1 /* 2 * FILE: sha2.c 3 * AUTHOR: Aaron D. Gifford <me@aarongifford.com> 4 * 5 * Copyright (c) 2000-2001, Aaron D. Gifford 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the copyright holder nor the names of contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ 33 */ 34 35 #include <sys/types.h> 36 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ 37 /* #include <assert.h> */ /* assert() */ 38 #include <stdio.h> 39 #include <sys/uio.h> 40 #include <unistd.h> 41 #include <inttypes.h> 42 43 #include "sha2.h" 44 45 46 /* 47 * ASSERT NOTE: 48 * Some sanity checking code is included using assert(). On my FreeBSD 49 * system, this additional code can be removed by compiling with NDEBUG 50 * defined. Check your own systems manpage on assert() to see how to 51 * compile WITHOUT the sanity checking code on your system. 52 * 53 * UNROLLED TRANSFORM LOOP NOTE: 54 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 55 * loop version for the hash transform rounds (defined using macros 56 * later in this file). Either define on the command line, for example: 57 * 58 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 59 * 60 * or define below: 61 * 62 * #define SHA2_UNROLL_TRANSFORM 63 * 64 */ 65 66 #define SHA2_UNROLL_TRANSFORM 67 68 69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/ 70 /* 71 * BYTE_ORDER NOTE: 72 * 73 * Please make sure that your system defines BYTE_ORDER. If your 74 * architecture is little-endian, make sure it also defines 75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 76 * equivilent. 77 * 78 * If your system does not define the above, then you can do so by 79 * hand like this: 80 * 81 * #define LITTLE_ENDIAN 1234 82 * #define BIG_ENDIAN 4321 83 * 84 * And for little-endian machines, add: 85 * 86 * #define BYTE_ORDER LITTLE_ENDIAN 87 * 88 * Or for big-endian machines: 89 * 90 * #define BYTE_ORDER BIG_ENDIAN 91 * 92 * The FreeBSD machine this was written on defines BYTE_ORDER 93 * appropriately by including <sys/types.h> (which in turn includes 94 * <machine/endian.h> where the appropriate definitions are actually 95 * made). 96 */ 97 98 /* 99 * Define the following sha2_* types to types of the correct length on 100 * the native archtecture. Most BSD systems and Linux define u_intXX_t 101 * types. Machines with very recent ANSI C headers, can use the 102 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H 103 * during compile or in the sha.h header file. 104 * 105 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t 106 * will need to define these three typedefs below (and the appropriate 107 * ones in sha.h too) by hand according to their system architecture. 108 * 109 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t 110 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h. 111 */ 112 typedef uint8_t sha2_byte; /* Exactly 1 byte */ 113 typedef uint32_t sha2_word32; /* Exactly 4 bytes */ 114 typedef uint64_t sha2_word64; /* Exactly 8 bytes */ 115 116 117 /*** SHA-256/384/512 Various Length Definitions ***********************/ 118 /* NOTE: Most of these are in sha2.h */ 119 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) 120 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) 121 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) 122 123 124 /*** ENDIAN REVERSAL MACROS *******************************************/ 125 #ifndef WORDS_BIGENDIAN 126 #define REVERSE32(w,x) { \ 127 sha2_word32 tmp = (w); \ 128 tmp = (tmp >> 16) | (tmp << 16); \ 129 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ 130 } 131 #define REVERSE64(w,x) { \ 132 sha2_word64 tmp = (w); \ 133 tmp = (tmp >> 32) | (tmp << 32); \ 134 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ 135 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ 136 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ 137 ((tmp & 0x0000ffff0000ffffULL) << 16); \ 138 } 139 #endif /* !WORDS_BIGENDIAN */ 140 141 /* 142 * Macro for incrementally adding the unsigned 64-bit integer n to the 143 * unsigned 128-bit integer (represented using a two-element array of 144 * 64-bit words): 145 */ 146 #define ADDINC128(w,n) { \ 147 (w)[0] += (sha2_word64)(n); \ 148 if ((w)[0] < (n)) { \ 149 (w)[1]++; \ 150 } \ 151 } 152 153 /* 154 * Macros for copying blocks of memory and for zeroing out ranges 155 * of memory. Using these macros makes it easy to switch from 156 * using memset()/memcpy() and using bzero()/bcopy(). 