xref: /haiku/src/libs/compat/freebsd_wlan/net80211/ieee80211_proto.c (revision 13581b3d2a71545960b98fefebc5225b5bf29072)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6  * Copyright (c) 2012 IEEE
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 /*
32  * IEEE 802.11 protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/ethernet.h>		/* XXX for ether_sprintf */
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_adhoc.h>
54 #include <net80211/ieee80211_sta.h>
55 #include <net80211/ieee80211_hostap.h>
56 #include <net80211/ieee80211_wds.h>
57 #ifdef IEEE80211_SUPPORT_MESH
58 #include <net80211/ieee80211_mesh.h>
59 #endif
60 #include <net80211/ieee80211_monitor.h>
61 #include <net80211/ieee80211_input.h>
62 
63 /* XXX tunables */
64 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
65 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
66 
67 const char *mgt_subtype_name[] = {
68 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
69 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
70 	"beacon",	"atim",		"disassoc",	"auth",
71 	"deauth",	"action",	"action_noack",	"reserved#15"
72 };
73 const char *ctl_subtype_name[] = {
74 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
75 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
76 	"bar",		"ba",		"ps_poll",	"rts",
77 	"cts",		"ack",		"cf_end",	"cf_end_ack"
78 };
79 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
80 	"IBSS",		/* IEEE80211_M_IBSS */
81 	"STA",		/* IEEE80211_M_STA */
82 	"WDS",		/* IEEE80211_M_WDS */
83 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
84 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
85 	"MONITOR",	/* IEEE80211_M_MONITOR */
86 	"MBSS"		/* IEEE80211_M_MBSS */
87 };
88 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
89 	"INIT",		/* IEEE80211_S_INIT */
90 	"SCAN",		/* IEEE80211_S_SCAN */
91 	"AUTH",		/* IEEE80211_S_AUTH */
92 	"ASSOC",	/* IEEE80211_S_ASSOC */
93 	"CAC",		/* IEEE80211_S_CAC */
94 	"RUN",		/* IEEE80211_S_RUN */
95 	"CSA",		/* IEEE80211_S_CSA */
96 	"SLEEP",	/* IEEE80211_S_SLEEP */
97 };
98 const char *ieee80211_wme_acnames[] = {
99 	"WME_AC_BE",
100 	"WME_AC_BK",
101 	"WME_AC_VI",
102 	"WME_AC_VO",
103 	"WME_UPSD",
104 };
105 
106 /*
107  * Reason code descriptions were (mostly) obtained from
108  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
109  */
110 const char *
111 ieee80211_reason_to_string(uint16_t reason)
112 {
113 	switch (reason) {
114 	case IEEE80211_REASON_UNSPECIFIED:
115 		return ("unspecified");
116 	case IEEE80211_REASON_AUTH_EXPIRE:
117 		return ("previous authentication is expired");
118 	case IEEE80211_REASON_AUTH_LEAVE:
119 		return ("sending STA is leaving/has left IBSS or ESS");
120 	case IEEE80211_REASON_ASSOC_EXPIRE:
121 		return ("disassociated due to inactivity");
122 	case IEEE80211_REASON_ASSOC_TOOMANY:
123 		return ("too many associated STAs");
124 	case IEEE80211_REASON_NOT_AUTHED:
125 		return ("class 2 frame received from nonauthenticated STA");
126 	case IEEE80211_REASON_NOT_ASSOCED:
127 		return ("class 3 frame received from nonassociated STA");
128 	case IEEE80211_REASON_ASSOC_LEAVE:
129 		return ("sending STA is leaving/has left BSS");
130 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
131 		return ("STA requesting (re)association is not authenticated");
132 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
133 		return ("information in the Power Capability element is "
134 			"unacceptable");
135 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
136 		return ("information in the Supported Channels element is "
137 			"unacceptable");
138 	case IEEE80211_REASON_IE_INVALID:
139 		return ("invalid element");
140 	case IEEE80211_REASON_MIC_FAILURE:
141 		return ("MIC failure");
142 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
143 		return ("4-Way handshake timeout");
144 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
145 		return ("group key update timeout");
146 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
147 		return ("element in 4-Way handshake different from "
148 			"(re)association request/probe response/beacon frame");
149 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
150 		return ("invalid group cipher");
151 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
152 		return ("invalid pairwise cipher");
153 	case IEEE80211_REASON_AKMP_INVALID:
154 		return ("invalid AKMP");
155 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
156 		return ("unsupported version in RSN IE");
157 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
158 		return ("invalid capabilities in RSN IE");
159 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
160 		return ("IEEE 802.1X authentication failed");
161 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
162 		return ("cipher suite rejected because of the security "
163 			"policy");
164 	case IEEE80211_REASON_UNSPECIFIED_QOS:
165 		return ("unspecified (QoS-related)");
166 	case IEEE80211_REASON_INSUFFICIENT_BW:
167 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
168 	case IEEE80211_REASON_TOOMANY_FRAMES:
169 		return ("too many frames need to be acknowledged");
170 	case IEEE80211_REASON_OUTSIDE_TXOP:
171 		return ("STA is transmitting outside the limits of its TXOPs");
172 	case IEEE80211_REASON_LEAVING_QBSS:
173 		return ("requested from peer STA (the STA is "
174 			"resetting/leaving the BSS)");
175 	case IEEE80211_REASON_BAD_MECHANISM:
176 		return ("requested from peer STA (it does not want to use "
177 			"the mechanism)");
178 	case IEEE80211_REASON_SETUP_NEEDED:
179 		return ("requested from peer STA (setup is required for the "
180 			"used mechanism)");
181 	case IEEE80211_REASON_TIMEOUT:
182 		return ("requested from peer STA (timeout)");
183 	case IEEE80211_REASON_PEER_LINK_CANCELED:
184 		return ("SME cancels the mesh peering instance (not related "
185 			"to the maximum number of peer mesh STAs)");
186 	case IEEE80211_REASON_MESH_MAX_PEERS:
187 		return ("maximum number of peer mesh STAs was reached");
188 	case IEEE80211_REASON_MESH_CPVIOLATION:
189 		return ("the received information violates the Mesh "
190 			"Configuration policy configured in the mesh STA "
191 			"profile");
192 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
193 		return ("the mesh STA has received a Mesh Peering Close "
194 			"message requesting to close the mesh peering");
195 	case IEEE80211_REASON_MESH_MAX_RETRIES:
196 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
197 			"Peering Open messages, without receiving a Mesh "
198 			"Peering Confirm message");
199 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
200 		return ("the confirmTimer for the mesh peering instance times "
201 			"out");
202 	case IEEE80211_REASON_MESH_INVALID_GTK:
203 		return ("the mesh STA fails to unwrap the GTK or the values "
204 			"in the wrapped contents do not match");
205 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
206 		return ("the mesh STA receives inconsistent information about "
207 			"the mesh parameters between Mesh Peering Management "
208 			"frames");
209 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
210 		return ("the mesh STA fails the authenticated mesh peering "
211 			"exchange because due to failure in selecting "
212 			"pairwise/group ciphersuite");
213 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
214 		return ("the mesh STA does not have proxy information for "
215 			"this external destination");
216 	case IEEE80211_REASON_MESH_PERR_NO_FI:
217 		return ("the mesh STA does not have forwarding information "
218 			"for this destination");
219 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
220 		return ("the mesh STA determines that the link to the next "
221 			"hop of an active path in its forwarding information "
222 			"is no longer usable");
223 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
224 		return ("the MAC address of the STA already exists in the "
225 			"mesh BSS");
226 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
227 		return ("the mesh STA performs channel switch to meet "
228 			"regulatory requirements");
229 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
230 		return ("the mesh STA performs channel switch with "
231 			"unspecified reason");
232 	default:
233 		return ("reserved/unknown");
234 	}
235 }
236 
237 static void beacon_miss(void *, int);
238 static void beacon_swmiss(void *, int);
239 static void parent_updown(void *, int);
240 static void update_mcast(void *, int);
241 static void update_promisc(void *, int);
242 static void update_channel(void *, int);
243 static void update_chw(void *, int);
244 static void vap_update_wme(void *, int);
