1 /* 2 * Copyright 2007, Haiku. All rights reserved. 3 * Distributed under the terms of the MIT License. 4 * 5 * Authors: 6 * Maxim Shemanarev <mcseemagg@yahoo.com> 7 * Stephan Aßmus <superstippi@gmx.de> 8 * Anthony Lee <don.anthony.lee@gmail.com> 9 * Andrej Spielmann, <andrej.spielmann@seh.ox.ac.uk> 10 */ 11 12 //---------------------------------------------------------------------------- 13 // Anti-Grain Geometry - Version 2.4 14 // Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com) 15 // 16 // Permission to copy, use, modify, sell and distribute this software 17 // is granted provided this copyright notice appears in all copies. 18 // This software is provided "as is" without express or implied 19 // warranty, and with no claim as to its suitability for any purpose. 20 // 21 //---------------------------------------------------------------------------- 22 // Contact: mcseem@antigrain.com 23 // mcseemagg@yahoo.com 24 // http://www.antigrain.com 25 //---------------------------------------------------------------------------- 26 27 28 #include "FontEngine.h" 29 30 #include FT_GLYPH_H 31 #include FT_OUTLINE_H 32 #include FT_LCD_FILTER_H 33 34 #include <stdio.h> 35 36 #include <agg_bitset_iterator.h> 37 #include <agg_renderer_scanline.h> 38 39 #include "GlobalSubpixelSettings.h" 40 41 42 static const bool kFlipY = true; 43 44 45 static inline double 46 int26p6_to_dbl(int p) 47 { 48 return double(p) / 64.0; 49 } 50 51 52 static inline int 53 dbl_to_int26p6(double p) 54 { 55 return int(p * 64.0 + 0.5); 56 } 57 58 59 template<class PathStorage> 60 bool 61 decompose_ft_outline(const FT_Outline& outline, bool flip_y, PathStorage& path) 62 { 63 typedef typename PathStorage::value_type value_type; 64 65 FT_Vector v_last; 66 FT_Vector v_control; 67 FT_Vector v_start; 68 double x1, y1, x2, y2, x3, y3; 69 70 FT_Vector* point; 71 FT_Vector* limit; 72 char* tags; 73 74 int n; // index of contour in outline 75 int first; // index of first point in contour 76 char tag; // current point's state 77 78 first = 0; 79 80 for (n = 0; n < outline.n_contours; n++) { 81 int last; // index of last point in contour 82 83 last = outline.contours[n]; 84 limit = outline.points + last; 85 86 v_start = outline.points[first]; 87 v_last = outline.points[last]; 88 89 v_control = v_start; 90 91 point = outline.points + first; 92 tags = outline.tags + first; 93 tag = FT_CURVE_TAG(tags[0]); 94 95 // A contour cannot start with a cubic control point! 96 if (tag == FT_CURVE_TAG_CUBIC) 97 return false; 98 99 // check first point to determine origin 100 if ( tag == FT_CURVE_TAG_CONIC) { 101 // first point is conic control. Yes, this happens. 