1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 protocol support. 32 */ 33 34 #include "opt_inet.h" 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/systm.h> 40 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 44 #include <net/if.h> 45 #include <net/if_media.h> 46 #include <net/ethernet.h> /* XXX for ether_sprintf */ 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_adhoc.h> 50 #include <net80211/ieee80211_sta.h> 51 #include <net80211/ieee80211_hostap.h> 52 #include <net80211/ieee80211_wds.h> 53 #ifdef IEEE80211_SUPPORT_MESH 54 #include <net80211/ieee80211_mesh.h> 55 #endif 56 #include <net80211/ieee80211_monitor.h> 57 #include <net80211/ieee80211_input.h> 58 59 /* XXX tunables */ 60 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 61 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 62 63 const char *ieee80211_mgt_subtype_name[] = { 64 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 65 "probe_req", "probe_resp", "reserved#6", "reserved#7", 66 "beacon", "atim", "disassoc", "auth", 67 "deauth", "action", "action_noack", "reserved#15" 68 }; 69 const char *ieee80211_ctl_subtype_name[] = { 70 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 71 "reserved#3", "reserved#5", "reserved#6", "reserved#7", 72 "reserved#8", "reserved#9", "ps_poll", "rts", 73 "cts", "ack", "cf_end", "cf_end_ack" 74 }; 75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 76 "IBSS", /* IEEE80211_M_IBSS */ 77 "STA", /* IEEE80211_M_STA */ 78 "WDS", /* IEEE80211_M_WDS */ 79 "AHDEMO", /* IEEE80211_M_AHDEMO */ 80 "HOSTAP", /* IEEE80211_M_HOSTAP */ 81 "MONITOR", /* IEEE80211_M_MONITOR */ 82 "MBSS" /* IEEE80211_M_MBSS */ 83 }; 84 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 85 "INIT", /* IEEE80211_S_INIT */ 86 "SCAN", /* IEEE80211_S_SCAN */ 87 "AUTH", /* IEEE80211_S_AUTH */ 88 "ASSOC", /* IEEE80211_S_ASSOC */ 89 "CAC", /* IEEE80211_S_CAC */ 90 "RUN", /* IEEE80211_S_RUN */ 91 "CSA", /* IEEE80211_S_CSA */ 92 "SLEEP", /* IEEE80211_S_SLEEP */ 93 }; 94 const char *ieee80211_wme_acnames[] = { 95 "WME_AC_BE", 96 "WME_AC_BK", 97 "WME_AC_VI", 98 "WME_AC_VO", 99 "WME_UPSD", 100 }; 101 102 static void beacon_miss(void *, int); 103 static void beacon_swmiss(void *, int); 104 static void parent_updown(void *, int); 105 static void update_mcast(void *, int); 106 static void update_promisc(void *, int); 107 static void update_channel(void *, int); 108 static void ieee80211_newstate_cb(void *, int); 109 static int ieee80211_new_state_locked(struct ieee80211vap *, 110 enum ieee80211_state, int); 111 112 static int 113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 114 const struct ieee80211_bpf_params *params) 115 { 116 struct ifnet *ifp = ni->ni_ic->ic_ifp; 117 118 if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n"); 119 m_freem(m); 120 return ENETDOWN; 121 } 122 123 void 124 ieee80211_proto_attach(struct ieee80211com *ic) 125 { 126 struct ifnet *ifp = ic->ic_ifp; 127 128 /* override the 802.3 setting */ 129 ifp->if_hdrlen = ic->ic_headroom 130 + sizeof(struct ieee80211_qosframe_addr4) 131 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 132 + IEEE80211_WEP_EXTIVLEN; 133 /* XXX no way to recalculate on ifdetach */ 134 if (ALIGN(ifp->if_hdrlen) > max_linkhdr) { 135 /* XXX sanity check... */ 136 max_linkhdr = ALIGN(ifp->if_hdrlen); 137 max_hdr = max_linkhdr + max_protohdr; 138 max_datalen = MHLEN - max_hdr; 139 } 140 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 141 142 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp); 143 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 144 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 145 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 146 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 147 148 ic->ic_wme.wme_hipri_switch_hysteresis = 149 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 150 151 /* initialize management frame handlers */ 152 ic->ic_send_mgmt = ieee80211_send_mgmt; 153 ic->ic_raw_xmit = null_raw_xmit; 154 155 ieee80211_adhoc_attach(ic); 156 ieee80211_sta_attach(ic); 157 ieee80211_wds_attach(ic); 158 ieee80211_hostap_attach(ic); 159 #ifdef IEEE80211_SUPPORT_MESH 160 ieee80211_mesh_attach(ic); 161 #endif 162 ieee80211_monitor_attach(ic); 163 } 164 165 void 166 ieee80211_proto_detach(struct ieee80211com *ic) 167 { 168 ieee80211_monitor_detach(ic); 169 #ifdef IEEE80211_SUPPORT_MESH 170 ieee80211_mesh_detach(ic); 171 #endif 172 ieee80211_hostap_detach(ic); 173 ieee80211_wds_detach(ic); 174 ieee80211_adhoc_detach(ic); 175 ieee80211_sta_detach(ic); 176 } 177 178 static void 179 null_update_beacon(struct ieee80211vap *vap, int item) 180 { 181 } 182 183 void 184 ieee80211_proto_vattach(struct ieee80211vap *vap) 185 { 186 struct ieee80211com *ic = vap->iv_ic; 187 struct ifnet *ifp = vap->iv_ifp; 188 int i; 189 190 /* override the 802.3 setting */ 191 ifp->if_hdrlen = ic->ic_ifp->if_hdrlen; 192 193 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 194 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 195 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 196 callout_init(&vap->iv_swbmiss, CALLOUT_MPSAFE); 197 callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE); 198 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 199 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 200 /* 201 * Install default tx rate handling: no fixed rate, lowest 202 * supported rate for mgmt and multicast frames. Default 203 * max retry count. These settings can be changed by the 204 * driver and/or user applications. 205 */ 206 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 207 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 208 209 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 210 211 /* 212 * Setting the management rate to MCS 0 assumes that the 213 * BSS Basic rate set is empty and the BSS Basic MCS set 214 * is not. 215 * 216 * Since we're not checking this, default to the lowest 217 * defined rate for this mode. 218 * 219 * At least one 11n AP (DLINK DIR-825) is reported to drop 220 * some MCS management traffic (eg BA response frames.) 221 * 222 * See also: 9.6.0 of the 802.11n-2009 specification. 223 */ 224 #ifdef NOTYET 225 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 226 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 227 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 228 } else { 229 vap->iv_txparms[i].mgmtrate = 230 rs->rs_rates[0] & IEEE80211_RATE_VAL; 231 vap->iv_txparms[i].mcastrate = 232 rs->rs_rates[0] & IEEE80211_RATE_VAL; 233 } 234 #endif 235 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 236 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 237 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 238 } 239 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 240 241 vap->iv_update_beacon = null_update_beacon; 242 vap->iv_deliver_data = ieee80211_deliver_data; 243 244 /* attach support for operating mode */ 245 ic->ic_vattach[vap->iv_opmode](vap); 246 } 247 248 void 249 ieee80211_proto_vdetach(struct ieee80211vap *vap) 250 { 251 #define FREEAPPIE(ie) do { \ 252 if (ie != NULL) \ 253 free(ie, M_80211_NODE_IE); \ 254 } while (0) 255 /* 256 * Detach operating mode module. 257 */ 258 if (vap->iv_opdetach != NULL) 259 vap->iv_opdetach(vap); 260 /* 261 * This should not be needed as we detach when reseting 262 * the state but be conservative here since the 263 * authenticator may do things like spawn kernel threads. 264 */ 265 if (vap->iv_auth->ia_detach != NULL) 266 vap->iv_auth->ia_detach(vap); 267 /* 268 * Detach any ACL'ator. 269 */ 270 if (vap->iv_acl != NULL) 271 vap->iv_acl->iac_detach(vap); 272 273 FREEAPPIE(vap->iv_appie_beacon); 274 FREEAPPIE(vap->iv_appie_probereq); 275 FREEAPPIE(vap->iv_appie_proberesp); 276 FREEAPPIE(vap->iv_appie_assocreq); 277 FREEAPPIE(vap->iv_appie_assocresp); 278 FREEAPPIE(vap->iv_appie_wpa); 279 #undef FREEAPPIE 280 } 281 282 /* 283 * Simple-minded authenticator module support. 