1 /* $OpenBSD: ieee80211.c,v 1.88 2022/03/19 10:25:09 stsp Exp $ */ 2 /* $NetBSD: ieee80211.c,v 1.19 2004/06/06 05:45:29 dyoung Exp $ */ 3 4 /*- 5 * Copyright (c) 2001 Atsushi Onoe 6 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 36 #include "bpfilter.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/mbuf.h> 41 #include <sys/kernel.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/endian.h> 45 #include <sys/errno.h> 46 #include <sys/sysctl.h> 47 48 #include <net/if.h> 49 #include <net/if_dl.h> 50 #include <net/if_media.h> 51 52 #if NBPFILTER > 0 53 #include <net/bpf.h> 54 #endif 55 56 #include <netinet/in.h> 57 #include <netinet/if_ether.h> 58 59 #include <net80211/ieee80211_var.h> 60 #include <net80211/ieee80211_priv.h> 61 62 #ifdef IEEE80211_DEBUG 63 int ieee80211_debug = 0; 64 #endif 65 66 int ieee80211_cache_size = IEEE80211_CACHE_SIZE; 67 68 void ieee80211_setbasicrates(struct ieee80211com *); 69 int ieee80211_findrate(struct ieee80211com *, enum ieee80211_phymode, int); 70 void ieee80211_configure_ampdu_tx(struct ieee80211com *, int); 71 72 void 73 ieee80211_begin_bgscan(struct ifnet *ifp) 74 { 75 struct ieee80211com *ic = (void *)ifp; 76 77 if ((ic->ic_flags & IEEE80211_F_BGSCAN) || 78 ic->ic_state != IEEE80211_S_RUN || ic->ic_mgt_timer != 0) 79 return; 80 81 if ((ic->ic_flags & IEEE80211_F_RSNON) && !ic->ic_bss->ni_port_valid) 82 return; 83 84 if (ic->ic_bgscan_start != NULL && ic->ic_bgscan_start(ic) == 0) { 85 /* 86 * Free the nodes table to ensure we get an up-to-date view 87 * of APs around us. In particular, we need to kick out the 88 * AP we are associated to. Otherwise, our current AP might 89 * stay cached if it is turned off while we are scanning, and 90 * we could end up picking a now non-existent AP over and over. 91 */ 92 ieee80211_free_allnodes(ic, 0 /* keep ic->ic_bss */); 93 94 ic->ic_flags |= IEEE80211_F_BGSCAN; 95 if (ifp->if_flags & IFF_DEBUG) 96 printf("%s: begin background scan\n", ifp->if_xname); 97 98 /* Driver calls ieee80211_end_scan() when done. */ 99 } 100 } 101 102 void 103 ieee80211_bgscan_timeout(void *arg) 104 { 105 struct ifnet *ifp = arg; 106 107 ieee80211_begin_bgscan(ifp); 108 } 109 110 void 111 ieee80211_channel_init(struct ifnet *ifp) 112 { 113 struct ieee80211com *ic = (void *)ifp; 114 struct ieee80211_channel *c; 115 int i; 116 117 /* 118 * Fill in 802.11 available channel set, mark 119 * all available channels as active, and pick 120 * a default channel if not already specified. 121 */ 122 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 123 ic->ic_modecaps |= 1<<IEEE80211_MODE_AUTO; 124 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 125 c = &ic->ic_channels[i]; 126 if (c->ic_flags) { 127 /* 128 * Verify driver passed us valid data. 129 */ 130 if (i != ieee80211_chan2ieee(ic, c)) { 131 printf("%s: bad channel ignored; " 132 "freq %u flags %x number %u\n", 133 ifp->if_xname, c->ic_freq, c->ic_flags, 134 i); 135 c->ic_flags = 0; /* NB: remove */ 136 continue; 137 } 138 setbit(ic->ic_chan_avail, i); 139 /* 140 * Identify mode capabilities. 141 */ 142 if (IEEE80211_IS_CHAN_A(c)) 143 ic->ic_modecaps |= 1<<IEEE80211_MODE_11A; 144 if (IEEE80211_IS_CHAN_B(c)) 145 ic->ic_modecaps |= 1<<IEEE80211_MODE_11B; 146 if (IEEE80211_IS_CHAN_PUREG(c)) 147 ic->ic_modecaps |= 1<<IEEE80211_MODE_11G; 148 if (IEEE80211_IS_CHAN_N(c)) 149 ic->ic_modecaps |= 1<<IEEE80211_MODE_11N; 150 if (IEEE80211_IS_CHAN_AC(c)) 151 ic->ic_modecaps |= 1<<IEEE80211_MODE_11AC; 152 } 153 } 154 /* validate ic->ic_curmode */ 155 if ((ic->ic_modecaps & (1<<ic->ic_curmode)) == 0) 156 ic->ic_curmode = IEEE80211_MODE_AUTO; 157 ic->ic_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 158 } 159 160 void 161 ieee80211_ifattach(struct ifnet *ifp) 162 { 163 struct ieee80211com *ic = (void *)ifp; 164 165 memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr, 166 ETHER_ADDR_LEN); 167 ether_ifattach(ifp); 168 169 ifp->if_output = ieee80211_output; 170 171 #if NBPFILTER > 0 172 bpfattach(&ic->ic_rawbpf, ifp, DLT_IEEE802_11, 173 sizeof(struct ieee80211_frame_addr4)); 174 #endif 175 ieee80211_crypto_attach(ifp); 176 177 ieee80211_channel_init(ifp); 178 179 /* IEEE 802.11 defines a MTU >= 2290 */ 180 ifp->if_capabilities |= IFCAP_VLAN_MTU; 181 182 ieee80211_setbasicrates(ic); 183 (void)ieee80211_setmode(ic, ic->ic_curmode); 184 185 if (ic->ic_lintval == 0) 186 ic->ic_lintval = 100; /* default sleep */ 187 ic->ic_bmissthres = IEEE80211_BEACON_MISS_THRES; 188 ic->ic_dtim_period = 1; /* all TIMs are DTIMs */ 189 190 ieee80211_node_attach(ifp); 191 ieee80211_proto_attach(ifp); 192 193 if_addgroup(ifp, "wlan"); 194 ifp->if_priority = IF_WIRELESS_DEFAULT_PRIORITY; 195 196 task_set(&ic->ic_rtm_80211info_task, ieee80211_rtm_80211info_task, ic); 197 ieee80211_set_link_state(ic, LINK_STATE_DOWN); 198 199 timeout_set(&ic->ic_bgscan_timeout, ieee80211_bgscan_timeout, ifp); 200 } 201 202 void 203 ieee80211_ifdetach(struct ifnet *ifp) 204 { 205 struct ieee80211com *ic = (void *)ifp; 206 207 task_del(systq, &ic->ic_rtm_80211info_task); 208 timeout_del(&ic->ic_bgscan_timeout); 209 210 /* 211 * Undo pseudo-driver changes. Pseudo-driver detach hooks could 212 * call back into the driver, e.g. via ioctl. So deactivate the 213 * interface before freeing net80211-specific data structures. 