102 if (FT_CURVE_TAG(outline.tags[last]) == FT_CURVE_TAG_ON) { 103 // start at last point if it is on the curve 104 v_start = v_last; 105 limit--; 106 } else { 107 // if both first and last points are conic, 108 // start at their middle and record its position 109 // for closure 110 v_start.x = (v_start.x + v_last.x) / 2; 111 v_start.y = (v_start.y + v_last.y) / 2; 112 113 v_last = v_start; 114 } 115 point--; 116 tags--; 117 } 118 119 x1 = int26p6_to_dbl(v_start.x); 120 y1 = int26p6_to_dbl(v_start.y); 121 if (flip_y) y1 = -y1; 122 path.move_to(value_type(dbl_to_int26p6(x1)), 123 value_type(dbl_to_int26p6(y1))); 124 125 while(point < limit) { 126 point++; 127 tags++; 128 129 tag = FT_CURVE_TAG(tags[0]); 130 switch(tag) { 131 case FT_CURVE_TAG_ON: { // emit a single line_to 132 x1 = int26p6_to_dbl(point->x); 133 y1 = int26p6_to_dbl(point->y); 134 if (flip_y) y1 = -y1; 135 path.line_to(value_type(dbl_to_int26p6(x1)), 136 value_type(dbl_to_int26p6(y1))); 137 //path.line_to(conv(point->x), flip_y ? -conv(point->y) : conv(point->y)); 138 continue; 139 } 140 141 case FT_CURVE_TAG_CONIC: { // consume conic arcs 142 v_control.x = point->x; 143 v_control.y = point->y; 144 145 Do_Conic: 146 if (point < limit) { 147 FT_Vector vec; 148 FT_Vector v_middle; 149 150 point++; 151 tags++; 152 tag = FT_CURVE_TAG(tags[0]); 153 154 vec.x = point->x; 155 vec.y = point->y; 156 157 if (tag == FT_CURVE_TAG_ON) { 158 x1 = int26p6_to_dbl(v_control.x); 159 y1 = int26p6_to_dbl(v_control.y); 160 x2 = int26p6_to_dbl(vec.x); 161 y2 = int26p6_to_dbl(vec.y); 162 if (flip_y) { y1 = -y1; y2 = -y2; } 163 path.curve3(value_type(dbl_to_int26p6(x1)), 164 value_type(dbl_to_int26p6(y1)), 165 value_type(dbl_to_int26p6(x2)), 166 value_type(dbl_to_int26p6(y2))); 167 continue; 168 } 169 170 if (tag != FT_CURVE_TAG_CONIC) 171 return false; 172 173 v_middle.x = (v_control.x + vec.x) / 2; 174 v_middle.y = (v_control.y + vec.y) / 2; 175 176 x1 = int26p6_to_dbl(v_control.x); 177 y1 = int26p6_to_dbl(v_control.y); 178 x2 = int26p6_to_dbl(v_middle.x); 179 y2 = int26p6_to_dbl(v_middle.y); 180 if (flip_y) { y1 = -y1; y2 = -y2; } 181 path.curve3(value_type(dbl_to_int26p6(x1)), 182 value_type(dbl_to_int26p6(y1)), 183 value_type(dbl_to_int26p6(x2)), 184 value_type(dbl_to_int26p6(y2))); 185 186 //path.curve3(conv(v_control.x), 187 // flip_y ? -conv(v_control.y) : conv(v_control.y), 188 // conv(v_middle.x), 189 // flip_y ? -conv(v_middle.y) : conv(v_middle.y)); 190 191 v_control = vec; 192 goto Do_Conic; 193 } 194 195 x1 = int26p6_to_dbl(v_control.x); 196 y1 = int26p6_to_dbl(v_control.y); 197 x2 = int26p6_to_dbl(v_start.x); 198 y2 = int26p6_to_dbl(v_start.y); 199 if (flip_y) { y1 = -y1; y2 = -y2; } 200 path.curve3(value_type(dbl_to_int26p6(x1)), 201 value_type(dbl_to_int26p6(y1)), 202 value_type(dbl_to_int26p6(x2)), 203 value_type(dbl_to_int26p6(y2))); 204 205 //path.curve3(conv(v_control.x), 