245 static void vap_update_slot(void *, int);
246 static void restart_vaps(void *, int);
247 static void vap_update_erp_protmode(void *, int);
248 static void vap_update_preamble(void *, int);
249 static void vap_update_ht_protmode(void *, int);
250 static void ieee80211_newstate_cb(void *, int);
251 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *,
252     struct ieee80211_node *);
253 
254 static int
255 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
256 	const struct ieee80211_bpf_params *params)
257 {
258 
259 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
260 	m_freem(m);
261 	return ENETDOWN;
262 }
263 
264 void
265 ieee80211_proto_attach(struct ieee80211com *ic)
266 {
267 	uint8_t hdrlen;
268 
269 	/* override the 802.3 setting */
270 	hdrlen = ic->ic_headroom
271 		+ sizeof(struct ieee80211_qosframe_addr4)
272 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
273 		+ IEEE80211_WEP_EXTIVLEN;
274 	/* XXX no way to recalculate on ifdetach */
275 #ifdef __HAIKU__
276 	if (ALIGN(hdrlen) > max_linkhdr) {
277 		/* XXX sanity check... */
278 		max_linkhdr = ALIGN(hdrlen);
279 		max_hdr = max_linkhdr + max_protohdr;
280 		max_datalen = MHLEN - max_hdr;
281 	}
282 #else
283 	max_linkhdr_grow(ALIGN(hdrlen));
284 #endif
285 	//ic->ic_protmode = IEEE80211_PROT_CTSONLY;
286 
287 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
288 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
289 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
290 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
291 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
292 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
293 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
294 
295 	ic->ic_wme.wme_hipri_switch_hysteresis =
296 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
297 
298 	/* initialize management frame handlers */
299 	ic->ic_send_mgmt = ieee80211_send_mgmt;
300 	ic->ic_raw_xmit = null_raw_xmit;
301 
302 	ieee80211_adhoc_attach(ic);
303 	ieee80211_sta_attach(ic);
304 	ieee80211_wds_attach(ic);
305 	ieee80211_hostap_attach(ic);
306 #ifdef IEEE80211_SUPPORT_MESH
307 	ieee80211_mesh_attach(ic);
308 #endif
309 	ieee80211_monitor_attach(ic);
310 }
311 
312 void
313 ieee80211_proto_detach(struct ieee80211com *ic)
314 {
315 	ieee80211_monitor_detach(ic);
316 #ifdef IEEE80211_SUPPORT_MESH
317 	ieee80211_mesh_detach(ic);
318 #endif
319 	ieee80211_hostap_detach(ic);
320 	ieee80211_wds_detach(ic);
321 	ieee80211_adhoc_detach(ic);
322 	ieee80211_sta_detach(ic);
323 }
324 
325 static void
326 null_update_beacon(struct ieee80211vap *vap, int item)
327 {
328 }
329 
330 void
331 ieee80211_proto_vattach(struct ieee80211vap *vap)
332 {
333 	struct ieee80211com *ic = vap->iv_ic;
334 	struct ifnet *ifp = vap->iv_ifp;
335 	int i;
336 
337 	/* override the 802.3 setting */
338 	ifp->if_hdrlen = ic->ic_headroom
339                 + sizeof(struct ieee80211_qosframe_addr4)
340                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
341                 + IEEE80211_WEP_EXTIVLEN;
342 
343 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
344 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
345 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
346 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
347 	callout_init(&vap->iv_mgtsend, 1);
348 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
349 		TASK_INIT(&vap->iv_nstate_task[i], 0, ieee80211_newstate_cb, vap);
350 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
351 	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
352 	TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap);
353 	TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap);
354 	TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap);
355 	TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap);
356 	/*
357 	 * Install default tx rate handling: no fixed rate, lowest
358 	 * supported rate for mgmt and multicast frames.  Default
359 	 * max retry count.  These settings can be changed by the
360 	 * driver and/or user applications.
361 	 */
362 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
363 		if (isclr(ic->ic_modecaps, i))
364 			continue;
365 
366 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
367 
368 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
369 
370 		/*
371 		 * Setting the management rate to MCS 0 assumes that the
372 		 * BSS Basic rate set is empty and the BSS Basic MCS set
373 		 * is not.
374 		 *
375 		 * Since we're not checking this, default to the lowest
376 		 * defined rate for this mode.
377 		 *
378 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
379 		 * some MCS management traffic (eg BA response frames.)
380 		 *
381 		 * See also: 9.6.0 of the 802.11n-2009 specification.
382 		 */
383 #ifdef	NOTYET
384 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
385 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
386 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
387 		} else {
388 			vap->iv_txparms[i].mgmtrate =
389 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
390 			vap->iv_txparms[i].mcastrate =
391 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
392 		}
393 #endif
394 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
395 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
396 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
397 	}
398 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
399 
400 	vap->iv_update_beacon = null_update_beacon;
401 	vap->iv_deliver_data = ieee80211_deliver_data;
402 	vap->iv_protmode = IEEE80211_PROT_CTSONLY;
403 	vap->iv_update_bss = vap_update_bss;
404 
405 	/* attach support for operating mode */
406 	ic->ic_vattach[vap->iv_opmode](vap);
407 }
408 
409 void
410 ieee80211_proto_vdetach(struct ieee80211vap *vap)
411 {
412 #define	FREEAPPIE(ie) do { \
413 	if (ie != NULL) \
414 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
415 } while (0)
416 	/*
417 	 * Detach operating mode module.
418 	 */
419 	if (vap->iv_opdetach != NULL)
420 		vap->iv_opdetach(vap);
421 	/*
422 	 * This should not be needed as we detach when reseting
423 	 * the state but be conservative here since the
424 	 * authenticator may do things like spawn kernel threads.
425 	 */
426 	if (vap->iv_auth->ia_detach != NULL)
427 		vap->iv_auth->ia_detach(vap);
428 	/*
429 	 * Detach any ACL'ator.
430 	 */
431 	if (vap->iv_acl != NULL)
432 		vap->iv_acl->iac_detach(vap);
433 
434 	FREEAPPIE(vap->iv_appie_beacon);
435 	FREEAPPIE(vap->iv_appie_probereq);
436 	FREEAPPIE(vap->iv_appie_proberesp);
437 	FREEAPPIE(vap->iv_appie_assocreq);
438 	FREEAPPIE(vap->iv_appie_assocresp);
439 	FREEAPPIE(vap->iv_appie_wpa);
440 #undef FREEAPPIE
441 }
442 
443 /*
444  * Simple-minded authenticator module support.
445  */
446 
447 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
448 /* XXX well-known names */
449 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
450 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
451 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
452 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
453 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
454 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
455 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
456 };
457 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
458 
459 static const struct ieee80211_authenticator auth_internal = {
460 	.ia_name		= "wlan_internal",
461 	.ia_attach		= NULL,
462 	.ia_detach		= NULL,
463 	.ia_node_join		= NULL,
464 	.ia_node_leave		= NULL,
465 };
466 
467 /*
468  * Setup internal authenticators once; they are never unregistered.
469  */
470 static void
471 ieee80211_auth_setup(void)
472 {
473 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
474 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
475 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
476 }
477 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
478 
479 const struct ieee80211_authenticator *
480 ieee80211_authenticator_get(int auth)
481 {
482 	if (auth >= IEEE80211_AUTH_MAX)
483 		return NULL;
484 	if (authenticators[auth] == NULL)
485 		ieee80211_load_module(auth_modnames[auth]);
486 	return authenticators[auth];
487 }
488 
489 void
490 ieee80211_authenticator_register(int type,
491 	const struct ieee80211_authenticator *auth)
492 {
493 	if (type >= IEEE80211_AUTH_MAX)
494 		return;
495 	authenticators[type] = auth;
496 }
497 
498 void
499 ieee80211_authenticator_unregister(int type)
500 {
501 
502 	if (type >= IEEE80211_AUTH_MAX)
503 		return;
504 	authenticators[type] = NULL;
505 }
506 
507 /*
508  * Very simple-minded ACL module support.
