1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 protocol support. 32 */ 33 34 #include "opt_inet.h" 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/systm.h> 40 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 44 #include <net/if.h> 45 #include <net/if_media.h> 46 #include <net/ethernet.h> /* XXX for ether_sprintf */ 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_adhoc.h> 50 #include <net80211/ieee80211_sta.h> 51 #include <net80211/ieee80211_hostap.h> 52 #include <net80211/ieee80211_wds.h> 53 #ifdef IEEE80211_SUPPORT_MESH 54 #include <net80211/ieee80211_mesh.h> 55 #endif 56 #include <net80211/ieee80211_monitor.h> 57 #include <net80211/ieee80211_input.h> 58 59 /* XXX tunables */ 60 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 61 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 62 63 const char *ieee80211_mgt_subtype_name[] = { 64 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 65 "probe_req", "probe_resp", "reserved#6", "reserved#7", 66 "beacon", "atim", "disassoc", "auth", 67 "deauth", "action", "reserved#14", "reserved#15" 68 }; 69 const char *ieee80211_ctl_subtype_name[] = { 70 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 71 "reserved#3", "reserved#5", "reserved#6", "reserved#7", 72 "reserved#8", "reserved#9", "ps_poll", "rts", 73 "cts", "ack", "cf_end", "cf_end_ack" 74 }; 75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 76 "IBSS", /* IEEE80211_M_IBSS */ 77 "STA", /* IEEE80211_M_STA */ 78 "WDS", /* IEEE80211_M_WDS */ 79 "AHDEMO", /* IEEE80211_M_AHDEMO */ 80 "HOSTAP", /* IEEE80211_M_HOSTAP */ 81 "MONITOR", /* IEEE80211_M_MONITOR */ 82 "MBSS" /* IEEE80211_M_MBSS */ 83 }; 84 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 85 "INIT", /* IEEE80211_S_INIT */ 86 "SCAN", /* IEEE80211_S_SCAN */ 87 "AUTH", /* IEEE80211_S_AUTH */ 88 "ASSOC", /* IEEE80211_S_ASSOC */ 89 "CAC", /* IEEE80211_S_CAC */ 90 "RUN", /* IEEE80211_S_RUN */ 91 "CSA", /* IEEE80211_S_CSA */ 92 "SLEEP", /* IEEE80211_S_SLEEP */ 93 }; 94 const char *ieee80211_wme_acnames[] = { 95 "WME_AC_BE", 96 "WME_AC_BK", 97 "WME_AC_VI", 98 "WME_AC_VO", 99 "WME_UPSD", 100 }; 101 102 static void beacon_miss(void *, int); 103 static void beacon_swmiss(void *, int); 104 static void parent_updown(void *, int); 105 static void update_mcast(void *, int); 106 static void update_promisc(void *, int); 107 static void update_channel(void *, int); 108 static void ieee80211_newstate_cb(void *, int); 109 static int ieee80211_new_state_locked(struct ieee80211vap *, 110 enum ieee80211_state, int); 111 112 static int 113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 114 const struct ieee80211_bpf_params *params) 115 { 116 struct ifnet *ifp = ni->ni_ic->ic_ifp; 117 118 if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n"); 119 m_freem(m); 120 return ENETDOWN; 121 } 122 123 void 124 ieee80211_proto_attach(struct ieee80211com *ic) 125 { 126 struct ifnet *ifp = ic->ic_ifp; 127 128 /* override the 802.3 setting */ 129 ifp->if_hdrlen = ic->ic_headroom 130 + sizeof(struct ieee80211_qosframe_addr4) 131 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 132 + IEEE80211_WEP_EXTIVLEN; 133 /* XXX no way to recalculate on ifdetach */ 134 if (ALIGN(ifp->if_hdrlen) > max_linkhdr) { 135 /* XXX sanity check... */ 136 max_linkhdr = ALIGN(ifp->if_hdrlen); 137 max_hdr = max_linkhdr + max_protohdr; 138 max_datalen = MHLEN - max_hdr; 139 } 140 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 141 142 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp); 143 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 144 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 145 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 146 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 147 148 ic->ic_wme.wme_hipri_switch_hysteresis = 149 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 150 151 /* initialize management frame handlers */ 152 ic->ic_send_mgmt = ieee80211_send_mgmt; 153 ic->ic_raw_xmit = null_raw_xmit; 154 155 ieee80211_adhoc_attach(ic); 156 ieee80211_sta_attach(ic); 157 ieee80211_wds_attach(ic); 158 ieee80211_hostap_attach(ic); 159 #ifdef IEEE80211_SUPPORT_MESH 160 ieee80211_mesh_attach(ic); 161 #endif 162 ieee80211_monitor_attach(ic); 163 } 164 165 void 166 ieee80211_proto_detach(struct ieee80211com *ic) 167 { 168 ieee80211_monitor_detach(ic); 169 #ifdef IEEE80211_SUPPORT_MESH 170 ieee80211_mesh_detach(ic); 171 #endif 172 ieee80211_hostap_detach(ic); 173 ieee80211_wds_detach(ic); 174 ieee80211_adhoc_detach(ic); 175 ieee80211_sta_detach(ic); 176 } 177 178 static void 179 null_update_beacon(struct ieee80211vap *vap, int item) 180 { 181 } 182 183 void 184 ieee80211_proto_vattach(struct ieee80211vap *vap) 185 { 186 struct ieee80211com *ic = vap->iv_ic; 187 struct ifnet *ifp = vap->iv_ifp; 188 int i; 189 190 /* override the 802.3 setting */ 191 ifp->if_hdrlen = ic->ic_ifp->if_hdrlen; 192 193 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 194 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 195 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 196 callout_init(&vap->iv_swbmiss, CALLOUT_MPSAFE); 197 callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE); 198 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 199 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 200 /* 201 * Install default tx rate handling: no fixed rate, lowest 202 * supported rate for mgmt and multicast frames. Default 203 * max retry count. These settings can be changed by the 204 * driver and/or user applications. 205 */ 206 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 207 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 208 209 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 210 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 211 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 212 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 213 } else { 214 vap->iv_txparms[i].mgmtrate = 215 rs->rs_rates[0] & IEEE80211_RATE_VAL; 216 vap->iv_txparms[i].mcastrate = 217 rs->rs_rates[0] & IEEE80211_RATE_VAL; 218 } 219 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 220 } 221 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 222 223 vap->iv_update_beacon = null_update_beacon; 224 vap->iv_deliver_data = ieee80211_deliver_data; 225 226 /* attach support for operating mode */ 227 ic->ic_vattach[vap->iv_opmode](vap); 228 } 229 230 void 231 ieee80211_proto_vdetach(struct ieee80211vap *vap) 232 { 233 #define FREEAPPIE(ie) do { \ 234 if (ie != NULL) \ 235 free(ie, M_80211_NODE_IE); \ 236 } while (0) 237 /* 238 * Detach operating mode module. 239 */ 240 if (vap->iv_opdetach != NULL) 241 vap->iv_opdetach(vap); 242 /* 243 * This should not be needed as we detach when reseting 244 * the state but be conservative here since the 245 * authenticator may do things like spawn kernel threads. 246 */ 247 if (vap->iv_auth->ia_detach != NULL) 248 vap->iv_auth->ia_detach(vap); 249 /* 250 * Detach any ACL'ator. 251 */ 252 if (vap->iv_acl != NULL) 253 vap->iv_acl->iac_detach(vap); 254 255 FREEAPPIE(vap->iv_appie_beacon); 256 FREEAPPIE(vap->iv_appie_probereq); 257 FREEAPPIE(vap->iv_appie_proberesp); 258 FREEAPPIE(vap->iv_appie_assocreq); 259 FREEAPPIE(vap->iv_appie_assocresp); 260 FREEAPPIE(vap->iv_appie_wpa); 261 #undef FREEAPPIE 262 } 263 264 /* 265 * Simple-minded authenticator module support. 