206 // flip_y ? -conv(v_control.y) : conv(v_control.y), 207 // conv(v_start.x), 208 // flip_y ? -conv(v_start.y) : conv(v_start.y)); 209 goto Close; 210 } 211 212 default: { // FT_CURVE_TAG_CUBIC 213 FT_Vector vec1, vec2; 214 215 if (point + 1 > limit || FT_CURVE_TAG(tags[1]) != FT_CURVE_TAG_CUBIC) 216 return false; 217 218 vec1.x = point[0].x; 219 vec1.y = point[0].y; 220 vec2.x = point[1].x; 221 vec2.y = point[1].y; 222 223 point += 2; 224 tags += 2; 225 226 if (point <= limit) { 227 FT_Vector vec; 228 229 vec.x = point->x; 230 vec.y = point->y; 231 232 x1 = int26p6_to_dbl(vec1.x); 233 y1 = int26p6_to_dbl(vec1.y); 234 x2 = int26p6_to_dbl(vec2.x); 235 y2 = int26p6_to_dbl(vec2.y); 236 x3 = int26p6_to_dbl(vec.x); 237 y3 = int26p6_to_dbl(vec.y); 238 if (flip_y) { y1 = -y1; y2 = -y2; y3 = -y3; } 239 path.curve4(value_type(dbl_to_int26p6(x1)), 240 value_type(dbl_to_int26p6(y1)), 241 value_type(dbl_to_int26p6(x2)), 242 value_type(dbl_to_int26p6(y2)), 243 value_type(dbl_to_int26p6(x3)), 244 value_type(dbl_to_int26p6(y3))); 245 246 //path.curve4(conv(vec1.x), 247 // flip_y ? -conv(vec1.y) : conv(vec1.y), 248 // conv(vec2.x), 249 // flip_y ? -conv(vec2.y) : conv(vec2.y), 250 // conv(vec.x), 251 // flip_y ? -conv(vec.y) : conv(vec.y)); 252 continue; 253 } 254 255 x1 = int26p6_to_dbl(vec1.x); 256 y1 = int26p6_to_dbl(vec1.y); 257 x2 = int26p6_to_dbl(vec2.x); 258 y2 = int26p6_to_dbl(vec2.y); 259 x3 = int26p6_to_dbl(v_start.x); 260 y3 = int26p6_to_dbl(v_start.y); 261 if (flip_y) { y1 = -y1; y2 = -y2; y3 = -y3; } 262 path.curve4(value_type(dbl_to_int26p6(x1)), 263 value_type(dbl_to_int26p6(y1)), 264 value_type(dbl_to_int26p6(x2)), 265 value_type(dbl_to_int26p6(y2)), 266 value_type(dbl_to_int26p6(x3)), 267 value_type(dbl_to_int26p6(y3))); 268 269 //path.curve4(conv(vec1.x), 270 // flip_y ? -conv(vec1.y) : conv(vec1.y), 271 // conv(vec2.x), 272 // flip_y ? -conv(vec2.y) : conv(vec2.y), 273 // conv(v_start.x), 274 // flip_y ? -conv(v_start.y) : conv(v_start.y)); 275 goto Close; 276 } 277 } 278 } 279 280 path.close_polygon(); 281 282 Close: 283 first = last + 1; 284 } 285 286 return true; 287 } 288 289 290 template<class Scanline, class ScanlineStorage> 291 void 292 decompose_ft_bitmap_mono(const FT_Bitmap& bitmap, int x, int y, 293 bool flip_y, Scanline& sl, ScanlineStorage& storage) 294 { 295 const uint8* buf = (const uint8*)bitmap.buffer; 296 int pitch = bitmap.pitch; 297 sl.reset(x, x + bitmap.width); 298 storage.prepare(); 299 if (flip_y) { 300 buf += bitmap.pitch * (bitmap.rows - 1); 301 y += bitmap.rows; 302 pitch = -pitch; 303 } 304 for (unsigned int i = 0; i < bitmap.rows; i++) { 305 sl.reset_spans(); 306 agg::bitset_iterator bits(buf, 0); 307 for (unsigned int j = 0; j < bitmap.width; j++) { 308 if (bits.bit()) 309 sl.add_cell(x + j, agg::cover_full); 310 ++bits; 311 } 312 buf += pitch; 313 if (sl.num_spans()) { 314 sl.finalize(y - i - 1); 315 storage.render(sl); 316 } 317 } 318 } 319 320 321 template<class Scanline, class ScanlineStorage> 322 void 323 decompose_ft_bitmap_gray8(const FT_Bitmap& bitmap, int x, int y, 324 bool flip_y, Scanline& sl, ScanlineStorage& storage) 325 { 326 const uint8* buf = (const uint8*)bitmap.buffer; 327 int pitch = bitmap.pitch; 328 sl.reset(x, x + bitmap.width); 329 storage.prepare(); 330 if (flip_y) { 331 buf += bitmap.pitch * (bitmap.rows - 1); 332 y += bitmap.rows; 333 pitch = -pitch; 334 } 335 for (unsigned int i = 0; i < bitmap.rows; i++) { 336 sl.reset_spans(); 337 338 if (bitmap.pixel_mode == FT_PIXEL_MODE_MONO) { 339 // font has built-in mono bitmap 340 agg::bitset_iterator bits(buf, 0); 341 for (unsigned int j = 0; j < bitmap.width; j++) { 342 if (bits.bit()) 343 sl.add_cell(x + j, agg::cover_full); 344 ++bits; 345 } 346 } else { 347 const uint8* p = buf; 348 for (unsigned int j = 0; j < bitmap.width; j++) { 349 if (*p) 350 sl.add_cell(x + j, *p); 351 ++p; 352 } 353 } 354 355 buf += pitch; 356 if (sl.num_spans()) { 357 sl.finalize(y - i - 1); 358 storage.render(sl); 359 } 360 } 361 } 362 363 364 template<class Scanline, class ScanlineStorage> 365 void 366 decompose_ft_bitmap_subpix(const FT_Bitmap& bitmap, int x, int y, 367 bool flip_y, Scanline& sl, ScanlineStorage& storage) 368 { 369 #ifdef AVERAGE_BASED_SUBPIXEL_FILTERING 370 const uint8* buf = (const uint8*)bitmap.buffer; 371 int pitch = bitmap.pitch; 372 sl.reset(x, x + bitmap.width / 3); 373 storage.prepare(); 374 375 if (flip_y) { 376 buf += bitmap.pitch * (bitmap.rows - 1); 377 y += bitmap.rows; 378 pitch = -pitch; 379 } 380 381 for (unsigned int i = 0; i < bitmap.rows; i++) { 382 sl.reset_spans(); 383 384 if (bitmap.pixel_mode == FT_PIXEL_MODE_MONO) { 385 // font has built-in mono bitmap 386 agg::bitset_iterator bits(buf, 0); 387 for (unsigned int j = 0; j < bitmap.width; j++) { 388 if (bits.bit()) { 389 sl.add_cell(x + j, 390 agg::cover_full, agg::cover_full, agg::cover_full); 391 } 392 ++bits; 393 } 394 } else { 395 const uint8* p = buf; 396 int w = bitmap.width / 3; 397 398 for (int j = 0; j < w; j++) { 399 if (p[0] || p[1] || p[2]) 400 sl.add_cell(x + j, p[0], p[1], p[2]); 401 p += 3; 402 } 403 } 404 405 buf += pitch; 406 if (sl.num_spans()) { 407 sl.finalize(y - i - 1); 408 storage.render(sl); 409 } 410 } 411 #else 412 // filter based anti-colored edges method 413 // Filtering weights 414 const uint8 filter[5] = { 0x10, 0x40, 0x70, 0x40, 0x10 }; 415 416 const uint8* buf = (const uint8*)bitmap.buffer; 417 int pitch = bitmap.pitch; 418 sl.reset(x - 1, x + bitmap.width / 3 + 1); 419 // -1 and +1 to account for additional edge pixels needed by