509  */
510 /* XXX just one for now */
511 static	const struct ieee80211_aclator *acl = NULL;
512 
513 void
514 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
515 {
516 	printf("wlan: %s acl policy registered\n", iac->iac_name);
517 	acl = iac;
518 }
519 
520 void
521 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
522 {
523 	if (acl == iac)
524 		acl = NULL;
525 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
526 }
527 
528 const struct ieee80211_aclator *
529 ieee80211_aclator_get(const char *name)
530 {
531 	if (acl == NULL)
532 		ieee80211_load_module("wlan_acl");
533 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
534 }
535 
536 void
537 ieee80211_print_essid(const uint8_t *essid, int len)
538 {
539 	const uint8_t *p;
540 	int i;
541 
542 	if (len > IEEE80211_NWID_LEN)
543 		len = IEEE80211_NWID_LEN;
544 	/* determine printable or not */
545 	for (i = 0, p = essid; i < len; i++, p++) {
546 		if (*p < ' ' || *p > 0x7e)
547 			break;
548 	}
549 	if (i == len) {
550 		printf("\"");
551 		for (i = 0, p = essid; i < len; i++, p++)
552 			printf("%c", *p);
553 		printf("\"");
554 	} else {
555 		printf("0x");
556 		for (i = 0, p = essid; i < len; i++, p++)
557 			printf("%02x", *p);
558 	}
559 }
560 
561 void
562 ieee80211_dump_pkt(struct ieee80211com *ic,
563 	const uint8_t *buf, int len, int rate, int rssi)
564 {
565 	const struct ieee80211_frame *wh;
566 	int i;
567 
568 	wh = (const struct ieee80211_frame *)buf;
569 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
570 	case IEEE80211_FC1_DIR_NODS:
571 		printf("NODS %s", ether_sprintf(wh->i_addr2));
572 		printf("->%s", ether_sprintf(wh->i_addr1));
573 		printf("(%s)", ether_sprintf(wh->i_addr3));
574 		break;
575 	case IEEE80211_FC1_DIR_TODS:
576 		printf("TODS %s", ether_sprintf(wh->i_addr2));
577 		printf("->%s", ether_sprintf(wh->i_addr3));
578 		printf("(%s)", ether_sprintf(wh->i_addr1));
579 		break;
580 	case IEEE80211_FC1_DIR_FROMDS:
581 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
582 		printf("->%s", ether_sprintf(wh->i_addr1));
583 		printf("(%s)", ether_sprintf(wh->i_addr2));
584 		break;
585 	case IEEE80211_FC1_DIR_DSTODS:
586 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
587 		printf("->%s", ether_sprintf(wh->i_addr3));
588 		printf("(%s", ether_sprintf(wh->i_addr2));
589 		printf("->%s)", ether_sprintf(wh->i_addr1));
590 		break;
591 	}
592 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
593 	case IEEE80211_FC0_TYPE_DATA:
594 		printf(" data");
595 		break;
596 	case IEEE80211_FC0_TYPE_MGT:
597 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
598 		break;
599 	default:
600 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
601 		break;
602 	}
603 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
604 		const struct ieee80211_qosframe *qwh =
605 			(const struct ieee80211_qosframe *)buf;
606 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
607 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
608 	}
609 	if (IEEE80211_IS_PROTECTED(wh)) {
610 		int off;
611 
612 		off = ieee80211_anyhdrspace(ic, wh);
613 		printf(" WEP [IV %.02x %.02x %.02x",
614 			buf[off+0], buf[off+1], buf[off+2]);
615 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
616 			printf(" %.02x %.02x %.02x",
617 				buf[off+4], buf[off+5], buf[off+6]);
618 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
619 	}
620 	if (rate >= 0)
621 		printf(" %dM", rate / 2);
622 	if (rssi >= 0)
623 		printf(" +%d", rssi);
624 	printf("\n");
625 	if (len > 0) {
626 		for (i = 0; i < len; i++) {
627 			if ((i & 1) == 0)
628 				printf(" ");
629 			printf("%02x", buf[i]);
630 		}
631 		printf("\n");
632 	}
633 }
634 
635 static __inline int
636 findrix(const struct ieee80211_rateset *rs, int r)
637 {
638 	int i;
639 
640 	for (i = 0; i < rs->rs_nrates; i++)
641 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
642 			return i;
643 	return -1;
644 }
645 
646 int
647 ieee80211_fix_rate(struct ieee80211_node *ni,
648 	struct ieee80211_rateset *nrs, int flags)
649 {
650 	struct ieee80211vap *vap = ni->ni_vap;
651 	struct ieee80211com *ic = ni->ni_ic;
652 	int i, j, rix, error;
653 	int okrate, badrate, fixedrate, ucastrate;
654 	const struct ieee80211_rateset *srs;
655 	uint8_t r;
656 
657 	error = 0;
658 	okrate = badrate = 0;
659 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
660 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
661 		/*
662 		 * Workaround awkwardness with fixed rate.  We are called
663 		 * to check both the legacy rate set and the HT rate set
664 		 * but we must apply any legacy fixed rate check only to the
665 		 * legacy rate set and vice versa.  We cannot tell what type
666 		 * of rate set we've been given (legacy or HT) but we can
667 		 * distinguish the fixed rate type (MCS have 0x80 set).
668 		 * So to deal with this the caller communicates whether to
669 		 * check MCS or legacy rate using the flags and we use the
670 		 * type of any fixed rate to avoid applying an MCS to a
671 		 * legacy rate and vice versa.
672 		 */
673 		if (ucastrate & 0x80) {
674 			if (flags & IEEE80211_F_DOFRATE)
675 				flags &= ~IEEE80211_F_DOFRATE;
676 		} else if ((ucastrate & 0x80) == 0) {
677 			if (flags & IEEE80211_F_DOFMCS)
678 				flags &= ~IEEE80211_F_DOFMCS;
679 		}
680 		/* NB: required to make MCS match below work */
681 		ucastrate &= IEEE80211_RATE_VAL;
682 	}
683 	fixedrate = IEEE80211_FIXED_RATE_NONE;
684 	/*
685 	 * XXX we are called to process both MCS and legacy rates;
686 	 * we must use the appropriate basic rate set or chaos will
687 	 * ensue; for now callers that want MCS must supply
688 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
689 	 * function so there are two variants, one for MCS and one
690 	 * for legacy rates.
691 	 */
692 	if (flags & IEEE80211_F_DOBRS)
693 		srs = (const struct ieee80211_rateset *)
694 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
695 	else
696 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
697 	for (i = 0; i < nrs->rs_nrates; ) {
698 		if (flags & IEEE80211_F_DOSORT) {
699 			/*
700 			 * Sort rates.
701 			 */
702 			for (j = i + 1; j < nrs->rs_nrates; j++) {
703 				if (IEEE80211_RV(nrs->rs_rates[i]) >
704 				    IEEE80211_RV(nrs->rs_rates[j])) {
705 					r = nrs->rs_rates[i];
706 					nrs->rs_rates[i] = nrs->rs_rates[j];
707 					nrs->rs_rates[j] = r;
708 				}
709 			}
710 		}
711 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
712 		badrate = r;
713 		/*
714 		 * Check for fixed rate.
715 		 */
716 		if (r == ucastrate)
717 			fixedrate = r;
718 		/*
719 		 * Check against supported rates.
720 		 */
721 		rix = findrix(srs, r);
722 		if (flags & IEEE80211_F_DONEGO) {
723 			if (rix < 0) {
724 				/*
725 				 * A rate in the node's rate set is not
726 				 * supported.  If this is a basic rate and we
727 				 * are operating as a STA then this is an error.
728 				 * Otherwise we just discard/ignore the rate.
729 				 */
730 				if ((flags & IEEE80211_F_JOIN) &&
731 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
732 					error++;
733 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
734 				/*
735 				 * Overwrite with the supported rate
736 				 * value so any basic rate bit is set.
737 				 */
738 				nrs->rs_rates[i] = srs->rs_rates[rix];
739 			}
740 		}
741 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
742 			/*
743 			 * Delete unacceptable rates.
744 			 */
745 			nrs->rs_nrates--;
746 			for (j = i; j < nrs->rs_nrates; j++)
747 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
748 			nrs->rs_rates[j] = 0;
749 			continue;
750 		}
751 		if (rix >= 0)
752 			okrate = nrs->rs_rates[i];
753 		i++;
754 	}
755 	if (okrate == 0 || error != 0 ||
756 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
757 	     fixedrate != ucastrate)) {
758 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
759 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
760 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
761 		return badrate | IEEE80211_RATE_BASIC;
762 	} else
763 		return IEEE80211_RV(okrate);
764 }
765 
766 /*
767  * Reset 11g-related state.
768  *
769  * This is for per-VAP ERP/11g state.
770  *
771  * Eventually everything in ieee80211_reset_erp() will be
772  * per-VAP and in here.
773  */
774 void
775 ieee80211_vap_reset_erp(struct ieee80211vap *vap)
776 {
777 	struct ieee80211com *ic = vap->iv_ic;
778 
779 	vap->iv_nonerpsta = 0;
780 	vap->iv_longslotsta = 0;
781 
782 	vap->iv_flags &= ~IEEE80211_F_USEPROT;
783 	/*
784 	 * Set short preamble and ERP barker-preamble flags.
