xref: /haiku/src/libs/compat/freebsd_wlan/net80211/ieee80211_proto.c (revision 220d04022750f40f8bac8f01fa551211e28d04f2)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 protocol support.
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/systm.h>
40 
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 
44 #include <net/if.h>
45 #include <net/if_media.h>
46 #include <net/ethernet.h>		/* XXX for ether_sprintf */
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_adhoc.h>
50 #include <net80211/ieee80211_sta.h>
51 #include <net80211/ieee80211_hostap.h>
52 #include <net80211/ieee80211_wds.h>
53 #ifdef IEEE80211_SUPPORT_MESH
54 #include <net80211/ieee80211_mesh.h>
55 #endif
56 #include <net80211/ieee80211_monitor.h>
57 #include <net80211/ieee80211_input.h>
58 
59 /* XXX tunables */
60 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
61 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
62 
63 const char *ieee80211_mgt_subtype_name[] = {
64 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
65 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
66 	"beacon",	"atim",		"disassoc",	"auth",
67 	"deauth",	"action",	"action_noack",	"reserved#15"
68 };
69 const char *ieee80211_ctl_subtype_name[] = {
70 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
71 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
72 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
73 	"cts",		"ack",		"cf_end",	"cf_end_ack"
74 };
75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
76 	"IBSS",		/* IEEE80211_M_IBSS */
77 	"STA",		/* IEEE80211_M_STA */
78 	"WDS",		/* IEEE80211_M_WDS */
79 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
80 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
81 	"MONITOR",	/* IEEE80211_M_MONITOR */
82 	"MBSS"		/* IEEE80211_M_MBSS */
83 };
84 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
85 	"INIT",		/* IEEE80211_S_INIT */
86 	"SCAN",		/* IEEE80211_S_SCAN */
87 	"AUTH",		/* IEEE80211_S_AUTH */
88 	"ASSOC",	/* IEEE80211_S_ASSOC */
89 	"CAC",		/* IEEE80211_S_CAC */
90 	"RUN",		/* IEEE80211_S_RUN */
91 	"CSA",		/* IEEE80211_S_CSA */
92 	"SLEEP",	/* IEEE80211_S_SLEEP */
93 };
94 const char *ieee80211_wme_acnames[] = {
95 	"WME_AC_BE",
96 	"WME_AC_BK",
97 	"WME_AC_VI",
98 	"WME_AC_VO",
99 	"WME_UPSD",
100 };
101 
102 static void beacon_miss(void *, int);
103 static void beacon_swmiss(void *, int);
104 static void parent_updown(void *, int);
105 static void update_mcast(void *, int);
106 static void update_promisc(void *, int);
107 static void update_channel(void *, int);
108 static void ieee80211_newstate_cb(void *, int);
109 static int ieee80211_new_state_locked(struct ieee80211vap *,
110 	enum ieee80211_state, int);
111 
112 static int
113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
114 	const struct ieee80211_bpf_params *params)
115 {
116 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
117 
118 	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
119 	m_freem(m);
120 	return ENETDOWN;
121 }
122 
123 void
124 ieee80211_proto_attach(struct ieee80211com *ic)
125 {
126 	struct ifnet *ifp = ic->ic_ifp;
127 
128 	/* override the 802.3 setting */
129 	ifp->if_hdrlen = ic->ic_headroom
130 		+ sizeof(struct ieee80211_qosframe_addr4)
131 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
132 		+ IEEE80211_WEP_EXTIVLEN;
133 	/* XXX no way to recalculate on ifdetach */
134 	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
135 		/* XXX sanity check... */
136 		max_linkhdr = ALIGN(ifp->if_hdrlen);
137 		max_hdr = max_linkhdr + max_protohdr;
138 		max_datalen = MHLEN - max_hdr;
139 	}
140 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
141 
142 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
143 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
144 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
145 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
146 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
147 
148 	ic->ic_wme.wme_hipri_switch_hysteresis =
149 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
150 
151 	/* initialize management frame handlers */
152 	ic->ic_send_mgmt = ieee80211_send_mgmt;
153 	ic->ic_raw_xmit = null_raw_xmit;
154 
155 	ieee80211_adhoc_attach(ic);
156 	ieee80211_sta_attach(ic);
157 	ieee80211_wds_attach(ic);
158 	ieee80211_hostap_attach(ic);
159 #ifdef IEEE80211_SUPPORT_MESH
160 	ieee80211_mesh_attach(ic);
161 #endif
162 	ieee80211_monitor_attach(ic);
163 }
164 
165 void
166 ieee80211_proto_detach(struct ieee80211com *ic)
167 {
168 	ieee80211_monitor_detach(ic);
169 #ifdef IEEE80211_SUPPORT_MESH
170 	ieee80211_mesh_detach(ic);
171 #endif
172 	ieee80211_hostap_detach(ic);
173 	ieee80211_wds_detach(ic);
174 	ieee80211_adhoc_detach(ic);
175 	ieee80211_sta_detach(ic);
176 }
177 
178 static void
179 null_update_beacon(struct ieee80211vap *vap, int item)
180 {
181 }
182 
183 void
184 ieee80211_proto_vattach(struct ieee80211vap *vap)
185 {
186 	struct ieee80211com *ic = vap->iv_ic;
187 	struct ifnet *ifp = vap->iv_ifp;
188 	int i;
189 
190 	/* override the 802.3 setting */
191 	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
192 
193 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
194 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
195 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
196 	callout_init(&vap->iv_swbmiss, CALLOUT_MPSAFE);
197 	callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
198 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
199 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
200 	/*
201 	 * Install default tx rate handling: no fixed rate, lowest
202 	 * supported rate for mgmt and multicast frames.  Default
203 	 * max retry count.  These settings can be changed by the
204 	 * driver and/or user applications.
205 	 */
206 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
207 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
208 
209 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
210 
211 		/*
212 		 * Setting the management rate to MCS 0 assumes that the
213 		 * BSS Basic rate set is empty and the BSS Basic MCS set
214 		 * is not.
215 		 *
216 		 * Since we're not checking this, default to the lowest
217 		 * defined rate for this mode.
218 		 *
219 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
220 		 * some MCS management traffic (eg BA response frames.)
221 		 *
222 		 * See also: 9.6.0 of the 802.11n-2009 specification.
223 		 */
224 #ifdef	NOTYET
225 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
226 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
227 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
228 		} else {
229 			vap->iv_txparms[i].mgmtrate =
230 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
231 			vap->iv_txparms[i].mcastrate =
232 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
233 		}
234 #endif
235 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
236 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
237 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
238 	}
239 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
240 
241 	vap->iv_update_beacon = null_update_beacon;
242 	vap->iv_deliver_data = ieee80211_deliver_data;
243 
244 	/* attach support for operating mode */
245 	ic->ic_vattach[vap->iv_opmode](vap);
246 }
247 
248 void
249 ieee80211_proto_vdetach(struct ieee80211vap *vap)
250 {
251 #define	FREEAPPIE(ie) do { \
252 	if (ie != NULL) \
253 		free(ie, M_80211_NODE_IE); \
254 } while (0)
255 	/*
256 	 * Detach operating mode module.
257 	 */
258 	if (vap->iv_opdetach != NULL)
259 		vap->iv_opdetach(vap);
260 	/*
261 	 * This should not be needed as we detach when reseting
262 	 * the state but be conservative here since the
263 	 * authenticator may do things like spawn kernel threads.