157 * 158 * Please define either SHA2_USE_MEMSET_MEMCPY or define 159 * SHA2_USE_BZERO_BCOPY depending on which function set you 160 * choose to use: 161 */ 162 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) 163 /* Default to memset()/memcpy() if no option is specified */ 164 #define SHA2_USE_MEMSET_MEMCPY 1 165 #endif 166 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) 167 /* Abort with an error if BOTH options are defined */ 168 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! 169 #endif 170 171 #ifdef SHA2_USE_MEMSET_MEMCPY 172 #define MEMSET_BZERO(p,l) memset((p), 0, (l)) 173 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) 174 #endif 175 #ifdef SHA2_USE_BZERO_BCOPY 176 #define MEMSET_BZERO(p,l) bzero((p), (l)) 177 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) 178 #endif 179 180 181 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 182 /* 183 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 184 * 185 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 186 * S is a ROTATION) because the SHA-256/384/512 description document 187 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 188 * same "backwards" definition. 189 */ 190 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ 191 #define R(b,x) ((x) >> (b)) 192 /* 32-bit Rotate-right (used in SHA-256): */ 193 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 194 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 195 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 196 197 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ 198 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 199 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 200 201 /* Four of six logical functions used in SHA-256: */ 202 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 203 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 204 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 205 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 206 207 /* Four of six logical functions used in SHA-384 and SHA-512: */ 208 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 209 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 210 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 211 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 212 213 /*** INTERNAL FUNCTION PROTOTYPES *************************************/ 214 /* NOTE: These should not be accessed directly from outside this 215 * library -- they are intended for private internal visibility/use 216 * only. 217 */ 218 static void SHA512_Last(SHA512_CTX*); 219 static void SHA256_Transform(SHA256_CTX*, const sha2_word32*); 220 static void SHA512_Transform(SHA512_CTX*, const sha2_word64*); 221 222 223 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 224 /* Hash constant words K for SHA-256: */ 225 const static sha2_word32 K256[64] = { 226 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 227 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 228 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 229 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 230 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 231 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 232 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 233 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 234 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 235 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 236 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 237 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 238 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 239 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 240 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 241 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 242 }; 243 244 /* Initial hash value H for SHA-256: */ 245 const static sha2_word32 sha256_initial_hash_value[8] = { 246 0x6a09e667UL, 247 0xbb67ae85UL, 248 