785 	 */
786 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
787 	    (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) {
788 		vap->iv_flags |= IEEE80211_F_SHPREAMBLE;
789 		vap->iv_flags &= ~IEEE80211_F_USEBARKER;
790 	} else {
791 		vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE;
792 		vap->iv_flags |= IEEE80211_F_USEBARKER;
793 	}
794 
795 	/*
796 	 * Short slot time is enabled only when operating in 11g
797 	 * and not in an IBSS.  We must also honor whether or not
798 	 * the driver is capable of doing it.
799 	 */
800 	ieee80211_vap_set_shortslottime(vap,
801 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
802 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
803 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
804 		vap->iv_opmode == IEEE80211_M_HOSTAP &&
805 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
806 }
807 
808 /*
809  * Reset 11g-related state.
810  *
811  * Note this resets the global state and a caller should schedule
812  * a re-check of all the VAPs after setup to update said state.
813  */
814 void
815 ieee80211_reset_erp(struct ieee80211com *ic)
816 {
817 #if 0
818 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
819 	/*
820 	 * Set short preamble and ERP barker-preamble flags.
821 	 */
822 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
823 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
824 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
825 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
826 	} else {
827 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
828 		ic->ic_flags |= IEEE80211_F_USEBARKER;
829 	}
830 #endif
831 	/* XXX TODO: schedule a new per-VAP ERP calculation */
832 }
833 
834 static struct ieee80211_node *
835 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni)
836 {
837 	struct ieee80211_node *obss;
838 
839 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
840 
841 	obss = vap->iv_bss;
842 	vap->iv_bss = ni;
843 
844 	return (obss);
845 }
846 
847 /*
848  * Deferred slot time update.
849  *
850  * For per-VAP slot time configuration, call the VAP
851  * method if the VAP requires it.  Otherwise, just call the
852  * older global method.
853  *
854  * If the per-VAP method is called then it's expected that
855  * the driver/firmware will take care of turning the per-VAP
856  * flags into slot time configuration.
857  *
858  * If the per-VAP method is not called then the global flags will be
859  * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will
860  * be set only if all of the vaps will have it set.
861  *
862  * Look at the comments for vap_update_erp_protmode() for more
863  * background; this assumes all VAPs are on the same channel.
864  */
865 static void
866 vap_update_slot(void *arg, int npending)
867 {
868 	struct ieee80211vap *vap = arg;
869 	struct ieee80211com *ic = vap->iv_ic;
870 	struct ieee80211vap *iv;
871 	int num_shslot = 0, num_lgslot = 0;
872 
873 	/*
874 	 * Per-VAP path - we've already had the flags updated;
875 	 * so just notify the driver and move on.
876 	 */
877 	if (vap->iv_updateslot != NULL) {
878 		vap->iv_updateslot(vap);
879 		return;
880 	}
881 
882 	/*
883 	 * Iterate over all of the VAP flags to update the
884 	 * global flag.
885 	 *
886 	 * If all vaps have short slot enabled then flip on
887 	 * short slot.  If any vap has it disabled then
888 	 * we leave it globally disabled.  This should provide
889 	 * correct behaviour in a multi-BSS scenario where
890 	 * at least one VAP has short slot disabled for some
891 	 * reason.
892 	 */
893 	IEEE80211_LOCK(ic);
894 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
895 		if (iv->iv_flags & IEEE80211_F_SHSLOT)
896 			num_shslot++;
897 		else
898 			num_lgslot++;
899 	}
900 
901 	/*
902 	 * It looks backwards but - if the number of short slot VAPs
903 	 * is zero then we're not short slot.  Else, we have one
904 	 * or more short slot VAPs and we're checking to see if ANY
905 	 * of them have short slot disabled.
906 	 */
907 	if (num_shslot == 0)
908 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
909 	else if (num_lgslot == 0)
910 		ic->ic_flags |= IEEE80211_F_SHSLOT;
911 	IEEE80211_UNLOCK(ic);
912 
913 	/*
914 	 * Call the driver with our new global slot time flags.
915 	 */
916 	if (ic->ic_updateslot != NULL)
917 		ic->ic_updateslot(ic);
918 }
919 
920 /*
921  * Deferred ERP protmode update.
922  *
923  * This currently calculates the global ERP protection mode flag
924  * based on each of the VAPs.  Any VAP with it enabled is enough
925  * for the global flag to be enabled.  All VAPs with it disabled
926  * is enough for it to be disabled.
927  *
928  * This may make sense right now for the supported hardware where
929  * net80211 is controlling the single channel configuration, but
930  * offload firmware that's doing channel changes (eg off-channel
931  * TDLS, off-channel STA, off-channel P2P STA/AP) may get some
932  * silly looking flag updates.
933  *
934  * Ideally the protection mode calculation is done based on the
935  * channel, and all VAPs using that channel will inherit it.
936  * But until that's what net80211 does, this wil have to do.
937  */
938 static void
939 vap_update_erp_protmode(void *arg, int npending)
940 {
941 	struct ieee80211vap *vap = arg;
942 	struct ieee80211com *ic = vap->iv_ic;
943 	struct ieee80211vap *iv;
944 	int enable_protmode = 0;
945 	int non_erp_present = 0;
946 
947 	/*
948 	 * Iterate over all of the VAPs to calculate the overlapping
949 	 * ERP protection mode configuration and ERP present math.
950 	 *
951 	 * For now we assume that if a driver can handle this per-VAP
952 	 * then it'll ignore the ic->ic_protmode variant and instead
953 	 * will look at the vap related flags.
954 	 */
955 	IEEE80211_LOCK(ic);
956 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
957 		if (iv->iv_flags & IEEE80211_F_USEPROT)
958 			enable_protmode = 1;
959 		if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR)
960 			non_erp_present = 1;
961 	}
962 
963 	if (enable_protmode)
964 		ic->ic_flags |= IEEE80211_F_USEPROT;
965 	else
966 		ic->ic_flags &= ~IEEE80211_F_USEPROT;
967 
968 	if (non_erp_present)
969 		ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR;
970 	else
971 		ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR;
972 
973 	/* Beacon update on all VAPs */
974 	ieee80211_notify_erp_locked(ic);
975 
976 	IEEE80211_UNLOCK(ic);
977 
978 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
979 	    "%s: called; enable_protmode=%d, non_erp_present=%d\n",
980 	    __func__, enable_protmode, non_erp_present);
981 
982 	/*
983 	 * Now that the global configuration flags are calculated,
984 	 * notify the VAP about its configuration.
985 	 *
986 	 * The global flags will be used when assembling ERP IEs
987 	 * for multi-VAP operation, even if it's on a different
988 	 * channel.  Yes, that's going to need fixing in the
989 	 * future.
990 	 */
991 	if (vap->iv_erp_protmode_update != NULL)
992 		vap->iv_erp_protmode_update(vap);
993 }
994 
995 /*
996  * Deferred ERP short preamble/barker update.
997  *
998  * All VAPs need to use short preamble for it to be globally
999  * enabled or not.
1000  *
1001  * Look at the comments for vap_update_erp_protmode() for more
1002  * background; this assumes all VAPs are on the same channel.
1003  */
1004 static void
1005 vap_update_preamble(void *arg, int npending)
1006 {
1007 	struct ieee80211vap *vap = arg;
1008 	struct ieee80211com *ic = vap->iv_ic;
1009 	struct ieee80211vap *iv;
1010 	int barker_count = 0, short_preamble_count = 0, count = 0;
1011 
1012 	/*
1013 	 * Iterate over all of the VAPs to calculate the overlapping
1014 	 * short or long preamble configuration.
1015 	 *
1016 	 * For now we assume that if a driver can handle this per-VAP
1017 	 * then it'll ignore the ic->ic_flags variant and instead
1018 	 * will look at the vap related flags.
1019 	 */
1020 	IEEE80211_LOCK(ic);
1021 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
1022 		if (iv->iv_flags & IEEE80211_F_USEBARKER)
1023 			barker_count++;
1024 		if (iv->iv_flags & IEEE80211_F_SHPREAMBLE)
1025 			short_preamble_count++;
1026 		count++;
1027 	}
1028 
1029 	/*
1030 	 * As with vap_update_erp_protmode(), the global flags are
1031 	 * currently used for beacon IEs.
1032 	 */
1033 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1034 	    "%s: called; barker_count=%d, short_preamble_count=%d\n",
1035 	    __func__, barker_count, short_preamble_count);
1036 
1037 	/*
1038 	 * Only flip on short preamble if all of the VAPs support
1039 	 * it.