264 	 */
265 	if (vap->iv_auth->ia_detach != NULL)
266 		vap->iv_auth->ia_detach(vap);
267 	/*
268 	 * Detach any ACL'ator.
269 	 */
270 	if (vap->iv_acl != NULL)
271 		vap->iv_acl->iac_detach(vap);
272 
273 	FREEAPPIE(vap->iv_appie_beacon);
274 	FREEAPPIE(vap->iv_appie_probereq);
275 	FREEAPPIE(vap->iv_appie_proberesp);
276 	FREEAPPIE(vap->iv_appie_assocreq);
277 	FREEAPPIE(vap->iv_appie_assocresp);
278 	FREEAPPIE(vap->iv_appie_wpa);
279 #undef FREEAPPIE
280 }
281 
282 /*
283  * Simple-minded authenticator module support.
284  */
285 
286 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
287 /* XXX well-known names */
288 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
289 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
290 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
291 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
292 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
293 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
294 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
295 };
296 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
297 
298 static const struct ieee80211_authenticator auth_internal = {
299 	.ia_name		= "wlan_internal",
300 	.ia_attach		= NULL,
301 	.ia_detach		= NULL,
302 	.ia_node_join		= NULL,
303 	.ia_node_leave		= NULL,
304 };
305 
306 /*
307  * Setup internal authenticators once; they are never unregistered.
308  */
309 void
310 ieee80211_auth_setup(void)
311 {
312 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
313 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
314 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
315 }
316 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
317 
318 const struct ieee80211_authenticator *
319 ieee80211_authenticator_get(int auth)
320 {
321 	if (auth >= IEEE80211_AUTH_MAX)
322 		return NULL;
323 	if (authenticators[auth] == NULL)
324 		ieee80211_load_module(auth_modnames[auth]);
325 	return authenticators[auth];
326 }
327 
328 void
329 ieee80211_authenticator_register(int type,
330 	const struct ieee80211_authenticator *auth)
331 {
332 	if (type >= IEEE80211_AUTH_MAX)
333 		return;
334 	authenticators[type] = auth;
335 }
336 
337 void
338 ieee80211_authenticator_unregister(int type)
339 {
340 
341 	if (type >= IEEE80211_AUTH_MAX)
342 		return;
343 	authenticators[type] = NULL;
344 }
345 
346 /*
347  * Very simple-minded ACL module support.
348  */
349 /* XXX just one for now */
350 static	const struct ieee80211_aclator *acl = NULL;
351 
352 void
353 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
354 {
355 	printf("wlan: %s acl policy registered\n", iac->iac_name);
356 	acl = iac;
357 }
358 
359 void
360 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
361 {
362 	if (acl == iac)
363 		acl = NULL;
364 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
365 }
366 
367 const struct ieee80211_aclator *
368 ieee80211_aclator_get(const char *name)
369 {
370 	if (acl == NULL)
371 		ieee80211_load_module("wlan_acl");
372 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
373 }
374 
375 void
376 ieee80211_print_essid(const uint8_t *essid, int len)
377 {
378 	const uint8_t *p;
379 	int i;
380 
381 	if (len > IEEE80211_NWID_LEN)
382 		len = IEEE80211_NWID_LEN;
383 	/* determine printable or not */
384 	for (i = 0, p = essid; i < len; i++, p++) {
385 		if (*p < ' ' || *p > 0x7e)
386 			break;
387 	}
388 	if (i == len) {
389 		printf("\"");
390 		for (i = 0, p = essid; i < len; i++, p++)
391 			printf("%c", *p);
392 		printf("\"");
393 	} else {
394 		printf("0x");
395 		for (i = 0, p = essid; i < len; i++, p++)
396 			printf("%02x", *p);
397 	}
398 }
399 
400 void
401 ieee80211_dump_pkt(struct ieee80211com *ic,
402 	const uint8_t *buf, int len, int rate, int rssi)
403 {
404 	const struct ieee80211_frame *wh;
405 	int i;
406 
407 	wh = (const struct ieee80211_frame *)buf;
408 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
409 	case IEEE80211_FC1_DIR_NODS:
410 		printf("NODS %s", ether_sprintf(wh->i_addr2));
411 		printf("->%s", ether_sprintf(wh->i_addr1));
412 		printf("(%s)", ether_sprintf(wh->i_addr3));
413 		break;
414 	case IEEE80211_FC1_DIR_TODS:
415 		printf("TODS %s", ether_sprintf(wh->i_addr2));
416 		printf("->%s", ether_sprintf(wh->i_addr3));
417 		printf("(%s)", ether_sprintf(wh->i_addr1));
418 		break;
419 	case IEEE80211_FC1_DIR_FROMDS:
420 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
421 		printf("->%s", ether_sprintf(wh->i_addr1));
422 		printf("(%s)", ether_sprintf(wh->i_addr2));
423 		break;
424 	case IEEE80211_FC1_DIR_DSTODS:
425 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
426 		printf("->%s", ether_sprintf(wh->i_addr3));
427 		printf("(%s", ether_sprintf(wh->i_addr2));
428 		printf("->%s)", ether_sprintf(wh->i_addr1));
429 		break;
430 	}
431 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
432 	case IEEE80211_FC0_TYPE_DATA:
433 		printf(" data");
434 		break;
435 	case IEEE80211_FC0_TYPE_MGT:
436 		printf(" %s", ieee80211_mgt_subtype_name[
437 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
438 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
439 		break;
440 	default:
441 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
442 		break;
443 	}
444 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
445 		const struct ieee80211_qosframe *qwh =
446 			(const struct ieee80211_qosframe *)buf;
447 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
448 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
449 	}
450 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
451 		int off;
452 
453 		off = ieee80211_anyhdrspace(ic, wh);
454 		printf(" WEP [IV %.02x %.02x %.02x",
455 			buf[off+0], buf[off+1], buf[off+2]);
456 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
457 			printf(" %.02x %.02x %.02x",
458 				buf[off+4], buf[off+5], buf[off+6]);
459 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
460 	}
461 	if (rate >= 0)
462 		printf(" %dM", rate / 2);
463 	if (rssi >= 0)
464 		printf(" +%d", rssi);
465 	printf("\n");
466 	if (len > 0) {
467 		for (i = 0; i < len; i++) {
468 			if ((i & 1) == 0)
469 				printf(" ");
470 			printf("%02x", buf[i]);
471 		}
472 		printf("\n");
473 	}
474 }
475 
476 static __inline int
477 findrix(const struct ieee80211_rateset *rs, int r)
478 {
479 	int i;
480 
481 	for (i = 0; i < rs->rs_nrates; i++)
482 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
483 			return i;
484 	return -1;
485 }
486 
487 int
488 ieee80211_fix_rate(struct ieee80211_node *ni,
489 	struct ieee80211_rateset *nrs, int flags)
490 {
491 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
492 	struct ieee80211vap *vap = ni->ni_vap;
493 	struct ieee80211com *ic = ni->ni_ic;
494 	int i, j, rix, error;
495 	int okrate, badrate, fixedrate, ucastrate;
496 	const struct ieee80211_rateset *srs;
497 	uint8_t r;
498 
499 	error = 0;
500 	okrate = badrate = 0;
501 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
502 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
503 		/*
504 		 * Workaround awkwardness with fixed rate.  We are called
505 		 * to check both the legacy rate set and the HT rate set
506 		 * but we must apply any legacy fixed rate check only to the
507 		 * legacy rate set and vice versa.  We cannot tell what type
508 		 * of rate set we've been given (legacy or HT) but we can
509 		 * distinguish the fixed rate type (MCS have 0x80 set).
