xref: /haiku/src/libs/compat/openbsd_wlan/crypto/aes.c (revision 4a55cc230cf7566cadcbb23b1928eefff8aea9a2)
1 /*	$OpenBSD: aes.c,v 1.2 2020/07/22 13:54:30 tobhe Exp $	*/
2 /*
3  * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
4  *
5  * Modified for OpenBSD by Thomas Pornin and Mike Belopuhov.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining
8  * a copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sublicense, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be
16  * included in all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
21  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
22  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
23  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25  * SOFTWARE.
26  */
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/stdint.h>
31 
32 #include "aes.h"
33 
34 static inline void
35 enc32le(void *dst, uint32_t x)
36 {
37 	unsigned char *buf = dst;
38 
39 	buf[0] = (unsigned char)x;
40 	buf[1] = (unsigned char)(x >> 8);
41 	buf[2] = (unsigned char)(x >> 16);
42 	buf[3] = (unsigned char)(x >> 24);
43 }
44 
45 static inline uint32_t
46 dec32le(const void *src)
47 {
48 	const unsigned char *buf = src;
49 
50 	return (uint32_t)buf[0]
51 		| ((uint32_t)buf[1] << 8)
52 		| ((uint32_t)buf[2] << 16)
53 		| ((uint32_t)buf[3] << 24);
54 }
55 
56 /*
57  * This constant-time implementation is "bitsliced": the 128-bit state is
58  * split over eight 32-bit words q* in the following way:
59  *
60  * -- Input block consists in 16 bytes:
61  *    a00 a10 a20 a30 a01 a11 a21 a31 a02 a12 a22 a32 a03 a13 a23 a33
62  * In the terminology of FIPS 197, this is a 4x4 matrix which is read
63  * column by column.
64  *
65  * -- Each byte is split into eight bits which are distributed over the
66  * eight words, at the same rank. Thus, for a byte x at rank k, bit 0
67  * (least significant) of x will be at rank k in q0 (if that bit is b,
68  * then it contributes "b << k" to the value of q0), bit 1 of x will be
69  * at rank k in q1, and so on.
70  *
71  * -- Ranks given to bits are in "row order" and are either all even, or
72  * all odd. Two independent AES states are thus interleaved, one using
73  * the even ranks, the other the odd ranks. Row order means:
74  *    a00 a01 a02 a03 a10 a11 a12 a13 a20 a21 a22 a23 a30 a31 a32 a33
75  *
76  * Converting input bytes from two AES blocks to bitslice representation
77  * is done in the following way:
78  * -- Decode first block into the four words q0 q2 q4 q6, in that order,
79  * using little-endian convention.
80  * -- Decode second block into the four words q1 q3 q5 q7, in that order,
81  * using little-endian convention.
82  * -- Call aes_ct_ortho().
83  *
84  * Converting back to bytes is done by using the reverse operations. Note
85  * that aes_ct_ortho() is its own inverse.
86  */
87 
88 /*
89  * The AES S-box, as a bitsliced constant-time version. The input array
90  * consists in eight 32-bit words; 32 S-box instances are computed in
91  * parallel. Bits 0 to 7 of each S-box input (bit 0 is least significant)
92  * are spread over the words 0 to 7, at the same rank.
93  */
94 static void
95 aes_ct_bitslice_Sbox(uint32_t *q)
96 {
97 	/*
98 	 * This S-box implementation is a straightforward translation of
99 	 * the circuit described by Boyar and Peralta in "A new
100 	 * combinational logic minimization technique with applications
101 	 * to cryptology" (https://eprint.iacr.org/2009/191.pdf).
102 	 *
103 	 * Note that variables x* (input) and s* (output) are numbered
104 	 * in "reverse" order (x0 is the high bit, x7 is the low bit).
105 	 */
106 
107 	uint32_t x0, x1, x2, x3, x4, x5, x6, x7;
108 	uint32_t y1, y2, y3, y4, y5, y6, y7, y8, y9;
109 	uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
110 	uint32_t y20, y21;
111 	uint32_t z0, z1, z2, z3, z4, z5, z6, z7, z8, z9;
112 	uint32_t z10, z11, z12, z13, z14, z15, z16, z17;
113 	uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
114 	uint32_t t10, t11, t12, t13, t14, t15, t16, t17, t18, t19;
115 	uint32_t t20, t21, t22, t23, t24, t25, t26, t27, t28, t29;
116 	uint32_t t30, t31, t32, t33, t34, t35, t36, t37, t38, t39;
117 	uint32_t t40, t41, t42, t43, t44, t45, t46, t47, t48, t49;
118 	uint32_t t50, t51, t52, t53, t54, t55, t56, t57, t58, t59;
119 	uint32_t t60, t61, t62, t63, t64, t65, t66, t67;
120 	uint32_t s0, s1, s2, s3, s4, s5, s6, s7;
121 
122 	x0 = q[7];
123 	x1 = q[6];
124 	x2 = q[5];
125 	x3 = q[4];
126 	x4 = q[3];
127 	x5 = q[2];
128 	x6 = q[1];
129 	x7 = q[0];
130 
131 	/*
132 	 * Top linear transformation.