0x3c6ef372UL, 249 0xa54ff53aUL, 250 0x510e527fUL, 251 0x9b05688cUL, 252 0x1f83d9abUL, 253 0x5be0cd19UL 254 }; 255 256 /* Hash constant words K for SHA-384 and SHA-512: */ 257 const static sha2_word64 K512[80] = { 258 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 259 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 260 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 261 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 262 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 263 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 264 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 265 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 266 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 267 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 268 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 269 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 270 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 271 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 272 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 273 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 274 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 275 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 276 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 277 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 278 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 279 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 280 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 281 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 282 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 283 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 284 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 285 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 286 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 287 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 288 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 289 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 290 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 291 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 292 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 293 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 294 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 295 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 296 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 297 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 298 }; 299 300 /* Initial hash value H for SHA-384 */ 301 const static sha2_word64 sha384_initial_hash_value[8] = { 302 0xcbbb9d5dc1059ed8ULL, 303 0x629a292a367cd507ULL, 304 0x9159015a3070dd17ULL, 305 0x152fecd8f70e5939ULL, 306 0x67332667ffc00b31ULL, 307 0x8eb44a8768581511ULL, 308 0xdb0c2e0d64f98fa7ULL, 309 0x47b5481dbefa4fa4ULL 310 }; 311 312 /* Initial hash value H for SHA-512 */ 313 const static sha2_word64 sha512_initial_hash_value[8] = { 314 0x6a09e667f3bcc908ULL, 315 0xbb67ae8584caa73bULL, 316 0x3c6ef372fe94f82bULL, 317 0xa54ff53a5f1d36f1ULL, 318 0x510e527fade682d1ULL, 319 0x9b05688c2b3e6c1fULL, 320 0x1f83d9abfb41bd6bULL, 321 0x5be0cd19137e2179ULL 322 }; 323 324 /* 325 * Constant used by SHA256/384/512_End() functions for converting the 326 * digest to a readable hexadecimal character string: 327 */ 328 static const char *sha2_hex_digits = "0123456789abcdef"; 329 330 331 /*** SHA-256: *********************************************************/ 332 void solv_SHA256_Init(SHA256_CTX* context) { 333 if (context == (SHA256_CTX*)0) { 334 return; 335 } 336 MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); 337 MEMSET_BZERO((char *)context->buffer, SHA256_BLOCK_LENGTH); 338 context->bitcount = 0; 339 } 340 341 #ifdef SHA2_UNROLL_TRANSFORM 342 343 /* Unrolled SHA-256 round macros: */ 344 345 #ifndef WORDS_BIGENDIAN 346 347 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ 348 REVERSE32(*data++, W256[j]); \ 349 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ 350 K256[j] + W256[j]; \ 351 (d) += T1; \ 352 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 353 j++ 354 355 356 #else /* !WORDS_BIGENDIAN */ 357 358 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ 359 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ 360 K256[j] + (W256[j] = *data++); \ 361 (d) += T1; \ 362 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 363 j++ 364 365 #endif /* !WORDS_BIGENDIAN */ 366 367 #define ROUND256(a,b,c,d,e,f,g,h) \ 368 s0 = W256[(j+1)&0x0f]; \ 369 s0 = sigma0_256(s0); \ 370 s1 = W256[(j+14)&0x0f]; \ 371 s1 = sigma1_256(s1); \ 372 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ 373 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 374 (d) += T1; \ 375 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 376 j++ 377 378 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { 379 sha2_word32 a, b, c, d, e, f, g, h, s0, s1; 380 sha2_word32 T1, *W256; 381 int j; 382 383 W256 = context->buffer; 384 385 /* Initialize registers with the prev. intermediate value */ 386 a = context->state[0]; 387 b = context->state[1]; 388 c = context->state[2]; 389 d = context->state[3]; 390 e = context->state[4]; 391 f = context->state[5]; 392 g = context->state[6]; 393 h = context->state[7]; 394 395 j = 0; 396 do { 397 /* Rounds 0 to 15 (unrolled): */ 398 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 399 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 400 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 401 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 402 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 403 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 404 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 405 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 406 } while (j < 16); 407 408 /* Now for the remaining rounds to 64: */ 409 do { 410 ROUND256(a,b,c,d,e,f,g,h); 411 ROUND256(h,a,b,c,d,e,f,g); 412 ROUND256(g,h,a,b,c,d,e,f); 413 ROUND256(f,g,h,a,b,c,d,e); 414 ROUND256(e,f,g,h,a,b,c,d); 415 ROUND256(d,e,f,g,h,a,b,c); 416 ROUND256(c,d,e,f,g,h,a,b); 417 ROUND256(b,c,d,e,f,g,h,a); 418 } while (j < 64); 419 420 /* Compute the current intermediate hash value */ 421 context->state[0] += a; 422 context->state[1] += b; 423 context->state[2] += c; 424 context->state[3] += d; 425 context->state[4] += e; 426 context->state[5] += f; 427 context->state[6] += g; 428 context->state[7] += h; 429 430 /* Clean up */ 431 a = b = c = d = e = f = g = h = T1 = 0; 432 } 433 434 #else /* SHA2_UNROLL_TRANSFORM */ 435 436 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { 437 sha2_word32 a, b, c, d, e, f, g, h, s0, s1; 438 sha2_word32 T1, T2, *W256; 439 int j; 440 441 W256 = context->buffer; 442 443 /* Initialize registers with the prev. intermediate value */ 444 a = context->state[0]; 445 b = context->state[1]; 446 c = context->state[2]; 447 d = context->state[3]; 448 e = context->state[4]; 449 f = context->state[5]; 450 g = context->state[6]; 451 h = context->state[7]; 452 453 j = 0; 454 do { 455 #ifndef WORDS_BIGENDIAN 456 /* Copy data while converting to host byte order */ 457 REVERSE32(*data++,W256[j]); 458 /* Apply the SHA-256 compression function to update a..h */ 459 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 460 #else /* !WORDS_BIGENDIAN */ 461 /* Apply the SHA-256 compression function to update a..h with copy */ 462 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); 463 #endif /* !WORDS_BIGENDIAN */ 464 T2 = Sigma0_256(a) + Maj(a, b, c); 465 h = g; 466 g = f; 467 f = e; 468 e = d + T1; 469 d = c; 470 c = b; 471 b = a; 472 a = T1 + T2; 473 474 j++; 475 } while (j < 16); 476 477 do { 478 /* Part of the message block expansion: */ 479 s0 = W256[(j+1)&0x0f]; 480 s0 = sigma0_256(s0); 481 s1 = W256[(j+14)&0x0f]; 482 s1 = sigma1_256(s1); 483 484 /* Apply the SHA-256 compression function to update a..h */ 485 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 486 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 487 T2 = Sigma0_256(a) + Maj(a, b, c); 488 h = g; 489 g = f; 490 f = e; 491 e = d + T1; 492 d = c; 493 c = b; 494 b = a; 495 a = T1 + T2; 496 497 j++; 498 } while (j < 64); 499 500 /* Compute the current intermediate hash value */ 501 context->state[0] += a; 502 context->state[1] += b; 503 context->state[2] += c; 504 context->state[3] += d; 