266 */ 267 268 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 269 /* XXX well-known names */ 270 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 271 "wlan_internal", /* IEEE80211_AUTH_NONE */ 272 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 273 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 274 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 275 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 276 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 277 }; 278 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 279 280 static const struct ieee80211_authenticator auth_internal = { 281 .ia_name = "wlan_internal", 282 .ia_attach = NULL, 283 .ia_detach = NULL, 284 .ia_node_join = NULL, 285 .ia_node_leave = NULL, 286 }; 287 288 /* 289 * Setup internal authenticators once; they are never unregistered. 290 */ 291 void 292 ieee80211_auth_setup(void) 293 { 294 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 295 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 296 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 297 } 298 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 299 300 const struct ieee80211_authenticator * 301 ieee80211_authenticator_get(int auth) 302 { 303 if (auth >= IEEE80211_AUTH_MAX) 304 return NULL; 305 if (authenticators[auth] == NULL) 306 ieee80211_load_module(auth_modnames[auth]); 307 return authenticators[auth]; 308 } 309 310 void 311 ieee80211_authenticator_register(int type, 312 const struct ieee80211_authenticator *auth) 313 { 314 if (type >= IEEE80211_AUTH_MAX) 315 return; 316 authenticators[type] = auth; 317 } 318 319 void 320 ieee80211_authenticator_unregister(int type) 321 { 322 323 if (type >= IEEE80211_AUTH_MAX) 324 return; 325 authenticators[type] = NULL; 326 } 327 328 /* 329 * Very simple-minded ACL module support. 330 */ 331 /* XXX just one for now */ 332 static const struct ieee80211_aclator *acl = NULL; 333 334 void 335 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 336 { 337 printf("wlan: %s acl policy registered\n", iac->iac_name); 338 acl = iac; 339 } 340 341 void 342 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 343 { 344 if (acl == iac) 345 acl = NULL; 346 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 347 } 348 349 const struct ieee80211_aclator * 350 ieee80211_aclator_get(const char *name) 351 { 352 if (acl == NULL) 353 ieee80211_load_module("wlan_acl"); 354 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 355 } 356 357 void 358 ieee80211_print_essid(const uint8_t *essid, int len) 359 { 360 const uint8_t *p; 361 int i; 362 363 if (len > IEEE80211_NWID_LEN) 364 len = IEEE80211_NWID_LEN; 365 /* determine printable or not */ 366 for (i = 0, p = essid; i < len; i++, p++) { 367 if (*p < ' ' || *p > 0x7e) 368 break; 369 } 370 if (i == len) { 371 printf("\""); 372 for (i = 0, p = essid; i < len; i++, p++) 373 printf("%c", *p); 374 printf("\""); 375 } else { 376 printf("0x"); 377 for (i = 0, p = essid; i < len; i++, p++) 378 printf("%02x", *p); 379 } 380 } 381 382 void 383 ieee80211_dump_pkt(struct ieee80211com *ic, 384 const uint8_t *buf, int len, int rate, int rssi) 385 { 386 const struct ieee80211_frame *wh; 387 int i; 388 389 wh = (const struct ieee80211_frame *)buf; 390 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 391 case IEEE80211_FC1_DIR_NODS: 392 printf("NODS %s", ether_sprintf(wh->i_addr2)); 393 printf("->%s", ether_sprintf(wh->i_addr1)); 394 printf("(%s)", ether_sprintf(wh->i_addr3)); 395 break; 396 case IEEE80211_FC1_DIR_TODS: 397 printf("TODS %s", ether_sprintf(wh->i_addr2)); 398 printf("->%s", ether_sprintf(wh->i_addr3)); 399 printf("(%s)", ether_sprintf(wh->i_addr1)); 400 break; 401 case IEEE80211_FC1_DIR_FROMDS: 402 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 403 printf("->%s", ether_sprintf(wh->i_addr1)); 404 printf("(%s)", ether_sprintf(wh->i_addr2)); 405 break; 406 case IEEE80211_FC1_DIR_DSTODS: 407 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 408 printf("->%s", ether_sprintf(wh->i_addr3)); 409 printf("(%s", ether_sprintf(wh->i_addr2)); 410 printf("->%s)", ether_sprintf(wh->i_addr1)); 411 break; 412 } 413 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 414 case IEEE80211_FC0_TYPE_DATA: 415 printf(" data"); 416 break; 417 case IEEE80211_FC0_TYPE_MGT: 418 printf(" %s", ieee80211_mgt_subtype_name[ 419 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 420 >> IEEE80211_FC0_SUBTYPE_SHIFT]); 421 break; 422 default: 423 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 424 break; 425 } 426 if (IEEE80211_QOS_HAS_SEQ(wh)) { 427 const struct ieee80211_qosframe *qwh = 428 (const struct ieee80211_qosframe *)buf; 429 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 430 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 431 } 432 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 433 int off; 434 435 off = ieee80211_anyhdrspace(ic, wh); 436 printf(" WEP [IV %.02x %.02x %.02x", 437 buf[off+0], buf[off+1], buf[off+2]); 438 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 439 printf(" %.02x %.02x %.02x", 440 buf[off+4], buf[off+5], buf[off+6]); 441 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 442 } 443 if (rate >= 0) 444 printf(" %dM", rate / 2); 445 if (rssi >= 0) 446 printf(" +%d", rssi); 447 printf("\n"); 448 if (len > 0) { 449 for (i = 0; i < len; i++) { 450 if ((i & 1) == 0) 451 printf(" "); 452 printf("%02x", buf[i]); 453 } 454 printf("\n"); 455 } 456 } 457 458 static __inline int 459 findrix(const struct ieee80211_rateset *rs, int r) 460 { 461 int i; 462 463 for (i = 0; i < rs->rs_nrates; i++) 464 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 465 return i; 466 return -1; 467 } 468 469 int 470 ieee80211_fix_rate(struct ieee80211_node *ni, 471 struct ieee80211_rateset *nrs, int flags) 472 { 473 #define RV(v) ((v) & IEEE80211_RATE_VAL) 474 struct ieee80211vap *vap = ni->ni_vap; 475 struct ieee80211com *ic = ni->ni_ic; 476 int i, j, rix, error; 477 int okrate, badrate, fixedrate, ucastrate; 478 const struct ieee80211_rateset *srs; 479 uint8_t r; 480 481 error = 0; 482 okrate = badrate = 0; 483 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 484 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 485 /* 486 * Workaround awkwardness with fixed rate. We are called 487 * to check both the legacy rate set and the HT rate set 488 * but we must apply any legacy fixed rate check only to the 489 * legacy rate set and vice versa. We cannot tell what type 490 * of rate set we've been given (legacy or HT) but we can 491 * distinguish the fixed rate type (MCS have 0x80 set). 492 * So to deal with this the caller communicates whether to 493 * check MCS or legacy rate using the flags and we use the 494 * type of any fixed rate to avoid applying an MCS to a 495 * legacy rate and vice versa. 496 */ 497 if (ucastrate & 0x80) { 498 if (flags & IEEE80211_F_DOFRATE) 499 flags &= ~IEEE80211_F_DOFRATE; 500 } else if ((ucastrate & 0x80) == 0) { 501 if (flags & IEEE80211_F_DOFMCS) 502 flags &= ~IEEE80211_F_DOFMCS; 503 } 504 /* NB: required to make MCS match below work */ 505 ucastrate &= IEEE80211_RATE_VAL; 506 } 507 fixedrate = IEEE80211_FIXED_RATE_NONE; 508 /* 509 * XXX we are called to process both MCS and legacy rates; 510 * we must use the appropriate basic rate set or chaos will 511 * ensue; for now callers that want MCS must supply 512 * IEEE80211_F_DOBRS; at some point we'll need to split this 513 * function so there are two variants, one for MCS and one 514 * for legacy rates. 515 */ 516 if (flags & IEEE80211_F_DOBRS) 517 srs = (const struct ieee80211_rateset *) 518 ieee80211_get_suphtrates(ic, ni->ni_chan); 519 else 520 srs = ieee80211_get_suprates(ic, ni->ni_chan); 521 for (i = 0; i < nrs->rs_nrates; ) { 522 if (flags & IEEE80211_F_DOSORT) { 523 /* 524 * Sort rates. 