284 */ 285 286 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 287 /* XXX well-known names */ 288 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 289 "wlan_internal", /* IEEE80211_AUTH_NONE */ 290 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 291 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 292 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 293 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 294 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 295 }; 296 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 297 298 static const struct ieee80211_authenticator auth_internal = { 299 .ia_name = "wlan_internal", 300 .ia_attach = NULL, 301 .ia_detach = NULL, 302 .ia_node_join = NULL, 303 .ia_node_leave = NULL, 304 }; 305 306 /* 307 * Setup internal authenticators once; they are never unregistered. 308 */ 309 void 310 ieee80211_auth_setup(void) 311 { 312 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 313 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 314 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 315 } 316 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 317 318 const struct ieee80211_authenticator * 319 ieee80211_authenticator_get(int auth) 320 { 321 if (auth >= IEEE80211_AUTH_MAX) 322 return NULL; 323 if (authenticators[auth] == NULL) 324 ieee80211_load_module(auth_modnames[auth]); 325 return authenticators[auth]; 326 } 327 328 void 329 ieee80211_authenticator_register(int type, 330 const struct ieee80211_authenticator *auth) 331 { 332 if (type >= IEEE80211_AUTH_MAX) 333 return; 334 authenticators[type] = auth; 335 } 336 337 void 338 ieee80211_authenticator_unregister(int type) 339 { 340 341 if (type >= IEEE80211_AUTH_MAX) 342 return; 343 authenticators[type] = NULL; 344 } 345 346 /* 347 * Very simple-minded ACL module support. 348 */ 349 /* XXX just one for now */ 350 static const struct ieee80211_aclator *acl = NULL; 351 352 void 353 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 354 { 355 printf("wlan: %s acl policy registered\n", iac->iac_name); 356 acl = iac; 357 } 358 359 void 360 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 361 { 362 if (acl == iac) 363 acl = NULL; 364 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 365 } 366 367 const struct ieee80211_aclator * 368 ieee80211_aclator_get(const char *name) 369 { 370 if (acl == NULL) 371 ieee80211_load_module("wlan_acl"); 372 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 373 } 374 375 void 376 ieee80211_print_essid(const uint8_t *essid, int len) 377 { 378 const uint8_t *p; 379 int i; 380 381 if (len > IEEE80211_NWID_LEN) 382 len = IEEE80211_NWID_LEN; 383 /* determine printable or not */ 384 for (i = 0, p = essid; i < len; i++, p++) { 385 if (*p < ' ' || *p > 0x7e) 386 break; 387 } 388 if (i == len) { 389 printf("\""); 390 for (i = 0, p = essid; i < len; i++, p++) 391 printf("%c", *p); 392 printf("\""); 393 } else { 394 printf("0x"); 395 for (i = 0, p = essid; i < len; i++, p++) 396 printf("%02x", *p); 397 } 398 } 399 400 void 401 ieee80211_dump_pkt(struct ieee80211com *ic, 402 const uint8_t *buf, int len, int rate, int rssi) 403 { 404 const struct ieee80211_frame *wh; 405 int i; 406 407 wh = (const struct ieee80211_frame *)buf; 408 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 409 case IEEE80211_FC1_DIR_NODS: 410 printf("NODS %s", ether_sprintf(wh->i_addr2)); 411 printf("->%s", ether_sprintf(wh->i_addr1)); 412 printf("(%s)", ether_sprintf(wh->i_addr3)); 413 break; 414 case IEEE80211_FC1_DIR_TODS: 415 printf("TODS %s", ether_sprintf(wh->i_addr2)); 416 printf("->%s", ether_sprintf(wh->i_addr3)); 417 printf("(%s)", ether_sprintf(wh->i_addr1)); 418 break; 419 case IEEE80211_FC1_DIR_FROMDS: 420 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 421 printf("->%s", ether_sprintf(wh->i_addr1)); 422 printf("(%s)", ether_sprintf(wh->i_addr2)); 423 break; 424 case IEEE80211_FC1_DIR_DSTODS: 425 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 426 printf("->%s", ether_sprintf(wh->i_addr3)); 427 printf("(%s", ether_sprintf(wh->i_addr2)); 428 printf("->%s)", ether_sprintf(wh->i_addr1)); 429 break; 430 } 431 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 432 case IEEE80211_FC0_TYPE_DATA: 433 printf(" data"); 434 break; 435 case IEEE80211_FC0_TYPE_MGT: 436 printf(" %s", ieee80211_mgt_subtype_name[ 437 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 438 >> IEEE80211_FC0_SUBTYPE_SHIFT]); 439 break; 440 default: 441 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 442 break; 443 } 444 if (IEEE80211_QOS_HAS_SEQ(wh)) { 445 const struct ieee80211_qosframe *qwh = 446 (const struct ieee80211_qosframe *)buf; 447 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 448 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 449 } 450 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 451 int off; 452 453 off = ieee80211_anyhdrspace(ic, wh); 454 printf(" WEP [IV %.02x %.02x %.02x", 455 buf[off+0], buf[off+1], buf[off+2]); 456 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 457 printf(" %.02x %.02x %.02x", 458 buf[off+4], buf[off+5], buf[off+6]); 459 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 460 } 461 if (rate >= 0) 462 printf(" %dM", rate / 2); 463 if (rssi >= 0) 464 printf(" +%d", rssi); 465 printf("\n"); 466 if (len > 0) { 467 for (i = 0; i < len; i++) { 468 if ((i & 1) == 0) 469 printf(" "); 470 printf("%02x", buf[i]); 471 } 472 printf("\n"); 473 } 474 } 475 476 static __inline int 477 findrix(const struct ieee80211_rateset *rs, int r) 478 { 479 int i; 480 481 for (i = 0; i < rs->rs_nrates; i++) 482 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 483 return i; 484 return -1; 485 } 486 487 int 488 ieee80211_fix_rate(struct ieee80211_node *ni, 489 struct ieee80211_rateset *nrs, int flags) 490 { 491 #define RV(v) ((v) & IEEE80211_RATE_VAL) 492 struct ieee80211vap *vap = ni->ni_vap; 493 struct ieee80211com *ic = ni->ni_ic; 494 int i, j, rix, error; 495 int okrate, badrate, fixedrate, ucastrate; 496 const struct ieee80211_rateset *srs; 497 uint8_t r; 498 499 error = 0; 500 okrate = badrate = 0; 501 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 502 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 503 /* 504 * Workaround awkwardness with fixed rate. We are called 505 * to check both the legacy rate set and the HT rate set 506 * but we must apply any legacy fixed rate check only to the 507 * legacy rate set and vice versa. We cannot tell what type 508 * of rate set we've been given (legacy or HT) but we can 509 * distinguish the fixed rate type (MCS have 0x80 set). 510 * So to deal with this the caller communicates whether to 511 * check MCS or legacy rate using the flags and we use the 512 * type of any fixed rate to avoid applying an MCS to a 513 * legacy rate and vice versa. 514 */ 515 if (ucastrate & 0x80) { 516 if (flags & IEEE80211_F_DOFRATE) 517 flags &= ~IEEE80211_F_DOFRATE; 518 } else if ((ucastrate & 0x80) == 0) { 519 if (flags & IEEE80211_F_DOFMCS) 520 flags &= ~IEEE80211_F_DOFMCS; 521 } 522 /* NB: required to make MCS match below work */ 523 ucastrate &= IEEE80211_RATE_VAL; 524 } 525 fixedrate = IEEE80211_FIXED_RATE_NONE; 526 /* 527 * XXX we are called to process both MCS and legacy rates; 528 * we must use the appropriate basic rate set or chaos will 529 * ensue; for now callers that want MCS must supply 530 * IEEE80211_F_DOBRS; at some point we'll need to split this 531 * function so there are two variants, one for MCS and one 532 * for legacy rates. 533 */ 534 if (flags & IEEE80211_F_DOBRS) 535 srs = (const struct ieee80211_rateset *) 536 ieee80211_get_suphtrates(ic, ni->ni_chan); 537 else 538 srs = ieee80211_get_suprates(ic, ni->ni_chan); 539 for (i = 0; i < nrs->rs_nrates; ) { 540 if (flags & IEEE80211_F_DOSORT) { 541 /* 542 * Sort rates. 