214 */ 215 if_deactivate(ifp); 216 217 ieee80211_proto_detach(ifp); 218 ieee80211_crypto_detach(ifp); 219 ieee80211_node_detach(ifp); 220 ifmedia_delete_instance(&ic->ic_media, IFM_INST_ANY); 221 ether_ifdetach(ifp); 222 } 223 224 /* 225 * Convert MHz frequency to IEEE channel number. 226 */ 227 u_int 228 ieee80211_mhz2ieee(u_int freq, u_int flags) 229 { 230 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 231 if (freq == 2484) 232 return 14; 233 if (freq < 2484) 234 return (freq - 2407) / 5; 235 else 236 return 15 + ((freq - 2512) / 20); 237 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5GHz band */ 238 return (freq - 5000) / 5; 239 } else { /* either, guess */ 240 if (freq == 2484) 241 return 14; 242 if (freq < 2484) 243 return (freq - 2407) / 5; 244 if (freq < 5000) 245 return 15 + ((freq - 2512) / 20); 246 return (freq - 5000) / 5; 247 } 248 } 249 250 /* 251 * Convert channel to IEEE channel number. 252 */ 253 u_int 254 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 255 { 256 struct ifnet *ifp = &ic->ic_if; 257 if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX]) 258 return c - ic->ic_channels; 259 else if (c == IEEE80211_CHAN_ANYC) 260 return IEEE80211_CHAN_ANY; 261 262 panic("%s: bogus channel pointer", ifp->if_xname); 263 } 264 265 /* 266 * Convert IEEE channel number to MHz frequency. 267 */ 268 u_int 269 ieee80211_ieee2mhz(u_int chan, u_int flags) 270 { 271 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 272 if (chan == 14) 273 return 2484; 274 if (chan < 14) 275 return 2407 + chan*5; 276 else 277 return 2512 + ((chan-15)*20); 278 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5GHz band */ 279 return 5000 + (chan*5); 280 } else { /* either, guess */ 281 if (chan == 14) 282 return 2484; 283 if (chan < 14) /* 0-13 */ 284 return 2407 + chan*5; 285 if (chan < 27) /* 15-26 */ 286 return 2512 + ((chan-15)*20); 287 return 5000 + (chan*5); 288 } 289 } 290 291 void 292 ieee80211_configure_ampdu_tx(struct ieee80211com *ic, int enable) 293 { 294 if ((ic->ic_caps & IEEE80211_C_TX_AMPDU) == 0) 295 return; 296 297 /* Sending AMPDUs requires QoS support. */ 298 if ((ic->ic_caps & IEEE80211_C_QOS) == 0) 299 return; 300 301 if (enable) 302 ic->ic_flags |= IEEE80211_F_QOS; 303 else 304 ic->ic_flags &= ~IEEE80211_F_QOS; 305 } 306 307 /* 308 * Setup the media data structures according to the channel and 309 * rate tables. This must be called by the driver after 310 * ieee80211_attach and before most anything else. 311 */ 312 void 313 ieee80211_media_init(struct ifnet *ifp, 314 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 315 { 316 #define ADD(_ic, _s, _o) \ 317 ifmedia_add(&(_ic)->ic_media, \ 318 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 319 struct ieee80211com *ic = (void *)ifp; 320 struct ifmediareq imr; 321 int i, j, mode, rate, maxrate, r; 322 uint64_t mword, mopt; 323 const struct ieee80211_rateset *rs; 324 struct ieee80211_rateset allrates; 325 326 /* 327 * Do late attach work that must wait for any subclass 328 * (i.e. driver) work such as overriding methods. 329 */ 330 ieee80211_node_lateattach(ifp); 331 332 /* 333 * Fill in media characteristics. 334 */ 335 ifmedia_init(&ic->ic_media, 0, media_change, media_stat); 336 maxrate = 0; 337 memset(&allrates, 0, sizeof(allrates)); 338 for (mode = IEEE80211_MODE_AUTO; mode <= IEEE80211_MODE_11G; mode++) { 339 static const uint64_t mopts[] = { 340 IFM_AUTO, 341 IFM_IEEE80211_11A, 342 IFM_IEEE80211_11B, 343 IFM_IEEE80211_11G, 344 }; 345 if ((ic->ic_modecaps & (1<<mode)) == 0) 346 continue; 347 mopt = mopts[mode]; 348 ADD(ic, IFM_AUTO, mopt); /* e.g. 11a auto */ 349 #ifndef IEEE80211_STA_ONLY 350 if (ic->ic_caps & IEEE80211_C_IBSS) 351 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); 352 if (ic->ic_caps & IEEE80211_C_HOSTAP) 353 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); 354 if (ic->ic_caps & IEEE80211_C_AHDEMO) 355 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC); 356 #endif 357 if (ic->ic_caps & IEEE80211_C_MONITOR) 358 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); 359 if (mode == IEEE80211_MODE_AUTO) 360 continue; 361 rs = &ic->ic_sup_rates[mode]; 362 for (i = 0; i < rs->rs_nrates; i++) { 363 rate = rs->rs_rates[i]; 364 mword = ieee80211_rate2media(ic, rate, mode); 365 if (mword == 0) 366 continue; 367 ADD(ic, mword, mopt); 368 #ifndef IEEE80211_STA_ONLY 369 if (ic->ic_caps & IEEE80211_C_IBSS) 370 ADD(ic, mword, mopt | IFM_IEEE80211_IBSS); 371 if (ic->ic_caps & IEEE80211_C_HOSTAP) 372 ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP); 373 if (ic->ic_caps & IEEE80211_C_AHDEMO) 374 ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC); 375 #endif 376 if (ic->ic_caps & IEEE80211_C_MONITOR) 377 ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR); 378 /* 379 * Add rate to the collection of all rates. 