525 */ 526 for (j = i + 1; j < nrs->rs_nrates; j++) { 527 if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) { 528 r = nrs->rs_rates[i]; 529 nrs->rs_rates[i] = nrs->rs_rates[j]; 530 nrs->rs_rates[j] = r; 531 } 532 } 533 } 534 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 535 badrate = r; 536 /* 537 * Check for fixed rate. 538 */ 539 if (r == ucastrate) 540 fixedrate = r; 541 /* 542 * Check against supported rates. 543 */ 544 rix = findrix(srs, r); 545 if (flags & IEEE80211_F_DONEGO) { 546 if (rix < 0) { 547 /* 548 * A rate in the node's rate set is not 549 * supported. If this is a basic rate and we 550 * are operating as a STA then this is an error. 551 * Otherwise we just discard/ignore the rate. 552 */ 553 if ((flags & IEEE80211_F_JOIN) && 554 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 555 error++; 556 } else if ((flags & IEEE80211_F_JOIN) == 0) { 557 /* 558 * Overwrite with the supported rate 559 * value so any basic rate bit is set. 560 */ 561 nrs->rs_rates[i] = srs->rs_rates[rix]; 562 } 563 } 564 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 565 /* 566 * Delete unacceptable rates. 567 */ 568 nrs->rs_nrates--; 569 for (j = i; j < nrs->rs_nrates; j++) 570 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 571 nrs->rs_rates[j] = 0; 572 continue; 573 } 574 if (rix >= 0) 575 okrate = nrs->rs_rates[i]; 576 i++; 577 } 578 if (okrate == 0 || error != 0 || 579 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 580 fixedrate != ucastrate)) { 581 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 582 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 583 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 584 return badrate | IEEE80211_RATE_BASIC; 585 } else 586 return RV(okrate); 587 #undef RV 588 } 589 590 /* 591 * Reset 11g-related state. 592 */ 593 void 594 ieee80211_reset_erp(struct ieee80211com *ic) 595 { 596 ic->ic_flags &= ~IEEE80211_F_USEPROT; 597 ic->ic_nonerpsta = 0; 598 ic->ic_longslotsta = 0; 599 /* 600 * Short slot time is enabled only when operating in 11g 601 * and not in an IBSS. We must also honor whether or not 602 * the driver is capable of doing it. 603 */ 604 ieee80211_set_shortslottime(ic, 605 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 606 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 607 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 608 ic->ic_opmode == IEEE80211_M_HOSTAP && 609 (ic->ic_caps & IEEE80211_C_SHSLOT))); 610 /* 611 * Set short preamble and ERP barker-preamble flags. 612 */ 613 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 614 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 615 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 616 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 617 } else { 618 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 619 ic->ic_flags |= IEEE80211_F_USEBARKER; 620 } 621 } 622 623 /* 624 * Set the short slot time state and notify the driver. 625 */ 626 void 627 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 628 { 629 if (onoff) 630 ic->ic_flags |= IEEE80211_F_SHSLOT; 631 else 632 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 633 /* notify driver */ 634 if (ic->ic_updateslot != NULL) 635 ic->ic_updateslot(ic->ic_ifp); 636 } 637 638 /* 639 * Check if the specified rate set supports ERP. 640 * NB: the rate set is assumed to be sorted. 641 */ 642 int 643 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 644 { 645 #define N(a) (sizeof(a) / sizeof(a[0])) 646 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 647 int i, j; 648 649 if (rs->rs_nrates < N(rates)) 650 return 0; 651 for (i = 0; i < N(rates); i++) { 652 for (j = 0; j < rs->rs_nrates; j++) { 653 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 654 if (rates[i] == r) 655 goto next; 656 if (r > rates[i]) 657 return 0; 658 } 659 return 0; 660 next: 661 ; 662 } 663 return 1; 664 #undef N 665 } 666 667 /* 668 * Mark the basic rates for the rate table based on the 669 * operating mode. For real 11g we mark all the 11b rates 670 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 671 * 11b rates. There's also a pseudo 11a-mode used to mark only 672 * the basic OFDM rates. 673 */ 674 static void 675 setbasicrates(struct ieee80211_rateset *rs, 676 enum ieee80211_phymode mode, int add) 677 { 678 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 679 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 680 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 681 /* NB: mixed b/g */ 682 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 683 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 684 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 685 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 686 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 687 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 688 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 689 /* NB: mixed b/g */ 690 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 691 }; 692 int i, j; 693 694 for (i = 0; i < rs->rs_nrates; i++) { 695 if (!add) 696 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 697 for (j = 0; j < basic[mode].rs_nrates; j++) 698 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 699 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 700 break; 701 } 702 } 703 } 704 705 /* 706 * Set the basic rates in a rate set. 707 */ 708 void 709 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 710 enum ieee80211_phymode mode) 711 { 712 setbasicrates(rs, mode, 0); 713 } 714 715 /* 716 * Add basic rates to a rate set. 717 */ 718 void 719 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 720 enum ieee80211_phymode mode) 721 { 722 setbasicrates(rs, mode, 1); 723 } 724 725 /* 726 * WME protocol support. 727 * 728 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 729 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 730 * Draft 2.0 Test Plan (Appendix D). 731 * 732 * Static/Dynamic Turbo mode settings come from Atheros. 733 */ 734 typedef struct phyParamType { 735 uint8_t aifsn; 736 uint8_t logcwmin; 737 uint8_t logcwmax; 738 uint16_t txopLimit; 739 uint8_t acm; 740 } paramType; 741 742 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 743 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 744 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 745 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 746 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 747 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 748 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 749 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 750 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 751 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 752 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 753 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 754 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 755 }; 756 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 757 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 758 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 759 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 760 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 761 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 762 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 763 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 764 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 765 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 766 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 767 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 768 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 769 }; 770 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 