505 context->state[4] += e; 506 context->state[5] += f; 507 context->state[6] += g; 508 context->state[7] += h; 509 510 /* Clean up */ 511 a = b = c = d = e = f = g = h = T1 = T2 = 0; 512 } 513 514 #endif /* SHA2_UNROLL_TRANSFORM */ 515 516 void solv_SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { 517 unsigned int freespace, usedspace; 518 519 if (len == 0) { 520 /* Calling with no data is valid - we do nothing */ 521 return; 522 } 523 524 /* Sanity check: */ 525 /* assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0); */ 526 527 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; 528 if (usedspace > 0) { 529 /* Calculate how much free space is available in the buffer */ 530 freespace = SHA256_BLOCK_LENGTH - usedspace; 531 532 if (len >= freespace) { 533 /* Fill the buffer completely and process it */ 534 MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, freespace); 535 context->bitcount += freespace << 3; 536 len -= freespace; 537 data += freespace; 538 SHA256_Transform(context, context->buffer); 539 } else { 540 /* The buffer is not yet full */ 541 MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, len); 542 context->bitcount += len << 3; 543 /* Clean up: */ 544 usedspace = freespace = 0; 545 return; 546 } 547 } 548 while (len >= SHA256_BLOCK_LENGTH) { 549 /* Process as many complete blocks as we can */ 550 SHA256_Transform(context, (sha2_word32*)data); 551 context->bitcount += SHA256_BLOCK_LENGTH << 3; 552 len -= SHA256_BLOCK_LENGTH; 553 data += SHA256_BLOCK_LENGTH; 554 } 555 if (len > 0) { 556 /* There's left-overs, so save 'em */ 557 MEMCPY_BCOPY((char *)context->buffer, data, len); 558 context->bitcount += len << 3; 559 } 560 /* Clean up: */ 561 usedspace = freespace = 0; 562 } 563 564 void solv_SHA256_Final(sha2_byte digest[], SHA256_CTX* context) { 565 sha2_word32 *d = (sha2_word32*)digest; 566 unsigned int usedspace; 567 568 /* Sanity check: */ 569 /* assert(context != (SHA256_CTX*)0); */ 570 571 /* If no digest buffer is passed, we don't bother doing this: */ 572 if (digest != (sha2_byte*)0) { 573 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; 574 #ifndef WORDS_BIGENDIAN 575 /* Convert FROM host byte order */ 576 REVERSE64(context->bitcount,context->bitcount); 577 #endif 578 if (usedspace > 0) { 579 /* Begin padding with a 1 bit: */ 580 ((char *)context->buffer)[usedspace++] = 0x80; 581 582 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { 583 /* Set-up for the last transform: */ 584 MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); 585 } else { 586 if (usedspace < SHA256_BLOCK_LENGTH) { 587 MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA256_BLOCK_LENGTH - usedspace); 588 } 589 /* Do second-to-last transform: */ 590 SHA256_Transform(context, context->buffer); 591 592 /* And set-up for the last transform: */ 593 MEMSET_BZERO((char *)context->buffer, SHA256_SHORT_BLOCK_LENGTH); 594 } 595 } else { 596 /* Set-up for the last transform: */ 597 MEMSET_BZERO((char *)context->buffer, SHA256_SHORT_BLOCK_LENGTH); 598 599 /* Begin padding with a 1 bit: */ 600 *((char *)context->buffer) = 0x80; 601 } 602 /* Set the bit count: */ 603 MEMCPY_BCOPY(&((char *)context->buffer)[SHA256_SHORT_BLOCK_LENGTH], (char *)(&context->bitcount), 8); 604 605 /* Final transform: */ 606 SHA256_Transform(context, context->buffer); 607 608 #ifndef WORDS_BIGENDIAN 609 { 610 /* Convert TO host byte order */ 611 int j; 612 for (j = 0; j < 8; j++) { 613 REVERSE32(context->state[j],context->state[j]); 614 *d++ = context->state[j]; 615 } 616 } 617 #else 618 MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH); 619 #endif 620 } 621 622 /* Clean up state data: */ 623 MEMSET_BZERO(context, sizeof(context)); 624 usedspace = 0; 625 } 626 627 char *solv_SHA256_End(SHA256_CTX* context, char buffer[]) { 628 sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest; 629 int i; 630 631 /* Sanity check: */ 632 /* assert(context != (SHA256_CTX*)0); */ 633 634 if (buffer != (char*)0) { 635 solv_SHA256_Final(digest, context); 636 637 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { 638 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; 639 *buffer++ = sha2_hex_digits[*d & 0x0f]; 640 d++; 641 } 642 *buffer = (char)0; 643 } else { 644 MEMSET_BZERO(context, sizeof(context)); 645 } 646 MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH); 647 return buffer; 648 } 649 650 char* solv_SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) { 651 SHA256_CTX context; 652 653 solv_SHA256_Init(&context); 654 solv_SHA256_Update(&context, data, len); 655 return solv_SHA256_End(&context, digest); 656 } 657 658 659 /*** SHA-512: *********************************************************/ 660 void solv_SHA512_Init(SHA512_CTX* context) { 661 if (context == (SHA512_CTX*)0) { 662 return; 663 } 664 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); 665 MEMSET_BZERO((char *)context->buffer, SHA512_BLOCK_LENGTH); 666 context->bitcount[0] = context->bitcount[1] = 0; 667 } 668 669 #ifdef SHA2_UNROLL_TRANSFORM 670 671 /* Unrolled SHA-512 round macros: */ 672 #ifndef WORDS_BIGENDIAN 673 674 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ 675 REVERSE64(*data++, W512[j]); \ 676 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ 677 K512[j] + W512[j]; \ 678 (d) += T1, \ 679 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ 680 j++ 681 682 683 #else /* !WORDS_BIGENDIAN */ 684 685 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ 686 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ 687 K512[j] + (W512[j] = *data++); \ 688 (d) += T1; \ 689 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ 690 j++ 691 692 #endif /* !WORDS_BIGENDIAN */ 693 694 #define ROUND512(a,b,c,d,e,f,g,h) \ 695 s0 = W512[(j+1)&0x0f]; \ 696 s0 = sigma0_512(s0); \ 697 s1 = W512[(j+14)&0x0f]; \ 698 s1 = sigma1_512(s1); \ 699 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ 700 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 701 (d) += T1; \ 702 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ 703 j++ 704 705 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { 706 sha2_word64 a, b, c, d, e, f, g, h, s0, s1; 707 sha2_word64 T1, *W512 = context->buffer; 708 int j; 709 710 /* Initialize registers with the prev. intermediate value */ 711 a = context->state[0]; 712 b = context->state[1]; 713 c = context->state[2]; 714 d = context->state[3]; 715 e = context->state[4]; 716 f = context->state[5]; 717 g = context->state[6]; 718 h = context->state[7]; 719 720 j = 0; 721 do { 722 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 723 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 724 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 725 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 726 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 727 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 728 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 729 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 730 } while (j < 16); 731 732 /* Now for the remaining rounds up to 79: */ 733 do { 734 ROUND512(a,b,c,d,e,f,g,h); 735 ROUND512(h,a,b,c,d,e,f,g); 736 ROUND512(g,h,a,b,c,d,e,f); 737 ROUND512(f,g,h,a,b,c,d,e); 738 ROUND512(e,f,g,h,a,b,c,d); 739 ROUND512(d,e,f,g,h,a,b,c); 740 ROUND512(c,d,e,f,g,h,a,b); 741 ROUND512(b,c,d,e,f,g,h,a); 742 } while (j < 80); 743 744 /* Compute the current intermediate hash value */ 745 context->state[0] += a; 746 context->state[1] += b; 747 context->state[2] += c; 748 context->state[3] += d; 749 context->state[4] += e; 750 context->state[5] += f; 751 context->state[6] += g; 752 context->state[7] += h; 753 754 /* Clean up */ 755 a = b = c = d = e = f = g = h = T1 = 0; 756 } 757 758 #else /* SHA2_UNROLL_TRANSFORM */ 759 760 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) { 761 sha2_word64 a, b, c, d, e, f, g, h, s0, s1; 762 sha2_word64 T1, T2, *W512 = context->buffer; 763 int j; 764 765 /* Initialize registers with the prev. intermediate value */ 766 a = context->state[0]; 767 b = context->state[1]; 768 c = context->state[2]; 769 d = context->state[3]; 770 e = context->state[4]; 771 f = context->state[5]; 772 g = context->state[6]; 773 h = context->state[7]; 774 775 j = 0; 776 do { 777 #ifndef WORDS_BIGENDIAN 778 /* Convert TO host byte order */ 779 REVERSE64(*data++, W512[j]); 780 /* Apply the SHA-512 