133 	 */
134 	y14 = x3 ^ x5;
135 	y13 = x0 ^ x6;
136 	y9 = x0 ^ x3;
137 	y8 = x0 ^ x5;
138 	t0 = x1 ^ x2;
139 	y1 = t0 ^ x7;
140 	y4 = y1 ^ x3;
141 	y12 = y13 ^ y14;
142 	y2 = y1 ^ x0;
143 	y5 = y1 ^ x6;
144 	y3 = y5 ^ y8;
145 	t1 = x4 ^ y12;
146 	y15 = t1 ^ x5;
147 	y20 = t1 ^ x1;
148 	y6 = y15 ^ x7;
149 	y10 = y15 ^ t0;
150 	y11 = y20 ^ y9;
151 	y7 = x7 ^ y11;
152 	y17 = y10 ^ y11;
153 	y19 = y10 ^ y8;
154 	y16 = t0 ^ y11;
155 	y21 = y13 ^ y16;
156 	y18 = x0 ^ y16;
157 
158 	/*
159 	 * Non-linear section.
160 	 */
161 	t2 = y12 & y15;
162 	t3 = y3 & y6;
163 	t4 = t3 ^ t2;
164 	t5 = y4 & x7;
165 	t6 = t5 ^ t2;
166 	t7 = y13 & y16;
167 	t8 = y5 & y1;
168 	t9 = t8 ^ t7;
169 	t10 = y2 & y7;
170 	t11 = t10 ^ t7;
171 	t12 = y9 & y11;
172 	t13 = y14 & y17;
173 	t14 = t13 ^ t12;
174 	t15 = y8 & y10;
175 	t16 = t15 ^ t12;
176 	t17 = t4 ^ t14;
177 	t18 = t6 ^ t16;
178 	t19 = t9 ^ t14;
179 	t20 = t11 ^ t16;
180 	t21 = t17 ^ y20;
181 	t22 = t18 ^ y19;
182 	t23 = t19 ^ y21;
183 	t24 = t20 ^ y18;
184 
185 	t25 = t21 ^ t22;
186 	t26 = t21 & t23;
187 	t27 = t24 ^ t26;
188 	t28 = t25 & t27;
189 	t29 = t28 ^ t22;
190 	t30 = t23 ^ t24;
191 	t31 = t22 ^ t26;
192 	t32 = t31 & t30;
193 	t33 = t32 ^ t24;
194 	t34 = t23 ^ t33;
195 	t35 = t27 ^ t33;
196 	t36 = t24 & t35;
197 	t37 = t36 ^ t34;
198 	t38 = t27 ^ t36;
199 	t39 = t29 & t38;
200 	t40 = t25 ^ t39;
201 
202 	t41 = t40 ^ t37;
203 	t42 = t29 ^ t33;
204 	t43 = t29 ^ t40;
205 	t44 = t33 ^ t37;
206 	t45 = t42 ^ t41;
207 	z0 = t44 & y15;
208 	z1 = t37 & y6;
209 	z2 = t33 & x7;
210 	z3 = t43 & y16;
211 	z4 = t40 & y1;
212 	z5 = t29 & y7;
213 	z6 = t42 & y11;
214 	z7 = t45 & y17;
215 	z8 = t41 & y10;
216 	z9 = t44 & y12;
217 	z10 = t37 & y3;
218 	z11 = t33 & y4;
219 	z12 = t43 & y13;
220 	z13 = t40 & y5;
221 	z14 = t29 & y2;
222 	z15 = t42 & y9;
223 	z16 = t45 & y14;
224 	z17 = t41 & y8;
225 
226 	/*
227 	 * Bottom linear transformation.