filtering 420 storage.prepare(); 421 if (flip_y) { 422 buf += bitmap.pitch * (bitmap.rows - 1); 423 y += bitmap.rows; 424 pitch = -pitch; 425 } 426 for (int i = 0; i < bitmap.rows; i++) { 427 sl.reset_spans(); 428 429 if (bitmap.pixel_mode == FT_PIXEL_MODE_MONO) { 430 // font has built-in mono bitmap 431 agg::bitset_iterator bits(buf, 0); 432 for (int j = 0; j < bitmap.width; j++) { 433 if (bits.bit()) { 434 sl.add_cell(x + j, 435 agg::cover_full, agg::cover_full, agg::cover_full); 436 } 437 ++bits; 438 } 439 } else { 440 const uint8* p = buf; 441 uint32 coverR; 442 uint32 coverG; 443 uint32 coverB; 444 int w = bitmap.width / 3; 445 // handle the left extra edge pixel 446 if (w && !(p[0] == p[1] && p[1] == p[2] 447 && (w == 1 || (p[3] == p[4] && p[4] == p[5])))) { 448 449 coverR = 0; 450 coverG = (p[0] * filter[0]) >> 8; 451 coverB = (p[0] * filter[1] + p[1] * filter[0]) >> 8; 452 coverG = coverG | ( -(coverG >> 8)); 453 coverB = coverB | ( -(coverB >> 8)); 454 455 if (coverR || coverG || coverB) 456 sl.add_cell(x - 1, coverR, coverG, coverB); 457 } 458 for (int j = 0; j < w; j++) { 459 if (p[0] == p[1] && p[1] == p[2] 460 && (j == 0 || (p[-3] == p[-2] && p[-2] == p[-1])) 461 && (j == w-1 || (p[3] == p[4] && p[4] == p[5]))) { 462 463 coverR = p[0]; 464 coverG = p[0]; 465 coverB = p[0]; 466 467 } else if (p[0] == p[1] && p[1] == p[2] 468 && (j < w-1 && p[3] == p[4] && p[4] == p[5]) 469 && (j == w-2 || (p[6] == p[7] && p[7] == p[8]))) { 470 471 coverR = ((j > 0 ? p[-2] * filter[4] 472 + p[-1] * filter[3] : 0) 473 + p[0] * filter[2] + p[1] * filter[1] 474 + p[2] * filter[0]) 475 >> 8; 476 coverG = ((j > 0 ? p[-1] * filter[4] : 0) 477 + p[0] * filter[3] + p[1] * filter[2] 478 + p[2] * filter[1]) 479 >> 8; 480 coverB = (p[0] * filter[4] 481 + p[1] * filter[3] + p[2] * filter[2]) >> 8; 482 coverR = coverR | ( -(coverR >> 8)); 483 coverG = coverG | ( -(coverG >> 8)); 484 coverB = coverB | ( -(coverB >> 8)); 485 486 } else if (p[0] == p[1] && p[1] == p[2] 487 && (j > 0 && p[-3] == p[-2] && p[-2] == p[-1]) 488 && (j == 1 || (p[-6] == p[-5] && p[-5] == p[-4]))) { 489 490 coverR = (p[0] * filter[2] + p[1] * filter[1] 491 + p[2] * filter[0]) >> 8; 492 coverG = (p[0] * filter[3] + p[1] * filter[2] 493 + p[2] * filter[1] 494 + (j < w-1 ? p[3] * filter[0] : 0)) 495 >> 8; 496 coverB = (p[0] * filter[4] + p[1] * filter[3] 497 + p[2] * filter[2] 498 + (j < w-1 ? p[3] * filter[1] 499 + p[4] * filter[0] : 0)) 500 >> 8; 501 coverR = coverR | ( -(coverR >> 8)); 502 coverG = coverG | ( -(coverG >> 8)); 503 coverB = coverB | ( -(coverB >> 8)); 504 505 } else { 506 507 coverR = ((j > 0 ? p[-2] * filter[4] 508 + p[-1] * filter[3] : 0) 509 + p[0] * filter[2] + p[1] * filter[1] 510 + p[2] * filter[0]) 511 >> 8; 512 coverG = ((j > 0 ? p[-1] * filter[4] : 