323 extern "C" void * 324 mmu_allocate(void *virtualAddress, size_t size) 325 { 326 TRACE(("mmu_allocate: requested vaddr: %p, next free vaddr: 0x%lx, size: %ld\n", 327 virtualAddress, sNextVirtualAddress, size)); 328 329 size = (size + B_PAGE_SIZE - 1) / B_PAGE_SIZE; 330 // get number of pages to map 331 332 if (virtualAddress != NULL) { 333 // This special path is almost only useful for loading the 334 // kernel into memory; it will only allow you to map the 335 // 1 MB following the kernel base address. 336 // Also, it won't check for already mapped addresses, so 337 // you better know why you are here :) 338 addr_t address = (addr_t)virtualAddress; 339 340 // is the address within the valid range? 341 if (address < KERNEL_BASE || address + size >= KERNEL_BASE + kMaxKernelSize) 342 return NULL; 343 344 for (uint32 i = 0; i < size; i++) { 345 map_page(address, get_next_physical_page(), kDefaultPageFlags); 346 address += B_PAGE_SIZE; 347 } 348 349 TRACE(("mmu_allocate(KERNEL, %d): done\n", size)); 350 return virtualAddress; 351 } 352 353 void *address = (void *)sNextVirtualAddress; 354 355 for (uint32 i = 0; i < size; i++) { 356 map_page(get_next_virtual_page(), get_next_physical_page(), kDefaultPageFlags); 357 } 358 359 TRACE(("mmu_allocate(NULL, %d): %p\n", size, address)); 360 return address; 361 } 362 363 364 /** This will unmap the allocated chunk of memory from the virtual 365 * address space. It might not actually free memory (as its implementation 366 * is very simple), but it might. 367 */ 368 369 extern "C" void 370 mmu_free(void *virtualAddress, size_t size) 371 { 372 TRACE(("mmu_free(virtualAddress = %p, size: %ld)\n", virtualAddress, size)); 373 374 addr_t address = (addr_t)virtualAddress; 375 size = (size + B_PAGE_SIZE - 1) / B_PAGE_SIZE; 376 // get number of pages to map 377 378 // is the address within the valid range? 379 if (address < KERNEL_BASE 380 || address + size >= KERNEL_BASE + kMaxKernelSize) { 381 panic("mmu_free: asked to unmap out of range region (%p, size %lx)\n", 382 (void *)address, size); 383 } 384 385 // unmap all pages within the range 386 for (uint32 i = 0; i < size; i++) { 387 unmap_page(address); 388 address += B_PAGE_SIZE; 389 } 390 391 if (address == sNextVirtualAddress) { 392 // we can actually reuse the virtual address space 393 sNextVirtualAddress -= size; 394 } 395 } 396 397 398 /** Sets up the final and kernel accessible GDT and IDT tables. 399 * BIOS calls won't work any longer after this function has 400 * been called. 401 */ 402 403 extern "C" void 404 mmu_init_for_kernel(void) 405 { 406 TRACE(("mmu_init_for_kernel\n")); 407 408 409 410 411 // remove identity mapping of ST space 412 // actually done by the kernel when it's done using query_early 413 //gMMUOps->set_tt(0, NULL, 0, 0); 414 415 #if 0 416 // set up a new idt 417 { 418 struct gdt_idt_descr idtDescriptor; 419 uint32 *idt; 420 421 // find a new idt 422 idt = (uint32 *)get_next_physical_page(); 423 gKernelArgs.arch_args.phys_idt = (uint32)idt; 424 425 TRACE(("idt at %p\n", idt)); 426 427 // map the idt into virtual space 428 gKernelArgs.arch_args.vir_idt = (uint32)get_next_virtual_page(); 429 map_page(gKernelArgs.arch_args.vir_idt, (uint32)idt, kDefaultPageFlags); 430 431 // clear it out 432 uint32* virtualIDT = (uint32*)gKernelArgs.arch_args.vir_idt; 433 for (int32 i = 0; i < IDT_LIMIT / 4; i++) { 434 virtualIDT[i] = 0; 435 } 436 437 // load the idt 438 idtDescriptor.limit = IDT_LIMIT - 1; 439 idtDescriptor.base = (uint32 *)gKernelArgs.arch_args.vir_idt; 440 441 asm("lidt %0;" 442 : : "m" (idtDescriptor)); 443 444 TRACE(("idt at virtual address 0x%lx\n", gKernelArgs.arch_args.vir_idt)); 445 } 446 447 // set up a new gdt 448 { 449 struct gdt_idt_descr gdtDescriptor; 450 segment_descriptor *gdt; 451 452 // find a new gdt 453 gdt = (segment_descriptor *)get_next_physical_page(); 454 gKernelArgs.arch_args.phys_gdt = (uint32)gdt; 455 456 TRACE(("gdt at %p\n", gdt)); 457 458 // map the gdt into virtual space 459 gKernelArgs.arch_args.vir_gdt = (uint32)get_next_virtual_page(); 460 map_page(gKernelArgs.arch_args.vir_gdt, (uint32)gdt, kDefaultPageFlags); 461 462 // put standard segment descriptors in it 463 segment_descriptor* virtualGDT 464 = (segment_descriptor*)gKernelArgs.arch_args.vir_gdt; 465 clear_segment_descriptor(&virtualGDT[0]); 466 467 // seg 0x08 - kernel 4GB code 468 set_segment_descriptor(&virtualGDT[1], 0, 0xffffffff, DT_CODE_READABLE, 469 DPL_KERNEL); 470 471 // seg 0x10 - kernel 4GB data 472 set_segment_descriptor(&virtualGDT[2], 0, 0xffffffff, DT_DATA_WRITEABLE, 473 DPL_KERNEL); 474 475 // seg 0x1b - ring 3 user 4GB code 476 set_segment_descriptor(&virtualGDT[3], 0, 0xffffffff, DT_CODE_READABLE, 477 DPL_USER); 478 479 // seg 0x23 - ring 3 user 4GB data 480 set_segment_descriptor(&virtualGDT[4], 0, 0xffffffff, DT_DATA_WRITEABLE, 481 DPL_USER); 482 483 // virtualGDT[5] and above will be filled later by the kernel 484 // to contain the TSS descriptors, and for TLS (one for every CPU) 485 486 // load the GDT 487 gdtDescriptor.limit = GDT_LIMIT - 1; 488 gdtDescriptor.base = (uint32 *)gKernelArgs.arch_args.vir_gdt; 489 490 asm("lgdt %0;" 491 : : "m" (gdtDescriptor)); 492 493 TRACE(("gdt at virtual address %p\n", (void *)gKernelArgs.arch_args.vir_gdt)); 494 } 495 #endif 496 497 // save the memory we've physically allocated 498 gKernelArgs.physical_allocated_range[0].size = sNextPhysicalAddress - gKernelArgs.physical_allocated_range[0].start; 499 500 // save the memory we've virtually allocated (for the kernel and other stuff) 501 gKernelArgs.virtual_allocated_range[0].start = KERNEL_BASE; 502 gKernelArgs.virtual_allocated_range[0].size = sNextVirtualAddress - KERNEL_BASE; 503 gKernelArgs.num_virtual_allocated_ranges = 1; 504 505 // sort the address ranges 506 sort_address_ranges(gKernelArgs.physical_memory_range, 507 gKernelArgs.num_physical_memory_ranges); 508 sort_address_ranges(gKernelArgs.physical_allocated_range, 509 gKernelArgs.num_physical_allocated_ranges); 510 sort_address_ranges(gKernelArgs.virtual_allocated_range, 511 gKernelArgs.num_virtual_allocated_ranges); 512 513 #ifdef TRACE_MMU 514 { 515 uint32 i; 516 517 dprintf("phys memory ranges:\n"); 518 for (i = 0; i < gKernelArgs.num_physical_memory_ranges; i++) { 519 dprintf(" base 0x%08" B_PRIx64 ", length 0x%08" B_PRIx64 "\n", 520 gKernelArgs.physical_memory_range[i].start, 521 gKernelArgs.physical_memory_range[i].size); 522 } 523 524 dprintf("allocated phys memory ranges:\n"); 525 for (i = 0; i < gKernelArgs.num_physical_allocated_ranges; i++) { 526 dprintf(" base 0x%08" B_PRIx64 ", length 0x%08" B_PRIx64 "\n", 527 gKernelArgs.physical_allocated_range[i].start, 528 gKernelArgs.physical_allocated_range[i].size); 529 } 530 531 dprintf("allocated virt memory ranges:\n"); 532 for (i = 0; i < gKernelArgs.num_virtual_allocated_ranges; i++) { 533 dprintf(" base 0x%08" B_PRIx64 ", length 0x%08" B_PRIx64 "\n", 534 gKernelArgs.virtual_allocated_range[i].start, 535 gKernelArgs.virtual_allocated_range[i].size); 536 } 537 } 538 #endif 539 } 540 541 542 extern "C" void 543 mmu_init(void) 544 { 545 TRACE(("mmu_init\n")); 546 switch (gKernelArgs.arch_args.mmu_type) { 547 #if 0 548 case 68851: 549 gMMUOps = &k851MMUOps; 550 break; 551 #endif 552 case 68030: 553 gMMUOps = &k030MMUOps; 554 break; 555 case 68040: 556 gMMUOps = &k040MMUOps; 557 break; 558 #if 0 559 case 68060: 560 gMMUOps = &k060MMUOps; 561 break; 562 #endif 563 default: 564 panic("unknown mmu type %d\n", gKernelArgs.arch_args.mmu_type); 565 } 566 567 gMMUOps->initialize(); 568 569 addr_t fastram_top = 0; 570 if (*TOSVARramvalid == TOSVARramvalid_MAGIC) 571 fastram_top = *TOSVARramtop; 572 if (fastram_top) { 