380 */ 381 r = rate & IEEE80211_RATE_VAL; 382 for (j = 0; j < allrates.rs_nrates; j++) 383 if (allrates.rs_rates[j] == r) 384 break; 385 if (j == allrates.rs_nrates) { 386 /* unique, add to the set */ 387 allrates.rs_rates[j] = r; 388 allrates.rs_nrates++; 389 } 390 rate = (rate & IEEE80211_RATE_VAL) / 2; 391 if (rate > maxrate) 392 maxrate = rate; 393 } 394 } 395 for (i = 0; i < allrates.rs_nrates; i++) { 396 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 397 IEEE80211_MODE_AUTO); 398 if (mword == 0) 399 continue; 400 mword = IFM_SUBTYPE(mword); /* remove media options */ 401 ADD(ic, mword, 0); 402 #ifndef IEEE80211_STA_ONLY 403 if (ic->ic_caps & IEEE80211_C_IBSS) 404 ADD(ic, mword, IFM_IEEE80211_IBSS); 405 if (ic->ic_caps & IEEE80211_C_HOSTAP) 406 ADD(ic, mword, IFM_IEEE80211_HOSTAP); 407 if (ic->ic_caps & IEEE80211_C_AHDEMO) 408 ADD(ic, mword, IFM_IEEE80211_ADHOC); 409 #endif 410 if (ic->ic_caps & IEEE80211_C_MONITOR) 411 ADD(ic, mword, IFM_IEEE80211_MONITOR); 412 } 413 414 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) { 415 mopt = IFM_IEEE80211_11N; 416 ADD(ic, IFM_AUTO, mopt); 417 #ifndef IEEE80211_STA_ONLY 418 if (ic->ic_caps & IEEE80211_C_IBSS) 419 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); 420 if (ic->ic_caps & IEEE80211_C_HOSTAP) 421 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); 422 #endif 423 if (ic->ic_caps & IEEE80211_C_MONITOR) 424 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); 425 for (i = 0; i < IEEE80211_HT_NUM_MCS; i++) { 426 if (!isset(ic->ic_sup_mcs, i)) 427 continue; 428 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, mopt); 429 #ifndef IEEE80211_STA_ONLY 430 if (ic->ic_caps & IEEE80211_C_IBSS) 431 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, 432 mopt | IFM_IEEE80211_IBSS); 433 if (ic->ic_caps & IEEE80211_C_HOSTAP) 434 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, 435 mopt | IFM_IEEE80211_HOSTAP); 436 #endif 437 if (ic->ic_caps & IEEE80211_C_MONITOR) 438 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, 439 mopt | IFM_IEEE80211_MONITOR); 440 } 441 ic->ic_flags |= IEEE80211_F_HTON; /* enable 11n by default */ 442 ieee80211_configure_ampdu_tx(ic, 1); 443 } 444 445 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) { 446 mopt = IFM_IEEE80211_11AC; 447 ADD(ic, IFM_AUTO, mopt); 448 #ifndef IEEE80211_STA_ONLY 449 if (ic->ic_caps & IEEE80211_C_IBSS) 450 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); 451 if (ic->ic_caps & IEEE80211_C_HOSTAP) 452 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); 453 #endif 454 if (ic->ic_caps & IEEE80211_C_MONITOR) 455 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); 456 for (i = 0; i < IEEE80211_VHT_NUM_MCS; i++) { 457 #if 0 458 /* TODO: Obtain VHT MCS information from VHT CAP IE. */ 459 if (!vht_mcs_supported) 460 continue; 461 #endif 462 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, mopt); 463 #ifndef IEEE80211_STA_ONLY 464 if (ic->ic_caps & IEEE80211_C_IBSS) 465 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, 466 mopt | IFM_IEEE80211_IBSS); 467 if (ic->ic_caps & IEEE80211_C_HOSTAP) 468 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, 469 mopt | IFM_IEEE80211_HOSTAP); 470 #endif 471 if (ic->ic_caps & IEEE80211_C_MONITOR) 472 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, 473 mopt | IFM_IEEE80211_MONITOR); 474 } 475 ic->ic_flags |= IEEE80211_F_VHTON; /* enable 11ac by default */ 476 ic->ic_flags |= IEEE80211_F_HTON; /* 11ac implies 11n */ 477 if (ic->ic_caps & IEEE80211_C_QOS) 478 ic->ic_flags |= IEEE80211_F_QOS; 479 } 480 481 ieee80211_media_status(ifp, &imr); 482 ifmedia_set(&ic->ic_media, imr.ifm_active); 483 484 if (maxrate) 485 ifp->if_baudrate = IF_Mbps(maxrate); 486 487 #undef ADD 488 } 489 490 int 491 ieee80211_findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, 492 int rate) 493 { 494 #define IEEERATE(_ic,_m,_i) \ 495 ((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL) 496 int i, nrates = ic->ic_sup_rates[mode].rs_nrates; 497 for (i = 0; i < nrates; i++) 498 if (IEEERATE(ic, mode, i) == rate) 499 return i; 500 return -1; 501 #undef IEEERATE 502 } 503 504 /* 505 * Handle a media change request. 506 */ 507 int 508 ieee80211_media_change(struct ifnet *ifp) 509 { 510 struct ieee80211com *ic = (void *)ifp; 511 struct ifmedia_entry *ime; 512 enum ieee80211_opmode newopmode; 513 enum ieee80211_phymode newphymode; 514 int i, j, newrate, error = 0; 515 516 ime = ic->ic_media.ifm_cur; 517 /* 518 * First, identify the phy mode. 519 */ 520 switch (IFM_MODE(ime->ifm_media)) { 521 case IFM_IEEE80211_11A: 522 newphymode = IEEE80211_MODE_11A; 523 break; 524 case IFM_IEEE80211_11B: 525 newphymode = IEEE80211_MODE_11B; 526 break; 527 case IFM_IEEE80211_11G: 528 newphymode = IEEE80211_MODE_11G; 529 break; 530 case IFM_IEEE80211_11N: 531 newphymode = IEEE80211_MODE_11N; 532 break; 533 case IFM_IEEE80211_11AC: 534 newphymode = IEEE80211_MODE_11AC; 535 break; 536 case IFM_AUTO: 537 newphymode = IEEE80211_MODE_AUTO; 538 break; 539 default: 540 return EINVAL; 541 } 542 543 /* 544 * Validate requested mode is available. 545 */ 546 if ((ic->ic_modecaps & (1<<newphymode)) == 0) 547 return EINVAL; 548 549 /* 550 * Next, the fixed/variable rate. 551 */ 552 i = -1; 553 if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_VHT_MCS0 && 554 IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_VHT_MCS9) { 555 if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) == 0) 556 return EINVAL; 557 if (newphymode != IEEE80211_MODE_AUTO && 558 newphymode != IEEE80211_MODE_11AC) 559 return EINVAL; 560 i = ieee80211_media2mcs(ime->ifm_media); 561 /* TODO: Obtain VHT MCS information from VHT CAP IE. */ 562 if (i == -1 /* || !vht_mcs_supported */) 563 return EINVAL; 564 } else if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_HT_MCS0 && 565 IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_HT_MCS76) { 566 if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) == 0) 567 return EINVAL; 568 if (newphymode != IEEE80211_MODE_AUTO && 569 newphymode != IEEE80211_MODE_11N) 570 return EINVAL; 571 i = ieee80211_media2mcs(ime->ifm_media); 572 if (i == -1 || isclr(ic->ic_sup_mcs, i)) 