228 	 */
229 	t46 = z15 ^ z16;
230 	t47 = z10 ^ z11;
231 	t48 = z5 ^ z13;
232 	t49 = z9 ^ z10;
233 	t50 = z2 ^ z12;
234 	t51 = z2 ^ z5;
235 	t52 = z7 ^ z8;
236 	t53 = z0 ^ z3;
237 	t54 = z6 ^ z7;
238 	t55 = z16 ^ z17;
239 	t56 = z12 ^ t48;
240 	t57 = t50 ^ t53;
241 	t58 = z4 ^ t46;
242 	t59 = z3 ^ t54;
243 	t60 = t46 ^ t57;
244 	t61 = z14 ^ t57;
245 	t62 = t52 ^ t58;
246 	t63 = t49 ^ t58;
247 	t64 = z4 ^ t59;
248 	t65 = t61 ^ t62;
249 	t66 = z1 ^ t63;
250 	s0 = t59 ^ t63;
251 	s6 = t56 ^ ~t62;
252 	s7 = t48 ^ ~t60;
253 	t67 = t64 ^ t65;
254 	s3 = t53 ^ t66;
255 	s4 = t51 ^ t66;
256 	s5 = t47 ^ t65;
257 	s1 = t64 ^ ~s3;
258 	s2 = t55 ^ ~t67;
259 
260 	q[7] = s0;
261 	q[6] = s1;
262 	q[5] = s2;
263 	q[4] = s3;
264 	q[3] = s4;
265 	q[2] = s5;
266 	q[1] = s6;
267 	q[0] = s7;
268 }
269 
270 /*
271  * Perform bytewise orthogonalization of eight 32-bit words. Bytes
272  * of q0..q7 are spread over all words: for a byte x that occurs
273  * at rank i in q[j] (byte x uses bits 8*i to 8*i+7 in q[j]), the bit
274  * of rank k in x (0 <= k <= 7) goes to q[k] at rank 8*i+j.
275  *
276  * This operation is an involution.
277  */
278 static void
279 aes_ct_ortho(uint32_t *q)
280 {
281 #define SWAPN(cl, ch, s, x, y)   do { \
282 		uint32_t a, b; \
283 		a = (x); \
284 		b = (y); \
285 		(x) = (a & (uint32_t)cl) | ((b & (uint32_t)cl) << (s)); \
286 		(y) = ((a & (uint32_t)ch) >> (s)) | (b & (uint32_t)ch); \
287 	} while (0)
288 
289 #define SWAP2(x, y)   SWAPN(0x55555555, 0xAAAAAAAA, 1, x, y)
290 #define SWAP4(x, y)   SWAPN(0x33333333, 0xCCCCCCCC, 2, x, y)
291 #define SWAP8(x, y)   SWAPN(0x0F0F0F0F, 0xF0F0F0F0, 4, x, y)
292 
293 	SWAP2(q[0], q[1]);
294 	SWAP2(q[2], q[3]);
295 	SWAP2(q[4], q[5]);
296 	SWAP2(q[6], q[7]);
297 
298 	SWAP4(q[0], q[2]);
299 	SWAP4(q[1], q[3]);
300 	SWAP4(q[4], q[6]);
301 	SWAP4(q[5], q[7]);
302 
303 	SWAP8(q[0], q[4]);
304 	SWAP8(q[1], q[5]);
305 	SWAP8(q[2], q[6]);
306 	SWAP8(q[3], q[7]);
307 }
308 
309 static inline uint32_t
310 sub_word(uint32_t x)
311 {
312 	uint32_t q[8];
313 	int i;
314 
315 	for (i = 0; i < 8; i ++) {
316 		q[i] = x;
317 	}
318 	aes_ct_ortho(q);
319 	aes_ct_bitslice_Sbox(q);
320 	aes_ct_ortho(q);
321 	return q[0];
322 }
323 
324 static const unsigned char Rcon[] = {
325 	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
326 };
327 
328 /*
329  * Base key schedule code. The function sub_word() must be defined
330  * below. Subkeys are produced in little-endian convention (but not
331  * bitsliced). Key length is expressed in bytes.