510 		 * So to deal with this the caller communicates whether to
511 		 * check MCS or legacy rate using the flags and we use the
512 		 * type of any fixed rate to avoid applying an MCS to a
513 		 * legacy rate and vice versa.
514 		 */
515 		if (ucastrate & 0x80) {
516 			if (flags & IEEE80211_F_DOFRATE)
517 				flags &= ~IEEE80211_F_DOFRATE;
518 		} else if ((ucastrate & 0x80) == 0) {
519 			if (flags & IEEE80211_F_DOFMCS)
520 				flags &= ~IEEE80211_F_DOFMCS;
521 		}
522 		/* NB: required to make MCS match below work */
523 		ucastrate &= IEEE80211_RATE_VAL;
524 	}
525 	fixedrate = IEEE80211_FIXED_RATE_NONE;
526 	/*
527 	 * XXX we are called to process both MCS and legacy rates;
528 	 * we must use the appropriate basic rate set or chaos will
529 	 * ensue; for now callers that want MCS must supply
530 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
531 	 * function so there are two variants, one for MCS and one
532 	 * for legacy rates.
533 	 */
534 	if (flags & IEEE80211_F_DOBRS)
535 		srs = (const struct ieee80211_rateset *)
536 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
537 	else
538 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
539 	for (i = 0; i < nrs->rs_nrates; ) {
540 		if (flags & IEEE80211_F_DOSORT) {
541 			/*
542 			 * Sort rates.
543 			 */
544 			for (j = i + 1; j < nrs->rs_nrates; j++) {
545 				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
546 					r = nrs->rs_rates[i];
547 					nrs->rs_rates[i] = nrs->rs_rates[j];
548 					nrs->rs_rates[j] = r;
549 				}
550 			}
551 		}
552 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
553 		badrate = r;
554 		/*
555 		 * Check for fixed rate.
556 		 */
557 		if (r == ucastrate)
558 			fixedrate = r;
559 		/*
560 		 * Check against supported rates.
561 		 */
562 		rix = findrix(srs, r);
563 		if (flags & IEEE80211_F_DONEGO) {
564 			if (rix < 0) {
565 				/*
566 				 * A rate in the node's rate set is not
567 				 * supported.  If this is a basic rate and we
568 				 * are operating as a STA then this is an error.
569 				 * Otherwise we just discard/ignore the rate.
570 				 */
571 				if ((flags & IEEE80211_F_JOIN) &&
572 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
573 					error++;
574 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
575 				/*
576 				 * Overwrite with the supported rate
577 				 * value so any basic rate bit is set.
578 				 */
579 				nrs->rs_rates[i] = srs->rs_rates[rix];
580 			}
581 		}
582 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
583 			/*
584 			 * Delete unacceptable rates.
585 			 */
586 			nrs->rs_nrates--;
587 			for (j = i; j < nrs->rs_nrates; j++)
588 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
589 			nrs->rs_rates[j] = 0;
590 			continue;
591 		}
592 		if (rix >= 0)
593 			okrate = nrs->rs_rates[i];
594 		i++;
595 	}
596 	if (okrate == 0 || error != 0 ||
597 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
598 	     fixedrate != ucastrate)) {
599 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
600 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
601 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
602 		return badrate | IEEE80211_RATE_BASIC;
603 	} else
604 		return RV(okrate);
605 #undef RV
606 }
607 
608 /*
609  * Reset 11g-related state.
610  */
611 void
612 ieee80211_reset_erp(struct ieee80211com *ic)
613 {
614 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
615 	ic->ic_nonerpsta = 0;
616 	ic->ic_longslotsta = 0;
617 	/*
618 	 * Short slot time is enabled only when operating in 11g
619 	 * and not in an IBSS.  We must also honor whether or not
620 	 * the driver is capable of doing it.
621 	 */
622 	ieee80211_set_shortslottime(ic,
623 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
624 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
625 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
626 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
627 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
628 	/*
629 	 * Set short preamble and ERP barker-preamble flags.
630 	 */
631 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
632 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
633 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
634 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
635 	} else {
636 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
637 		ic->ic_flags |= IEEE80211_F_USEBARKER;
638 	}
639 }
640 
641 /*
642  * Set the short slot time state and notify the driver.
643  */
644 void
645 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
646 {
647 	if (onoff)
648 		ic->ic_flags |= IEEE80211_F_SHSLOT;
649 	else
650 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
651 	/* notify driver */
652 	if (ic->ic_updateslot != NULL)
653 		ic->ic_updateslot(ic->ic_ifp);
654 }
655 
656 /*
657  * Check if the specified rate set supports ERP.
658  * NB: the rate set is assumed to be sorted.
659  */
660 int
661 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
662 {
663 #define N(a)	(sizeof(a) / sizeof(a[0]))
664 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
665 	int i, j;
666 
667 	if (rs->rs_nrates < N(rates))
668 		return 0;
669 	for (i = 0; i < N(rates); i++) {
670 		for (j = 0; j < rs->rs_nrates; j++) {
671 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
672 			if (rates[i] == r)
673 				goto next;
674 			if (r > rates[i])
675 				return 0;
676 		}
677 		return 0;
678 	next:
679 		;
680 	}
681 	return 1;
682 #undef N
683 }
684 
685 /*
686  * Mark the basic rates for the rate table based on the
687  * operating mode.  For real 11g we mark all the 11b rates
688  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
689  * 11b rates.  There's also a pseudo 11a-mode used to mark only
690  * the basic OFDM rates.
691  */
692 static void
693 setbasicrates(struct ieee80211_rateset *rs,
694     enum ieee80211_phymode mode, int add)
695 {
696 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
697 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
698 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
699 					    /* NB: mixed b/g */
700 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
701 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
702 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
703 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
704 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
705 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
706 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
707 					    /* NB: mixed b/g */
708 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
709 	};
710 	int i, j;
711 
712 	for (i = 0; i < rs->rs_nrates; i++) {
713 		if (!add)
714 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
715 		for (j = 0; j < basic[mode].rs_nrates; j++)
716 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
717 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
718 				break;
719 			}
720 	}
721 }
722 
723 /*
724  * Set the basic rates in a rate set.
725  */
726 void
727 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
728     enum ieee80211_phymode mode)
729 {
730 	setbasicrates(rs, mode, 0);
731 }
732 
733 /*
734  * Add basic rates to a rate set.
735  */
736 void
737 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
738     enum ieee80211_phymode mode)
739 {
740 	setbasicrates(rs, mode, 1);
741 }
742 
743 /*
744  * WME protocol support.
745  *
746  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
747  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
748  * Draft 2.0 Test Plan (Appendix D).
749  *
750  * Static/Dynamic Turbo mode settings come from Atheros.
