xref: /haiku/src/libs/mapm/mapm_rcp.c (revision 1e60bdeab63fa7a57bc9a55b032052e95a18bd2c)
1 
2 /*
3  *  M_APM  -  mapm_rcp.c
4  *
5  *  Copyright (C) 2000 - 2007   Michael C. Ring
6  *
7  *  Permission to use, copy, and distribute this software and its
8  *  documentation for any purpose with or without fee is hereby granted,
9  *  provided that the above copyright notice appear in all copies and
10  *  that both that copyright notice and this permission notice appear
11  *  in supporting documentation.
12  *
13  *  Permission to modify the software is granted. Permission to distribute
14  *  the modified code is granted. Modifications are to be distributed by
15  *  using the file 'license.txt' as a template to modify the file header.
16  *  'license.txt' is available in the official MAPM distribution.
17  *
18  *  This software is provided "as is" without express or implied warranty.
19  */
20 
21 /*
22  *      $Id: mapm_rcp.c,v 1.7 2007/12/03 01:46:46 mike Exp $
23  *
24  *      This file contains the fast division and reciprocal functions
25  *
26  *      $Log: mapm_rcp.c,v $
27  *      Revision 1.7  2007/12/03 01:46:46  mike
28  *      Update license
29  *
30  *      Revision 1.6  2003/07/21 20:20:17  mike
31  *      Modify error messages to be in a consistent format.
32  *
33  *      Revision 1.5  2003/05/01 21:58:40  mike
34  *      remove math.h
35  *
36  *      Revision 1.4  2003/03/31 22:15:49  mike
37  *      call generic error handling function
38  *
39  *      Revision 1.3  2002/11/03 21:32:09  mike
40  *      Updated function parameters to use the modern style
41  *
42  *      Revision 1.2  2000/09/26 16:27:48  mike
43  *      add some comments
44  *
45  *      Revision 1.1  2000/09/26 16:16:00  mike
46  *      Initial revision
47  */
48 
49 #include "m_apm_lc.h"
50 
51 /****************************************************************************/
52 void	m_apm_divide(M_APM rr, int places, M_APM aa, M_APM bb)
53 {
54 M_APM   tmp0, tmp1;
55 int     sn, nexp, dplaces;
56 
57 sn = aa->m_apm_sign * bb->m_apm_sign;
58 
59 if (sn == 0)                  /* one number is zero, result is zero */
60   {
61    if (bb->m_apm_sign == 0)
62      {
63       M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_divide\', Divide by 0");
64      }
65 
66    M_set_to_zero(rr);
67    return;
68   }
69 
70 /*
71  *    Use the original 'Knuth' method for smaller divides. On the
72  *    author's system, this was the *approx* break even point before
73  *    the reciprocal method used below became faster.
74  */
75 
76 if (places < 250)
77   {
78    M_apm_sdivide(rr, places, aa, bb);
79    return;
80   }
81 
82 /* mimic the decimal place behavior of the original divide */
83 
84 nexp = aa->m_apm_exponent - bb->m_apm_exponent;
85 
86 if (nexp > 0)
87   dplaces = nexp + places;
88 else
89   dplaces = places;
90 
91 tmp0 = M_get_stack_var();
92 tmp1 = M_get_stack_var();
93 
94 m_apm_reciprocal(tmp0, (dplaces + 8), bb);
95 m_apm_multiply(tmp1, tmp0, aa);
96 m_apm_round(rr, dplaces, tmp1);
97 
98 M_restore_stack(2);
99 }
100 /****************************************************************************/
101 void	m_apm_reciprocal(M_APM rr, int places, M_APM aa)
102 {
103 M_APM   last_x, guess, tmpN, tmp1, tmp2;
104 char    sbuf[32];
105 int	ii, bflag, dplaces, nexp, tolerance;
106 
107 if (aa->m_apm_sign == 0)
108   {
109    M_apm_log_error_msg(M_APM_RETURN, "\'m_apm_reciprocal\', Input = 0");
110 
111    M_set_to_zero(rr);
112    return;
113   }
114 
115 last_x = M_get_stack_var();
116 guess  = M_get_stack_var();
117 tmpN   = M_get_stack_var();
118 tmp1   = M_get_stack_var();
119 tmp2   = M_get_stack_var();
120 
121 m_apm_absolute_value(tmpN, aa);
122 
123 /*
124     normalize the input number (make the exponent 0) so
125     the 'guess' below will not over/under flow on large
126     magnitude exponents.
127 */
128 
129 nexp = aa->m_apm_exponent;
130 tmpN->m_apm_exponent -= nexp;
131 
132 m_apm_to_string(sbuf, 15, tmpN);
133 m_apm_set_double(guess, (1.0 / atof(sbuf)));
134 
135 tolerance = places + 4;
136 dplaces   = places + 16;
137 bflag     = FALSE;
138 
139 m_apm_negate(last_x, MM_Ten);
140 
141 /*   Use the following iteration to calculate the reciprocal :
142 
143 
144          X     =  X  *  [ 2 - N * X ]
145           n+1
146 */
147 
148 ii = 0;
149 
150 while (TRUE)
151   {
152    m_apm_multiply(tmp1, tmpN, guess);
153    m_apm_subtract(tmp2, MM_Two, tmp1);
154    m_apm_multiply(tmp1, tmp2, guess);
155 
156    if (bflag)
157      break;
158 
159    m_apm_round(guess, dplaces, tmp1);
160 
161    /* force at least 2 iterations so 'last_x' has valid data */
162 
163    if (ii != 0)
164      {
165       m_apm_subtract(tmp2, guess, last_x);
166 
167       if (tmp2->m_apm_sign == 0)
168         break;
169 
170       /*
171        *   if we are within a factor of 4 on the error term,
172        *   we will be accurate enough after the *next* iteration
173        *   is complete.
174        */
175 
176       if ((-4 * tmp2->m_apm_exponent) > tolerance)
177         bflag = TRUE;
178      }
179 
180    m_apm_copy(last_x, guess);
181    ii++;
182   }
183 
184 m_apm_round(rr, places, tmp1);
185 rr->m_apm_exponent -= nexp;
186 rr->m_apm_sign = aa->m_apm_sign;
187 M_restore_stack(5);
188 }
189 /****************************************************************************/
190