573 return EINVAL; 574 } else if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) { 575 /* 576 * Convert media subtype to rate. 577 */ 578 newrate = ieee80211_media2rate(ime->ifm_media); 579 if (newrate == 0) 580 return EINVAL; 581 /* 582 * Check the rate table for the specified/current phy. 583 */ 584 if (newphymode == IEEE80211_MODE_AUTO) { 585 /* 586 * In autoselect mode search for the rate. 587 */ 588 for (j = IEEE80211_MODE_11A; 589 j < IEEE80211_MODE_MAX; j++) { 590 if ((ic->ic_modecaps & (1<<j)) == 0) 591 continue; 592 i = ieee80211_findrate(ic, j, newrate); 593 if (i != -1) { 594 /* lock mode too */ 595 newphymode = j; 596 break; 597 } 598 } 599 } else { 600 i = ieee80211_findrate(ic, newphymode, newrate); 601 } 602 if (i == -1) /* mode/rate mismatch */ 603 return EINVAL; 604 } 605 /* NB: defer rate setting to later */ 606 607 /* 608 * Deduce new operating mode but don't install it just yet. 609 */ 610 #ifndef IEEE80211_STA_ONLY 611 if (ime->ifm_media & IFM_IEEE80211_ADHOC) 612 newopmode = IEEE80211_M_AHDEMO; 613 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) 614 newopmode = IEEE80211_M_HOSTAP; 615 else if (ime->ifm_media & IFM_IEEE80211_IBSS) 616 newopmode = IEEE80211_M_IBSS; 617 else 618 #endif 619 if (ime->ifm_media & IFM_IEEE80211_MONITOR) 620 newopmode = IEEE80211_M_MONITOR; 621 else 622 newopmode = IEEE80211_M_STA; 623 624 #ifndef IEEE80211_STA_ONLY 625 /* 626 * Autoselect doesn't make sense when operating as an AP. 627 * If no phy mode has been selected, pick one and lock it 628 * down so rate tables can be used in forming beacon frames 629 * and the like. 630 */ 631 if (newopmode == IEEE80211_M_HOSTAP && 632 newphymode == IEEE80211_MODE_AUTO) { 633 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) 634 newphymode = IEEE80211_MODE_11AC; 635 else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) 636 newphymode = IEEE80211_MODE_11N; 637 else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A)) 638 newphymode = IEEE80211_MODE_11A; 639 else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G)) 640 newphymode = IEEE80211_MODE_11G; 641 else 642 newphymode = IEEE80211_MODE_11B; 643 } 644 #endif 645 646 /* 647 * Handle phy mode change. 648 */ 649 if (ic->ic_curmode != newphymode) { /* change phy mode */ 650 error = ieee80211_setmode(ic, newphymode); 651 if (error != 0) 652 return error; 653 error = ENETRESET; 654 } 655 656 /* 657 * Committed to changes, install the MCS/rate setting. 658 */ 659 ic->ic_flags &= ~(IEEE80211_F_HTON | IEEE80211_F_VHTON); 660 ieee80211_configure_ampdu_tx(ic, 0); 661 if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) && 662 (newphymode == IEEE80211_MODE_AUTO || 663 newphymode == IEEE80211_MODE_11AC)) { 664 ic->ic_flags |= IEEE80211_F_VHTON; 665 ic->ic_flags |= IEEE80211_F_HTON; 666 ieee80211_configure_ampdu_tx(ic, 1); 667 } else if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) && 668 (newphymode == IEEE80211_MODE_AUTO || 669 newphymode == IEEE80211_MODE_11N)) { 670 ic->ic_flags |= IEEE80211_F_HTON; 671 ieee80211_configure_ampdu_tx(ic, 1); 672 } 673 if ((ic->ic_flags & (IEEE80211_F_HTON | IEEE80211_F_VHTON)) == 0) { 674 ic->ic_fixed_mcs = -1; 675 if (ic->ic_fixed_rate != i) { 676 ic->ic_fixed_rate = i; /* set fixed tx rate */ 677 error = ENETRESET; 678 } 679 } else { 680 ic->ic_fixed_rate = -1; 681 if (ic->ic_fixed_mcs != i) { 682 ic->ic_fixed_mcs = i; /* set fixed mcs */ 683 error = ENETRESET; 684 } 685 } 686 687 /* 688 * Handle operating mode change. 689 */ 690 if (ic->ic_opmode != newopmode) { 691 ic->ic_opmode = newopmode; 692 #ifndef IEEE80211_STA_ONLY 693 switch (newopmode) { 694 case IEEE80211_M_AHDEMO: 695 case IEEE80211_M_HOSTAP: 696 case IEEE80211_M_STA: 697 case IEEE80211_M_MONITOR: 698 ic->ic_flags &= ~IEEE80211_F_IBSSON; 699 break; 700 case IEEE80211_M_IBSS: 701 ic->ic_flags |= IEEE80211_F_IBSSON; 702 break; 703 } 704 #endif 705 /* 706 * Yech, slot time may change depending on the 707 * operating mode so reset it to be sure everything 708 * is setup appropriately. 709 */ 710 ieee80211_reset_erp(ic); 711 error = ENETRESET; 712 } 713 #ifdef notdef 714 if (error == 0) 715 ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media); 716 #endif 717 return error; 718 } 719 720 void 721 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 722 { 723 struct ieee80211com *ic = (void *)ifp; 724 const struct ieee80211_node *ni = NULL; 725 726 imr->ifm_status = IFM_AVALID; 727 imr->ifm_active = IFM_IEEE80211; 728 if (ic->ic_state == IEEE80211_S_RUN && 729 (ic->ic_opmode != IEEE80211_M_STA || 730 !(ic->ic_flags & IEEE80211_F_RSNON) || 731 ic->ic_bss->ni_port_valid)) 732 imr->ifm_status |= IFM_ACTIVE; 733 imr->ifm_active |= IFM_AUTO; 734 switch (ic->ic_opmode) { 735 case IEEE80211_M_STA: 736 ni = ic->ic_bss; 737 if (ic->ic_curmode == IEEE80211_MODE_11N || 738 ic->ic_curmode == IEEE80211_MODE_11AC) 739 imr->ifm_active |= ieee80211_mcs2media(ic, 740 ni->ni_txmcs, ic->ic_curmode); 741 else if (ni->ni_flags & IEEE80211_NODE_VHT) /* in MODE_AUTO */ 742 imr->ifm_active |= ieee80211_mcs2media(ic, 743 ni->ni_txmcs, IEEE80211_MODE_11AC); 744 else if (ni->ni_flags & IEEE80211_NODE_HT) /* in MODE_AUTO */ 745 imr->ifm_active |= ieee80211_mcs2media(ic, 746 ni->ni_txmcs, IEEE80211_MODE_11N); 747 else 748 /* calculate rate subtype */ 749 imr->ifm_active |= ieee80211_rate2media(ic, 750 ni->ni_rates.rs_rates[ni->ni_txrate], 751 ic->ic_curmode); 752 break; 753 #ifndef IEEE80211_STA_ONLY 754 case IEEE80211_M_IBSS: 755 imr->ifm_active |= IFM_IEEE80211_IBSS; 756 break; 757 case IEEE80211_M_AHDEMO: 758 imr->ifm_active |= IFM_IEEE80211_ADHOC; 759 break; 760 case IEEE80211_M_HOSTAP: 761 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 762 break; 763 #endif 764 case IEEE80211_M_MONITOR: 765 imr->ifm_active |= IFM_IEEE80211_MONITOR; 766 break; 767 default: 768 break; 769 } 770 switch (ic->ic_curmode) { 771 case IEEE80211_MODE_11A: 772 imr->ifm_active |= IFM_IEEE80211_11A; 773 break; 774 case IEEE80211_MODE_11B: 775 imr->ifm_active |= IFM_IEEE80211_11B; 776 break; 777 case IEEE80211_MODE_11G: 778 imr->ifm_active |= IFM_IEEE80211_11G; 779 break; 780 case IEEE80211_MODE_11N: 781 imr->ifm_active |= IFM_IEEE80211_11N; 782 break; 783 case IEEE80211_MODE_11AC: 784 imr->ifm_active |= IFM_IEEE80211_11AC; 785 break; 786 } 787 } 788 789 void 790 ieee80211_watchdog(struct ifnet *ifp) 791 { 792 struct ieee80211com *ic = (void *)ifp; 793 794 if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0) { 795 if (ic->ic_opmode == IEEE80211_M_STA && 796 (ic->ic_state == IEEE80211_S_AUTH || 797 ic->ic_state == IEEE80211_S_ASSOC)) { 798 struct ieee80211_node *ni; 799 if (ifp->if_flags & IFF_DEBUG) 800 printf("%s: %s timed out for %s\n", 801 ifp->if_xname, 802 ic->ic_state == IEEE80211_S_ASSOC ? 803 "association" : "authentication", 804 ether_sprintf(ic->ic_bss->ni_macaddr)); 805 ni = ieee80211_find_node(ic, ic->ic_bss->ni_macaddr); 806 if (ni) 807 ni->ni_fails++; 808 if (ISSET(ic->ic_flags, IEEE80211_F_AUTO_JOIN)) 809 ieee80211_deselect_ess(ic); 810 } 811 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 812 } 813 814 if (ic->ic_mgt_timer != 0) 815 ifp->if_timer = 1; 816 } 817 818 const struct ieee80211_rateset ieee80211_std_rateset_11a = 819 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 820 821 const struct ieee80211_rateset ieee80211_std_rateset_11b = 822 { 4, { 2, 4, 11, 22 } }; 823 824 const struct ieee80211_rateset ieee80211_std_rateset_11g = 825 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 826 827 const struct ieee80211_ht_rateset ieee80211_std_ratesets_11n[] = { 828 /* MCS 0-7, 20MHz channel, no SGI */ 829 { 8, { 13, 26, 39, 52, 78, 104, 117, 130 }, 830 0x000000ff, 0, 7, 0, 0}, 831 832 /* MCS 0-7, 20MHz channel, SGI */ 833 { 8, { 14, 29, 43, 58, 87, 116, 130, 144 }, 834 0x000000ff, 0, 7, 0, 1 }, 835 836 /* MCS 8-15, 20MHz channel, no SGI */ 837 { 8, { 26, 52, 78, 104, 156, 208, 234, 260 }, 838 0x0000ff00, 8, 15, 0, 0 }, 839 840 /* MCS 8-15, 20MHz channel, SGI */ 841 { 8, { 29, 58, 87, 116, 173, 231, 261, 289 }, 842 0x0000ff00, 8, 15, 0, 1 }, 843 844 /* MCS 16-23, 20MHz channel, no SGI */ 845 { 8, { 39, 78, 117, 156, 234, 312, 351, 390 }, 846 0x00ff0000, 16, 23, 0, 0 }, 847 848 /* MCS 16-23, 20MHz channel, SGI */ 849 { 8, { 43, 87, 130, 173, 260, 347, 390, 433 }, 850 0x00ff0000, 16, 23, 0, 1 }, 851 852 /* MCS 24-31, 20MHz channel, no SGI */ 853 { 8, { 52, 104, 156, 208, 312, 416, 468, 520 }, 854 0xff000000, 24, 31, 0, 0 }, 855 856 /* MCS 24-31, 20MHz channel, SGI */ 857 { 8, { 58, 116, 173, 231, 347, 462, 520, 578 }, 858 0xff000000, 24, 31, 0, 1 }, 859 860 /* MCS 0-7, 40MHz channel, no SGI */ 861 { 8, { 27, 54, 81, 108, 162, 216, 243, 270 }, 862 0x000000ff, 0, 7, 1, 0 }, 863 864 /* MCS 0-7, 40MHz channel, SGI */ 865 { 8, { 30, 60, 90, 120, 180, 240, 270, 300 }, 866 0x000000ff, 0, 7, 1, 1 }, 867 868 /* MCS 8-15, 40MHz channel, no SGI */ 869 { 8, { 54, 108, 192, 216, 324, 432, 486, 540 }, 870 0x0000ff00, 8, 15, 1, 0 }, 871 872 /* MCS 8-15, 40MHz channel, SGI */ 873 { 8, { 60, 120, 180, 240, 360, 480, 540, 600 }, 874 0x0000ff00, 8, 15, 1, 1 }, 875 876 /* MCS 16-23, 40MHz channel, no SGI */ 877 { 8, { 81, 162, 243, 324, 486, 648, 729, 810 }, 878 0x00ff0000, 16, 23, 1, 0 }, 879 880 /* MCS 16-23, 40MHz channel, SGI */ 881 { 8, { 90, 180, 270, 360, 540, 720, 810, 900 }, 882 0x00ff0000, 16, 23, 1, 1 }, 883 884 /* MCS 24-31, 40MHz channel, no SGI */ 885 { 8, { 108, 216, 324, 432, 324, 864, 972, 1080 }, 886 0xff000000, 24, 31, 1, 0 }, 887 888 /* MCS 24-31, 40MHz channel, SGI */ 889 { 8, { 120, 240, 360, 480, 520, 960, 1080, 1200 }, 890 0xff000000, 24, 31, 1, 1 }, 891 }; 892 893 const struct ieee80211_vht_rateset ieee80211_std_ratesets_11ac[] = { 894 /* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, no SGI */ 895 { 0, 9, { 13, 26, 39, 52, 78, 104, 117, 130, 156 }, 896 1, 0, 0, 0 }, 897 898 /* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, SGI */ 899 { 1, 9, { 14, 29, 43, 58, 87, 116, 130, 144, 174 }, 900 1, 0, 0, 1 }, 901 902 /* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, no SGI */ 903 { 2, 9, { 26, 52, 78, 104, 156, 208, 234, 260, 312 }, 904 2, 0, 0, 0 }, 905 906 /* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, SGI */ 907 { 3, 9, { 29, 58, 87, 116, 173, 231, 261, 289, 347 }, 908 2, 0, 0, 1 }, 909 910 /* MCS 0-9, 1 SS, 40MHz channel, no SGI */ 911 { 4, 10, { 27, 54, 81, 108, 162, 216, 243, 270, 324, 360 }, 912 1, 1, 0, 0 }, 913 914 /* MCS 0-9, 1 SS, 40MHz channel, SGI */ 915 { 5, 10, { 30, 60, 90, 120, 180, 240, 270, 300, 360, 400 }, 916 1, 1, 0, 1 }, 917 918 /* MCS 0-9, 2 SS, 40MHz channel, no SGI */ 919 { 6, 10, { 54, 108, 162, 216, 324, 432, 486, 540, 648, 720 }, 920 2, 1, 0, 0 }, 921 922 /* MCS 0-9, 2 SS, 40MHz channel, SGI */ 923 { 7, 10, { 60, 120, 180, 240, 360, 480, 540, 600, 720, 800 }, 924 2, 1, 0, 1 }, 925 926 /* MCS 0-9, 1 SS, 80MHz channel, no SGI */ 927 { 8, 10, { 59, 117, 176, 234, 351, 468, 527, 585, 702, 780 }, 928 1, 0, 1, 0 }, 929 930 /* MCS 0-9, 1 SS, 80MHz channel, SGI */ 931 { 9, 10, { 65, 130, 195, 260, 390, 520, 585, 650, 780, 867 }, 932 1, 0, 1, 1 }, 933 934 /* MCS 0-9, 2 SS, 80MHz channel, no SGI */ 935 { 10, 10, { 117, 234, 351, 468, 702, 936, 1053, 1404, 1560 }, 936 2, 0, 1, 0 }, 937 938 /* MCS 0-9, 2 SS, 80MHz channel, SGI */ 939 { 11, 10, { 130, 260, 390, 520, 780, 1040, 1170, 1300, 1560, 1734 }, 940 2, 0, 1, 1 }, 941 }; 942 943 /* 944 * Mark the basic rates for the 11g rate table based on the 945 * operating mode. For real 11g we mark all the 11b rates 946 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 947 * 11b rates. There's also a pseudo 11a-mode used to mark only 948 * the basic OFDM rates. 