compression function to update a..h */ 781 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 782 #else /* !WORDS_BIGENDIAN */ 783 /* Apply the SHA-512 compression function to update a..h with copy */ 784 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); 785 #endif /* !WORDS_BIGENDIAN */ 786 T2 = Sigma0_512(a) + Maj(a, b, c); 787 h = g; 788 g = f; 789 f = e; 790 e = d + T1; 791 d = c; 792 c = b; 793 b = a; 794 a = T1 + T2; 795 796 j++; 797 } while (j < 16); 798 799 do { 800 /* Part of the message block expansion: */ 801 s0 = W512[(j+1)&0x0f]; 802 s0 = sigma0_512(s0); 803 s1 = W512[(j+14)&0x0f]; 804 s1 = sigma1_512(s1); 805 806 /* Apply the SHA-512 compression function to update a..h */ 807 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 808 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 809 T2 = Sigma0_512(a) + Maj(a, b, c); 810 h = g; 811 g = f; 812 f = e; 813 e = d + T1; 814 d = c; 815 c = b; 816 b = a; 817 a = T1 + T2; 818 819 j++; 820 } while (j < 80); 821 822 /* Compute the current intermediate hash value */ 823 context->state[0] += a; 824 context->state[1] += b; 825 context->state[2] += c; 826 context->state[3] += d; 827 context->state[4] += e; 828 context->state[5] += f; 829 context->state[6] += g; 830 context->state[7] += h; 831 832 /* Clean up */ 833 a = b = c = d = e = f = g = h = T1 = T2 = 0; 834 } 835 836 #endif /* SHA2_UNROLL_TRANSFORM */ 837 838 void solv_SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) { 839 unsigned int freespace, usedspace; 840 841 if (len == 0) { 842 /* Calling with no data is valid - we do nothing */ 843 return; 844 } 845 846 /* Sanity check: */ 847 /* assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0); */ 848 849 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 850 if (usedspace > 0) { 851 /* Calculate how much free space is available in the buffer */ 852 freespace = SHA512_BLOCK_LENGTH - usedspace; 853 854 if (len >= freespace) { 855 /* Fill the buffer completely and process it */ 856 MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, freespace); 857 ADDINC128(context->bitcount, freespace << 3); 858 len -= freespace; 859 data += freespace; 860 SHA512_Transform(context, context->buffer); 861 } else { 862 /* The buffer is not yet full */ 863 MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, len); 864 ADDINC128(context->bitcount, len << 3); 865 /* Clean up: */ 866 usedspace = freespace = 0; 867 return; 868 } 869 } 870 while (len >= SHA512_BLOCK_LENGTH) { 871 /* Process as many complete blocks as we can */ 872 SHA512_Transform(context, (sha2_word64*)data); 873 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 874 len -= SHA512_BLOCK_LENGTH; 875 data += SHA512_BLOCK_LENGTH; 876 } 877 if (len > 0) { 878 /* There's left-overs, so save 'em */ 879 MEMCPY_BCOPY((char *)context->buffer, data, len); 880 ADDINC128(context->bitcount, len << 3); 881 } 882 /* Clean up: */ 883 usedspace = freespace = 0; 884 } 885 886 static void SHA512_Last(SHA512_CTX* context) { 887 unsigned int usedspace; 888 889 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 890 #ifndef WORDS_BIGENDIAN 891 /* Convert FROM host byte order */ 892 REVERSE64(context->bitcount[0],context->bitcount[0]); 893 REVERSE64(context->bitcount[1],context->bitcount[1]); 894 #endif 895 if (usedspace > 0) { 896 /* Begin padding with a 1 bit: */ 897 ((char *)context->buffer)[usedspace++] = 0x80; 898 899 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { 900 /* Set-up for the last transform: */ 901 MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace); 902 } else { 903 if (usedspace < SHA512_BLOCK_LENGTH) { 904 MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA512_BLOCK_LENGTH - usedspace); 905 } 906 /* Do second-to-last transform: */ 907 SHA512_Transform(context, context->buffer); 908 909 /* And set-up for the last transform: */ 910 MEMSET_BZERO((char *)context->buffer, SHA512_BLOCK_LENGTH - 2); 911 } 912 } else { 913 /* Prepare for final transform: */ 914 MEMSET_BZERO((char *)context->buffer, SHA512_SHORT_BLOCK_LENGTH); 915 916 /* Begin padding with a 1 bit: */ 917 *((char *)context->buffer) = 0x80; 918 } 919 /* Store the length of input data (in bits): */ 920 MEMCPY_BCOPY(&((char *)context->buffer)[SHA512_SHORT_BLOCK_LENGTH], (char *)(&context->bitcount[1]), 8); 921 MEMCPY_BCOPY(&((char *)context->buffer)[SHA512_SHORT_BLOCK_LENGTH + 8], (char *)(&context->bitcount[0]), 8); 922 923 /* Final transform: */ 924 SHA512_Transform(context, context->buffer); 925 } 926 927 void solv_SHA512_Final(sha2_byte digest[], SHA512_CTX* context) { 928 sha2_word64 *d = (sha2_word64*)digest; 929 930 /* Sanity check: */ 931 /* assert(context != (SHA512_CTX*)0); */ 932 933 /* If no digest buffer is passed, we don't bother doing this: */ 934 if (digest != (sha2_byte*)0) { 935 SHA512_Last(context); 936 937 /* Save the hash data for output: */ 938 #ifndef WORDS_BIGENDIAN 939 { 940 /* Convert TO host byte order */ 941 int j; 942 for (j = 0; j < 8; j++) { 943 REVERSE64(context->state[j],context->state[j]); 944 *d++ = context->state[j]; 945 } 946 } 947 #else 948 MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH); 949 #endif 950 } 951 952 /* Zero out state data */ 953 MEMSET_BZERO(context, sizeof(context)); 954 } 955 956 char *solv_SHA512_End(SHA512_CTX* context, char buffer[]) { 957 sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest; 958 int i; 959 960 /* Sanity check: */ 961 /* assert(context != (SHA512_CTX*)0); */ 962 963 if (buffer != (char*)0) { 964 solv_SHA512_Final(digest, context); 965 966 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) { 967 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; 968 *buffer++ = sha2_hex_digits[*d & 0x0f]; 969 d++; 970 } 971 *buffer = (char)0; 972 } else { 973 MEMSET_BZERO(context, sizeof(context)); 974 } 975 MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH); 976 return buffer; 977 } 978 979 char* solv_SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) { 980 SHA512_CTX context; 981 982 solv_SHA512_Init(&context); 983 solv_SHA512_Update(&context, data, len); 984 return solv_SHA512_End(&context, digest); 985 } 986 987 988 /*** SHA-384: *********************************************************/ 989 void solv_SHA384_Init(SHA384_CTX* context) { 990 if (context == (SHA384_CTX*)0) { 991 return; 992 } 993 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); 994 MEMSET_BZERO((char *)context->buffer, SHA384_BLOCK_LENGTH); 995 context->bitcount[0] = context->bitcount[1] = 0; 996 } 997 998 void solv_SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) { 999 solv_SHA512_Update((SHA512_CTX*)context, data, len); 1000 } 1001 1002 void solv_SHA384_Final(sha2_byte digest[], SHA384_CTX* context) { 1003 sha2_word64 *d = (sha2_word64*)digest; 1004 1005 /* Sanity check: */ 1006 /* assert(context != (SHA384_CTX*)0); */ 1007 1008 /* If no digest buffer is passed, we don't bother doing this: */ 1009 if (digest != (sha2_byte*)0) { 1010 SHA512_Last((SHA512_CTX*)context); 1011 1012 /* Save the hash data for output: */ 1013 #ifndef WORDS_BIGENDIAN 1014 { 1015 /* Convert TO host byte order */ 1016 int j; 1017 for (j = 0; j < 6; j++) { 1018 REVERSE64(context->state[j],context->state[j]); 1019 *d++ = context->state[j]; 1020 } 1021 } 1022 #else 1023 MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH); 1024 #endif 1025 } 1026 1027 /* Zero out state data */ 1028 MEMSET_BZERO(context, sizeof(context)); 1029 } 1030 1031 char *solv_SHA384_End(SHA384_CTX* context, char buffer[]) { 1032 sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest; 1033 int i; 1034 1035 /* Sanity check: */ 1036 /* assert(context != (SHA384_CTX*)0); */ 1037 1038 if (buffer != (char*)0) { 1039 solv_SHA384_Final(digest, context); 1040 1041 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) { 1042 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; 1043 *buffer++ = sha2_hex_digits[*d & 0x0f]; 1044 d++; 1045 } 1046 *buffer = (char)0; 1047 } else { 1048 MEMSET_BZERO(context, sizeof(context)); 1049 } 1050 MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH); 1051 return buffer; 1052 } 1053 1054 char* solv_SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) { 1055 SHA384_CTX context; 1056 1057 solv_SHA384_Init(&context); 1058 solv_SHA384_Update(&context, data, len); 1059 return solv_SHA384_End(&context, digest); 1060 } 1061