573 // we have some fastram, use it first 574 sNextPhysicalAddress = ATARI_FASTRAM_BASE; 575 } 576 577 gKernelArgs.physical_allocated_range[0].start = sNextPhysicalAddress; 578 gKernelArgs.physical_allocated_range[0].size = 0; 579 gKernelArgs.num_physical_allocated_ranges = 1; 580 // remember the start of the allocated physical pages 581 582 // enable transparent translation of the first 256 MB 583 gMMUOps->set_tt(0, ATARI_CHIPRAM_BASE, 0x10000000, 0); 584 // enable transparent translation of the 16MB ST shadow range for I/O 585 gMMUOps->set_tt(1, ATARI_SHADOW_BASE, 0x01000000, 0); 586 587 init_page_directory(); 588 #if 0//XXX:HOLE 589 590 // Map the page directory into kernel space at 0xffc00000-0xffffffff 591 // this enables a mmu trick where the 4 MB region that this pgdir entry 592 // represents now maps the 4MB of potential pagetables that the pgdir 593 // points to. Thrown away later in VM bringup, but useful for now. 594 gPageRoot[1023] = (uint32)gPageRoot | kDefaultPageFlags; 595 #endif 596 597 // also map it on the next vpage 598 gKernelArgs.arch_args.vir_pgroot = get_next_virtual_page(); 599 map_page(gKernelArgs.arch_args.vir_pgroot, (uint32)gPageRoot, kDefaultPageFlags); 600 601 // set virtual addr for interrupt vector table 602 gKernelArgs.arch_args.vir_vbr = gKernelArgs.arch_args.vir_pgroot 603 + VBR_PAGE_OFFSET; 604 605 // map in a kernel stack 606 gKernelArgs.cpu_kstack[0].start = (addr_t)mmu_allocate(NULL, 607 KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE); 608 gKernelArgs.cpu_kstack[0].size = KERNEL_STACK_SIZE 609 + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE; 610 611 TRACE(("kernel stack at 0x%lx to 0x%lx\n", gKernelArgs.cpu_kstack[0].start, 612 gKernelArgs.cpu_kstack[0].start + gKernelArgs.cpu_kstack[0].size)); 613 614 // st ram as 1st range 615 gKernelArgs.physical_memory_range[0].start = ATARI_CHIPRAM_BASE; 616 gKernelArgs.physical_memory_range[0].size = *TOSVARphystop - ATARI_CHIPRAM_BASE; 617 gKernelArgs.num_physical_memory_ranges = 1; 618 619 // fast ram as 2nd range 620 if (fastram_top) { 621 gKernelArgs.physical_memory_range[1].start = 622 ATARI_FASTRAM_BASE; 623 gKernelArgs.physical_memory_range[1].size = 624 fastram_top - ATARI_FASTRAM_BASE; 625 gKernelArgs.num_physical_memory_ranges++; 626 627 } 628 629 // mark the video area allocated 630 addr_t video_base = *TOSVAR_memtop; 631 video_base &= ~(B_PAGE_SIZE-1); 632 gKernelArgs.physical_allocated_range[gKernelArgs.num_physical_allocated_ranges].start = video_base; 633 gKernelArgs.physical_allocated_range[gKernelArgs.num_physical_allocated_ranges].size = *TOSVARphystop - video_base; 634 gKernelArgs.num_physical_allocated_ranges++; 635 636 637 gKernelArgs.arch_args.plat_args.atari.nat_feat.nf_page = 638 get_next_physical_page() /*| 0xff000000*/; 639 640 } 641 642 643 // #pragma mark - 644 645 646 extern "C" status_t 647 platform_allocate_region(void **_address, size_t size, uint8 protection, 648 bool /*exactAddress*/) 649 { 650 void *address = mmu_allocate(*_address, size); 651 if (address == NULL) 652 return B_NO_MEMORY; 653 654 *_address = address; 655 return B_OK; 656 } 657 658 659 extern "C" status_t 660 platform_free_region(void *address, size_t size) 661 { 662 mmu_free(address, size); 663 return B_OK; 664 } 665 666 667 void 668 platform_release_heap(struct stage2_args *args, void *base) 669 { 670 // It will be freed automatically, since it is in the 671 // identity mapped region, and not stored in the kernel's 672 // page tables. 673 } 674 675 676 status_t 677 platform_init_heap(struct stage2_args *args, void **_base, void **_top) 678 { 679 void *heap = (void *)get_next_physical_address(args->heap_size); 680 if (heap == NULL) 681 return B_NO_MEMORY; 682 683 *_base = heap; 684 *_top = (void *)((int8 *)heap + args->heap_size); 685 return B_OK; 686 } 687 688 689