332  */
333 static unsigned
334 aes_keysched_base(uint32_t *skey, const void *key, size_t key_len)
335 {
336 	unsigned num_rounds;
337 	int i, j, k, nk, nkf;
338 	uint32_t tmp;
339 
340 	switch (key_len) {
341 	case 16:
342 		num_rounds = 10;
343 		break;
344 	case 24:
345 		num_rounds = 12;
346 		break;
347 	case 32:
348 		num_rounds = 14;
349 		break;
350 	default:
351 		return 0;
352 	}
353 	nk = (int)(key_len >> 2);
354 	nkf = (int)((num_rounds + 1) << 2);
355 	for (i = 0; i < nk; i ++) {
356 		tmp = dec32le((const unsigned char *)key + (i << 2));
357 		skey[i] = tmp;
358 	}
359 	tmp = skey[(key_len >> 2) - 1];
360 	for (i = nk, j = 0, k = 0; i < nkf; i ++) {
361 		if (j == 0) {
362 			tmp = (tmp << 24) | (tmp >> 8);
363 			tmp = sub_word(tmp) ^ Rcon[k];
364 		} else if (nk > 6 && j == 4) {
365 			tmp = sub_word(tmp);
366 		}
367 		tmp ^= skey[i - nk];
368 		skey[i] = tmp;
369 		if (++ j == nk) {
370 			j = 0;
371 			k ++;
372 		}
373 	}
374 	return num_rounds;
375 }
376 
377 /*
378  * AES key schedule, constant-time version. skey[] is filled with n+1
379  * 128-bit subkeys, where n is the number of rounds (10 to 14, depending
380  * on key size). The number of rounds is returned. If the key size is
381  * invalid (not 16, 24 or 32), then 0 is returned.
382  */
383 unsigned
384 aes_ct_keysched(uint32_t *comp_skey, const void *key, size_t key_len)
385 {
386 	uint32_t skey[60];
387 	unsigned u, num_rounds;
388 
389 	num_rounds = aes_keysched_base(skey, key, key_len);
390 	for (u = 0; u <= num_rounds; u ++) {
391 		uint32_t q[8];
392 
393 		q[0] = q[1] = skey[(u << 2) + 0];
394 		q[2] = q[3] = skey[(u << 2) + 1];
395 		q[4] = q[5] = skey[(u << 2) + 2];
396 		q[6] = q[7] = skey[(u << 2) + 3];
397 		aes_ct_ortho(q);
398 		comp_skey[(u << 2) + 0] =
399 			(q[0] & 0x55555555) | (q[1] & 0xAAAAAAAA);
400 		comp_skey[(u << 2) + 1] =
401 			(q[2] & 0x55555555) | (q[3] & 0xAAAAAAAA);
402 		comp_skey[(u << 2) + 2] =
403 			(q[4] & 0x55555555) | (q[5] & 0xAAAAAAAA);
404 		comp_skey[(u << 2) + 3] =
405 			(q[6] & 0x55555555) | (q[7] & 0xAAAAAAAA);
406 	}
407 	return num_rounds;
408 }
409 
410 /*
411  * Expand AES subkeys as produced by aes_ct_keysched(), into
412  * a larger array suitable for aes_ct_bitslice_encrypt() and
413  * aes_ct_bitslice_decrypt().
414  */
415 void
416 aes_ct_skey_expand(uint32_t *skey,
417 	unsigned num_rounds, const uint32_t *comp_skey)
418 {
419 	unsigned u, v, n;
420 
421 	n = (num_rounds + 1) << 2;
422 	for (u = 0, v = 0; u < n; u ++, v += 2) {
423 		uint32_t x, y;
424 
425 		x = y = comp_skey[u];
426 		x &= 0x55555555;
427 		skey[v + 0] = x | (x << 1);
428 		y &= 0xAAAAAAAA;
429 		skey[v + 1] = y | (y >> 1);
430 	}
431 }
432 
433 static inline void
434 add_round_key(uint32_t *q, const uint32_t *sk)
435 {
436 	q[0] ^= sk[0];
437 	q[1] ^= sk[1];
438 	q[2] ^= sk[2];
439 	q[3] ^= sk[3];
440 	q[4] ^= sk[4];
441 	q[5] ^= sk[5];
442 	q[6] ^= sk[6];
443 	q[7] ^= sk[7];
444 }
445 
446 static inline void
447 shift_rows(uint32_t *q)
448 {
449 	int i;