543 */ 544 for (j = i + 1; j < nrs->rs_nrates; j++) { 545 if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) { 546 r = nrs->rs_rates[i]; 547 nrs->rs_rates[i] = nrs->rs_rates[j]; 548 nrs->rs_rates[j] = r; 549 } 550 } 551 } 552 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 553 badrate = r; 554 /* 555 * Check for fixed rate. 556 */ 557 if (r == ucastrate) 558 fixedrate = r; 559 /* 560 * Check against supported rates. 561 */ 562 rix = findrix(srs, r); 563 if (flags & IEEE80211_F_DONEGO) { 564 if (rix < 0) { 565 /* 566 * A rate in the node's rate set is not 567 * supported. If this is a basic rate and we 568 * are operating as a STA then this is an error. 569 * Otherwise we just discard/ignore the rate. 570 */ 571 if ((flags & IEEE80211_F_JOIN) && 572 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 573 error++; 574 } else if ((flags & IEEE80211_F_JOIN) == 0) { 575 /* 576 * Overwrite with the supported rate 577 * value so any basic rate bit is set. 578 */ 579 nrs->rs_rates[i] = srs->rs_rates[rix]; 580 } 581 } 582 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 583 /* 584 * Delete unacceptable rates. 585 */ 586 nrs->rs_nrates--; 587 for (j = i; j < nrs->rs_nrates; j++) 588 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 589 nrs->rs_rates[j] = 0; 590 continue; 591 } 592 if (rix >= 0) 593 okrate = nrs->rs_rates[i]; 594 i++; 595 } 596 if (okrate == 0 || error != 0 || 597 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 598 fixedrate != ucastrate)) { 599 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 600 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 601 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 602 return badrate | IEEE80211_RATE_BASIC; 603 } else 604 return RV(okrate); 605 #undef RV 606 } 607 608 /* 609 * Reset 11g-related state. 610 */ 611 void 612 ieee80211_reset_erp(struct ieee80211com *ic) 613 { 614 ic->ic_flags &= ~IEEE80211_F_USEPROT; 615 ic->ic_nonerpsta = 0; 616 ic->ic_longslotsta = 0; 617 /* 618 * Short slot time is enabled only when operating in 11g 619 * and not in an IBSS. We must also honor whether or not 620 * the driver is capable of doing it. 621 */ 622 ieee80211_set_shortslottime(ic, 623 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 624 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 625 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 626 ic->ic_opmode == IEEE80211_M_HOSTAP && 627 (ic->ic_caps & IEEE80211_C_SHSLOT))); 628 /* 629 * Set short preamble and ERP barker-preamble flags. 630 */ 631 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 632 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 633 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 634 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 635 } else { 636 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 637 ic->ic_flags |= IEEE80211_F_USEBARKER; 638 } 639 } 640 641 /* 642 * Set the short slot time state and notify the driver. 643 */ 644 void 645 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 646 { 647 if (onoff) 648 ic->ic_flags |= IEEE80211_F_SHSLOT; 649 else 650 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 651 /* notify driver */ 652 if (ic->ic_updateslot != NULL) 653 ic->ic_updateslot(ic->ic_ifp); 654 } 655 656 /* 657 * Check if the specified rate set supports ERP. 658 * NB: the rate set is assumed to be sorted. 659 */ 660 int 661 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 662 { 663 #define N(a) (sizeof(a) / sizeof(a[0])) 664 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 665 int i, j; 666 667 if (rs->rs_nrates < N(rates)) 668 return 0; 669 for (i = 0; i < N(rates); i++) { 670 for (j = 0; j < rs->rs_nrates; j++) { 671 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 672 if (rates[i] == r) 673 goto next; 674 if (r > rates[i]) 675 return 0; 676 } 677 return 0; 678 next: 679 ; 680 } 681 return 1; 682 #undef N 683 } 684 685 /* 686 * Mark the basic rates for the rate table based on the 687 * operating mode. For real 11g we mark all the 11b rates 688 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 689 * 11b rates. There's also a pseudo 11a-mode used to mark only 690 * the basic OFDM rates. 691 */ 692 static void 693 setbasicrates(struct ieee80211_rateset *rs, 694 enum ieee80211_phymode mode, int add) 695 { 696 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 697 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 698 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 699 /* NB: mixed b/g */ 700 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 701 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 702 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 703 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 704 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 705 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 706 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 707 /* NB: mixed b/g */ 708 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 709 }; 710 int i, j; 711 712 for (i = 0; i < rs->rs_nrates; i++) { 713 if (!add) 714 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 715 for (j = 0; j < basic[mode].rs_nrates; j++) 716 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 717 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 718 break; 719 } 720 } 721 } 722 723 /* 724 * Set the basic rates in a rate set. 725 */ 726 void 727 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 728 enum ieee80211_phymode mode) 729 { 730 setbasicrates(rs, mode, 0); 731 } 732 733 /* 734 * Add basic rates to a rate set. 735 */ 736 void 737 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 738 enum ieee80211_phymode mode) 739 { 740 setbasicrates(rs, mode, 1); 741 } 742 743 /* 744 * WME protocol support. 745 * 746 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 747 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 748 * Draft 2.0 Test Plan (Appendix D). 749 * 750 * Static/Dynamic Turbo mode settings come from Atheros. 751 */ 752 typedef struct phyParamType { 753 uint8_t aifsn; 754 uint8_t logcwmin; 755 uint8_t logcwmax; 756 uint16_t txopLimit; 757 uint8_t acm; 758 } paramType; 759 760 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 761 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 762 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 763 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 764 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 765 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 766 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 767 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 768 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 769 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 770 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 771 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 772 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 773 }; 774 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 775 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 776 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 777 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 778 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 779 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 780 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 781 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 782 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 783 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 784 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 785 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 786 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 787 }; 788 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 