0) 513 + p[0] * filter[3] + p[1] * filter[2] 514 + p[2] * filter[1] 515 + (j < w-1 ? p[3] * filter[0] : 0)) 516 >> 8; 517 coverB = (p[0] * filter[4] + p[1] * filter[3] 518 + p[2] * filter[2] 519 + (j < w-1 ? p[3] * filter[1] 520 + p[4] * filter[0] : 0)) 521 >> 8; 522 coverR = coverR | ( -(coverR >> 8)); 523 coverG = coverG | ( -(coverG >> 8)); 524 coverB = coverB | ( -(coverB >> 8)); 525 } 526 527 if (coverR || coverG || coverB) 528 sl.add_cell(x + j, coverR, coverG, coverB); 529 p += 3; 530 } 531 // handle the right extra edge pixel 532 if (w && !(p[-3] == p[-2] && p[-2] == p[-1] 533 && (w == 1 || (p[-6] == p[-5] && p[-5] == p[-4])))) { 534 535 coverR = (p[-2] * filter[4] + p[-1] * filter[3]) >> 8; 536 coverG = (p[-1] * filter[4]) >> 8; 537 coverB = 0; 538 coverR = coverR | ( -(coverR >> 8)); 539 coverG = coverG | ( -(coverG >> 8)); 540 541 if (coverR || coverG || coverB) 542 sl.add_cell(x + w, coverR, coverG, coverB); 543 } 544 } 545 546 buf += pitch; 547 if (sl.num_spans()) { 548 sl.finalize(y - i - 1); 549 storage.render(sl); 550 } 551 } 552 #endif 553 } 554 555 556 // #pragma mark - 557 558 559 FontEngine::FontEngine() 560 : 561 fLastError(0), 562 fLibraryInitialized(false), 563 fLibrary(0), 564 fFace(NULL), 565 566 fGlyphRendering(glyph_ren_native_gray8), 567 fHinting(true), 568 569 fDataSize(0), 570 fDataType(glyph_data_invalid), 571 fBounds(1, 1, 0, 0), 572 fAdvanceX(0.0), 573 fAdvanceY(0.0), 574 fInsetLeft(0.0), 575 fInsetRight(0.0), 576 577 fPath(), 578 fCurves(fPath), 579 fScanlineAA(), 580 fScanlineBin(), 581 fScanlineSubpix(), 582 fScanlineStorageAA(), 583 fScanlineStorageBin(), 584 fScanlineStorageSubpix() 585 { 586 fCurves.approximation_scale(4.0); 587 588 fLastError = FT_Init_FreeType(&fLibrary); 589 if (fLastError == 0) 590 fLibraryInitialized = true; 591 } 592 593 594 FontEngine::~FontEngine() 595 { 596 FT_Done_Face(fFace); 597 598 if (fLibraryInitialized) 599 FT_Done_FreeType(fLibrary); 600 } 601 602 603 unsigned 604 FontEngine::CountFaces() const 605 { 606 if (fFace) 607 return fFace->num_faces; 608 609 return 0; 610 } 611 612 613 uint32 614 FontEngine::GlyphIndexForGlyphCode(uint32 glyphCode) const 615 { 616 return FT_Get_Char_Index(fFace, glyphCode); 617 } 618 619 620 bool 621 FontEngine::PrepareGlyph(uint32 glyphIndex) 622 { 623 FT_Int32 loadFlags = fHinting ? FT_LOAD_DEFAULT : FT_LOAD_NO_HINTING; 624 loadFlags |= fGlyphRendering == glyph_ren_subpix ? 625 FT_LOAD_TARGET_LCD : FT_LOAD_TARGET_NORMAL; 626 627 // Load unscaled and without hinting to get precise advance values 628 // for B_CHAR_SPACING 629 fLastError = FT_Load_Glyph(fFace, glyphIndex, loadFlags 630 | FT_LOAD_NO_HINTING | FT_LOAD_NO_SCALE); 631 632 fPreciseAdvanceX = (double)fFace->glyph->advance.x / fFace->units_per_EM; 633 fPreciseAdvanceY = (double)fFace->glyph->advance.y / fFace->units_per_EM; 634 635 // Need to load again with hinting. 