450 
451 	for (i = 0; i < 8; i ++) {
452 		uint32_t x;
453 
454 		x = q[i];
455 		q[i] = (x & 0x000000FF)
456 			| ((x & 0x0000FC00) >> 2) | ((x & 0x00000300) << 6)
457 			| ((x & 0x00F00000) >> 4) | ((x & 0x000F0000) << 4)
458 			| ((x & 0xC0000000) >> 6) | ((x & 0x3F000000) << 2);
459 	}
460 }
461 
462 static inline uint32_t
463 rotr16(uint32_t x)
464 {
465 	return (x << 16) | (x >> 16);
466 }
467 
468 static inline void
469 mix_columns(uint32_t *q)
470 {
471 	uint32_t q0, q1, q2, q3, q4, q5, q6, q7;
472 	uint32_t r0, r1, r2, r3, r4, r5, r6, r7;
473 
474 	q0 = q[0];
475 	q1 = q[1];
476 	q2 = q[2];
477 	q3 = q[3];
478 	q4 = q[4];
479 	q5 = q[5];
480 	q6 = q[6];
481 	q7 = q[7];
482 	r0 = (q0 >> 8) | (q0 << 24);
483 	r1 = (q1 >> 8) | (q1 << 24);
484 	r2 = (q2 >> 8) | (q2 << 24);
485 	r3 = (q3 >> 8) | (q3 << 24);
486 	r4 = (q4 >> 8) | (q4 << 24);
487 	r5 = (q5 >> 8) | (q5 << 24);
488 	r6 = (q6 >> 8) | (q6 << 24);
489 	r7 = (q7 >> 8) | (q7 << 24);
490 
491 	q[0] = q7 ^ r7 ^ r0 ^ rotr16(q0 ^ r0);
492 	q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr16(q1 ^ r1);
493 	q[2] = q1 ^ r1 ^ r2 ^ rotr16(q2 ^ r2);
494 	q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr16(q3 ^ r3);
495 	q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr16(q4 ^ r4);
496 	q[5] = q4 ^ r4 ^ r5 ^ rotr16(q5 ^ r5);
497 	q[6] = q5 ^ r5 ^ r6 ^ rotr16(q6 ^ r6);
498 	q[7] = q6 ^ r6 ^ r7 ^ rotr16(q7 ^ r7);
499 }
500 
501 /*
502  * Compute AES encryption on bitsliced data. Since input is stored on
503  * eight 32-bit words, two block encryptions are actually performed
504  * in parallel.
505  */
506 void
507 aes_ct_bitslice_encrypt(unsigned num_rounds,
508 	const uint32_t *skey, uint32_t *q)
509 {
510 	unsigned u;
511 
512 	add_round_key(q, skey);
513 	for (u = 1; u < num_rounds; u ++) {
514 		aes_ct_bitslice_Sbox(q);
515 		shift_rows(q);
516 		mix_columns(q);
517 		add_round_key(q, skey + (u << 3));
518 	}
519 	aes_ct_bitslice_Sbox(q);
520 	shift_rows(q);
521 	add_round_key(q, skey + (num_rounds << 3));
522 }
523 
524 /*
525  * Like aes_ct_bitslice_Sbox(), but for the inverse S-box.
526  */
527 void
528 aes_ct_bitslice_invSbox(uint32_t *q)
529 {
530 	/*
531 	 * AES S-box is:
532 	 *   S(x) = A(I(x)) ^ 0x63
533 	 * where I() is inversion in GF(256), and A() is a linear
534 	 * transform (0 is formally defined to be its own inverse).
535 	 * Since inversion is an involution, the inverse S-box can be
536 	 * computed from the S-box as:
537 	 *   iS(x) = B(S(B(x ^ 0x63)) ^ 0x63)
538 	 * where B() is the inverse of A(). Indeed, for any y in GF(256):
539 	 *   iS(S(y)) = B(A(I(B(A(I(y)) ^ 0x63 ^ 0x63))) ^ 0x63 ^ 0x63) = y
540 	 *
541 	 * Note: we reuse the implementation of the forward S-box,
542 	 * instead of duplicating it here, so that total code size is
543 	 * lower. By merging the B() transforms into the S-box circuit
544 	 * we could make faster CBC decryption, but CBC decryption is
545 	 * already quite faster than CBC encryption because we can
546 	 * process two blocks in parallel.