789 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 790 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 791 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 792 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 793 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 794 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 795 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 796 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 797 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 798 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 799 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 800 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 801 }; 802 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 803 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 804 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 805 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 806 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 807 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 808 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 809 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 810 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 811 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 812 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 813 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 814 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 815 }; 816 817 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 818 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 819 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 820 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 821 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 822 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 823 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 824 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 825 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 826 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 827 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 828 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 829 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 830 }; 831 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 832 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 833 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 834 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 835 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 836 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 837 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 838 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 839 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 840 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 841 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 842 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 843 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 844 }; 845 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 846 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 847 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 848 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 849 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 850 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 851 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 852 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 853 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 854 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 855 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 856 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 857 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 858 }; 859 860 static void 861 _setifsparams(struct wmeParams *wmep, const paramType *phy) 862 { 863 wmep->wmep_aifsn = phy->aifsn; 864 wmep->wmep_logcwmin = phy->logcwmin; 865 wmep->wmep_logcwmax = phy->logcwmax; 866 wmep->wmep_txopLimit = phy->txopLimit; 867 } 868 869 static void 870 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 871 struct wmeParams *wmep, const paramType *phy) 872 { 873 wmep->wmep_acm = phy->acm; 874 _setifsparams(wmep, phy); 875 876 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 877 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 878 ieee80211_wme_acnames[ac], type, 879 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 880 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 881 } 882 883 static void 884 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 885 { 886 struct ieee80211com *ic = vap->iv_ic; 887 struct ieee80211_wme_state *wme = &ic->ic_wme; 888 const paramType *pPhyParam, *pBssPhyParam; 889 struct wmeParams *wmep; 890 enum ieee80211_phymode mode; 891 int i; 892 893 IEEE80211_LOCK_ASSERT(ic); 894 895 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 896 return; 897 898 /* 899 * Clear the wme cap_info field so a qoscount from a previous 900 * vap doesn't confuse later code which only parses the beacon 901 * field and updates hardware when said field changes. 902 * Otherwise the hardware is programmed with defaults, not what 903 * the beacon actually announces. 904 */ 905 wme->wme_wmeChanParams.cap_info = 0; 906 907 /* 908 * Select mode; we can be called early in which case we 909 * always use auto mode. We know we'll be called when 910 * entering the RUN state with bsschan setup properly 911 * so state will eventually get set correctly 912 */ 913 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 914 mode = ieee80211_chan2mode(ic->ic_bsschan); 915 else 916 mode = IEEE80211_MODE_AUTO; 917 for (i = 0; i < WME_NUM_AC; i++) { 918 switch (i) { 919 case WME_AC_BK: 920 pPhyParam = &phyParamForAC_BK[mode]; 921 pBssPhyParam = &phyParamForAC_BK[mode]; 922 break; 923 case WME_AC_VI: 924 pPhyParam = &phyParamForAC_VI[mode]; 925 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 926 break; 927 case WME_AC_VO: 928 pPhyParam = &phyParamForAC_VO[mode]; 929 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 930 break; 931 case WME_AC_BE: 932 default: 933 pPhyParam = &phyParamForAC_BE[mode]; 934 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 935 break; 936 } 937 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 938 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 939 setwmeparams(vap, "chan", i, wmep, pPhyParam); 940 } else { 941 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 942 } 943 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 944 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 945 } 946 /* NB: check ic_bss to avoid NULL deref on initial attach */ 947 if (vap->iv_bss != NULL) { 948 /* 949 * Calculate agressive mode switching threshold based 950 * on beacon interval. This doesn't need locking since 951 * we're only called before entering the RUN state at 952 * which point we start sending beacon frames. 953 */ 954 wme->wme_hipri_switch_thresh = 955 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 956 wme->wme_flags &= ~WME_F_AGGRMODE; 957 ieee80211_wme_updateparams(vap); 958 } 959 } 960 961 void 962 ieee80211_wme_initparams(struct ieee80211vap *vap) 963 { 964 struct ieee80211com *ic = vap->iv_ic; 965 966 IEEE80211_LOCK(ic); 967 ieee80211_wme_initparams_locked(vap); 968 IEEE80211_UNLOCK(ic); 969 } 970 971 /* 972 * Update WME parameters for ourself and the BSS. 973 */ 974 void 975 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 976 { 977 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 978 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 979 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 980 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 981 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 982 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 983 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 984 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 985 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 986 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 987 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 988 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 989 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 990 }; 991 struct ieee80211com *ic = vap->iv_ic; 992 struct ieee80211_wme_state *wme = &ic->ic_wme; 993 const struct wmeParams *wmep; 994 struct wmeParams *chanp, *bssp; 995 enum ieee80211_phymode mode; 996 int i; 997 998 /* 999 * Set up the channel access parameters for the physical 1000 * device. First populate the configured settings. 