1040 	 */
1041 	if (barker_count == 0 && short_preamble_count == count) {
1042 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
1043 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
1044 	} else {
1045 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
1046 		ic->ic_flags |= IEEE80211_F_USEBARKER;
1047 	}
1048 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1049 	  "%s: global barker=%d preamble=%d\n",
1050 	  __func__,
1051 	  !! (ic->ic_flags & IEEE80211_F_USEBARKER),
1052 	  !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE));
1053 
1054 	/* Beacon update on all VAPs */
1055 	ieee80211_notify_erp_locked(ic);
1056 
1057 	IEEE80211_UNLOCK(ic);
1058 
1059 	/* Driver notification */
1060 	if (vap->iv_preamble_update != NULL)
1061 		vap->iv_preamble_update(vap);
1062 }
1063 
1064 /*
1065  * Deferred HT protmode update and beacon update.
1066  *
1067  * Look at the comments for vap_update_erp_protmode() for more
1068  * background; this assumes all VAPs are on the same channel.
1069  */
1070 static void
1071 vap_update_ht_protmode(void *arg, int npending)
1072 {
1073 	struct ieee80211vap *vap = arg;
1074 	struct ieee80211vap *iv;
1075 	struct ieee80211com *ic = vap->iv_ic;
1076 	int num_vaps = 0, num_pure = 0;
1077 	int num_optional = 0, num_ht2040 = 0, num_nonht = 0;
1078 	int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0;
1079 	int num_nonhtpr = 0;
1080 
1081 	/*
1082 	 * Iterate over all of the VAPs to calculate everything.
1083 	 *
1084 	 * There are a few different flags to calculate:
1085 	 *
1086 	 * + whether there's HT only or HT+legacy stations;
1087 	 * + whether there's HT20, HT40, or HT20+HT40 stations;
1088 	 * + whether the desired protection mode is mixed, pure or
1089 	 *   one of the two above.
1090 	 *
1091 	 * For now we assume that if a driver can handle this per-VAP
1092 	 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode
1093 	 * variant and instead will look at the vap related variables.
1094 	 *
1095 	 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) !
1096 	 */
1097 
1098 	IEEE80211_LOCK(ic);
1099 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
1100 		num_vaps++;
1101 		/* overlapping BSSes advertising non-HT status present */
1102 		if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR)
1103 			num_nonht++;
1104 		/* Operating mode flags */
1105 		if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT)
1106 			num_nonhtpr++;
1107 		switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) {
1108 		case IEEE80211_HTINFO_OPMODE_PURE:
1109 			num_pure++;
1110 			break;
1111 		case IEEE80211_HTINFO_OPMODE_PROTOPT:
1112 			num_optional++;
1113 			break;
1114 		case IEEE80211_HTINFO_OPMODE_HT20PR:
1115 			num_ht2040++;
1116 			break;
1117 		}
1118 
1119 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1120 		    "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n",
1121 		    __func__,
1122 		    ieee80211_get_vap_ifname(iv),
1123 		    !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR),
1124 		    iv->iv_curhtprotmode);
1125 
1126 		num_ht_sta += iv->iv_ht_sta_assoc;
1127 		num_ht40_sta += iv->iv_ht40_sta_assoc;
1128 		num_sta += iv->iv_sta_assoc;
1129 	}
1130 
1131 	/*
1132 	 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS
1133 	 * non-HT present), set it here.  This shouldn't be used by
1134 	 * anything but the old overlapping BSS logic so if any drivers
1135 	 * consume it, it's up to date.
1136 	 */
1137 	if (num_nonht > 0)
1138 		ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1139 	else
1140 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1141 
1142 	/*
1143 	 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.)
1144 	 *
1145 	 * + If all VAPs are PURE, we can stay PURE.
1146 	 * + If all VAPs are PROTOPT, we can go to PROTOPT.
1147 	 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station.
1148 	 *   Note that we may have a VAP with one HT20 and a VAP with one HT40;
1149 	 *   So we look at the sum ht and sum ht40 sta counts; if we have a
1150 	 *   HT station and the HT20 != HT40 count, we have to do HT20PR here.
1151 	 *   Note all stations need to be HT for this to be an option.
1152 	 * + The fall-through is MIXED, because it means we have some odd
1153 	 *   non HT40-involved combination of opmode and this is the most
1154 	 *   sensible default.
1155 	 */
1156 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
1157 
1158 	if (num_pure == num_vaps)
1159 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
1160 
1161 	if (num_optional == num_vaps)
1162 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT;
1163 
1164 	/*
1165 	 * Note: we need /a/ HT40 station somewhere for this to
1166 	 * be a possibility.
1167 	 */
1168 	if ((num_ht2040 > 0) ||
1169 	    ((num_ht_sta > 0) && (num_ht40_sta > 0) &&
1170 	     (num_ht_sta != num_ht40_sta)))
1171 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1172 
1173 	/*
1174 	 * Step 3 - if any of the stations across the VAPs are
1175 	 * non-HT then this needs to be flipped back to MIXED.
1176 	 */
1177 	if (num_ht_sta != num_sta)
1178 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
1179 
1180 	/*
1181 	 * Step 4 - If we see any overlapping BSS non-HT stations
1182 	 * via beacons then flip on NONHT_PRESENT.
1183 	 */
1184 	if (num_nonhtpr > 0)
1185 		ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT;
1186 
1187 	/* Notify all VAPs to potentially update their beacons */
1188 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next)
1189 		ieee80211_htinfo_notify(iv);
1190 
1191 	IEEE80211_UNLOCK(ic);
1192 
1193 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1194 	  "%s: global: nonht_pr=%d ht_opmode=0x%02x\n",
1195 	  __func__,
1196 	  !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR),
1197 	  ic->ic_curhtprotmode);
1198 
1199 	/* Driver update */
1200 	if (vap->iv_ht_protmode_update != NULL)
1201 		vap->iv_ht_protmode_update(vap);
1202 }
1203 
1204 /*
1205  * Set the short slot time state and notify the driver.
1206  *
1207  * This is the per-VAP slot time state.
1208  */
1209 void
1210 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff)
1211 {
1212 	struct ieee80211com *ic = vap->iv_ic;
1213 
1214 	/* XXX lock? */
1215 
1216 	/*
1217 	 * Only modify the per-VAP slot time.
1218 	 */
1219 	if (onoff)
1220 		vap->iv_flags |= IEEE80211_F_SHSLOT;
1221 	else
1222 		vap->iv_flags &= ~IEEE80211_F_SHSLOT;
1223 
1224 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1225 	    "%s: called; onoff=%d\n", __func__, onoff);
1226 	/* schedule the deferred slot flag update and update */
1227 	ieee80211_runtask(ic, &vap->iv_slot_task);
1228 }
1229 
1230 /*
1231  * Update the VAP short /long / barker preamble state and
1232  * update beacon state if needed.
1233  *
1234  * For now it simply copies the global flags into the per-vap
1235  * flags and schedules the callback.  Later this will support
1236  * both global and per-VAP flags, especially useful for
1237  * and STA+STA multi-channel operation (eg p2p).
1238  */
1239 void
1240 ieee80211_vap_update_preamble(struct ieee80211vap *vap)
1241 {
1242 	struct ieee80211com *ic = vap->iv_ic;
1243 
1244 	/* XXX lock? */
1245 
1246 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1247 	    "%s: called\n", __func__);
1248 	/* schedule the deferred slot flag update and update */
1249 	ieee80211_runtask(ic, &vap->iv_preamble_task);
1250 }
1251 
1252 /*
1253  * Update the VAP 11g protection mode and update beacon state
1254  * if needed.
1255  */
1256 void
1257 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap)
1258 {
1259 	struct ieee80211com *ic = vap->iv_ic;
1260 
1261 	/* XXX lock? */
1262 
1263 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1264 	    "%s: called\n", __func__);
1265 	/* schedule the deferred slot flag update and update */
1266 	ieee80211_runtask(ic, &vap->iv_erp_protmode_task);
1267 }
1268 
1269 /*
1270  * Update the VAP 11n protection mode and update beacon state
1271  * if needed.
1272  */
1273 void
1274 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap)
1275 {
1276 	struct ieee80211com *ic = vap->iv_ic;
1277 
1278 	/* XXX lock? */
1279 
1280 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1281 	    "%s: called\n", __func__);
1282 	/* schedule the deferred protmode update */
1283 	ieee80211_runtask(ic, &vap->iv_ht_protmode_task);
1284 }
1285 
1286 /*
1287  * Check if the specified rate set supports ERP.
1288  * NB: the rate set is assumed to be sorted.