751  */
752 typedef struct phyParamType {
753 	uint8_t		aifsn;
754 	uint8_t		logcwmin;
755 	uint8_t		logcwmax;
756 	uint16_t	txopLimit;
757 	uint8_t 	acm;
758 } paramType;
759 
760 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
761 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
762 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
763 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
764 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
765 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
766 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
767 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
768 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
769 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
770 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
771 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
772 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
773 };
774 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
775 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
776 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
777 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
778 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
779 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
780 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
781 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
782 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
783 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
784 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
785 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
786 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
787 };
788 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
789 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
790 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
791 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
792 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
793 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
794 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
795 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
796 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
797 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
798 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
799 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
800 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
801 };
802 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
803 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
804 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
805 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
806 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
807 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
808 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
809 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
810 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
811 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
812 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
813 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
814 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
815 };
816 
817 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
818 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
819 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
820 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
821 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
822 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
823 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
824 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
825 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
826 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
827 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
828 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
829 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
830 };
831 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
832 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
833 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
834 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
835 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
836 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
837 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
838 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
839 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
840 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
841 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
842 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
843 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
844 };
845 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
846 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
847 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
848 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
849 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
850 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
851 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
852 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
853 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
854 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
855 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
856 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
857 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
858 };
859 
860 static void
861 _setifsparams(struct wmeParams *wmep, const paramType *phy)
862 {
863 	wmep->wmep_aifsn = phy->aifsn;
864 	wmep->wmep_logcwmin = phy->logcwmin;
865 	wmep->wmep_logcwmax = phy->logcwmax;
866 	wmep->wmep_txopLimit = phy->txopLimit;
867 }
868 
869 static void
870 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
871 	struct wmeParams *wmep, const paramType *phy)
872 {
873 	wmep->wmep_acm = phy->acm;
874 	_setifsparams(wmep, phy);
875 
876 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
877 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
878 	    ieee80211_wme_acnames[ac], type,
879 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
880 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
881 }
882 
883 static void
884 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
885 {
886 	struct ieee80211com *ic = vap->iv_ic;
887 	struct ieee80211_wme_state *wme = &ic->ic_wme;
888 	const paramType *pPhyParam, *pBssPhyParam;
889 	struct wmeParams *wmep;
890 	enum ieee80211_phymode mode;
891 	int i;
892 
893 	IEEE80211_LOCK_ASSERT(ic);
894 
895 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
896 		return;
897 
898 	/*
899 	 * Clear the wme cap_info field so a qoscount from a previous
900 	 * vap doesn't confuse later code which only parses the beacon
901 	 * field and updates hardware when said field changes.
902 	 * Otherwise the hardware is programmed with defaults, not what
903 	 * the beacon actually announces.
904 	 */
905 	wme->wme_wmeChanParams.cap_info = 0;
906 
907 	/*
908 	 * Select mode; we can be called early in which case we
909 	 * always use auto mode.  We know we'll be called when
910 	 * entering the RUN state with bsschan setup properly
911 	 * so state will eventually get set correctly
912 	 */
913 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
914 		mode = ieee80211_chan2mode(ic->ic_bsschan);
915 	else
916 		mode = IEEE80211_MODE_AUTO;
917 	for (i = 0; i < WME_NUM_AC; i++) {
918 		switch (i) {
919 		case WME_AC_BK:
920 			pPhyParam = &phyParamForAC_BK[mode];
921 			pBssPhyParam = &phyParamForAC_BK[mode];
922 			break;
923 		case WME_AC_VI:
924 			pPhyParam = &phyParamForAC_VI[mode];
925 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
926 			break;
927 		case WME_AC_VO:
928 			pPhyParam = &phyParamForAC_VO[mode];
929 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
930 			break;
931 		case WME_AC_BE:
932 		default:
933 			pPhyParam = &phyParamForAC_BE[mode];
934 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
935 			break;
936 		}
937 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
938 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
939 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
940 		} else {
941 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
942 		}
943 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
944 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
945 	}
946 	/* NB: check ic_bss to avoid NULL deref on initial attach */
947 	if (vap->iv_bss != NULL) {
948 		/*
949 		 * Calculate agressive mode switching threshold based
950 		 * on beacon interval.  This doesn't need locking since
951 		 * we're only called before entering the RUN state at
952 		 * which point we start sending beacon frames.
953 		 */
954 		wme->wme_hipri_switch_thresh =
955 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
956 		wme->wme_flags &= ~WME_F_AGGRMODE;
957 		ieee80211_wme_updateparams(vap);
958 	}
959 }
960 
961 void
962 ieee80211_wme_initparams(struct ieee80211vap *vap)
963 {
964 	struct ieee80211com *ic = vap->iv_ic;
965 
966 	IEEE80211_LOCK(ic);
967 	ieee80211_wme_initparams_locked(vap);
968 	IEEE80211_UNLOCK(ic);
969 }
970 
971 /*
972  * Update WME parameters for ourself and the BSS.
973  */
974 void
975 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
976 {
977 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
978 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
979 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
980 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
981 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
982 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
983 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
984 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
985 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
986 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
987 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
988 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
989 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
990 	};
991 	struct ieee80211com *ic = vap->iv_ic;
992 	struct ieee80211_wme_state *wme = &ic->ic_wme;
993 	const struct wmeParams *wmep;
994 	struct wmeParams *chanp, *bssp;
995 	enum ieee80211_phymode mode;
996 	int i;
997 
998        	/*
999 	 * Set up the channel access parameters for the physical
1000 	 * device.  First populate the configured settings.
1001 	 */
1002 	for (i = 0; i < WME_NUM_AC; i++) {
1003 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1004 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1005 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1006 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1007 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1008 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1009 
1010 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1011 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1012 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1013 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1014 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1015 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1016 	}
1017 
1018 	/*
1019 	 * Select mode; we can be called early in which case we
1020 	 * always use auto mode.  We know we'll be called when
1021 	 * entering the RUN state with bsschan setup properly
1022 	 * so state will eventually get set correctly
1023 	 */
1024 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1025 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1026 	else
1027 		mode = IEEE80211_MODE_AUTO;
1028 
1029 	/*
1030 	 * This implements agressive mode as found in certain
1031 	 * vendors' AP's.  When there is significant high
1032 	 * priority (VI/VO) traffic in the BSS throttle back BE
1033 	 * traffic by using conservative parameters.  Otherwise
1034 	 * BE uses agressive params to optimize performance of
1035 	 * legacy/non-QoS traffic.
1036 	 */
1037         if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
1038 	     (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
1039 	    (vap->iv_opmode == IEEE80211_M_STA &&
1040 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
1041 	    (vap->iv_flags & IEEE80211_F_WME) == 0) {
1042 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1043 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1044 
1045 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1046 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1047 		    aggrParam[mode].logcwmin;
1048 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1049 		    aggrParam[mode].logcwmax;
1050 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1051 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1052 			aggrParam[mode].txopLimit : 0;
1053 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1054 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1055 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1056 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1057 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1058 	}
1059 
1060 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1061 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1062 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1063 		    [IEEE80211_MODE_AUTO]	= 3,
1064 		    [IEEE80211_MODE_11A]	= 3,
1065 		    [IEEE80211_MODE_11B]	= 4,
1066 		    [IEEE80211_MODE_11G]	= 3,
1067 		    [IEEE80211_MODE_FH]		= 4,
1068 		    [IEEE80211_MODE_TURBO_A]	= 3,
1069 		    [IEEE80211_MODE_TURBO_G]	= 3,
1070 		    [IEEE80211_MODE_STURBO_A]	= 3,
1071 		    [IEEE80211_MODE_HALF]	= 3,
1072 		    [IEEE80211_MODE_QUARTER]	= 3,
1073 		    [IEEE80211_MODE_11NA]	= 3,
1074 		    [IEEE80211_MODE_11NG]	= 3,
1075 		};
1076 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1077 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1078 
1079 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1080 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1081 		    "update %s (chan+bss) logcwmin %u\n",
1082 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1083     	}
1084 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* XXX ibss? */
1085 		/*
1086 		 * Arrange for a beacon update and bump the parameter
1087 		 * set number so associated stations load the new values.