1001 */ 1002 for (i = 0; i < WME_NUM_AC; i++) { 1003 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1004 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1005 chanp->wmep_aifsn = wmep->wmep_aifsn; 1006 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1007 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1008 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1009 1010 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1011 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1012 chanp->wmep_aifsn = wmep->wmep_aifsn; 1013 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1014 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1015 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1016 } 1017 1018 /* 1019 * Select mode; we can be called early in which case we 1020 * always use auto mode. We know we'll be called when 1021 * entering the RUN state with bsschan setup properly 1022 * so state will eventually get set correctly 1023 */ 1024 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1025 mode = ieee80211_chan2mode(ic->ic_bsschan); 1026 else 1027 mode = IEEE80211_MODE_AUTO; 1028 1029 /* 1030 * This implements agressive mode as found in certain 1031 * vendors' AP's. When there is significant high 1032 * priority (VI/VO) traffic in the BSS throttle back BE 1033 * traffic by using conservative parameters. Otherwise 1034 * BE uses agressive params to optimize performance of 1035 * legacy/non-QoS traffic. 1036 */ 1037 if ((vap->iv_opmode == IEEE80211_M_HOSTAP && 1038 (wme->wme_flags & WME_F_AGGRMODE) != 0) || 1039 (vap->iv_opmode == IEEE80211_M_STA && 1040 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) || 1041 (vap->iv_flags & IEEE80211_F_WME) == 0) { 1042 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1043 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1044 1045 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1046 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1047 aggrParam[mode].logcwmin; 1048 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1049 aggrParam[mode].logcwmax; 1050 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1051 (vap->iv_flags & IEEE80211_F_BURST) ? 1052 aggrParam[mode].txopLimit : 0; 1053 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1054 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1055 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1056 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1057 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1058 } 1059 1060 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1061 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1062 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1063 [IEEE80211_MODE_AUTO] = 3, 1064 [IEEE80211_MODE_11A] = 3, 1065 [IEEE80211_MODE_11B] = 4, 1066 [IEEE80211_MODE_11G] = 3, 1067 [IEEE80211_MODE_FH] = 4, 1068 [IEEE80211_MODE_TURBO_A] = 3, 1069 [IEEE80211_MODE_TURBO_G] = 3, 1070 [IEEE80211_MODE_STURBO_A] = 3, 1071 [IEEE80211_MODE_HALF] = 3, 1072 [IEEE80211_MODE_QUARTER] = 3, 1073 [IEEE80211_MODE_11NA] = 3, 1074 [IEEE80211_MODE_11NG] = 3, 1075 }; 1076 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1077 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1078 1079 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1080 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1081 "update %s (chan+bss) logcwmin %u\n", 1082 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1083 } 1084 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* XXX ibss? */ 1085 /* 1086 * Arrange for a beacon update and bump the parameter 1087 * set number so associated stations load the new values. 1088 */ 1089 wme->wme_bssChanParams.cap_info = 1090 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1091 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1092 } 1093 1094 wme->wme_update(ic); 1095 1096 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1097 "%s: WME params updated, cap_info 0x%x\n", __func__, 1098 vap->iv_opmode == IEEE80211_M_STA ? 1099 wme->wme_wmeChanParams.cap_info : 1100 wme->wme_bssChanParams.cap_info); 1101 } 1102 1103 void 1104 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1105 { 1106 struct ieee80211com *ic = vap->iv_ic; 1107 1108 if (ic->ic_caps & IEEE80211_C_WME) { 1109 IEEE80211_LOCK(ic); 1110 ieee80211_wme_updateparams_locked(vap); 1111 IEEE80211_UNLOCK(ic); 1112 } 1113 } 1114 1115 static void 1116 parent_updown(void *arg, int npending) 1117 { 1118 struct ifnet *parent = arg; 1119 1120 parent->if_ioctl(parent, SIOCSIFFLAGS, NULL); 1121 } 1122 1123 static void 1124 update_mcast(void *arg, int npending) 1125 { 1126 struct ieee80211com *ic = arg; 1127 struct ifnet *parent = ic->ic_ifp; 1128 1129 ic->ic_update_mcast(parent); 1130 } 1131 1132 static void 1133 update_promisc(void *arg, int npending) 1134 { 1135 struct ieee80211com *ic = arg; 1136 struct ifnet *parent = ic->ic_ifp; 1137 1138 ic->ic_update_promisc(parent); 1139 } 1140 1141 static void 1142 update_channel(void *arg, int npending) 1143 { 1144 struct ieee80211com *ic = arg; 1145 1146 ic->ic_set_channel(ic); 1147 ieee80211_radiotap_chan_change(ic); 1148 } 1149 1150 /* 1151 * Block until the parent is in a known state. This is 1152 * used after any operations that dispatch a task (e.g. 1153 * to auto-configure the parent device up/down). 1154 */ 1155 void 1156 ieee80211_waitfor_parent(struct ieee80211com *ic) 1157 { 1158 taskqueue_block(ic->ic_tq); 1159 ieee80211_draintask(ic, &ic->ic_parent_task); 1160 ieee80211_draintask(ic, &ic->ic_mcast_task); 1161 ieee80211_draintask(ic, &ic->ic_promisc_task); 1162 ieee80211_draintask(ic, &ic->ic_chan_task); 1163 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1164 taskqueue_unblock(ic->ic_tq); 1165 } 1166 1167 /* 1168 * Start a vap running. If this is the first vap to be 1169 * set running on the underlying device then we 1170 * automatically bring the device up. 1171 */ 1172 void 1173 ieee80211_start_locked(struct ieee80211vap *vap) 1174 { 1175 struct ifnet *ifp = vap->iv_ifp; 1176 struct ieee80211com *ic = vap->iv_ic; 1177 struct ifnet *parent = ic->ic_ifp; 1178 1179 IEEE80211_LOCK_ASSERT(ic); 1180 1181 IEEE80211_DPRINTF(vap, 1182 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1183 "start running, %d vaps running\n", ic->ic_nrunning); 1184 1185 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1186 /* 1187 * Mark us running. Note that it's ok to do this first; 1188 * if we need to bring the parent device up we defer that 1189 * to avoid dropping the com lock. We expect the device 1190 * to respond to being marked up by calling back into us 1191 * through ieee80211_start_all at which point we'll come 1192 * back in here and complete the work. 1193 */ 1194 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1195 /* 1196 * We are not running; if this we are the first vap 1197 * to be brought up auto-up the parent if necessary. 