771 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 772 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 773 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 774 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 775 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 776 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 777 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 778 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 779 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 780 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 781 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 782 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 783 }; 784 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 785 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 786 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 787 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 788 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 789 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 790 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 791 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 792 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 793 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 794 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 795 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 796 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 797 }; 798 799 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 800 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 801 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 802 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 803 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 804 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 805 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 806 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 807 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 808 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 809 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 810 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 811 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 812 }; 813 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 814 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 815 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 816 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 817 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 818 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 819 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 820 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 821 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 822 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 823 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 824 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 825 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 826 }; 827 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 828 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 829 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 830 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 831 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 832 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 833 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 834 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 835 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 836 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 837 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 838 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 839 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 840 }; 841 842 static void 843 _setifsparams(struct wmeParams *wmep, const paramType *phy) 844 { 845 wmep->wmep_aifsn = phy->aifsn; 846 wmep->wmep_logcwmin = phy->logcwmin; 847 wmep->wmep_logcwmax = phy->logcwmax; 848 wmep->wmep_txopLimit = phy->txopLimit; 849 } 850 851 static void 852 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 853 struct wmeParams *wmep, const paramType *phy) 854 { 855 wmep->wmep_acm = phy->acm; 856 _setifsparams(wmep, phy); 857 858 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 859 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 860 ieee80211_wme_acnames[ac], type, 861 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 862 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 863 } 864 865 static void 866 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 867 { 868 struct ieee80211com *ic = vap->iv_ic; 869 struct ieee80211_wme_state *wme = &ic->ic_wme; 870 const paramType *pPhyParam, *pBssPhyParam; 871 struct wmeParams *wmep; 872 enum ieee80211_phymode mode; 873 int i; 874 875 IEEE80211_LOCK_ASSERT(ic); 876 877 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 878 return; 879 880 /* 881 * Select mode; we can be called early in which case we 882 * always use auto mode. We know we'll be called when 883 * entering the RUN state with bsschan setup properly 884 * so state will eventually get set correctly 885 */ 886 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 887 mode = ieee80211_chan2mode(ic->ic_bsschan); 888 else 889 mode = IEEE80211_MODE_AUTO; 890 for (i = 0; i < WME_NUM_AC; i++) { 891 switch (i) { 892 case WME_AC_BK: 893 pPhyParam = &phyParamForAC_BK[mode]; 894 pBssPhyParam = &phyParamForAC_BK[mode]; 895 break; 896 case WME_AC_VI: 897 pPhyParam = &phyParamForAC_VI[mode]; 898 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 899 break; 900 case WME_AC_VO: 901 pPhyParam = &phyParamForAC_VO[mode]; 902 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 903 break; 904 case WME_AC_BE: 905 default: 906 pPhyParam = &phyParamForAC_BE[mode]; 907 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 908 break; 909 } 910 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 911 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 912 setwmeparams(vap, "chan", i, wmep, pPhyParam); 913 } else { 914 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 915 } 916 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 917 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 918 } 919 /* NB: check ic_bss to avoid NULL deref on initial attach */ 920 if (vap->iv_bss != NULL) { 921 /* 922 * Calculate agressive mode switching threshold based 923 * on beacon interval. This doesn't need locking since 924 * we're only called before entering the RUN state at 925 * which point we start sending beacon frames. 926 */ 927 wme->wme_hipri_switch_thresh = 928 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 929 wme->wme_flags &= ~WME_F_AGGRMODE; 930 ieee80211_wme_updateparams(vap); 931 } 932 } 933 934 void 935 ieee80211_wme_initparams(struct ieee80211vap *vap) 936 { 937 struct ieee80211com *ic = vap->iv_ic; 938 939 IEEE80211_LOCK(ic); 940 ieee80211_wme_initparams_locked(vap); 941 IEEE80211_UNLOCK(ic); 942 } 943 944 /* 945 * Update WME parameters for ourself and the BSS. 946 */ 947 void 948 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 949 { 950 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 951 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 952 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 953 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 954 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 955 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 956 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 957 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 958 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 959 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 960 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 961 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 962 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 963 }; 964 struct ieee80211com *ic = vap->iv_ic; 965 struct ieee80211_wme_state *wme = &ic->ic_wme; 966 const struct wmeParams *wmep; 967 struct wmeParams *chanp, *bssp; 968 enum ieee80211_phymode mode; 969 int i; 970 971 /* 972 * Set up the channel access parameters for the physical 973 * device. First populate the configured settings. 