1088 		 */
1089 		wme->wme_bssChanParams.cap_info =
1090 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1091 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1092 	}
1093 
1094 	wme->wme_update(ic);
1095 
1096 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1097 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1098 	    vap->iv_opmode == IEEE80211_M_STA ?
1099 		wme->wme_wmeChanParams.cap_info :
1100 		wme->wme_bssChanParams.cap_info);
1101 }
1102 
1103 void
1104 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1105 {
1106 	struct ieee80211com *ic = vap->iv_ic;
1107 
1108 	if (ic->ic_caps & IEEE80211_C_WME) {
1109 		IEEE80211_LOCK(ic);
1110 		ieee80211_wme_updateparams_locked(vap);
1111 		IEEE80211_UNLOCK(ic);
1112 	}
1113 }
1114 
1115 static void
1116 parent_updown(void *arg, int npending)
1117 {
1118 	struct ifnet *parent = arg;
1119 
1120 	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
1121 }
1122 
1123 static void
1124 update_mcast(void *arg, int npending)
1125 {
1126 	struct ieee80211com *ic = arg;
1127 	struct ifnet *parent = ic->ic_ifp;
1128 
1129 	ic->ic_update_mcast(parent);
1130 }
1131 
1132 static void
1133 update_promisc(void *arg, int npending)
1134 {
1135 	struct ieee80211com *ic = arg;
1136 	struct ifnet *parent = ic->ic_ifp;
1137 
1138 	ic->ic_update_promisc(parent);
1139 }
1140 
1141 static void
1142 update_channel(void *arg, int npending)
1143 {
1144 	struct ieee80211com *ic = arg;
1145 
1146 	ic->ic_set_channel(ic);
1147 	ieee80211_radiotap_chan_change(ic);
1148 }
1149 
1150 /*
1151  * Block until the parent is in a known state.  This is
1152  * used after any operations that dispatch a task (e.g.
1153  * to auto-configure the parent device up/down).
1154  */
1155 void
1156 ieee80211_waitfor_parent(struct ieee80211com *ic)
1157 {
1158 	taskqueue_block(ic->ic_tq);
1159 	ieee80211_draintask(ic, &ic->ic_parent_task);
1160 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1161 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1162 	ieee80211_draintask(ic, &ic->ic_chan_task);
1163 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1164 	taskqueue_unblock(ic->ic_tq);
1165 }
1166 
1167 /*
1168  * Start a vap running.  If this is the first vap to be
1169  * set running on the underlying device then we
1170  * automatically bring the device up.
1171  */
1172 void
1173 ieee80211_start_locked(struct ieee80211vap *vap)
1174 {
1175 	struct ifnet *ifp = vap->iv_ifp;
1176 	struct ieee80211com *ic = vap->iv_ic;
1177 	struct ifnet *parent = ic->ic_ifp;
1178 
1179 	IEEE80211_LOCK_ASSERT(ic);
1180 
1181 	IEEE80211_DPRINTF(vap,
1182 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1183 		"start running, %d vaps running\n", ic->ic_nrunning);
1184 
1185 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1186 		/*
1187 		 * Mark us running.  Note that it's ok to do this first;
1188 		 * if we need to bring the parent device up we defer that
1189 		 * to avoid dropping the com lock.  We expect the device
1190 		 * to respond to being marked up by calling back into us
1191 		 * through ieee80211_start_all at which point we'll come
1192 		 * back in here and complete the work.
1193 		 */
1194 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1195 		/*
1196 		 * We are not running; if this we are the first vap
1197 		 * to be brought up auto-up the parent if necessary.
1198 		 */
1199 		if (ic->ic_nrunning++ == 0 &&
1200 		    (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1201 			IEEE80211_DPRINTF(vap,
1202 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1203 			    "%s: up parent %s\n", __func__, parent->if_xname);
1204 			parent->if_flags |= IFF_UP;
1205 			ieee80211_runtask(ic, &ic->ic_parent_task);
1206 			return;
1207 		}
1208 	}
1209 	/*
1210 	 * If the parent is up and running, then kick the
1211 	 * 802.11 state machine as appropriate.
1212 	 */
1213 	if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
1214 	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1215 		if (vap->iv_opmode == IEEE80211_M_STA) {
1216 #if 0
1217 			/* XXX bypasses scan too easily; disable for now */
1218 			/*
1219 			 * Try to be intelligent about clocking the state
1220 			 * machine.  If we're currently in RUN state then
1221 			 * we should be able to apply any new state/parameters
1222 			 * simply by re-associating.  Otherwise we need to
1223 			 * re-scan to select an appropriate ap.
1224 			 */
1225 			if (vap->iv_state >= IEEE80211_S_RUN)
1226 				ieee80211_new_state_locked(vap,
1227 				    IEEE80211_S_ASSOC, 1);
1228 			else
1229 #endif
1230 				ieee80211_new_state_locked(vap,
1231 				    IEEE80211_S_SCAN, 0);
1232 		} else {
1233 			/*
1234 			 * For monitor+wds mode there's nothing to do but
1235 			 * start running.  Otherwise if this is the first
1236 			 * vap to be brought up, start a scan which may be
1237 			 * preempted if the station is locked to a particular
1238 			 * channel.
1239 			 */
1240 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1241 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1242 			    vap->iv_opmode == IEEE80211_M_WDS)
1243 				ieee80211_new_state_locked(vap,
1244 				    IEEE80211_S_RUN, -1);
1245 			else
1246 				ieee80211_new_state_locked(vap,
1247 				    IEEE80211_S_SCAN, 0);
1248 		}
1249 	}
1250 }
1251 
1252 /*
1253  * Start a single vap.
1254  */
1255 void
1256 ieee80211_init(void *arg)
1257 {
1258 	struct ieee80211vap *vap = arg;
1259 
1260 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1261 	    "%s\n", __func__);
1262 
1263 	IEEE80211_LOCK(vap->iv_ic);
1264 	ieee80211_start_locked(vap);
1265 	IEEE80211_UNLOCK(vap->iv_ic);
1266 }
1267 
1268 /*
1269  * Start all runnable vap's on a device.
1270  */
1271 void
1272 ieee80211_start_all(struct ieee80211com *ic)
1273 {
1274 	struct ieee80211vap *vap;
1275 
1276 	IEEE80211_LOCK(ic);
1277 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1278 		struct ifnet *ifp = vap->iv_ifp;
1279 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1280 			ieee80211_start_locked(vap);
1281 	}
1282 	IEEE80211_UNLOCK(ic);
1283 }
1284 
1285 /*
1286  * Stop a vap.  We force it down using the state machine
1287  * then mark it's ifnet not running.  If this is the last
1288  * vap running on the underlying device then we close it
1289  * too to insure it will be properly initialized when the
1290  * next vap is brought up.