1198 */ 1199 if (ic->ic_nrunning++ == 0 && 1200 (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1201 IEEE80211_DPRINTF(vap, 1202 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1203 "%s: up parent %s\n", __func__, parent->if_xname); 1204 parent->if_flags |= IFF_UP; 1205 ieee80211_runtask(ic, &ic->ic_parent_task); 1206 return; 1207 } 1208 } 1209 /* 1210 * If the parent is up and running, then kick the 1211 * 802.11 state machine as appropriate. 1212 */ 1213 if ((parent->if_drv_flags & IFF_DRV_RUNNING) && 1214 vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1215 if (vap->iv_opmode == IEEE80211_M_STA) { 1216 #if 0 1217 /* XXX bypasses scan too easily; disable for now */ 1218 /* 1219 * Try to be intelligent about clocking the state 1220 * machine. If we're currently in RUN state then 1221 * we should be able to apply any new state/parameters 1222 * simply by re-associating. Otherwise we need to 1223 * re-scan to select an appropriate ap. 1224 */ 1225 if (vap->iv_state >= IEEE80211_S_RUN) 1226 ieee80211_new_state_locked(vap, 1227 IEEE80211_S_ASSOC, 1); 1228 else 1229 #endif 1230 ieee80211_new_state_locked(vap, 1231 IEEE80211_S_SCAN, 0); 1232 } else { 1233 /* 1234 * For monitor+wds mode there's nothing to do but 1235 * start running. Otherwise if this is the first 1236 * vap to be brought up, start a scan which may be 1237 * preempted if the station is locked to a particular 1238 * channel. 1239 */ 1240 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1241 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1242 vap->iv_opmode == IEEE80211_M_WDS) 1243 ieee80211_new_state_locked(vap, 1244 IEEE80211_S_RUN, -1); 1245 else 1246 ieee80211_new_state_locked(vap, 1247 IEEE80211_S_SCAN, 0); 1248 } 1249 } 1250 } 1251 1252 /* 1253 * Start a single vap. 1254 */ 1255 void 1256 ieee80211_init(void *arg) 1257 { 1258 struct ieee80211vap *vap = arg; 1259 1260 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1261 "%s\n", __func__); 1262 1263 IEEE80211_LOCK(vap->iv_ic); 1264 ieee80211_start_locked(vap); 1265 IEEE80211_UNLOCK(vap->iv_ic); 1266 } 1267 1268 /* 1269 * Start all runnable vap's on a device. 1270 */ 1271 void 1272 ieee80211_start_all(struct ieee80211com *ic) 1273 { 1274 struct ieee80211vap *vap; 1275 1276 IEEE80211_LOCK(ic); 1277 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1278 struct ifnet *ifp = vap->iv_ifp; 1279 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1280 ieee80211_start_locked(vap); 1281 } 1282 IEEE80211_UNLOCK(ic); 1283 } 1284 1285 /* 1286 * Stop a vap. We force it down using the state machine 1287 * then mark it's ifnet not running. If this is the last 1288 * vap running on the underlying device then we close it 1289 * too to insure it will be properly initialized when the 1290 * next vap is brought up. 1291 */ 1292 void 1293 ieee80211_stop_locked(struct ieee80211vap *vap) 1294 { 1295 struct ieee80211com *ic = vap->iv_ic; 1296 struct ifnet *ifp = vap->iv_ifp; 1297 struct ifnet *parent = ic->ic_ifp; 1298 1299 IEEE80211_LOCK_ASSERT(ic); 1300 1301 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1302 "stop running, %d vaps running\n", ic->ic_nrunning); 1303 1304 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1305 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1306 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1307 if (--ic->ic_nrunning == 0 && 1308 (parent->if_drv_flags & IFF_DRV_RUNNING)) { 1309 IEEE80211_DPRINTF(vap, 1310 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1311 "down parent %s\n", parent->if_xname); 1312 parent->if_flags &= ~IFF_UP; 1313 ieee80211_runtask(ic, &ic->ic_parent_task); 1314 } 1315 } 1316 } 1317 1318 void 1319 ieee80211_stop(struct ieee80211vap *vap) 1320 { 1321 struct ieee80211com *ic = vap->iv_ic; 1322 1323 IEEE80211_LOCK(ic); 1324 ieee80211_stop_locked(vap); 1325 IEEE80211_UNLOCK(ic); 1326 } 1327 1328 /* 1329 * Stop all vap's running on a device. 1330 */ 1331 void 1332 ieee80211_stop_all(struct ieee80211com *ic) 1333 { 1334 struct ieee80211vap *vap; 1335 1336 IEEE80211_LOCK(ic); 1337 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1338 struct ifnet *ifp = vap->iv_ifp; 1339 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1340 ieee80211_stop_locked(vap); 1341 } 1342 IEEE80211_UNLOCK(ic); 1343 1344 ieee80211_waitfor_parent(ic); 1345 } 1346 1347 /* 1348 * Stop all vap's running on a device and arrange 1349 * for those that were running to be resumed. 1350 */ 1351 void 1352 ieee80211_suspend_all(struct ieee80211com *ic) 1353 { 1354 struct ieee80211vap *vap; 1355 1356 IEEE80211_LOCK(ic); 1357 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1358 struct ifnet *ifp = vap->iv_ifp; 1359 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1360 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1361 ieee80211_stop_locked(vap); 1362 } 1363 } 1364 IEEE80211_UNLOCK(ic); 1365 1366 ieee80211_waitfor_parent(ic); 1367 } 1368 1369 /* 1370 * Start all vap's marked for resume. 1371 */ 1372 void 1373 ieee80211_resume_all(struct ieee80211com *ic) 1374 { 1375 struct ieee80211vap *vap; 1376 1377 IEEE80211_LOCK(ic); 1378 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1379 struct ifnet *ifp = vap->iv_ifp; 1380 if (!IFNET_IS_UP_RUNNING(ifp) && 1381 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1382 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1383 ieee80211_start_locked(vap); 1384 } 1385 } 1386 IEEE80211_UNLOCK(ic); 1387 } 1388 1389 void 1390 ieee80211_beacon_miss(struct ieee80211com *ic) 1391 { 1392 IEEE80211_LOCK(ic); 1393 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1394 /* Process in a taskq, the handler may reenter the driver */ 1395 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1396 } 1397 IEEE80211_UNLOCK(ic); 1398 } 1399 1400 static void 1401 beacon_miss(void *arg, int npending) 1402 { 1403 struct ieee80211com *ic = arg; 1404 struct ieee80211vap *vap; 1405 1406 /* XXX locking */ 1407 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1408 /* 1409 * We only pass events through for sta vap's in RUN state; 1410 * may be too restrictive but for now this saves all the 1411 * handlers duplicating these checks. 1412 */ 1413 if (vap->iv_opmode == IEEE80211_M_STA && 1414 vap->iv_state >= IEEE80211_S_RUN && 1415 vap->iv_bmiss != NULL) 1416 vap->iv_bmiss(vap); 1417 } 1418 } 1419 1420 static void 1421 beacon_swmiss(void *arg, int npending) 1422 { 1423 struct ieee80211vap *vap = arg; 1424 1425 if (vap->iv_state != IEEE80211_S_RUN) 1426 return; 1427 1428 /* XXX Call multiple times if npending > zero? */ 1429 vap->iv_bmiss(vap); 1430 } 1431 1432 /* 1433 * Software beacon miss handling. Check if any beacons 1434 * were received in the last period. If not post a 1435 * beacon miss; otherwise reset the counter. 1436 */ 1437 void 1438 ieee80211_swbmiss(void *arg) 1439 { 1440 struct ieee80211vap *vap = arg; 1441 struct ieee80211com *ic = vap->iv_ic; 1442 1443 /* XXX sleep state? */ 1444 KASSERT(vap->iv_state == IEEE80211_S_RUN, 1445 ("wrong state %d", vap->iv_state)); 1446 1447 if (ic->ic_flags & IEEE80211_F_SCAN) { 1448 /* 1449 * If scanning just ignore and reset state. If we get a 1450 * bmiss after coming out of scan because we haven't had 1451 * time to receive a beacon then we should probe the AP 1452 * before posting a real bmiss (unless iv_bmiss_max has 1453 * been artifiically lowered). A cleaner solution might 1454 * be to disable the timer on scan start/end but to handle 1455 * case of multiple sta vap's we'd need to disable the 1456 * timers of all affected vap's. 1457 */ 1458 vap->iv_swbmiss_count = 0; 1459 } else if (vap->iv_swbmiss_count == 0) { 1460 if (vap->iv_bmiss != NULL) 1461 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1462 } else 1463 vap->iv_swbmiss_count = 0; 1464 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1465 ieee80211_swbmiss, vap); 1466 } 1467 1468 /* 1469 * Start an 802.11h channel switch. We record the parameters, 1470 * mark the operation pending, notify each vap through the 1471 * beacon update mechanism so it can update the beacon frame 1472 * contents, and then switch vap's to CSA state to block outbound 1473 * traffic. Devices that handle CSA directly can use the state 1474 * switch to do the right thing so long as they call 1475 * ieee80211_csa_completeswitch when it's time to complete the 1476 * channel change. Devices that depend on the net80211 layer can 1477 * use ieee80211_beacon_update to handle the countdown and the 1478 * channel switch. 