547 	 */
548 	uint32_t q0, q1, q2, q3, q4, q5, q6, q7;
549 
550 	q0 = ~q[0];
551 	q1 = ~q[1];
552 	q2 = q[2];
553 	q3 = q[3];
554 	q4 = q[4];
555 	q5 = ~q[5];
556 	q6 = ~q[6];
557 	q7 = q[7];
558 	q[7] = q1 ^ q4 ^ q6;
559 	q[6] = q0 ^ q3 ^ q5;
560 	q[5] = q7 ^ q2 ^ q4;
561 	q[4] = q6 ^ q1 ^ q3;
562 	q[3] = q5 ^ q0 ^ q2;
563 	q[2] = q4 ^ q7 ^ q1;
564 	q[1] = q3 ^ q6 ^ q0;
565 	q[0] = q2 ^ q5 ^ q7;
566 
567 	aes_ct_bitslice_Sbox(q);
568 
569 	q0 = ~q[0];
570 	q1 = ~q[1];
571 	q2 = q[2];
572 	q3 = q[3];
573 	q4 = q[4];
574 	q5 = ~q[5];
575 	q6 = ~q[6];
576 	q7 = q[7];
577 	q[7] = q1 ^ q4 ^ q6;
578 	q[6] = q0 ^ q3 ^ q5;
579 	q[5] = q7 ^ q2 ^ q4;
580 	q[4] = q6 ^ q1 ^ q3;
581 	q[3] = q5 ^ q0 ^ q2;
582 	q[2] = q4 ^ q7 ^ q1;
583 	q[1] = q3 ^ q6 ^ q0;
584 	q[0] = q2 ^ q5 ^ q7;
585 }
586 
587 static inline void
588 inv_shift_rows(uint32_t *q)
589 {
590 	int i;
591 
592 	for (i = 0; i < 8; i ++) {
593 		uint32_t x;
594 
595 		x = q[i];
596 		q[i] = (x & 0x000000FF)
597 			| ((x & 0x00003F00) << 2) | ((x & 0x0000C000) >> 6)
598 			| ((x & 0x000F0000) << 4) | ((x & 0x00F00000) >> 4)
599 			| ((x & 0x03000000) << 6) | ((x & 0xFC000000) >> 2);
600 	}
601 }
602 
603 static void
604 inv_mix_columns(uint32_t *q)
605 {
606 	uint32_t q0, q1, q2, q3, q4, q5, q6, q7;
607 	uint32_t r0, r1, r2, r3, r4, r5, r6, r7;
608 
609 	q0 = q[0];
610 	q1 = q[1];
611 	q2 = q[2];
612 	q3 = q[3];
613 	q4 = q[4];
614 	q5 = q[5];
615 	q6 = q[6];
616 	q7 = q[7];
617 	r0 = (q0 >> 8) | (q0 << 24);
618 	r1 = (q1 >> 8) | (q1 << 24);
619 	r2 = (q2 >> 8) | (q2 << 24);
620 	r3 = (q3 >> 8) | (q3 << 24);
621 	r4 = (q4 >> 8) | (q4 << 24);
622 	r5 = (q5 >> 8) | (q5 << 24);
623 	r6 = (q6 >> 8) | (q6 << 24);
624 	r7 = (q7 >> 8) | (q7 << 24);
625 
626 	q[0] = q5 ^ q6 ^ q7 ^ r0 ^ r5 ^ r7 ^ rotr16(q0 ^ q5 ^ q6 ^ r0 ^ r5);
627 	q[1] = q0 ^ q5 ^ r0 ^ r1 ^ r5 ^ r6 ^ r7 ^ rotr16(q1 ^ q5 ^ q7 ^ r1 ^ r5 ^ r6);
628 	q[2] = q0 ^ q1 ^ q6 ^ r1 ^ r2 ^ r6 ^ r7 ^ rotr16(q0 ^ q2 ^ q6 ^ r2 ^ r6 ^ r7);
629 	q[3] = q0 ^ q1 ^ q2 ^ q5 ^ q6 ^ r0 ^ r2 ^ r3 ^ r5 ^ rotr16(q0 ^ q1 ^ q3 ^ q5 ^ q6 ^ q7 ^ r0 ^ r3 ^ r5 ^ r7);
630 	q[4] = q1 ^ q2 ^ q3 ^ q5 ^ r1 ^ r3 ^ r4 ^ r5 ^ r6 ^ r7 ^ rotr16(q1 ^ q2 ^ q4 ^ q5 ^ q7 ^ r1 ^ r4 ^ r5 ^ r6);
631 	q[5] = q2 ^ q3 ^ q4 ^ q6 ^ r2 ^ r4 ^ r5 ^ r6 ^ r7 ^ rotr16(q2 ^ q3 ^ q5 ^ q6 ^ r2 ^ r5 ^ r6 ^ r7);
632 	q[6] = q3 ^ q4 ^ q5 ^ q7 ^ r3 ^ r5 ^ r6 ^ r7 ^ rotr16(q3 ^ q4 ^ q6 ^ q7 ^ r3 ^ r6 ^ r7);
633 	q[7] = q4 ^ q5 ^ q6 ^ r4 ^ r6 ^ r7 ^ rotr16(q4 ^ q5 ^ q7 ^ r4 ^ r7);
634 }
635 
636 /*
637  * Compute AES decryption on bitsliced data. Since input is stored on
638  * eight 32-bit words, two block decryptions are actually performed
639  * in parallel.