1291  */
1292 void
1293 ieee80211_stop_locked(struct ieee80211vap *vap)
1294 {
1295 	struct ieee80211com *ic = vap->iv_ic;
1296 	struct ifnet *ifp = vap->iv_ifp;
1297 	struct ifnet *parent = ic->ic_ifp;
1298 
1299 	IEEE80211_LOCK_ASSERT(ic);
1300 
1301 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1302 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1303 
1304 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1305 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1306 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1307 		if (--ic->ic_nrunning == 0 &&
1308 		    (parent->if_drv_flags & IFF_DRV_RUNNING)) {
1309 			IEEE80211_DPRINTF(vap,
1310 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1311 			    "down parent %s\n", parent->if_xname);
1312 			parent->if_flags &= ~IFF_UP;
1313 			ieee80211_runtask(ic, &ic->ic_parent_task);
1314 		}
1315 	}
1316 }
1317 
1318 void
1319 ieee80211_stop(struct ieee80211vap *vap)
1320 {
1321 	struct ieee80211com *ic = vap->iv_ic;
1322 
1323 	IEEE80211_LOCK(ic);
1324 	ieee80211_stop_locked(vap);
1325 	IEEE80211_UNLOCK(ic);
1326 }
1327 
1328 /*
1329  * Stop all vap's running on a device.
1330  */
1331 void
1332 ieee80211_stop_all(struct ieee80211com *ic)
1333 {
1334 	struct ieee80211vap *vap;
1335 
1336 	IEEE80211_LOCK(ic);
1337 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1338 		struct ifnet *ifp = vap->iv_ifp;
1339 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1340 			ieee80211_stop_locked(vap);
1341 	}
1342 	IEEE80211_UNLOCK(ic);
1343 
1344 	ieee80211_waitfor_parent(ic);
1345 }
1346 
1347 /*
1348  * Stop all vap's running on a device and arrange
1349  * for those that were running to be resumed.
1350  */
1351 void
1352 ieee80211_suspend_all(struct ieee80211com *ic)
1353 {
1354 	struct ieee80211vap *vap;
1355 
1356 	IEEE80211_LOCK(ic);
1357 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1358 		struct ifnet *ifp = vap->iv_ifp;
1359 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1360 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1361 			ieee80211_stop_locked(vap);
1362 		}
1363 	}
1364 	IEEE80211_UNLOCK(ic);
1365 
1366 	ieee80211_waitfor_parent(ic);
1367 }
1368 
1369 /*
1370  * Start all vap's marked for resume.
1371  */
1372 void
1373 ieee80211_resume_all(struct ieee80211com *ic)
1374 {
1375 	struct ieee80211vap *vap;
1376 
1377 	IEEE80211_LOCK(ic);
1378 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1379 		struct ifnet *ifp = vap->iv_ifp;
1380 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1381 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1382 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1383 			ieee80211_start_locked(vap);
1384 		}
1385 	}
1386 	IEEE80211_UNLOCK(ic);
1387 }
1388 
1389 void
1390 ieee80211_beacon_miss(struct ieee80211com *ic)
1391 {
1392 	IEEE80211_LOCK(ic);
1393 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1394 		/* Process in a taskq, the handler may reenter the driver */
1395 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1396 	}
1397 	IEEE80211_UNLOCK(ic);
1398 }
1399 
1400 static void
1401 beacon_miss(void *arg, int npending)
1402 {
1403 	struct ieee80211com *ic = arg;
1404 	struct ieee80211vap *vap;
1405 
1406 	/* XXX locking */
1407 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1408 		/*
1409 		 * We only pass events through for sta vap's in RUN state;
1410 		 * may be too restrictive but for now this saves all the
1411 		 * handlers duplicating these checks.
1412 		 */
1413 		if (vap->iv_opmode == IEEE80211_M_STA &&
1414 		    vap->iv_state >= IEEE80211_S_RUN &&
1415 		    vap->iv_bmiss != NULL)
1416 			vap->iv_bmiss(vap);
1417 	}
1418 }
1419 
1420 static void
1421 beacon_swmiss(void *arg, int npending)
1422 {
1423 	struct ieee80211vap *vap = arg;
1424 
1425 	if (vap->iv_state != IEEE80211_S_RUN)
1426 		return;
1427 
1428 	/* XXX Call multiple times if npending > zero? */
1429 	vap->iv_bmiss(vap);
1430 }
1431 
1432 /*
1433  * Software beacon miss handling.  Check if any beacons
1434  * were received in the last period.  If not post a
1435  * beacon miss; otherwise reset the counter.
1436  */
1437 void
1438 ieee80211_swbmiss(void *arg)
1439 {
1440 	struct ieee80211vap *vap = arg;
1441 	struct ieee80211com *ic = vap->iv_ic;
1442 
1443 	/* XXX sleep state? */
1444 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1445 	    ("wrong state %d", vap->iv_state));
1446 
1447 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1448 		/*
1449 		 * If scanning just ignore and reset state.  If we get a
1450 		 * bmiss after coming out of scan because we haven't had
1451 		 * time to receive a beacon then we should probe the AP
1452 		 * before posting a real bmiss (unless iv_bmiss_max has
1453 		 * been artifiically lowered).  A cleaner solution might
1454 		 * be to disable the timer on scan start/end but to handle
1455 		 * case of multiple sta vap's we'd need to disable the
1456 		 * timers of all affected vap's.
1457 		 */
1458 		vap->iv_swbmiss_count = 0;
1459 	} else if (vap->iv_swbmiss_count == 0) {
1460 		if (vap->iv_bmiss != NULL)
1461 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1462 	} else
1463 		vap->iv_swbmiss_count = 0;
1464 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1465 		ieee80211_swbmiss, vap);
1466 }
1467 
1468 /*
1469  * Start an 802.11h channel switch.  We record the parameters,
1470  * mark the operation pending, notify each vap through the
1471  * beacon update mechanism so it can update the beacon frame
1472  * contents, and then switch vap's to CSA state to block outbound
1473  * traffic.  Devices that handle CSA directly can use the state
1474  * switch to do the right thing so long as they call
1475  * ieee80211_csa_completeswitch when it's time to complete the
1476  * channel change.  Devices that depend on the net80211 layer can
1477  * use ieee80211_beacon_update to handle the countdown and the
1478  * channel switch.
1479  */
1480 void
1481 ieee80211_csa_startswitch(struct ieee80211com *ic,
1482 	struct ieee80211_channel *c, int mode, int count)
1483 {
1484 	struct ieee80211vap *vap;
1485 
1486 	IEEE80211_LOCK_ASSERT(ic);
1487 
1488 	ic->ic_csa_newchan = c;
1489 	ic->ic_csa_mode = mode;
1490 	ic->ic_csa_count = count;
1491 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1492 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1493 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1494 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1495 		    vap->iv_opmode == IEEE80211_M_MBSS)
1496 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1497 		/* switch to CSA state to block outbound traffic */
1498 		if (vap->iv_state == IEEE80211_S_RUN)
1499 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1500 	}
1501 	ieee80211_notify_csa(ic, c, mode, count);
1502 }
1503 
1504 /*
1505  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1506  * This is called by both the completion and cancellation functions
1507  * so each VAP is placed back in the RUN state and can thus transmit.