974 */ 975 for (i = 0; i < WME_NUM_AC; i++) { 976 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 977 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 978 chanp->wmep_aifsn = wmep->wmep_aifsn; 979 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 980 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 981 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 982 983 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 984 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 985 chanp->wmep_aifsn = wmep->wmep_aifsn; 986 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 987 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 988 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 989 } 990 991 /* 992 * Select mode; we can be called early in which case we 993 * always use auto mode. We know we'll be called when 994 * entering the RUN state with bsschan setup properly 995 * so state will eventually get set correctly 996 */ 997 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 998 mode = ieee80211_chan2mode(ic->ic_bsschan); 999 else 1000 mode = IEEE80211_MODE_AUTO; 1001 1002 /* 1003 * This implements agressive mode as found in certain 1004 * vendors' AP's. When there is significant high 1005 * priority (VI/VO) traffic in the BSS throttle back BE 1006 * traffic by using conservative parameters. Otherwise 1007 * BE uses agressive params to optimize performance of 1008 * legacy/non-QoS traffic. 1009 */ 1010 if ((vap->iv_opmode == IEEE80211_M_HOSTAP && 1011 (wme->wme_flags & WME_F_AGGRMODE) != 0) || 1012 (vap->iv_opmode == IEEE80211_M_STA && 1013 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) || 1014 (vap->iv_flags & IEEE80211_F_WME) == 0) { 1015 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1016 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1017 1018 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1019 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1020 aggrParam[mode].logcwmin; 1021 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1022 aggrParam[mode].logcwmax; 1023 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1024 (vap->iv_flags & IEEE80211_F_BURST) ? 1025 aggrParam[mode].txopLimit : 0; 1026 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1027 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1028 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1029 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1030 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1031 } 1032 1033 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1034 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1035 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1036 [IEEE80211_MODE_AUTO] = 3, 1037 [IEEE80211_MODE_11A] = 3, 1038 [IEEE80211_MODE_11B] = 4, 1039 [IEEE80211_MODE_11G] = 3, 1040 [IEEE80211_MODE_FH] = 4, 1041 [IEEE80211_MODE_TURBO_A] = 3, 1042 [IEEE80211_MODE_TURBO_G] = 3, 1043 [IEEE80211_MODE_STURBO_A] = 3, 1044 [IEEE80211_MODE_HALF] = 3, 1045 [IEEE80211_MODE_QUARTER] = 3, 1046 [IEEE80211_MODE_11NA] = 3, 1047 [IEEE80211_MODE_11NG] = 3, 1048 }; 1049 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1050 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1051 1052 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1053 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1054 "update %s (chan+bss) logcwmin %u\n", 1055 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1056 } 1057 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* XXX ibss? */ 1058 /* 1059 * Arrange for a beacon update and bump the parameter 1060 * set number so associated stations load the new values. 1061 */ 1062 wme->wme_bssChanParams.cap_info = 1063 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1064 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1065 } 1066 1067 wme->wme_update(ic); 1068 1069 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1070 "%s: WME params updated, cap_info 0x%x\n", __func__, 1071 vap->iv_opmode == IEEE80211_M_STA ? 1072 wme->wme_wmeChanParams.cap_info : 1073 wme->wme_bssChanParams.cap_info); 1074 } 1075 1076 void 1077 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1078 { 1079 struct ieee80211com *ic = vap->iv_ic; 1080 1081 if (ic->ic_caps & IEEE80211_C_WME) { 1082 IEEE80211_LOCK(ic); 1083 ieee80211_wme_updateparams_locked(vap); 1084 IEEE80211_UNLOCK(ic); 1085 } 1086 } 1087 1088 static void 1089 parent_updown(void *arg, int npending) 1090 { 1091 struct ifnet *parent = arg; 1092 1093 parent->if_ioctl(parent, SIOCSIFFLAGS, NULL); 1094 } 1095 1096 static void 1097 update_mcast(void *arg, int npending) 1098 { 1099 struct ieee80211com *ic = arg; 1100 struct ifnet *parent = ic->ic_ifp; 1101 1102 ic->ic_update_mcast(parent); 1103 } 1104 1105 static void 1106 update_promisc(void *arg, int npending) 1107 { 1108 struct ieee80211com *ic = arg; 1109 struct ifnet *parent = ic->ic_ifp; 1110 1111 ic->ic_update_promisc(parent); 1112 } 1113 1114 static void 1115 update_channel(void *arg, int npending) 1116 { 1117 struct ieee80211com *ic = arg; 1118 1119 ic->ic_set_channel(ic); 1120 ieee80211_radiotap_chan_change(ic); 1121 } 1122 1123 /* 1124 * Block until the parent is in a known state. This is 1125 * used after any operations that dispatch a task (e.g. 1126 * to auto-configure the parent device up/down). 1127 */ 1128 void 1129 ieee80211_waitfor_parent(struct ieee80211com *ic) 1130 { 1131 taskqueue_block(ic->ic_tq); 1132 ieee80211_draintask(ic, &ic->ic_parent_task); 1133 ieee80211_draintask(ic, &ic->ic_mcast_task); 1134 ieee80211_draintask(ic, &ic->ic_promisc_task); 1135 ieee80211_draintask(ic, &ic->ic_chan_task); 1136 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1137 taskqueue_unblock(ic->ic_tq); 1138 } 1139 1140 /* 1141 * Start a vap running. If this is the first vap to be 1142 * set running on the underlying device then we 1143 * automatically bring the device up. 1144 */ 1145 void 1146 ieee80211_start_locked(struct ieee80211vap *vap) 1147 { 1148 struct ifnet *ifp = vap->iv_ifp; 1149 struct ieee80211com *ic = vap->iv_ic; 1150 struct ifnet *parent = ic->ic_ifp; 1151 1152 IEEE80211_LOCK_ASSERT(ic); 1153 1154 IEEE80211_DPRINTF(vap, 1155 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1156 "start running, %d vaps running\n", ic->ic_nrunning); 1157 1158 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1159 /* 1160 * Mark us running. Note that it's ok to do this first; 1161 * if we need to bring the parent device up we defer that 1162 * to avoid dropping the com lock. We expect the device 1163 * to respond to being marked up by calling back into us 1164 * through ieee80211_start_all at which point we'll come 1165 * back in here and complete the work. 1166 */ 1167 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1168 /* 1169 * We are not running; if this we are the first vap 1170 * to be brought up auto-up the parent if necessary. 