949 */ 950 void 951 ieee80211_setbasicrates(struct ieee80211com *ic) 952 { 953 static const struct ieee80211_rateset basic[] = { 954 { 0 }, /* IEEE80211_MODE_AUTO */ 955 { 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */ 956 { 2, { 2, 4 } }, /* IEEE80211_MODE_11B */ 957 { 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G */ 958 { 0 }, /* IEEE80211_MODE_11N */ 959 { 0 }, /* IEEE80211_MODE_11AC */ 960 }; 961 enum ieee80211_phymode mode; 962 struct ieee80211_rateset *rs; 963 int i, j; 964 965 for (mode = 0; mode < IEEE80211_MODE_MAX; mode++) { 966 rs = &ic->ic_sup_rates[mode]; 967 for (i = 0; i < rs->rs_nrates; i++) { 968 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 969 for (j = 0; j < basic[mode].rs_nrates; j++) { 970 if (basic[mode].rs_rates[j] == 971 rs->rs_rates[i]) { 972 rs->rs_rates[i] |= 973 IEEE80211_RATE_BASIC; 974 break; 975 } 976 } 977 } 978 } 979 } 980 981 int 982 ieee80211_min_basic_rate(struct ieee80211com *ic) 983 { 984 struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates; 985 int i, min, rval; 986 987 min = -1; 988 989 for (i = 0; i < rs->rs_nrates; i++) { 990 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0) 991 continue; 992 rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); 993 if (min == -1) 994 min = rval; 995 else if (rval < min) 996 min = rval; 997 } 998 999 /* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */ 1000 if (min == -1) 1001 min = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12; 1002 1003 return min; 1004 } 1005 1006 int 1007 ieee80211_max_basic_rate(struct ieee80211com *ic) 1008 { 1009 struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates; 1010 int i, max, rval; 1011 1012 /* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */ 1013 max = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12; 1014 1015 for (i = 0; i < rs->rs_nrates; i++) { 1016 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0) 1017 continue; 1018 rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); 1019 if (rval > max) 1020 max = rval; 1021 } 1022 1023 return max; 1024 } 1025 1026 /* 1027 * Set the current phy mode and recalculate the active channel 1028 * set based on the available channels for this mode. Also 1029 * select a new default/current channel if the current one is 1030 * inappropriate for this mode. 1031 */ 1032 int 1033 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1034 { 1035 struct ifnet *ifp = &ic->ic_if; 1036 static const u_int chanflags[] = { 1037 0, /* IEEE80211_MODE_AUTO */ 1038 IEEE80211_CHAN_A, /* IEEE80211_MODE_11A */ 1039 IEEE80211_CHAN_B, /* IEEE80211_MODE_11B */ 1040 IEEE80211_CHAN_PUREG, /* IEEE80211_MODE_11G */ 1041 IEEE80211_CHAN_HT, /* IEEE80211_MODE_11N */ 1042 IEEE80211_CHAN_VHT, /* IEEE80211_MODE_11AC */ 1043 }; 1044 const struct ieee80211_channel *c; 1045 u_int modeflags; 1046 int i; 1047 1048 /* validate new mode */ 1049 if ((ic->ic_modecaps & (1<<mode)) == 0) { 1050 DPRINTF(("mode %u not supported (caps 0x%x)\n", 1051 mode, ic->ic_modecaps)); 1052 return EINVAL; 1053 } 1054 1055 /* 1056 * Verify at least one channel is present in the available 1057 * channel list before committing to the new mode. 1058 */ 1059 if (mode >= nitems(chanflags)) 1060 panic("%s: unexpected mode %u", __func__, mode); 1061 modeflags = chanflags[mode]; 1062 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 1063 c = &ic->ic_channels[i]; 1064 if (mode == IEEE80211_MODE_AUTO) { 1065 if (c->ic_flags != 0) 1066 break; 1067 } else if ((c->ic_flags & modeflags) == modeflags) 1068 break; 1069 } 1070 if (i > IEEE80211_CHAN_MAX) { 1071 DPRINTF(("no channels found for mode %u\n", mode)); 1072 return EINVAL; 1073 } 1074 1075 /* 1076 * Calculate the active channel set. 1077 */ 1078 memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active)); 1079 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 1080 c = &ic->ic_channels[i]; 1081 if (mode == IEEE80211_MODE_AUTO) { 1082 if (c->ic_flags != 0) 1083 setbit(ic->ic_chan_active, i); 1084 } else if ((c->ic_flags & modeflags) == modeflags) 1085 setbit(ic->ic_chan_active, i); 1086 } 1087 /* 1088 * If no current/default channel is setup or the current 1089 * channel is wrong for the mode then pick the first 1090 * available channel from the active list. This is likely 1091 * not the right one. 1092 */ 1093 if (ic->ic_ibss_chan == NULL || isclr(ic->ic_chan_active, 1094 ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) { 1095 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) 1096 if (isset(ic->ic_chan_active, i)) { 1097 ic->ic_ibss_chan = &ic->ic_channels[i]; 1098 break; 1099 } 1100 if ((ic->ic_ibss_chan == NULL) || isclr(ic->ic_chan_active, 1101 ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) 1102 panic("Bad IBSS channel %u", 1103 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 1104 } 1105 1106 /* 1107 * Reset the scan state for the new mode. This avoids scanning 1108 * of invalid channels, ie. 5GHz channels in 11b mode. 1109 */ 1110 ieee80211_reset_scan(ifp); 1111 1112 ic->ic_curmode = mode; 1113 ieee80211_reset_erp(ic); /* reset ERP state */ 1114 1115 return 0; 1116 } 1117 1118 enum ieee80211_phymode 1119 ieee80211_next_mode(struct ifnet *ifp) 1120 { 1121 struct ieee80211com *ic = (void *)ifp; 1122 uint16_t mode; 1123 1124 /* 1125 * Indicate a wrap-around if we're running in a fixed, user-specified 1126 * phy mode. 1127 */ 1128 if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) != IFM_AUTO) 1129 return (IEEE80211_MODE_AUTO); 1130 1131 /* 1132 * Always scan in AUTO mode if the driver scans all bands. 1133 * The current mode might have changed during association 1134 * so we must reset it here. 1135 */ 1136 if (ic->ic_caps & IEEE80211_C_SCANALLBAND) { 1137 ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 1138 return (ic->ic_curmode); 1139 } 1140 1141 /* 1142 * Get the next supported mode; effectively, this alternates between 1143 * the 11a (5GHz) and 11b/g (2GHz) modes. What matters is that each 1144 * supported channel gets scanned. 1145 */ 1146 for (mode = ic->ic_curmode + 1; mode <= IEEE80211_MODE_MAX; mode++) { 1147 /* 1148 * Skip over 11n mode. Its set of channels is the superset 1149 * of all channels supported by the other modes. 1150 */ 1151 if (mode == IEEE80211_MODE_11N) 1152 continue; 1153 /* 1154 * Skip over 11ac mode. Its set of channels is the set 1155 * of all channels supported by 11a. 1156 */ 1157 if (mode == IEEE80211_MODE_11AC) 1158 continue; 1159 1160 /* Start over if we have already tried all modes. */ 1161 if (mode == IEEE80211_MODE_MAX) { 1162 mode = IEEE80211_MODE_AUTO; 1163 break; 1164 } 1165 1166 if (ic->ic_modecaps & (1 << mode)) 1167 break; 1168 } 1169 1170 if (mode != ic->ic_curmode) 1171 ieee80211_setmode(ic, mode); 1172 1173 return (ic->ic_curmode); 1174 } 1175 1176 /* 1177 * Return the phy mode for with the specified channel so the 1178 * caller can select a rate set. This is problematic and the 1179 * work here assumes how things work elsewhere in this code. 1180 * 1181 * Because the result of this function is ultimately used to select a 1182 * rate from the rate set of the returned mode, it must return one of the 1183 * legacy 11a/b/g modes; 11n and 11ac modes use MCS instead of rate sets. 1184 */ 1185 enum ieee80211_phymode 1186 ieee80211_chan2mode(struct ieee80211com *ic, 1187 const struct ieee80211_channel *chan) 1188 { 1189 /* 1190 * Are we fixed in 11a/b/g mode? 1191 * NB: this assumes the channel would not be supplied to us 1192 * unless it was already compatible with the current mode. 1193 */ 1194 if (ic->ic_curmode == IEEE80211_MODE_11A || 1195 ic->ic_curmode == IEEE80211_MODE_11B || 1196 ic->ic_curmode == IEEE80211_MODE_11G) 1197 return ic->ic_curmode; 1198 1199 /* If no channel was provided, return the most suitable legacy mode. */ 1200 if (chan == IEEE80211_CHAN_ANYC) { 1201 switch (ic->ic_curmode) { 1202 case IEEE80211_MODE_AUTO: 1203 case IEEE80211_MODE_11N: 1204 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A)) 1205 return IEEE80211_MODE_11A; 1206 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G)) 1207 return IEEE80211_MODE_11G; 1208 return IEEE80211_MODE_11B; 1209 case IEEE80211_MODE_11AC: 1210 return IEEE80211_MODE_11A; 1211 default: 1212 return ic->ic_curmode; 1213 } 1214 } 1215 1216 /* Deduce a legacy mode based on the channel characteristics. */ 1217 if (IEEE80211_IS_CHAN_5GHZ(chan)) 1218 return IEEE80211_MODE_11A; 1219 else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) 1220 return IEEE80211_MODE_11G; 1221 else 1222 return IEEE80211_MODE_11B; 1223 } 1224 1225 /* 1226 * Convert IEEE80211 MCS index to ifmedia subtype. 1227 */ 1228 uint64_t 1229 ieee80211_mcs2media(struct ieee80211com *ic, int mcs, 1230 enum ieee80211_phymode mode) 1231 { 1232 switch (mode) { 1233 case IEEE80211_MODE_11A: 1234 case IEEE80211_MODE_11B: 1235 case IEEE80211_MODE_11G: 1236 /* these modes use rates, not MCS */ 1237 panic("%s: unexpected mode %d", __func__, mode); 1238 break; 1239 case IEEE80211_MODE_11N: 1240 if (mcs >= 0 && mcs < IEEE80211_HT_NUM_MCS) 1241 return (IFM_IEEE80211_11N | 1242 (IFM_IEEE80211_HT_MCS0 + mcs)); 1243 break; 1244 case IEEE80211_MODE_11AC: 1245 if (mcs >= 0 && mcs < IEEE80211_VHT_NUM_MCS) 1246 return (IFM_IEEE80211_11AC | 1247 (IFM_IEEE80211_VHT_MCS0 + mcs)); 1248 break; 1249 case IEEE80211_MODE_AUTO: 1250 break; 1251 } 1252 1253 return IFM_AUTO; 1254 } 1255 1256 /* 1257 * Convert ifmedia subtype to IEEE80211 MCS index. 1258 */ 1259 int 1260 ieee80211_media2mcs(uint64_t mword) 1261 { 1262 uint64_t subtype; 1263 1264 subtype = IFM_SUBTYPE(mword); 1265 1266 if (subtype == IFM_AUTO) 1267 return -1; 1268 else if (subtype == IFM_MANUAL || subtype == IFM_NONE) 1269 return 0; 1270 1271 if (subtype >= IFM_IEEE80211_HT_MCS0 && 1272 subtype <= IFM_IEEE80211_HT_MCS76) 1273 return (int)(subtype - IFM_IEEE80211_HT_MCS0); 1274 1275 if (subtype >= IFM_IEEE80211_VHT_MCS0 && 1276 subtype <= IFM_IEEE80211_VHT_MCS9) 1277 return (int)(subtype - IFM_IEEE80211_VHT_MCS0); 1278 1279 return -1; 1280 } 1281 1282 /* 1283 * convert IEEE80211 rate value to ifmedia subtype. 