1508  */
1509 static void
1510 csa_completeswitch(struct ieee80211com *ic)
1511 {
1512 	struct ieee80211vap *vap;
1513 
1514 	ic->ic_csa_newchan = NULL;
1515 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1516 
1517 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1518 		if (vap->iv_state == IEEE80211_S_CSA)
1519 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1520 }
1521 
1522 /*
1523  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1524  * We clear state and move all vap's in CSA state to RUN state
1525  * so they can again transmit.
1526  *
1527  * Although this may not be completely correct, update the BSS channel
1528  * for each VAP to the newly configured channel. The setcurchan sets
1529  * the current operating channel for the interface (so the radio does
1530  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1531  * reported information via ioctl.
1532  */
1533 void
1534 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1535 {
1536 	struct ieee80211vap *vap;
1537 
1538 	IEEE80211_LOCK_ASSERT(ic);
1539 
1540 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1541 
1542 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1543 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1544 		if (vap->iv_state == IEEE80211_S_CSA)
1545 			vap->iv_bss->ni_chan = ic->ic_curchan;
1546 
1547 	csa_completeswitch(ic);
1548 }
1549 
1550 /*
1551  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1552  * We clear state and move all vap's in CSA state to RUN state
1553  * so they can again transmit.
1554  */
1555 void
1556 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1557 {
1558 	IEEE80211_LOCK_ASSERT(ic);
1559 
1560 	csa_completeswitch(ic);
1561 }
1562 
1563 /*
1564  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1565  * We clear state and move all vap's in CAC state to RUN state.
1566  */
1567 void
1568 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1569 {
1570 	struct ieee80211com *ic = vap0->iv_ic;
1571 	struct ieee80211vap *vap;
1572 
1573 	IEEE80211_LOCK(ic);
1574 	/*
1575 	 * Complete CAC state change for lead vap first; then
1576 	 * clock all the other vap's waiting.
1577 	 */
1578 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1579 	    ("wrong state %d", vap0->iv_state));
1580 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1581 
1582 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1583 		if (vap->iv_state == IEEE80211_S_CAC)
1584 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1585 	IEEE80211_UNLOCK(ic);
1586 }
1587 
1588 /*
1589  * Force all vap's other than the specified vap to the INIT state
1590  * and mark them as waiting for a scan to complete.  These vaps
1591  * will be brought up when the scan completes and the scanning vap
1592  * reaches RUN state by wakeupwaiting.
1593  */
1594 static void
1595 markwaiting(struct ieee80211vap *vap0)
1596 {
1597 	struct ieee80211com *ic = vap0->iv_ic;
1598 	struct ieee80211vap *vap;
1599 
1600 	IEEE80211_LOCK_ASSERT(ic);
1601 
1602 	/*
1603 	 * A vap list entry can not disappear since we are running on the
1604 	 * taskqueue and a vap destroy will queue and drain another state
1605 	 * change task.
1606 	 */
1607 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1608 		if (vap == vap0)
1609 			continue;
1610 		if (vap->iv_state != IEEE80211_S_INIT) {
1611 			/* NB: iv_newstate may drop the lock */
1612 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1613 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1614 		}
1615 	}
1616 }
1617 
1618 /*
1619  * Wakeup all vap's waiting for a scan to complete.  This is the
1620  * companion to markwaiting (above) and is used to coordinate
1621  * multiple vaps scanning.
1622  * This is called from the state taskqueue.
1623  */
1624 static void
1625 wakeupwaiting(struct ieee80211vap *vap0)
1626 {
1627 	struct ieee80211com *ic = vap0->iv_ic;
1628 	struct ieee80211vap *vap;
1629 
1630 	IEEE80211_LOCK_ASSERT(ic);
1631 
1632 	/*
1633 	 * A vap list entry can not disappear since we are running on the
1634 	 * taskqueue and a vap destroy will queue and drain another state
1635 	 * change task.
1636 	 */
1637 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1638 		if (vap == vap0)
1639 			continue;
1640 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1641 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1642 			/* NB: sta's cannot go INIT->RUN */
1643 			/* NB: iv_newstate may drop the lock */
1644 			vap->iv_newstate(vap,
1645 			    vap->iv_opmode == IEEE80211_M_STA ?
1646 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1647 		}
1648 	}
1649 }
1650 
1651 /*
1652  * Handle post state change work common to all operating modes.
1653  */
1654 static void
1655 ieee80211_newstate_cb(void *xvap, int npending)
1656 {
1657 	struct ieee80211vap *vap = xvap;
1658 	struct ieee80211com *ic = vap->iv_ic;
1659 	enum ieee80211_state nstate, ostate;
1660 	int arg, rc;
1661 
1662 	IEEE80211_LOCK(ic);
1663 	nstate = vap->iv_nstate;
1664 	arg = vap->iv_nstate_arg;
1665 
1666 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1667 		/*
1668 		 * We have been requested to drop back to the INIT before
1669 		 * proceeding to the new state.
1670 		 */
1671 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1672 		    "%s: %s -> %s arg %d\n", __func__,
1673 		    ieee80211_state_name[vap->iv_state],
1674 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1675 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1676 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1677 	}
1678 
1679 	ostate = vap->iv_state;
1680 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1681 		/*
1682 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1683 		 * vap's to INIT state and mark them as waiting for the scan to
1684 		 * complete.  This insures they don't interfere with our
1685 		 * scanning.  Since we are single threaded the vaps can not
1686 		 * transition again while we are executing.
1687 		 *
1688 		 * XXX not always right, assumes ap follows sta
1689 		 */
1690 		markwaiting(vap);
1691 	}
1692 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1693 	    "%s: %s -> %s arg %d\n", __func__,
1694 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1695 
1696 	rc = vap->iv_newstate(vap, nstate, arg);
1697 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1698 	if (rc != 0) {
1699 		/* State transition failed */
1700 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1701 		KASSERT(nstate != IEEE80211_S_INIT,
1702 		    ("INIT state change failed"));
1703 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1704 		    "%s: %s returned error %d\n", __func__,
1705 		    ieee80211_state_name[nstate], rc);
1706 		goto done;
1707 	}
1708 
1709 	/* No actual transition, skip post processing */
1710 	if (ostate == nstate)
1711 		goto done;
1712 
1713 	if (nstate == IEEE80211_S_RUN) {
1714 		/*
1715 		 * OACTIVE may be set on the vap if the upper layer
1716 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1717 		 * RUN state.  Clear it and restart xmit.
1718 		 *
1719 		 * Note this can also happen as a result of SLEEP->RUN
1720 		 * (i.e. coming out of power save mode).
1721 		 */
1722 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1723 		if_start(vap->iv_ifp);
1724 
1725 		/* bring up any vaps waiting on us */
1726 		wakeupwaiting(vap);
1727 	} else if (nstate == IEEE80211_S_INIT) {
1728 		/*
1729 		 * Flush the scan cache if we did the last scan (XXX?)
1730 		 * and flush any frames on send queues from this vap.
1731 		 * Note the mgt q is used only for legacy drivers and
1732 		 * will go away shortly.