1171 */ 1172 if (ic->ic_nrunning++ == 0 && 1173 (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1174 IEEE80211_DPRINTF(vap, 1175 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1176 "%s: up parent %s\n", __func__, parent->if_xname); 1177 parent->if_flags |= IFF_UP; 1178 ieee80211_runtask(ic, &ic->ic_parent_task); 1179 return; 1180 } 1181 } 1182 /* 1183 * If the parent is up and running, then kick the 1184 * 802.11 state machine as appropriate. 1185 */ 1186 if ((parent->if_drv_flags & IFF_DRV_RUNNING) && 1187 vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1188 if (vap->iv_opmode == IEEE80211_M_STA) { 1189 #if 0 1190 /* XXX bypasses scan too easily; disable for now */ 1191 /* 1192 * Try to be intelligent about clocking the state 1193 * machine. If we're currently in RUN state then 1194 * we should be able to apply any new state/parameters 1195 * simply by re-associating. Otherwise we need to 1196 * re-scan to select an appropriate ap. 1197 */ 1198 if (vap->iv_state >= IEEE80211_S_RUN) 1199 ieee80211_new_state_locked(vap, 1200 IEEE80211_S_ASSOC, 1); 1201 else 1202 #endif 1203 ieee80211_new_state_locked(vap, 1204 IEEE80211_S_SCAN, 0); 1205 } else { 1206 /* 1207 * For monitor+wds mode there's nothing to do but 1208 * start running. Otherwise if this is the first 1209 * vap to be brought up, start a scan which may be 1210 * preempted if the station is locked to a particular 1211 * channel. 1212 */ 1213 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1214 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1215 vap->iv_opmode == IEEE80211_M_WDS) 1216 ieee80211_new_state_locked(vap, 1217 IEEE80211_S_RUN, -1); 1218 else 1219 ieee80211_new_state_locked(vap, 1220 IEEE80211_S_SCAN, 0); 1221 } 1222 } 1223 } 1224 1225 /* 1226 * Start a single vap. 1227 */ 1228 void 1229 ieee80211_init(void *arg) 1230 { 1231 struct ieee80211vap *vap = arg; 1232 1233 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1234 "%s\n", __func__); 1235 1236 IEEE80211_LOCK(vap->iv_ic); 1237 ieee80211_start_locked(vap); 1238 IEEE80211_UNLOCK(vap->iv_ic); 1239 } 1240 1241 /* 1242 * Start all runnable vap's on a device. 1243 */ 1244 void 1245 ieee80211_start_all(struct ieee80211com *ic) 1246 { 1247 struct ieee80211vap *vap; 1248 1249 IEEE80211_LOCK(ic); 1250 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1251 struct ifnet *ifp = vap->iv_ifp; 1252 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1253 ieee80211_start_locked(vap); 1254 } 1255 IEEE80211_UNLOCK(ic); 1256 } 1257 1258 /* 1259 * Stop a vap. We force it down using the state machine 1260 * then mark it's ifnet not running. If this is the last 1261 * vap running on the underlying device then we close it 1262 * too to insure it will be properly initialized when the 1263 * next vap is brought up. 1264 */ 1265 void 1266 ieee80211_stop_locked(struct ieee80211vap *vap) 1267 { 1268 struct ieee80211com *ic = vap->iv_ic; 1269 struct ifnet *ifp = vap->iv_ifp; 1270 struct ifnet *parent = ic->ic_ifp; 1271 1272 IEEE80211_LOCK_ASSERT(ic); 1273 1274 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1275 "stop running, %d vaps running\n", ic->ic_nrunning); 1276 1277 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1278 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1279 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1280 if (--ic->ic_nrunning == 0 && 1281 (parent->if_drv_flags & IFF_DRV_RUNNING)) { 1282 IEEE80211_DPRINTF(vap, 1283 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1284 "down parent %s\n", parent->if_xname); 1285 parent->if_flags &= ~IFF_UP; 1286 ieee80211_runtask(ic, &ic->ic_parent_task); 1287 } 1288 } 1289 } 1290 1291 void 1292 ieee80211_stop(struct ieee80211vap *vap) 1293 { 1294 struct ieee80211com *ic = vap->iv_ic; 1295 1296 IEEE80211_LOCK(ic); 1297 ieee80211_stop_locked(vap); 1298 IEEE80211_UNLOCK(ic); 1299 } 1300 1301 /* 1302 * Stop all vap's running on a device. 1303 */ 1304 void 1305 ieee80211_stop_all(struct ieee80211com *ic) 1306 { 1307 struct ieee80211vap *vap; 1308 1309 IEEE80211_LOCK(ic); 1310 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1311 struct ifnet *ifp = vap->iv_ifp; 1312 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1313 ieee80211_stop_locked(vap); 1314 } 1315 IEEE80211_UNLOCK(ic); 1316 1317 ieee80211_waitfor_parent(ic); 1318 } 1319 1320 /* 1321 * Stop all vap's running on a device and arrange 1322 * for those that were running to be resumed. 1323 */ 1324 void 1325 ieee80211_suspend_all(struct ieee80211com *ic) 1326 { 1327 struct ieee80211vap *vap; 1328 1329 IEEE80211_LOCK(ic); 1330 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1331 struct ifnet *ifp = vap->iv_ifp; 1332 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1333 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1334 ieee80211_stop_locked(vap); 1335 } 1336 } 1337 IEEE80211_UNLOCK(ic); 1338 1339 ieee80211_waitfor_parent(ic); 1340 } 1341 1342 /* 1343 * Start all vap's marked for resume. 1344 */ 1345 void 1346 ieee80211_resume_all(struct ieee80211com *ic) 1347 { 1348 struct ieee80211vap *vap; 1349 1350 IEEE80211_LOCK(ic); 1351 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1352 struct ifnet *ifp = vap->iv_ifp; 1353 if (!IFNET_IS_UP_RUNNING(ifp) && 1354 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1355 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1356 ieee80211_start_locked(vap); 1357 } 1358 } 1359 IEEE80211_UNLOCK(ic); 1360 } 1361 1362 void 1363 ieee80211_beacon_miss(struct ieee80211com *ic) 1364 { 1365 IEEE80211_LOCK(ic); 1366 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1367 /* Process in a taskq, the handler may reenter the driver */ 1368 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1369 } 1370 IEEE80211_UNLOCK(ic); 1371 } 1372 1373 static void 1374 beacon_miss(void *arg, int npending) 1375 { 1376 struct ieee80211com *ic = arg; 1377 struct ieee80211vap *vap; 1378 1379 /* XXX locking */ 1380 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1381 /* 1382 * We only pass events through for sta vap's in RUN state; 1383 * may be too restrictive but for now this saves all the 1384 * handlers duplicating these checks. 1385 */ 1386 if (vap->iv_opmode == IEEE80211_M_STA && 1387 vap->iv_state >= IEEE80211_S_RUN && 1388 vap->iv_bmiss != NULL) 1389 vap->iv_bmiss(vap); 1390 } 1391 } 1392 1393 static void 1394 beacon_swmiss(void *arg, int npending) 1395 { 1396 struct ieee80211vap *vap = arg; 1397 1398 if (vap->iv_state != IEEE80211_S_RUN) 1399 return; 1400 1401 /* XXX Call multiple times if npending > zero? */ 1402 vap->iv_bmiss(vap); 1403 } 1404 1405 /* 1406 * Software beacon miss handling. Check if any beacons 1407 * were received in the last period. If not post a 1408 * beacon miss; otherwise reset the counter. 1409 */ 1410 void 1411 ieee80211_swbmiss(void *arg) 1412 { 1413 struct ieee80211vap *vap = arg; 1414 struct ieee80211com *ic = vap->iv_ic; 1415 1416 /* XXX sleep state? */ 1417 KASSERT(vap->iv_state == IEEE80211_S_RUN, 1418 ("wrong state %d", vap->iv_state)); 1419 1420 if (ic->ic_flags & IEEE80211_F_SCAN) { 1421 /* 1422 * If scanning just ignore and reset state. If we get a 1423 * bmiss after coming out of scan because we haven't had 1424 * time to receive a beacon then we should probe the AP 1425 * before posting a real bmiss (unless iv_bmiss_max has 1426 * been artifiically lowered). A cleaner solution might 1427 * be to disable the timer on scan start/end but to handle 1428 * case of multiple sta vap's we'd need to disable the 1429 * timers of all affected vap's. 1430 */ 1431 vap->iv_swbmiss_count = 0; 1432 } else if (vap->iv_swbmiss_count == 0) { 1433 if (vap->iv_bmiss != NULL) 1434 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1435 if (vap->iv_bmiss_count == 0) /* don't re-arm timer */ 1436 return; 1437 } else 1438 vap->iv_swbmiss_count = 0; 1439 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1440 ieee80211_swbmiss, vap); 1441 } 1442 1443 /* 1444 * Start an 802.11h channel switch. We record the parameters, 1445 * mark the operation pending, notify each vap through the 1446 * beacon update mechanism so it can update the beacon frame 1447 * contents, and then switch vap's to CSA state to block outbound 1448 * traffic. Devices that handle CSA directly can use the state 1449 * switch to do the right thing so long as they call 1450 * ieee80211_csa_completeswitch when it's time to complete the 1451 * channel change. Devices that depend on the net80211 layer can 1452 * use ieee80211_beacon_update to handle the countdown and the 1453 * channel switch. 