1479 */ 1480 void 1481 ieee80211_csa_startswitch(struct ieee80211com *ic, 1482 struct ieee80211_channel *c, int mode, int count) 1483 { 1484 struct ieee80211vap *vap; 1485 1486 IEEE80211_LOCK_ASSERT(ic); 1487 1488 ic->ic_csa_newchan = c; 1489 ic->ic_csa_mode = mode; 1490 ic->ic_csa_count = count; 1491 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1492 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1493 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1494 vap->iv_opmode == IEEE80211_M_IBSS || 1495 vap->iv_opmode == IEEE80211_M_MBSS) 1496 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1497 /* switch to CSA state to block outbound traffic */ 1498 if (vap->iv_state == IEEE80211_S_RUN) 1499 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1500 } 1501 ieee80211_notify_csa(ic, c, mode, count); 1502 } 1503 1504 /* 1505 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1506 * This is called by both the completion and cancellation functions 1507 * so each VAP is placed back in the RUN state and can thus transmit. 1508 */ 1509 static void 1510 csa_completeswitch(struct ieee80211com *ic) 1511 { 1512 struct ieee80211vap *vap; 1513 1514 ic->ic_csa_newchan = NULL; 1515 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1516 1517 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1518 if (vap->iv_state == IEEE80211_S_CSA) 1519 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1520 } 1521 1522 /* 1523 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1524 * We clear state and move all vap's in CSA state to RUN state 1525 * so they can again transmit. 1526 * 1527 * Although this may not be completely correct, update the BSS channel 1528 * for each VAP to the newly configured channel. The setcurchan sets 1529 * the current operating channel for the interface (so the radio does 1530 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1531 * reported information via ioctl. 1532 */ 1533 void 1534 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1535 { 1536 struct ieee80211vap *vap; 1537 1538 IEEE80211_LOCK_ASSERT(ic); 1539 1540 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1541 1542 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1543 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1544 if (vap->iv_state == IEEE80211_S_CSA) 1545 vap->iv_bss->ni_chan = ic->ic_curchan; 1546 1547 csa_completeswitch(ic); 1548 } 1549 1550 /* 1551 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1552 * We clear state and move all vap's in CSA state to RUN state 1553 * so they can again transmit. 1554 */ 1555 void 1556 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1557 { 1558 IEEE80211_LOCK_ASSERT(ic); 1559 1560 csa_completeswitch(ic); 1561 } 1562 1563 /* 1564 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1565 * We clear state and move all vap's in CAC state to RUN state. 1566 */ 1567 void 1568 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1569 { 1570 struct ieee80211com *ic = vap0->iv_ic; 1571 struct ieee80211vap *vap; 1572 1573 IEEE80211_LOCK(ic); 1574 /* 1575 * Complete CAC state change for lead vap first; then 1576 * clock all the other vap's waiting. 1577 */ 1578 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1579 ("wrong state %d", vap0->iv_state)); 1580 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1581 1582 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1583 if (vap->iv_state == IEEE80211_S_CAC) 1584 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1585 IEEE80211_UNLOCK(ic); 1586 } 1587 1588 /* 1589 * Force all vap's other than the specified vap to the INIT state 1590 * and mark them as waiting for a scan to complete. These vaps 1591 * will be brought up when the scan completes and the scanning vap 1592 * reaches RUN state by wakeupwaiting. 1593 */ 1594 static void 1595 markwaiting(struct ieee80211vap *vap0) 1596 { 1597 struct ieee80211com *ic = vap0->iv_ic; 1598 struct ieee80211vap *vap; 1599 1600 IEEE80211_LOCK_ASSERT(ic); 1601 1602 /* 1603 * A vap list entry can not disappear since we are running on the 1604 * taskqueue and a vap destroy will queue and drain another state 1605 * change task. 1606 */ 1607 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1608 if (vap == vap0) 1609 continue; 1610 if (vap->iv_state != IEEE80211_S_INIT) { 1611 /* NB: iv_newstate may drop the lock */ 1612 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1613 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1614 } 1615 } 1616 } 1617 1618 /* 1619 * Wakeup all vap's waiting for a scan to complete. This is the 1620 * companion to markwaiting (above) and is used to coordinate 1621 * multiple vaps scanning. 1622 * This is called from the state taskqueue. 1623 */ 1624 static void 1625 wakeupwaiting(struct ieee80211vap *vap0) 1626 { 1627 struct ieee80211com *ic = vap0->iv_ic; 1628 struct ieee80211vap *vap; 1629 1630 IEEE80211_LOCK_ASSERT(ic); 1631 1632 /* 1633 * A vap list entry can not disappear since we are running on the 1634 * taskqueue and a vap destroy will queue and drain another state 1635 * change task. 1636 */ 1637 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1638 if (vap == vap0) 1639 continue; 1640 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1641 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1642 /* NB: sta's cannot go INIT->RUN */ 1643 /* NB: iv_newstate may drop the lock */ 1644 vap->iv_newstate(vap, 1645 vap->iv_opmode == IEEE80211_M_STA ? 1646 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1647 } 1648 } 1649 } 1650 1651 /* 1652 * Handle post state change work common to all operating modes. 1653 */ 1654 static void 1655 ieee80211_newstate_cb(void *xvap, int npending) 1656 { 1657 struct ieee80211vap *vap = xvap; 1658 struct ieee80211com *ic = vap->iv_ic; 1659 enum ieee80211_state nstate, ostate; 1660 int arg, rc; 1661 1662 IEEE80211_LOCK(ic); 1663 nstate = vap->iv_nstate; 1664 arg = vap->iv_nstate_arg; 1665 1666 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1667 /* 1668 * We have been requested to drop back to the INIT before 1669 * proceeding to the new state. 1670 */ 1671 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1672 "%s: %s -> %s arg %d\n", __func__, 1673 ieee80211_state_name[vap->iv_state], 1674 ieee80211_state_name[IEEE80211_S_INIT], arg); 1675 vap->iv_newstate(vap, IEEE80211_S_INIT, arg); 1676 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT; 1677 } 1678 1679 ostate = vap->iv_state; 1680 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1681 /* 1682 * SCAN was forced; e.g. on beacon miss. Force other running 1683 * vap's to INIT state and mark them as waiting for the scan to 1684 * complete. This insures they don't interfere with our 1685 * scanning. Since we are single threaded the vaps can not 1686 * transition again while we are executing. 1687 * 1688 * XXX not always right, assumes ap follows sta 1689 */ 1690 markwaiting(vap); 1691 } 1692 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1693 "%s: %s -> %s arg %d\n", __func__, 1694 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 1695 1696 rc = vap->iv_newstate(vap, nstate, arg); 1697 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 1698 if (rc != 0) { 1699 /* State transition failed */ 1700 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 1701 KASSERT(nstate != IEEE80211_S_INIT, 1702 ("INIT state change failed")); 1703 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1704 "%s: %s returned error %d\n", __func__, 1705 ieee80211_state_name[nstate], rc); 1706 goto done; 1707 } 1708 1709 /* No actual transition, skip post processing */ 1710 if (ostate == nstate) 1711 goto done; 1712 1713 if (nstate == IEEE80211_S_RUN) { 1714 /* 1715 * OACTIVE may be set on the vap if the upper layer 1716 * tried to transmit (e.g. IPv6 NDP) before we reach 1717 * RUN state. Clear it and restart xmit. 1718 * 1719 * Note this can also happen as a result of SLEEP->RUN 1720 * (i.e. coming out of power save mode). 