640  */
641 void
642 aes_ct_bitslice_decrypt(unsigned num_rounds,
643 	const uint32_t *skey, uint32_t *q)
644 {
645 	unsigned u;
646 
647 	add_round_key(q, skey + (num_rounds << 3));
648 	for (u = num_rounds - 1; u > 0; u --) {
649 		inv_shift_rows(q);
650 		aes_ct_bitslice_invSbox(q);
651 		add_round_key(q, skey + (u << 3));
652 		inv_mix_columns(q);
653 	}
654 	inv_shift_rows(q);
655 	aes_ct_bitslice_invSbox(q);
656 	add_round_key(q, skey);
657 }
658 
659 
660 int
661 AES_Setkey(AES_CTX *ctx, const uint8_t *key, int len)
662 {
663 	ctx->num_rounds = aes_ct_keysched(ctx->sk, key, len);
664 	if (ctx->num_rounds == 0)
665 		return -1;
666 	aes_ct_skey_expand(ctx->sk_exp, ctx->num_rounds, ctx->sk);
667 	return 0;
668 }
669 
670 void
671 AES_Encrypt_ECB(AES_CTX *ctx, const uint8_t *src,
672 	uint8_t *dst, size_t num_blocks)
673 {
674 	while (num_blocks > 0) {
675 		uint32_t q[8];
676 
677 		q[0] = dec32le(src);
678 		q[2] = dec32le(src + 4);
679 		q[4] = dec32le(src + 8);
680 		q[6] = dec32le(src + 12);
681 		if (num_blocks > 1) {
682 			q[1] = dec32le(src + 16);
683 			q[3] = dec32le(src + 20);
684 			q[5] = dec32le(src + 24);
685 			q[7] = dec32le(src + 28);
686 		} else {
687 			q[1] = 0;
688 			q[3] = 0;
689 			q[5] = 0;
690 			q[7] = 0;
691 		}
692 		aes_ct_ortho(q);
693 		aes_ct_bitslice_encrypt(ctx->num_rounds, ctx->sk_exp, q);
694 		aes_ct_ortho(q);
695 		enc32le(dst, q[0]);
696 		enc32le(dst + 4, q[2]);
697 		enc32le(dst + 8, q[4]);
698 		enc32le(dst + 12, q[6]);
699 		if (num_blocks > 1) {
700 			enc32le(dst + 16, q[1]);
701 			enc32le(dst + 20, q[3]);
702 			enc32le(dst + 24, q[5]);
703 			enc32le(dst + 28, q[7]);
704 			src += 32;
705 			dst += 32;
706 			num_blocks -= 2;
707 		} else {
708 			break;
709 		}
710 	}
711 }
712 
713 void
714 AES_Decrypt_ECB(AES_CTX *ctx, const uint8_t *src,
715 	uint8_t *dst, size_t num_blocks)
716 {
717 	while (num_blocks > 0) {
718 		uint32_t q[8];
719 
720 		q[0] = dec32le(src);
721 		q[2] = dec32le(src + 4);
722 		q[4] = dec32le(src + 8);
723 		q[6] = dec32le(src + 12);
724 		if (num_blocks > 1) {
725 			q[1] = dec32le(src + 16);
726 			q[3] = dec32le(src + 20);
727 			q[5] = dec32le(src + 24);
728 			q[7] = dec32le(src + 28);
729 		} else {
730 			q[1] = 0;
731 			q[3] = 0;
732 			q[5] = 0;
733 			q[7] = 0;
734 		}
735 		aes_ct_ortho(q);
736 		aes_ct_bitslice_decrypt(ctx->num_rounds, ctx->sk_exp, q);
737 		aes_ct_ortho(q);
738 		enc32le(dst, q[0]);
739 		enc32le(dst + 4, q[2]);
740 		enc32le(dst + 8, q[4]);
741 		enc32le(dst + 12, q[6]);
742 		if (num_blocks > 1) {
743 			enc32le(dst + 16, q[1]);
744 			enc32le(dst + 20, q[3]);
745 			enc32le(dst + 24, q[5]);
746 			enc32le(dst + 28, q[7]);
747 			src += 32;
748 			dst += 32;
749 			num_blocks -= 2;
750 		} else {
751 			break;
752 		}
753 	}
754 }
755 
756 void
757 AES_Encrypt(AES_CTX *ctx, const uint8_t *src, uint8_t *dst)
758 {
759 	AES_Encrypt_ECB(ctx, src, dst, 1);
760 }
761 
762 void
763 AES_Decrypt(AES_CTX *ctx, const uint8_t *src, uint8_t *dst)
764 {
765 	AES_Decrypt_ECB(ctx, src, dst, 1);
766 }
767 
768 int
769 AES_KeySetup_Encrypt(uint32_t *skey, const uint8_t *key, int len)
770 {
771 	unsigned r, u;
772 	uint32_t tkey[60];
773 
774 	r = aes_keysched_base(tkey, key, len);
775 	if (r == 0) {
776 		return 0;
777 	}
778 	for (u = 0; u < ((r + 1) << 2); u ++) {
779 		uint32_t w;
780 
781 		w = tkey[u];
782 		skey[u] = (w << 24)
783 			| ((w & 0x0000FF00) << 8)
784 			| ((w & 0x00FF0000) >> 8)
785 			| (w >> 24);
786 	}
787 	return r;
788 }
789 
790 /*
791  * Reduce value x modulo polynomial x^8+x^4+x^3+x+1. This works as
792  * long as x fits on 12 bits at most.