1454 */ 1455 void 1456 ieee80211_csa_startswitch(struct ieee80211com *ic, 1457 struct ieee80211_channel *c, int mode, int count) 1458 { 1459 struct ieee80211vap *vap; 1460 1461 IEEE80211_LOCK_ASSERT(ic); 1462 1463 ic->ic_csa_newchan = c; 1464 ic->ic_csa_mode = mode; 1465 ic->ic_csa_count = count; 1466 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1467 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1468 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1469 vap->iv_opmode == IEEE80211_M_IBSS || 1470 vap->iv_opmode == IEEE80211_M_MBSS) 1471 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1472 /* switch to CSA state to block outbound traffic */ 1473 if (vap->iv_state == IEEE80211_S_RUN) 1474 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1475 } 1476 ieee80211_notify_csa(ic, c, mode, count); 1477 } 1478 1479 static void 1480 csa_completeswitch(struct ieee80211com *ic) 1481 { 1482 struct ieee80211vap *vap; 1483 1484 ic->ic_csa_newchan = NULL; 1485 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1486 1487 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1488 if (vap->iv_state == IEEE80211_S_CSA) 1489 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1490 } 1491 1492 /* 1493 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1494 * We clear state and move all vap's in CSA state to RUN state 1495 * so they can again transmit. 1496 */ 1497 void 1498 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1499 { 1500 IEEE80211_LOCK_ASSERT(ic); 1501 1502 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1503 1504 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1505 csa_completeswitch(ic); 1506 } 1507 1508 /* 1509 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1510 * We clear state and move all vap's in CSA state to RUN state 1511 * so they can again transmit. 1512 */ 1513 void 1514 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1515 { 1516 IEEE80211_LOCK_ASSERT(ic); 1517 1518 csa_completeswitch(ic); 1519 } 1520 1521 /* 1522 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1523 * We clear state and move all vap's in CAC state to RUN state. 1524 */ 1525 void 1526 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1527 { 1528 struct ieee80211com *ic = vap0->iv_ic; 1529 struct ieee80211vap *vap; 1530 1531 IEEE80211_LOCK(ic); 1532 /* 1533 * Complete CAC state change for lead vap first; then 1534 * clock all the other vap's waiting. 1535 */ 1536 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1537 ("wrong state %d", vap0->iv_state)); 1538 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1539 1540 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1541 if (vap->iv_state == IEEE80211_S_CAC) 1542 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1543 IEEE80211_UNLOCK(ic); 1544 } 1545 1546 /* 1547 * Force all vap's other than the specified vap to the INIT state 1548 * and mark them as waiting for a scan to complete. These vaps 1549 * will be brought up when the scan completes and the scanning vap 1550 * reaches RUN state by wakeupwaiting. 1551 */ 1552 static void 1553 markwaiting(struct ieee80211vap *vap0) 1554 { 1555 struct ieee80211com *ic = vap0->iv_ic; 1556 struct ieee80211vap *vap; 1557 1558 IEEE80211_LOCK_ASSERT(ic); 1559 1560 /* 1561 * A vap list entry can not disappear since we are running on the 1562 * taskqueue and a vap destroy will queue and drain another state 1563 * change task. 1564 */ 1565 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1566 if (vap == vap0) 1567 continue; 1568 if (vap->iv_state != IEEE80211_S_INIT) { 1569 /* NB: iv_newstate may drop the lock */ 1570 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1571 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1572 } 1573 } 1574 } 1575 1576 /* 1577 * Wakeup all vap's waiting for a scan to complete. This is the 1578 * companion to markwaiting (above) and is used to coordinate 1579 * multiple vaps scanning. 1580 * This is called from the state taskqueue. 1581 */ 1582 static void 1583 wakeupwaiting(struct ieee80211vap *vap0) 1584 { 1585 struct ieee80211com *ic = vap0->iv_ic; 1586 struct ieee80211vap *vap; 1587 1588 IEEE80211_LOCK_ASSERT(ic); 1589 1590 /* 1591 * A vap list entry can not disappear since we are running on the 1592 * taskqueue and a vap destroy will queue and drain another state 1593 * change task. 1594 */ 1595 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1596 if (vap == vap0) 1597 continue; 1598 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1599 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1600 /* NB: sta's cannot go INIT->RUN */ 1601 /* NB: iv_newstate may drop the lock */ 1602 vap->iv_newstate(vap, 1603 vap->iv_opmode == IEEE80211_M_STA ? 1604 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1605 } 1606 } 1607 } 1608 1609 /* 1610 * Handle post state change work common to all operating modes. 1611 */ 1612 static void 1613 ieee80211_newstate_cb(void *xvap, int npending) 1614 { 1615 struct ieee80211vap *vap = xvap; 1616 struct ieee80211com *ic = vap->iv_ic; 1617 enum ieee80211_state nstate, ostate; 1618 int arg, rc; 1619 1620 IEEE80211_LOCK(ic); 1621 nstate = vap->iv_nstate; 1622 arg = vap->iv_nstate_arg; 1623 1624 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1625 /* 1626 * We have been requested to drop back to the INIT before 1627 * proceeding to the new state. 1628 */ 1629 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1630 "%s: %s -> %s arg %d\n", __func__, 1631 ieee80211_state_name[vap->iv_state], 1632 ieee80211_state_name[IEEE80211_S_INIT], arg); 1633 vap->iv_newstate(vap, IEEE80211_S_INIT, arg); 1634 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT; 1635 } 1636 1637 ostate = vap->iv_state; 1638 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1639 /* 1640 * SCAN was forced; e.g. on beacon miss. Force other running 1641 * vap's to INIT state and mark them as waiting for the scan to 1642 * complete. This insures they don't interfere with our 1643 * scanning. Since we are single threaded the vaps can not 1644 * transition again while we are executing. 1645 * 1646 * XXX not always right, assumes ap follows sta 1647 */ 1648 markwaiting(vap); 1649 } 1650 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1651 "%s: %s -> %s arg %d\n", __func__, 1652 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 1653 1654 rc = vap->iv_newstate(vap, nstate, arg); 1655 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 1656 if (rc != 0) { 1657 /* State transition failed */ 1658 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 1659 KASSERT(nstate != IEEE80211_S_INIT, 1660 ("INIT state change failed")); 1661 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1662 "%s: %s returned error %d\n", __func__, 1663 ieee80211_state_name[nstate], rc); 1664 goto done; 1665 } 1666 1667 /* No actual transition, skip post processing */ 1668 if (ostate == nstate) 1669 goto done; 1670 1671 if (nstate == IEEE80211_S_RUN) { 1672 /* 1673 * OACTIVE may be set on the vap if the upper layer 1674 * tried to transmit (e.g. IPv6 NDP) before we reach 1675 * RUN state. Clear it and restart xmit. 1676 * 1677 * Note this can also happen as a result of SLEEP->RUN 1678 * (i.e. coming out of power save mode). 