1721 */ 1722 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1723 if_start(vap->iv_ifp); 1724 1725 /* bring up any vaps waiting on us */ 1726 wakeupwaiting(vap); 1727 } else if (nstate == IEEE80211_S_INIT) { 1728 /* 1729 * Flush the scan cache if we did the last scan (XXX?) 1730 * and flush any frames on send queues from this vap. 1731 * Note the mgt q is used only for legacy drivers and 1732 * will go away shortly. 1733 */ 1734 ieee80211_scan_flush(vap); 1735 1736 /* XXX NB: cast for altq */ 1737 ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap); 1738 } 1739 done: 1740 IEEE80211_UNLOCK(ic); 1741 } 1742 1743 /* 1744 * Public interface for initiating a state machine change. 1745 * This routine single-threads the request and coordinates 1746 * the scheduling of multiple vaps for the purpose of selecting 1747 * an operating channel. Specifically the following scenarios 1748 * are handled: 1749 * o only one vap can be selecting a channel so on transition to 1750 * SCAN state if another vap is already scanning then 1751 * mark the caller for later processing and return without 1752 * doing anything (XXX? expectations by caller of synchronous operation) 1753 * o only one vap can be doing CAC of a channel so on transition to 1754 * CAC state if another vap is already scanning for radar then 1755 * mark the caller for later processing and return without 1756 * doing anything (XXX? expectations by caller of synchronous operation) 1757 * o if another vap is already running when a request is made 1758 * to SCAN then an operating channel has been chosen; bypass 1759 * the scan and just join the channel 1760 * 1761 * Note that the state change call is done through the iv_newstate 1762 * method pointer so any driver routine gets invoked. The driver 1763 * will normally call back into operating mode-specific 1764 * ieee80211_newstate routines (below) unless it needs to completely 1765 * bypass the state machine (e.g. because the firmware has it's 1766 * own idea how things should work). Bypassing the net80211 layer 1767 * is usually a mistake and indicates lack of proper integration 1768 * with the net80211 layer. 1769 */ 1770 static int 1771 ieee80211_new_state_locked(struct ieee80211vap *vap, 1772 enum ieee80211_state nstate, int arg) 1773 { 1774 struct ieee80211com *ic = vap->iv_ic; 1775 struct ieee80211vap *vp; 1776 enum ieee80211_state ostate; 1777 int nrunning, nscanning; 1778 1779 IEEE80211_LOCK_ASSERT(ic); 1780 1781 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 1782 if (vap->iv_nstate == IEEE80211_S_INIT) { 1783 /* 1784 * XXX The vap is being stopped, do no allow any other 1785 * state changes until this is completed. 1786 */ 1787 return -1; 1788 } else if (vap->iv_state != vap->iv_nstate) { 1789 #if 0 1790 /* Warn if the previous state hasn't completed. */ 1791 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1792 "%s: pending %s -> %s transition lost\n", __func__, 1793 ieee80211_state_name[vap->iv_state], 1794 ieee80211_state_name[vap->iv_nstate]); 1795 #else 1796 /* XXX temporarily enable to identify issues */ 1797 if_printf(vap->iv_ifp, 1798 "%s: pending %s -> %s transition lost\n", 1799 __func__, ieee80211_state_name[vap->iv_state], 1800 ieee80211_state_name[vap->iv_nstate]); 1801 #endif 1802 } 1803 } 1804 1805 nrunning = nscanning = 0; 1806 /* XXX can track this state instead of calculating */ 1807 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 1808 if (vp != vap) { 1809 if (vp->iv_state >= IEEE80211_S_RUN) 1810 nrunning++; 1811 /* XXX doesn't handle bg scan */ 1812 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 1813 else if (vp->iv_state > IEEE80211_S_INIT) 1814 nscanning++; 1815 } 1816 } 1817 ostate = vap->iv_state; 1818 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1819 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 1820 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 1821 nrunning, nscanning); 1822 switch (nstate) { 1823 case IEEE80211_S_SCAN: 1824 if (ostate == IEEE80211_S_INIT) { 1825 /* 1826 * INIT -> SCAN happens on initial bringup. 1827 */ 1828 KASSERT(!(nscanning && nrunning), 1829 ("%d scanning and %d running", nscanning, nrunning)); 1830 if (nscanning) { 1831 /* 1832 * Someone is scanning, defer our state 1833 * change until the work has completed. 1834 */ 1835 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1836 "%s: defer %s -> %s\n", 1837 __func__, ieee80211_state_name[ostate], 1838 ieee80211_state_name[nstate]); 1839 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1840 return 0; 1841 } 1842 if (nrunning) { 1843 /* 1844 * Someone is operating; just join the channel 1845 * they have chosen. 1846 */ 1847 /* XXX kill arg? */ 1848 /* XXX check each opmode, adhoc? */ 1849 if (vap->iv_opmode == IEEE80211_M_STA) 1850 nstate = IEEE80211_S_SCAN; 1851 else 1852 nstate = IEEE80211_S_RUN; 1853 #ifdef IEEE80211_DEBUG 1854 if (nstate != IEEE80211_S_SCAN) { 1855 IEEE80211_DPRINTF(vap, 1856 IEEE80211_MSG_STATE, 1857 "%s: override, now %s -> %s\n", 1858 __func__, 1859 ieee80211_state_name[ostate], 1860 ieee80211_state_name[nstate]); 1861 } 1862 #endif 1863 } 1864 } 1865 break; 1866 case IEEE80211_S_RUN: 1867 if (vap->iv_opmode == IEEE80211_M_WDS && 1868 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 1869 nscanning) { 1870 /* 1871 * Legacy WDS with someone else scanning; don't 1872 * go online until that completes as we should 1873 * follow the other vap to the channel they choose. 1874 */ 1875 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1876 "%s: defer %s -> %s (legacy WDS)\n", __func__, 1877 ieee80211_state_name[ostate], 1878 ieee80211_state_name[nstate]); 1879 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1880 return 0; 1881 } 1882 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1883 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 1884 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 1885 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 1886 /* 1887 * This is a DFS channel, transition to CAC state 1888 * instead of RUN. This allows us to initiate 1889 * Channel Availability Check (CAC) as specified 1890 * by 11h/DFS. 1891 */ 1892 nstate = IEEE80211_S_CAC; 1893 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1894 "%s: override %s -> %s (DFS)\n", __func__, 1895 ieee80211_state_name[ostate], 1896 ieee80211_state_name[nstate]); 1897 } 1898 break; 1899 case IEEE80211_S_INIT: 1900 /* cancel any scan in progress */ 1901 ieee80211_cancel_scan(vap); 1902 if (ostate == IEEE80211_S_INIT ) { 1903 /* XXX don't believe this */ 1904 /* INIT -> INIT. nothing to do */ 1905 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1906 } 1907 /* fall thru... */ 1908 default: 1909 break; 1910 } 1911 /* defer the state change to a thread */ 1912 vap->iv_nstate = nstate; 1913 vap->iv_nstate_arg = arg; 1914 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 1915 ieee80211_runtask(ic, &vap->iv_nstate_task); 1916 return EINPROGRESS; 1917 } 1918 1919 int 1920 ieee80211_new_state(struct ieee80211vap *vap, 1921 enum ieee80211_state nstate, int arg) 1922 { 1923 struct ieee80211com *ic = vap->iv_ic; 1924 int rc; 1925 1926 IEEE80211_LOCK(ic); 1927 rc = ieee80211_new_state_locked(vap, nstate, arg); 1928 IEEE80211_UNLOCK(ic); 1929 return rc; 1930 } 1931