1284 * ieee80211 rate is in unit of 0.5Mbps. 1285 */ 1286 uint64_t 1287 ieee80211_rate2media(struct ieee80211com *ic, int rate, 1288 enum ieee80211_phymode mode) 1289 { 1290 static const struct { 1291 uint64_t m; /* rate + mode */ 1292 uint64_t r; /* if_media rate */ 1293 } rates[] = { 1294 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1295 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1296 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1297 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1298 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1299 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1300 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1301 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1302 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1303 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1304 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1305 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1306 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1307 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1308 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1309 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1310 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1311 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1312 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1313 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1314 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1315 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1316 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1317 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1318 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1319 /* NB: OFDM72 doesn't really exist so we don't handle it */ 1320 }; 1321 uint64_t mask; 1322 int i; 1323 1324 mask = rate & IEEE80211_RATE_VAL; 1325 switch (mode) { 1326 case IEEE80211_MODE_11A: 1327 mask |= IFM_IEEE80211_11A; 1328 break; 1329 case IEEE80211_MODE_11B: 1330 mask |= IFM_IEEE80211_11B; 1331 break; 1332 case IEEE80211_MODE_AUTO: 1333 /* NB: hack, 11g matches both 11b+11a rates */ 1334 /* FALLTHROUGH */ 1335 case IEEE80211_MODE_11G: 1336 mask |= IFM_IEEE80211_11G; 1337 break; 1338 case IEEE80211_MODE_11N: 1339 case IEEE80211_MODE_11AC: 1340 /* 11n/11ac uses MCS, not rates. */ 1341 panic("%s: unexpected mode %d", __func__, mode); 1342 break; 1343 } 1344 for (i = 0; i < nitems(rates); i++) 1345 if (rates[i].m == mask) 1346 return rates[i].r; 1347 return IFM_AUTO; 1348 } 1349 1350 int 1351 ieee80211_media2rate(uint64_t mword) 1352 { 1353 int i; 1354 static const struct { 1355 uint64_t subtype; 1356 int rate; 1357 } ieeerates[] = { 1358 { IFM_AUTO, -1 }, 1359 { IFM_MANUAL, 0 }, 1360 { IFM_NONE, 0 }, 1361 { IFM_IEEE80211_DS1, 2 }, 1362 { IFM_IEEE80211_DS2, 4 }, 1363 { IFM_IEEE80211_DS5, 11 }, 1364 { IFM_IEEE80211_DS11, 22 }, 1365 { IFM_IEEE80211_DS22, 44 }, 1366 { IFM_IEEE80211_OFDM6, 12 }, 1367 { IFM_IEEE80211_OFDM9, 18 }, 1368 { IFM_IEEE80211_OFDM12, 24 }, 1369 { IFM_IEEE80211_OFDM18, 36 }, 1370 { IFM_IEEE80211_OFDM24, 48 }, 1371 { IFM_IEEE80211_OFDM36, 72 }, 1372 { IFM_IEEE80211_OFDM48, 96 }, 1373 { IFM_IEEE80211_OFDM54, 108 }, 1374 { IFM_IEEE80211_OFDM72, 144 }, 1375 }; 1376 for (i = 0; i < nitems(ieeerates); i++) { 1377 if (ieeerates[i].subtype == IFM_SUBTYPE(mword)) 1378 return ieeerates[i].rate; 1379 } 1380 return 0; 1381 } 1382 1383 /* 1384 * Convert bit rate (in 0.5Mbps units) to PLCP signal (R4-R1) and vice versa. 1385 */ 1386 u_int8_t 1387 ieee80211_rate2plcp(u_int8_t rate, enum ieee80211_phymode mode) 1388 { 1389 rate &= IEEE80211_RATE_VAL; 1390 1391 if (mode == IEEE80211_MODE_11B) { 1392 /* IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3 */ 1393 switch (rate) { 1394 case 2: return 10; 1395 case 4: return 20; 1396 case 11: return 55; 1397 case 22: return 110; 1398 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 1399 case 44: return 220; 1400 } 1401 } else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) { 1402 /* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */ 1403 switch (rate) { 1404 case 12: return 0x0b; 1405 case 18: return 0x0f; 1406 case 24: return 0x0a; 1407 case 36: return 0x0e; 1408 case 48: return 0x09; 1409 case 72: return 0x0d; 1410 case 96: return 0x08; 1411 case 108: return 0x0c; 1412 } 1413 } else 1414 panic("%s: unexpected mode %u", __func__, mode); 1415 1416 DPRINTF(("unsupported rate %u\n", rate)); 1417 1418 return 0; 1419 } 1420 1421 u_int8_t 1422 ieee80211_plcp2rate(u_int8_t plcp, enum ieee80211_phymode mode) 1423 { 1424 if (mode == IEEE80211_MODE_11B) { 1425 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 1426 switch (plcp) { 1427 case 10: return 2; 1428 case 20: return 4; 1429 case 55: return 11; 1430 case 110: return 22; 1431 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 1432 case 220: return 44; 1433 } 1434 } else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) { 1435 /* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */ 1436 switch (plcp) { 1437 case 0x0b: return 12; 1438 case 0x0f: return 18; 1439 case 0x0a: return 24; 1440 case 0x0e: return 36; 1441 case 0x09: return 48; 1442 case 0x0d: return 72; 1443 case 0x08: return 96; 1444 case 0x0c: return 108; 1445 } 1446 } else 1447 panic("%s: unexpected mode %u", __func__, mode); 1448 1449 DPRINTF(("unsupported plcp %u\n", plcp)); 1450 1451 return 0; 1452 } 1453