636 fLastError = FT_Load_Glyph(fFace, glyphIndex, loadFlags); 637 638 if (fLastError != 0) 639 return false; 640 641 fAdvanceX = int26p6_to_dbl(fFace->glyph->advance.x); 642 fAdvanceY = int26p6_to_dbl(fFace->glyph->advance.y); 643 644 fInsetLeft = int26p6_to_dbl(fFace->glyph->metrics.horiBearingX); 645 fInsetRight = int26p6_to_dbl(fFace->glyph->metrics.horiBearingX 646 + fFace->glyph->metrics.width - fFace->glyph->metrics.horiAdvance); 647 648 switch(fGlyphRendering) { 649 case glyph_ren_native_mono: 650 fLastError = FT_Render_Glyph(fFace->glyph, FT_RENDER_MODE_MONO); 651 if (fLastError == 0) { 652 decompose_ft_bitmap_mono(fFace->glyph->bitmap, 653 fFace->glyph->bitmap_left, kFlipY ? 654 -fFace->glyph->bitmap_top : fFace->glyph->bitmap_top, 655 kFlipY, fScanlineBin, fScanlineStorageBin); 656 fBounds.x1 = fScanlineStorageBin.min_x(); 657 fBounds.y1 = fScanlineStorageBin.min_y(); 658 fBounds.x2 = fScanlineStorageBin.max_x(); 659 fBounds.y2 = fScanlineStorageBin.max_y(); 660 fDataSize = fScanlineStorageBin.byte_size(); 661 fDataType = glyph_data_mono; 662 return true; 663 } 664 break; 665 666 667 case glyph_ren_native_gray8: 668 fLastError = FT_Render_Glyph(fFace->glyph, FT_RENDER_MODE_NORMAL); 669 if (fLastError == 0) { 670 decompose_ft_bitmap_gray8(fFace->glyph->bitmap, 671 fFace->glyph->bitmap_left, kFlipY ? 672 -fFace->glyph->bitmap_top : fFace->glyph->bitmap_top, 673 kFlipY, fScanlineAA, fScanlineStorageAA); 674 fBounds.x1 = fScanlineStorageAA.min_x(); 675 fBounds.y1 = fScanlineStorageAA.min_y(); 676 fBounds.x2 = fScanlineStorageAA.max_x(); 677 fBounds.y2 = fScanlineStorageAA.max_y(); 678 fDataSize = fScanlineStorageAA.byte_size(); 679 fDataType = glyph_data_gray8; 680 return true; 681 } 682 break; 683 684 685 case glyph_ren_subpix: 686 fLastError = FT_Render_Glyph(fFace->glyph, FT_RENDER_MODE_LCD); 687 if (fLastError == 0) { 688 decompose_ft_bitmap_subpix(fFace->glyph->bitmap, 689 fFace->glyph->bitmap_left, kFlipY ? 690 -fFace->glyph->bitmap_top : fFace->glyph->bitmap_top, 691 kFlipY, fScanlineSubpix, fScanlineStorageSubpix); 692 fBounds.x1 = fScanlineStorageSubpix.min_x(); 693 fBounds.y1 = fScanlineStorageSubpix.min_y(); 694 fBounds.x2 = fScanlineStorageSubpix.max_x(); 695 fBounds.y2 = fScanlineStorageSubpix.max_y(); 696 fDataSize = fScanlineStorageSubpix.byte_size(); 697 fDataType = glyph_data_subpix; 698 return true; 699 } 700 break; 701 702 703 case glyph_ren_outline: 704 fPath.remove_all(); 705 if (decompose_ft_outline(fFace->glyph->outline, kFlipY, fPath)) { 706 agg::rect_d bounds = fPath.bounding_rect(); 707 fBounds.x1 = int(floor(bounds.x1)); 708 fBounds.y1 = int(floor(bounds.y1)); 709 fBounds.x2 = int(ceil(bounds.x2)); 710 fBounds.y2 = int(ceil(bounds.y2)); 711 fDataSize = fPath.byte_size(); 712 fDataType = glyph_data_outline; 713 return true; 714 } 715 break; 716 } 717 return false; 718 } 719 720 // #pragma mark - 721 722 // WriteGlyphTo 723 void 724 FontEngine::WriteGlyphTo(uint8* data) const 725 { 726 if (data && fDataSize) { 727 switch(fDataType) { 728 case glyph_data_mono: 729 fScanlineStorageBin.serialize(data); 730 break; 731 732 case glyph_data_gray8: 733 fScanlineStorageAA.serialize(data); 734 break; 735 736 case glyph_data_subpix: 737 fScanlineStorageSubpix.serialize(data); 738 break; 739 740 case glyph_data_outline: 741 fPath.serialize(data); 742 break; 743 744 case glyph_data_invalid: 745 default: 746 break; 747 } 748 } 749 } 750 751 752 // GetKerning 753 bool 754 FontEngine::GetKerning(uint32 first, uint32 second, double* x, double* y) 755 { 756 if (fFace && first && second && FT_HAS_KERNING(fFace)) { 757 FT_Vector delta; 758 FT_Get_Kerning(fFace, first, second, FT_KERNING_DEFAULT, &delta); 759 760 double dx = int26p6_to_dbl(delta.x); 761 double dy = int26p6_to_dbl(delta.y); 762 763 *x += dx; 764 *y += dy; 765 766 return true; 767 } 768 return false; 769 } 770 771 772 // #pragma mark - 773 774 775 bool 776 FontEngine::Init(const char* fontFilePath, unsigned faceIndex, double size, 777 FT_Encoding charMap, glyph_rendering ren_type, bool hinting, 778 const char* fontFileBuffer, const long fontFileBufferSize) 779 { 780 if (!fLibraryInitialized) 781 return false; 782 783 fHinting = hinting; 784 785 fLastError = 0; 786 787 FT_Done_Face(fFace); 788 if (fontFileBuffer && fontFileBufferSize) { 789 fLastError = FT_New_Memory_Face(fLibrary, 790 (const FT_Byte*)fontFileBuffer, fontFileBufferSize, 791 faceIndex, &fFace); 792 } else { 793 fLastError = FT_New_Face(fLibrary, fontFilePath, faceIndex, &fFace); 794 } 795 796 if (fLastError != 0) 797 return false; 798 799 switch(ren_type) { 800 case glyph_ren_native_mono: 801 fGlyphRendering = glyph_ren_native_mono; 802 break; 803 804 case glyph_ren_native_gray8: 805 fGlyphRendering = glyph_ren_native_gray8; 806 break; 807 808 case glyph_ren_subpix: 809 fGlyphRendering = glyph_ren_subpix; 810 break; 811 812 case glyph_ren_outline: 813 if (FT_IS_SCALABLE(fFace)) 814 fGlyphRendering = glyph_ren_outline; 815 else 816 fGlyphRendering = glyph_ren_native_gray8; 817 break; 818 } 819 820 FT_Set_Pixel_Sizes(fFace, 821 unsigned(size * 64.0) >> 6, // pixel_width 822 unsigned(size * 64.0) >> 6); // pixel_height 823 824 if (charMap != FT_ENCODING_NONE) { 825 fLastError = FT_Select_Charmap(fFace, charMap); 826 } else { 827 if (FT_Select_Charmap(fFace, FT_ENCODING_UNICODE) != 0) 828 fLastError = FT_Select_Charmap(fFace, FT_ENCODING_NONE); 829 } 830 831 return fLastError == 0; 832 } 833 834