1679 */ 1680 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1681 if_start(vap->iv_ifp); 1682 1683 /* bring up any vaps waiting on us */ 1684 wakeupwaiting(vap); 1685 } else if (nstate == IEEE80211_S_INIT) { 1686 /* 1687 * Flush the scan cache if we did the last scan (XXX?) 1688 * and flush any frames on send queues from this vap. 1689 * Note the mgt q is used only for legacy drivers and 1690 * will go away shortly. 1691 */ 1692 ieee80211_scan_flush(vap); 1693 1694 /* XXX NB: cast for altq */ 1695 ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap); 1696 } 1697 done: 1698 IEEE80211_UNLOCK(ic); 1699 } 1700 1701 /* 1702 * Public interface for initiating a state machine change. 1703 * This routine single-threads the request and coordinates 1704 * the scheduling of multiple vaps for the purpose of selecting 1705 * an operating channel. Specifically the following scenarios 1706 * are handled: 1707 * o only one vap can be selecting a channel so on transition to 1708 * SCAN state if another vap is already scanning then 1709 * mark the caller for later processing and return without 1710 * doing anything (XXX? expectations by caller of synchronous operation) 1711 * o only one vap can be doing CAC of a channel so on transition to 1712 * CAC state if another vap is already scanning for radar then 1713 * mark the caller for later processing and return without 1714 * doing anything (XXX? expectations by caller of synchronous operation) 1715 * o if another vap is already running when a request is made 1716 * to SCAN then an operating channel has been chosen; bypass 1717 * the scan and just join the channel 1718 * 1719 * Note that the state change call is done through the iv_newstate 1720 * method pointer so any driver routine gets invoked. The driver 1721 * will normally call back into operating mode-specific 1722 * ieee80211_newstate routines (below) unless it needs to completely 1723 * bypass the state machine (e.g. because the firmware has it's 1724 * own idea how things should work). Bypassing the net80211 layer 1725 * is usually a mistake and indicates lack of proper integration 1726 * with the net80211 layer. 1727 */ 1728 static int 1729 ieee80211_new_state_locked(struct ieee80211vap *vap, 1730 enum ieee80211_state nstate, int arg) 1731 { 1732 struct ieee80211com *ic = vap->iv_ic; 1733 struct ieee80211vap *vp; 1734 enum ieee80211_state ostate; 1735 int nrunning, nscanning; 1736 1737 IEEE80211_LOCK_ASSERT(ic); 1738 1739 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 1740 if (vap->iv_nstate == IEEE80211_S_INIT) { 1741 /* 1742 * XXX The vap is being stopped, do no allow any other 1743 * state changes until this is completed. 1744 */ 1745 return -1; 1746 } else if (vap->iv_state != vap->iv_nstate) { 1747 #if 0 1748 /* Warn if the previous state hasn't completed. */ 1749 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1750 "%s: pending %s -> %s transition lost\n", __func__, 1751 ieee80211_state_name[vap->iv_state], 1752 ieee80211_state_name[vap->iv_nstate]); 1753 #else 1754 /* XXX temporarily enable to identify issues */ 1755 if_printf(vap->iv_ifp, 1756 "%s: pending %s -> %s transition lost\n", 1757 __func__, ieee80211_state_name[vap->iv_state], 1758 ieee80211_state_name[vap->iv_nstate]); 1759 #endif 1760 } 1761 } 1762 1763 nrunning = nscanning = 0; 1764 /* XXX can track this state instead of calculating */ 1765 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 1766 if (vp != vap) { 1767 if (vp->iv_state >= IEEE80211_S_RUN) 1768 nrunning++; 1769 /* XXX doesn't handle bg scan */ 1770 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 1771 else if (vp->iv_state > IEEE80211_S_INIT) 1772 nscanning++; 1773 } 1774 } 1775 ostate = vap->iv_state; 1776 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1777 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 1778 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 1779 nrunning, nscanning); 1780 switch (nstate) { 1781 case IEEE80211_S_SCAN: 1782 if (ostate == IEEE80211_S_INIT) { 1783 /* 1784 * INIT -> SCAN happens on initial bringup. 1785 */ 1786 KASSERT(!(nscanning && nrunning), 1787 ("%d scanning and %d running", nscanning, nrunning)); 1788 if (nscanning) { 1789 /* 1790 * Someone is scanning, defer our state 1791 * change until the work has completed. 1792 */ 1793 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1794 "%s: defer %s -> %s\n", 1795 __func__, ieee80211_state_name[ostate], 1796 ieee80211_state_name[nstate]); 1797 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1798 return 0; 1799 } 1800 if (nrunning) { 1801 /* 1802 * Someone is operating; just join the channel 1803 * they have chosen. 1804 */ 1805 /* XXX kill arg? */ 1806 /* XXX check each opmode, adhoc? */ 1807 if (vap->iv_opmode == IEEE80211_M_STA) 1808 nstate = IEEE80211_S_SCAN; 1809 else 1810 nstate = IEEE80211_S_RUN; 1811 #ifdef IEEE80211_DEBUG 1812 if (nstate != IEEE80211_S_SCAN) { 1813 IEEE80211_DPRINTF(vap, 1814 IEEE80211_MSG_STATE, 1815 "%s: override, now %s -> %s\n", 1816 __func__, 1817 ieee80211_state_name[ostate], 1818 ieee80211_state_name[nstate]); 1819 } 1820 #endif 1821 } 1822 } 1823 break; 1824 case IEEE80211_S_RUN: 1825 if (vap->iv_opmode == IEEE80211_M_WDS && 1826 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 1827 nscanning) { 1828 /* 1829 * Legacy WDS with someone else scanning; don't 1830 * go online until that completes as we should 1831 * follow the other vap to the channel they choose. 1832 */ 1833 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1834 "%s: defer %s -> %s (legacy WDS)\n", __func__, 1835 ieee80211_state_name[ostate], 1836 ieee80211_state_name[nstate]); 1837 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1838 return 0; 1839 } 1840 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1841 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 1842 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 1843 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 1844 /* 1845 * This is a DFS channel, transition to CAC state 1846 * instead of RUN. This allows us to initiate 1847 * Channel Availability Check (CAC) as specified 1848 * by 11h/DFS. 1849 */ 1850 nstate = IEEE80211_S_CAC; 1851 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1852 "%s: override %s -> %s (DFS)\n", __func__, 1853 ieee80211_state_name[ostate], 1854 ieee80211_state_name[nstate]); 1855 } 1856 break; 1857 case IEEE80211_S_INIT: 1858 /* cancel any scan in progress */ 1859 ieee80211_cancel_scan(vap); 1860 if (ostate == IEEE80211_S_INIT ) { 1861 /* XXX don't believe this */ 1862 /* INIT -> INIT. nothing to do */ 1863 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1864 } 1865 /* fall thru... */ 1866 default: 1867 break; 1868 } 1869 /* defer the state change to a thread */ 1870 vap->iv_nstate = nstate; 1871 vap->iv_nstate_arg = arg; 1872 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 1873 ieee80211_runtask(ic, &vap->iv_nstate_task); 1874 return EINPROGRESS; 1875 } 1876 1877 int 1878 ieee80211_new_state(struct ieee80211vap *vap, 1879 enum ieee80211_state nstate, int arg) 1880 { 1881 struct ieee80211com *ic = vap->iv_ic; 1882 int rc; 1883 1884 IEEE80211_LOCK(ic); 1885 rc = ieee80211_new_state_locked(vap, nstate, arg); 1886 IEEE80211_UNLOCK(ic); 1887 return rc; 1888 } 1889