793  */
794 static inline uint32_t
795 redgf256(uint32_t x)
796 {
797 	uint32_t h;
798 
799 	h = x >> 8;
800 	return (x ^ h ^ (h << 1) ^ (h << 3) ^ (h << 4)) & 0xFF;
801 }
802 
803 /*
804  * Multiplication by 0x09 in GF(256).
805  */
806 static inline uint32_t
807 mul9(uint32_t x)
808 {
809 	return redgf256(x ^ (x << 3));
810 }
811 
812 /*
813  * Multiplication by 0x0B in GF(256).
814  */
815 static inline uint32_t
816 mulb(uint32_t x)
817 {
818 	return redgf256(x ^ (x << 1) ^ (x << 3));
819 }
820 
821 /*
822  * Multiplication by 0x0D in GF(256).
823  */
824 static inline uint32_t
825 muld(uint32_t x)
826 {
827 	return redgf256(x ^ (x << 2) ^ (x << 3));
828 }
829 
830 /*
831  * Multiplication by 0x0E in GF(256).
832  */
833 static inline uint32_t
834 mule(uint32_t x)
835 {
836 	return redgf256((x << 1) ^ (x << 2) ^ (x << 3));
837 }
838 
839 int
840 AES_KeySetup_Decrypt(uint32_t *skey, const uint8_t *key, int len)
841 {
842 	unsigned r, u;
843 	uint32_t tkey[60];
844 
845 	/*
846 	 * Compute encryption subkeys. We get them in big-endian
847 	 * notation.
848 	 */
849 	r = AES_KeySetup_Encrypt(tkey, key, len);
850 	if (r == 0) {
851 		return 0;
852 	}
853 
854 	/*
855 	 * Copy the subkeys in reverse order. Also, apply InvMixColumns()
856 	 * on the subkeys (except first and last).
857 	 */
858 	memcpy(skey + (r << 2), tkey, 4 * sizeof(uint32_t));
859 	memcpy(skey, tkey + (r << 2), 4 * sizeof(uint32_t));
860 	for (u = 4; u < (r << 2); u ++) {
861 		uint32_t sk, sk0, sk1, sk2, sk3;
862 		uint32_t tk, tk0, tk1, tk2, tk3;
863 
864 		sk = tkey[u];
865 		sk0 = sk >> 24;
866 		sk1 = (sk >> 16) & 0xFF;
867 		sk2 = (sk >> 8) & 0xFF;
868 		sk3 = sk & 0xFF;
869 		tk0 = mule(sk0) ^ mulb(sk1) ^ muld(sk2) ^ mul9(sk3);
870 		tk1 = mul9(sk0) ^ mule(sk1) ^ mulb(sk2) ^ muld(sk3);
871 		tk2 = muld(sk0) ^ mul9(sk1) ^ mule(sk2) ^ mulb(sk3);
872 		tk3 = mulb(sk0) ^ muld(sk1) ^ mul9(sk2) ^ mule(sk3);
873 		tk = (tk0 << 24) ^ (tk1 << 16) ^ (tk2 << 8) ^ tk3;
874 		skey[((r - (u >> 2)) << 2) + (u & 3)] = tk;
875 	}
876 
877 	return r;
878 }
879