1289  */
1290 int
1291 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
1292 {
1293 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
1294 	int i, j;
1295 
1296 	if (rs->rs_nrates < nitems(rates))
1297 		return 0;
1298 	for (i = 0; i < nitems(rates); i++) {
1299 		for (j = 0; j < rs->rs_nrates; j++) {
1300 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
1301 			if (rates[i] == r)
1302 				goto next;
1303 			if (r > rates[i])
1304 				return 0;
1305 		}
1306 		return 0;
1307 	next:
1308 		;
1309 	}
1310 	return 1;
1311 }
1312 
1313 /*
1314  * Mark the basic rates for the rate table based on the
1315  * operating mode.  For real 11g we mark all the 11b rates
1316  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
1317  * 11b rates.  There's also a pseudo 11a-mode used to mark only
1318  * the basic OFDM rates.
1319  */
1320 static void
1321 setbasicrates(struct ieee80211_rateset *rs,
1322     enum ieee80211_phymode mode, int add)
1323 {
1324 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
1325 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
1326 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
1327 					    /* NB: mixed b/g */
1328 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
1329 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
1330 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
1331 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
1332 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
1333 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
1334 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
1335 					    /* NB: mixed b/g */
1336 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
1337 					    /* NB: mixed b/g */
1338 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
1339 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
1340 	};
1341 	int i, j;
1342 
1343 	for (i = 0; i < rs->rs_nrates; i++) {
1344 		if (!add)
1345 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
1346 		for (j = 0; j < basic[mode].rs_nrates; j++)
1347 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
1348 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
1349 				break;
1350 			}
1351 	}
1352 }
1353 
1354 /*
1355  * Set the basic rates in a rate set.
1356  */
1357 void
1358 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
1359     enum ieee80211_phymode mode)
1360 {
1361 	setbasicrates(rs, mode, 0);
1362 }
1363 
1364 /*
1365  * Add basic rates to a rate set.
1366  */
1367 void
1368 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
1369     enum ieee80211_phymode mode)
1370 {
1371 	setbasicrates(rs, mode, 1);
1372 }
1373 
1374 /*
1375  * WME protocol support.
1376  *
1377  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
1378  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
1379  * Draft 2.0 Test Plan (Appendix D).
1380  *
1381  * Static/Dynamic Turbo mode settings come from Atheros.
1382  */
1383 typedef struct phyParamType {
1384 	uint8_t		aifsn;
1385 	uint8_t		logcwmin;
1386 	uint8_t		logcwmax;
1387 	uint16_t	txopLimit;
1388 	uint8_t 	acm;
1389 } paramType;
1390 
1391 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
1392 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
1393 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
1394 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
1395 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
1396 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
1397 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
1398 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
1399 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
1400 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
1401 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
1402 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
1403 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
1404 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
1405 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
1406 };
1407 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
1408 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
1409 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
1410 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
1411 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
1412 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
1413 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
1414 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
1415 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
1416 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
1417 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
1418 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
1419 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
1420 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
1421 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
1422 };
1423 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
1424 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
1425 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
1426 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
1427 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
1428 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
1429 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
1430 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
1431 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
1432 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
1433 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
1434 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
1435 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
1436 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
1437 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
1438 };
1439 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
1440 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
1441 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
1442 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
1443 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
1444 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
1445 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1446 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1447 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1448 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
1449 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
1450 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
1451 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
1452 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
1453 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
1454 };
1455 
1456 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
1457 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
1458 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
1459 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
1460 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
1461 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
1462 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
1463 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
1464 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
1465 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
1466 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
1467 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
1468 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
1469 };
1470 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
1471 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
1472 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
1473 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
1474 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
1475 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
1476 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
1477 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
1478 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
1479 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
1480 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
1481 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
1482 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
1483 };
1484 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
1485 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
1486 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
1487 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
1488 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
1489 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
1490 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1491 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1492 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1493 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
1494 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
1495 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
1496 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
1497 };
1498 
1499 static void
1500 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1501 {
1502 	wmep->wmep_aifsn = phy->aifsn;
1503 	wmep->wmep_logcwmin = phy->logcwmin;
1504 	wmep->wmep_logcwmax = phy->logcwmax;
1505 	wmep->wmep_txopLimit = phy->txopLimit;
1506 }
1507 
1508 static void
1509 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1510 	struct wmeParams *wmep, const paramType *phy)
1511 {
1512 	wmep->wmep_acm = phy->acm;
1513 	_setifsparams(wmep, phy);
1514 
1515 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1516 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1517 	    ieee80211_wme_acnames[ac], type,
1518 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1519 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1520 }
1521 
1522 static void
1523 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1524 {
1525 	struct ieee80211com *ic = vap->iv_ic;
1526 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1527 	const paramType *pPhyParam, *pBssPhyParam;
1528 	struct wmeParams *wmep;
1529 	enum ieee80211_phymode mode;
1530 	int i;
1531 
1532 	IEEE80211_LOCK_ASSERT(ic);
1533 
1534 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1535 		return;
1536 
1537 	/*
1538 	 * Clear the wme cap_info field so a qoscount from a previous
1539 	 * vap doesn't confuse later code which only parses the beacon
1540 	 * field and updates hardware when said field changes.
1541 	 * Otherwise the hardware is programmed with defaults, not what
1542 	 * the beacon actually announces.
1543 	 *
1544 	 * Note that we can't ever have 0xff as an actual value;
1545 	 * the only valid values are 0..15.
1546 	 */
1547 	wme->wme_wmeChanParams.cap_info = 0xfe;
1548 
1549 	/*
1550 	 * Select mode; we can be called early in which case we
1551 	 * always use auto mode.  We know we'll be called when
1552 	 * entering the RUN state with bsschan setup properly
1553 	 * so state will eventually get set correctly
1554 	 */
1555 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1556 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1557 	else
1558 		mode = IEEE80211_MODE_AUTO;
1559 	for (i = 0; i < WME_NUM_AC; i++) {
1560 		switch (i) {
1561 		case WME_AC_BK:
1562 			pPhyParam = &phyParamForAC_BK[mode];
1563 			pBssPhyParam = &phyParamForAC_BK[mode];
1564 			break;
1565 		case WME_AC_VI:
1566 			pPhyParam = &phyParamForAC_VI[mode];
1567 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1568 			break;
1569 		case WME_AC_VO:
1570 			pPhyParam = &phyParamForAC_VO[mode];
1571 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1572 			break;
1573 		case WME_AC_BE:
1574 		default:
1575 			pPhyParam = &phyParamForAC_BE[mode];
1576 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1577 			break;
1578 		}
1579 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1580 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1581 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1582 		} else {
1583 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1584 		}
1585 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1586 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1587 	}
1588 	/* NB: check ic_bss to avoid NULL deref on initial attach */
1589 	if (vap->iv_bss != NULL) {
1590 		/*
1591 		 * Calculate aggressive mode switching threshold based
1592 		 * on beacon interval.  This doesn't need locking since
1593 		 * we're only called before entering the RUN state at
1594 		 * which point we start sending beacon frames.
1595 		 */
1596 		wme->wme_hipri_switch_thresh =
1597 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1598 		wme->wme_flags &= ~WME_F_AGGRMODE;
1599 		ieee80211_wme_updateparams(vap);
1600 	}
1601 }
1602 
1603 void
1604 ieee80211_wme_initparams(struct ieee80211vap *vap)
1605 {
1606 	struct ieee80211com *ic = vap->iv_ic;
1607 
1608 	IEEE80211_LOCK(ic);
1609 	ieee80211_wme_initparams_locked(vap);
1610 	IEEE80211_UNLOCK(ic);
1611 }
1612 
1613 /*
1614  * Update WME parameters for ourself and the BSS.
1615  */
1616 void
1617 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1618 {
1619 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1620 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1621 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1622 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1623 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1624 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1625 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1626 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1627 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1628 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1629 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1630 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1631 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1632 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1633 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1634 	};
1635 	struct ieee80211com *ic = vap->iv_ic;
1636 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1637 	const struct wmeParams *wmep;
1638 	struct wmeParams *chanp, *bssp;
1639 	enum ieee80211_phymode mode;
1640 	int i;
1641 	int do_aggrmode = 0;
1642 
1643        	/*
1644 	 * Set up the channel access parameters for the physical
1645 	 * device.  First populate the configured settings.