1733 		 */
1734 		ieee80211_scan_flush(vap);
1735 
1736 		/* XXX NB: cast for altq */
1737 		ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap);
1738 	}
1739 done:
1740 	IEEE80211_UNLOCK(ic);
1741 }
1742 
1743 /*
1744  * Public interface for initiating a state machine change.
1745  * This routine single-threads the request and coordinates
1746  * the scheduling of multiple vaps for the purpose of selecting
1747  * an operating channel.  Specifically the following scenarios
1748  * are handled:
1749  * o only one vap can be selecting a channel so on transition to
1750  *   SCAN state if another vap is already scanning then
1751  *   mark the caller for later processing and return without
1752  *   doing anything (XXX? expectations by caller of synchronous operation)
1753  * o only one vap can be doing CAC of a channel so on transition to
1754  *   CAC state if another vap is already scanning for radar then
1755  *   mark the caller for later processing and return without
1756  *   doing anything (XXX? expectations by caller of synchronous operation)
1757  * o if another vap is already running when a request is made
1758  *   to SCAN then an operating channel has been chosen; bypass
1759  *   the scan and just join the channel
1760  *
1761  * Note that the state change call is done through the iv_newstate
1762  * method pointer so any driver routine gets invoked.  The driver
1763  * will normally call back into operating mode-specific
1764  * ieee80211_newstate routines (below) unless it needs to completely
1765  * bypass the state machine (e.g. because the firmware has it's
1766  * own idea how things should work).  Bypassing the net80211 layer
1767  * is usually a mistake and indicates lack of proper integration
1768  * with the net80211 layer.
1769  */
1770 static int
1771 ieee80211_new_state_locked(struct ieee80211vap *vap,
1772 	enum ieee80211_state nstate, int arg)
1773 {
1774 	struct ieee80211com *ic = vap->iv_ic;
1775 	struct ieee80211vap *vp;
1776 	enum ieee80211_state ostate;
1777 	int nrunning, nscanning;
1778 
1779 	IEEE80211_LOCK_ASSERT(ic);
1780 
1781 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1782 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1783 			/*
1784 			 * XXX The vap is being stopped, do no allow any other
1785 			 * state changes until this is completed.
1786 			 */
1787 			return -1;
1788 		} else if (vap->iv_state != vap->iv_nstate) {
1789 #if 0
1790 			/* Warn if the previous state hasn't completed. */
1791 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1792 			    "%s: pending %s -> %s transition lost\n", __func__,
1793 			    ieee80211_state_name[vap->iv_state],
1794 			    ieee80211_state_name[vap->iv_nstate]);
1795 #else
1796 			/* XXX temporarily enable to identify issues */
1797 			if_printf(vap->iv_ifp,
1798 			    "%s: pending %s -> %s transition lost\n",
1799 			    __func__, ieee80211_state_name[vap->iv_state],
1800 			    ieee80211_state_name[vap->iv_nstate]);
1801 #endif
1802 		}
1803 	}
1804 
1805 	nrunning = nscanning = 0;
1806 	/* XXX can track this state instead of calculating */
1807 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1808 		if (vp != vap) {
1809 			if (vp->iv_state >= IEEE80211_S_RUN)
1810 				nrunning++;
1811 			/* XXX doesn't handle bg scan */
1812 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1813 			else if (vp->iv_state > IEEE80211_S_INIT)
1814 				nscanning++;
1815 		}
1816 	}
1817 	ostate = vap->iv_state;
1818 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1819 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1820 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1821 	    nrunning, nscanning);
1822 	switch (nstate) {
1823 	case IEEE80211_S_SCAN:
1824 		if (ostate == IEEE80211_S_INIT) {
1825 			/*
1826 			 * INIT -> SCAN happens on initial bringup.
1827 			 */
1828 			KASSERT(!(nscanning && nrunning),
1829 			    ("%d scanning and %d running", nscanning, nrunning));
1830 			if (nscanning) {
1831 				/*
1832 				 * Someone is scanning, defer our state
1833 				 * change until the work has completed.
1834 				 */
1835 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1836 				    "%s: defer %s -> %s\n",
1837 				    __func__, ieee80211_state_name[ostate],
1838 				    ieee80211_state_name[nstate]);
1839 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1840 				return 0;
1841 			}
1842 			if (nrunning) {
1843 				/*
1844 				 * Someone is operating; just join the channel
1845 				 * they have chosen.
1846 				 */
1847 				/* XXX kill arg? */
1848 				/* XXX check each opmode, adhoc? */
1849 				if (vap->iv_opmode == IEEE80211_M_STA)
1850 					nstate = IEEE80211_S_SCAN;
1851 				else
1852 					nstate = IEEE80211_S_RUN;
1853 #ifdef IEEE80211_DEBUG
1854 				if (nstate != IEEE80211_S_SCAN) {
1855 					IEEE80211_DPRINTF(vap,
1856 					    IEEE80211_MSG_STATE,
1857 					    "%s: override, now %s -> %s\n",
1858 					    __func__,
1859 					    ieee80211_state_name[ostate],
1860 					    ieee80211_state_name[nstate]);
1861 				}
1862 #endif
1863 			}
1864 		}
1865 		break;
1866 	case IEEE80211_S_RUN:
1867 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1868 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1869 		    nscanning) {
1870 			/*
1871 			 * Legacy WDS with someone else scanning; don't
1872 			 * go online until that completes as we should
1873 			 * follow the other vap to the channel they choose.
1874 			 */
1875 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1876 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1877 			     ieee80211_state_name[ostate],
1878 			     ieee80211_state_name[nstate]);
1879 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1880 			return 0;
1881 		}
1882 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1883 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1884 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1885 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1886 			/*
1887 			 * This is a DFS channel, transition to CAC state
1888 			 * instead of RUN.  This allows us to initiate
1889 			 * Channel Availability Check (CAC) as specified
1890 			 * by 11h/DFS.
1891 			 */
1892 			nstate = IEEE80211_S_CAC;
1893 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1894 			     "%s: override %s -> %s (DFS)\n", __func__,
1895 			     ieee80211_state_name[ostate],
1896 			     ieee80211_state_name[nstate]);
1897 		}
1898 		break;
1899 	case IEEE80211_S_INIT:
1900 		/* cancel any scan in progress */
1901 		ieee80211_cancel_scan(vap);
1902 		if (ostate == IEEE80211_S_INIT ) {
1903 			/* XXX don't believe this */
1904 			/* INIT -> INIT. nothing to do */
1905 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1906 		}
1907 		/* fall thru... */
1908 	default:
1909 		break;
1910 	}
1911 	/* defer the state change to a thread */
1912 	vap->iv_nstate = nstate;
1913 	vap->iv_nstate_arg = arg;
1914 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1915 	ieee80211_runtask(ic, &vap->iv_nstate_task);
1916 	return EINPROGRESS;
1917 }
1918 
1919 int
1920 ieee80211_new_state(struct ieee80211vap *vap,
1921 	enum ieee80211_state nstate, int arg)
1922 {
1923 	struct ieee80211com *ic = vap->iv_ic;
1924 	int rc;
1925 
1926 	IEEE80211_LOCK(ic);
1927 	rc = ieee80211_new_state_locked(vap, nstate, arg);
1928 	IEEE80211_UNLOCK(ic);
1929 	return rc;
1930 }
1931