1646 	 */
1647 	for (i = 0; i < WME_NUM_AC; i++) {
1648 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1649 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1650 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1651 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1652 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1653 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1654 
1655 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1656 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1657 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1658 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1659 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1660 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1661 	}
1662 
1663 	/*
1664 	 * Select mode; we can be called early in which case we
1665 	 * always use auto mode.  We know we'll be called when
1666 	 * entering the RUN state with bsschan setup properly
1667 	 * so state will eventually get set correctly
1668 	 */
1669 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1670 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1671 	else
1672 		mode = IEEE80211_MODE_AUTO;
1673 
1674 	/*
1675 	 * This implements aggressive mode as found in certain
1676 	 * vendors' AP's.  When there is significant high
1677 	 * priority (VI/VO) traffic in the BSS throttle back BE
1678 	 * traffic by using conservative parameters.  Otherwise
1679 	 * BE uses aggressive params to optimize performance of
1680 	 * legacy/non-QoS traffic.
1681 	 */
1682 
1683 	/* Hostap? Only if aggressive mode is enabled */
1684         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1685 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1686 		do_aggrmode = 1;
1687 
1688 	/*
1689 	 * Station? Only if we're in a non-QoS BSS.
1690 	 */
1691 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1692 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1693 		do_aggrmode = 1;
1694 
1695 	/*
1696 	 * IBSS? Only if we have WME enabled.
1697 	 */
1698 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1699 	    (vap->iv_flags & IEEE80211_F_WME))
1700 		do_aggrmode = 1;
1701 
1702 	/*
1703 	 * If WME is disabled on this VAP, default to aggressive mode
1704 	 * regardless of the configuration.
1705 	 */
1706 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1707 		do_aggrmode = 1;
1708 
1709 	/* XXX WDS? */
1710 
1711 	/* XXX MBSS? */
1712 
1713 	if (do_aggrmode) {
1714 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1715 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1716 
1717 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1718 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1719 		    aggrParam[mode].logcwmin;
1720 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1721 		    aggrParam[mode].logcwmax;
1722 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1723 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1724 			aggrParam[mode].txopLimit : 0;
1725 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1726 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1727 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1728 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1729 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1730 	}
1731 
1732 	/*
1733 	 * Change the contention window based on the number of associated
1734 	 * stations.  If the number of associated stations is 1 and
1735 	 * aggressive mode is enabled, lower the contention window even
1736 	 * further.
1737 	 */
1738 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1739 	    vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1740 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1741 		    [IEEE80211_MODE_AUTO]	= 3,
1742 		    [IEEE80211_MODE_11A]	= 3,
1743 		    [IEEE80211_MODE_11B]	= 4,
1744 		    [IEEE80211_MODE_11G]	= 3,
1745 		    [IEEE80211_MODE_FH]		= 4,
1746 		    [IEEE80211_MODE_TURBO_A]	= 3,
1747 		    [IEEE80211_MODE_TURBO_G]	= 3,
1748 		    [IEEE80211_MODE_STURBO_A]	= 3,
1749 		    [IEEE80211_MODE_HALF]	= 3,
1750 		    [IEEE80211_MODE_QUARTER]	= 3,
1751 		    [IEEE80211_MODE_11NA]	= 3,
1752 		    [IEEE80211_MODE_11NG]	= 3,
1753 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
1754 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
1755 		};
1756 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1757 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1758 
1759 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1760 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1761 		    "update %s (chan+bss) logcwmin %u\n",
1762 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1763 	}
1764 
1765 	/* schedule the deferred WME update */
1766 	ieee80211_runtask(ic, &vap->iv_wme_task);
1767 
1768 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1769 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1770 	    vap->iv_opmode == IEEE80211_M_STA ?
1771 		wme->wme_wmeChanParams.cap_info :
1772 		wme->wme_bssChanParams.cap_info);
1773 }
1774 
1775 void
1776 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1777 {
1778 	struct ieee80211com *ic = vap->iv_ic;
1779 
1780 	if (ic->ic_caps & IEEE80211_C_WME) {
1781 		IEEE80211_LOCK(ic);
1782 		ieee80211_wme_updateparams_locked(vap);
1783 		IEEE80211_UNLOCK(ic);
1784 	}
1785 }
1786 
1787 /*
1788  * Fetch the WME parameters for the given VAP.
1789  *
1790  * When net80211 grows p2p, etc support, this may return different
1791  * parameters for each VAP.
1792  */
1793 void
1794 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1795 {
1796 
1797 	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1798 }
1799 
1800 /*
1801  * For NICs which only support one set of WME parameters (ie, softmac NICs)
1802  * there may be different VAP WME parameters but only one is "active".
1803  * This returns the "NIC" WME parameters for the currently active
1804  * context.
1805  */
1806 void
1807 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1808 {
1809 
1810 	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1811 }
1812 
1813 /*
1814  * Return whether to use QoS on a given WME queue.
1815  *
1816  * This is intended to be called from the transmit path of softmac drivers
1817  * which are setting NoAck bits in transmit descriptors.
1818  *
1819  * Ideally this would be set in some transmit field before the packet is
1820  * queued to the driver but net80211 isn't quite there yet.
1821  */
1822 int
1823 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
1824 {
1825 	/* Bounds/sanity check */
1826 	if (ac < 0 || ac >= WME_NUM_AC)
1827 		return (0);
1828 
1829 	/* Again, there's only one global context for now */
1830 	return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
1831 }
1832 
1833 static void
1834 parent_updown(void *arg, int npending)
1835 {
1836 	struct ieee80211com *ic = arg;
1837 
1838 	ic->ic_parent(ic);
1839 }
1840 
1841 static void
1842 update_mcast(void *arg, int npending)
1843 {
1844 	struct ieee80211com *ic = arg;
1845 
1846 	ic->ic_update_mcast(ic);
1847 }
1848 
1849 static void
1850 update_promisc(void *arg, int npending)
1851 {
1852 	struct ieee80211com *ic = arg;
1853 
1854 	ic->ic_update_promisc(ic);
1855 }
1856 
1857 static void
1858 update_channel(void *arg, int npending)
1859 {
1860 	struct ieee80211com *ic = arg;
1861 
1862 	ic->ic_set_channel(ic);
1863 	ieee80211_radiotap_chan_change(ic);
1864 }
1865 
1866 static void
1867 update_chw(void *arg, int npending)
1868 {
1869 	struct ieee80211com *ic = arg;
1870 
1871 	/*
1872 	 * XXX should we defer the channel width _config_ update until now?
1873 	 */
1874 	ic->ic_update_chw(ic);
1875 }
1876 
1877 /*
1878  * Deferred WME parameter and beacon update.
1879  *
1880  * In preparation for per-VAP WME configuration, call the VAP
1881  * method if the VAP requires it.  Otherwise, just call the
1882  * older global method.  There isn't a per-VAP WME configuration
1883  * just yet so for now just use the global configuration.
1884  */
1885 static void
1886 vap_update_wme(void *arg, int npending)
1887 {
1888 	struct ieee80211vap *vap = arg;
1889 	struct ieee80211com *ic = vap->iv_ic;
1890 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1891 
1892 	/* Driver update */
1893 	if (vap->iv_wme_update != NULL)
1894 		vap->iv_wme_update(vap,
1895 		    ic->ic_wme.wme_chanParams.cap_wmeParams);
1896 	else
1897 		ic->ic_wme.wme_update(ic);
1898 
1899 	IEEE80211_LOCK(ic);
1900 	/*
1901 	 * Arrange for the beacon update.
1902 	 *
1903 	 * XXX what about MBSS, WDS?
1904 	 */
1905 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1906 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1907 		/*
1908 		 * Arrange for a beacon update and bump the parameter
1909 		 * set number so associated stations load the new values.
1910 		 */
1911 		wme->wme_bssChanParams.cap_info =
1912 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1913 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1914 	}
1915 	IEEE80211_UNLOCK(ic);
1916 }
1917 
1918 static void
1919 restart_vaps(void *arg, int npending)
1920 {
1921 	struct ieee80211com *ic = arg;
1922 
1923 	ieee80211_suspend_all(ic);
1924 	ieee80211_resume_all(ic);
1925 }
1926 
1927 /*
1928  * Block until the parent is in a known state.  This is
1929  * used after any operations that dispatch a task (e.g.
1930  * to auto-configure the parent device up/down).
1931  */
1932 void
1933 ieee80211_waitfor_parent(struct ieee80211com *ic)
1934 {
1935 	taskqueue_block(ic->ic_tq);
1936 	ieee80211_draintask(ic, &ic->ic_parent_task);
1937 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1938 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1939 	ieee80211_draintask(ic, &ic->ic_chan_task);
1940 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1941 	ieee80211_draintask(ic, &ic->ic_chw_task);
1942 	taskqueue_unblock(ic->ic_tq);
1943 }
1944 
1945 /*
1946  * Check to see whether the current channel needs reset.
1947  *
1948  * Some devices don't handle being given an invalid channel
1949  * in their operating mode very well (eg wpi(4) will throw a
1950  * firmware exception.)
1951  *
1952  * Return 0 if we're ok, 1 if the channel needs to be reset.
1953  *
1954  * See PR kern/202502.
1955  */
1956 static int
1957 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1958 {
1959 	struct ieee80211com *ic = vap->iv_ic;
1960 
1961 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1962 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1963 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1964 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1965 		return (1);
1966 	return (0);
1967 }
1968 
1969 /*
1970  * Reset the curchan to a known good state.
1971  */
1972 static void
1973 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1974 {
1975 	struct ieee80211com *ic = vap->iv_ic;
1976 
1977 	ic->ic_curchan = &ic->ic_channels[0];
1978 }
1979 
1980 /*
1981  * Start a vap running.  If this is the first vap to be
1982  * set running on the underlying device then we
1983  * automatically bring the device up.
1984  */
1985 void
1986 ieee80211_start_locked(struct ieee80211vap *vap)
1987 {
1988 	struct ifnet *ifp = vap->iv_ifp;
1989 	struct ieee80211com *ic = vap->iv_ic;
1990 
1991 	IEEE80211_LOCK_ASSERT(ic);
1992 
1993 	IEEE80211_DPRINTF(vap,
1994 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1995 		"start running, %d vaps running\n", ic->ic_nrunning);
1996 
1997 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1998 		/*
1999 		 * Mark us running.  Note that it's ok to do this first;
2000 		 * if we need to bring the parent device up we defer that
2001 		 * to avoid dropping the com lock.  We expect the device
2002 		 * to respond to being marked up by calling back into us
2003 		 * through ieee80211_start_all at which point we'll come
2004 		 * back in here and complete the work.
2005 		 */
2006 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
2007 		ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING);
2008 
2009 		/*
2010 		 * We are not running; if this we are the first vap
2011 		 * to be brought up auto-up the parent if necessary.
2012 		 */
2013 		if (ic->ic_nrunning++ == 0) {
2014 			/* reset the channel to a known good channel */
2015 			if (ieee80211_start_check_reset_chan(vap))
2016 				ieee80211_start_reset_chan(vap);
2017 
2018 			IEEE80211_DPRINTF(vap,
2019 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2020 			    "%s: up parent %s\n", __func__, ic->ic_name);
2021 			ieee80211_runtask(ic, &ic->ic_parent_task);
2022 			return;
2023 		}
2024 	}
2025 	/*
2026 	 * If the parent is up and running, then kick the
2027 	 * 802.11 state machine as appropriate.
2028 	 */
2029 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
2030 		if (vap->iv_opmode == IEEE80211_M_STA) {
2031 #if 0
2032 			/* XXX bypasses scan too easily; disable for now */
2033 			/*
2034 			 * Try to be intelligent about clocking the state
2035 			 * machine.  If we're currently in RUN state then
2036 			 * we should be able to apply any new state/parameters
2037 			 * simply by re-associating.  Otherwise we need to
2038 			 * re-scan to select an appropriate ap.
2039 			 */
2040 			if (vap->iv_state >= IEEE80211_S_RUN)
2041 				ieee80211_new_state_locked(vap,
2042 				    IEEE80211_S_ASSOC, 1);
2043 			else
2044 #endif
2045 				ieee80211_new_state_locked(vap,
2046 				    IEEE80211_S_SCAN, 0);
2047 		} else {
2048 			/*
2049 			 * For monitor+wds mode there's nothing to do but
2050 			 * start running.  Otherwise if this is the first
2051 			 * vap to be brought up, start a scan which may be
2052 			 * preempted if the station is locked to a particular
2053 			 * channel.
2054 			 */
2055 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
2056 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
2057 			    vap->iv_opmode == IEEE80211_M_WDS)
2058 				ieee80211_new_state_locked(vap,
2059 				    IEEE80211_S_RUN, -1);
2060 			else
2061 				ieee80211_new_state_locked(vap,
2062 				    IEEE80211_S_SCAN, 0);
2063 		}
2064 	}
2065 }
2066 
2067 /*
2068  * Start a single vap.
2069  */
2070 void
2071 ieee80211_init(void *arg)
2072 {
2073 	struct ieee80211vap *vap = arg;
2074 
2075 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2076 	    "%s\n", __func__);
2077 
2078 	IEEE80211_LOCK(vap->iv_ic);
2079 	ieee80211_start_locked(vap);
2080 	IEEE80211_UNLOCK(vap->iv_ic);
2081 }
2082 
2083 /*
2084  * Start all runnable vap's on a device.
2085  */
2086 void
2087 ieee80211_start_all(struct ieee80211com *ic)
2088 {
2089 	struct ieee80211vap *vap;
2090 
2091 	IEEE80211_LOCK(ic);
2092 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2093 		struct ifnet *ifp = vap->iv_ifp;
2094 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
2095 			ieee80211_start_locked(vap);
2096 	}
2097 	IEEE80211_UNLOCK(ic);
2098 }
2099 
2100 /*
2101  * Stop a vap.  We force it down using the state machine
2102  * then mark it's ifnet not running.  If this is the last
2103  * vap running on the underlying device then we close it
2104  * too to insure it will be properly initialized when the
2105  * next vap is brought up.
2106  */
2107 void
2108 ieee80211_stop_locked(struct ieee80211vap *vap)
2109 {
2110 	struct ieee80211com *ic = vap->iv_ic;
2111 	struct ifnet *ifp = vap->iv_ifp;
2112 
2113 	IEEE80211_LOCK_ASSERT(ic);
2114 
2115 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2116 	    "stop running, %d vaps running\n", ic->ic_nrunning);
2117 
2118 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
2119 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2120 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
2121 		ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING);
2122 		if (--ic->ic_nrunning == 0) {
2123 			IEEE80211_DPRINTF(vap,
2124 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2125 			    "down parent %s\n", ic->ic_name);
2126 			ieee80211_runtask(ic, &ic->ic_parent_task);
2127 		}
2128 	}
2129 }
2130 
2131 void
2132 ieee80211_stop(struct ieee80211vap *vap)
2133 {
2134 	struct ieee80211com *ic = vap->iv_ic;
2135 
2136 	IEEE80211_LOCK(ic);
2137 	ieee80211_stop_locked(vap);
2138 	IEEE80211_UNLOCK(ic);
2139 }
2140 
2141 /*
2142  * Stop all vap's running on a device.
2143  */
2144 void
2145 ieee80211_stop_all(struct ieee80211com *ic)
2146 {
2147 	struct ieee80211vap *vap;
2148 
2149 	IEEE80211_LOCK(ic);
2150 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2151 		struct ifnet *ifp = vap->iv_ifp;
2152 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
2153 			ieee80211_stop_locked(vap);
2154 	}
2155 	IEEE80211_UNLOCK(ic);
2156 
2157 	ieee80211_waitfor_parent(ic);
2158 }
2159 
2160 /*
2161  * Stop all vap's running on a device and arrange
2162  * for those that were running to be resumed.
2163  */
2164 void
2165 ieee80211_suspend_all(struct ieee80211com *ic)
2166 {
2167 	struct ieee80211vap *vap;
2168 
2169 	IEEE80211_LOCK(ic);
2170 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2171 		struct ifnet *ifp = vap->iv_ifp;
2172 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
2173 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
2174 			ieee80211_stop_locked(vap);
2175 		}
2176 	}
2177 	IEEE80211_UNLOCK(ic);
2178 
2179 	ieee80211_waitfor_parent(ic);
2180 }
2181 
2182 /*
2183  * Start all vap's marked for resume.
2184  */
2185 void
2186 ieee80211_resume_all(struct ieee80211com *ic)
2187 {
2188 	struct ieee80211vap *vap;
2189 
2190 	IEEE80211_LOCK(ic);
2191 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2192 		struct ifnet *ifp = vap->iv_ifp;
2193 		if (!IFNET_IS_UP_RUNNING(ifp) &&
2194 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
2195 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
2196 			ieee80211_start_locked(vap);
2197 		}
2198 	}
2199 	IEEE80211_UNLOCK(ic);
2200 }
2201 
2202 /*
2203  * Restart all vap's running on a device.
2204  */
2205 void
2206 ieee80211_restart_all(struct ieee80211com *ic)
2207 {
2208 	/*
2209 	 * NB: do not use ieee80211_runtask here, we will
2210 	 * block & drain net80211 taskqueue.
2211 	 */
2212 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
2213 }
2214 
2215 void
2216 ieee80211_beacon_miss(struct ieee80211com *ic)
2217 {
2218 	IEEE80211_LOCK(ic);
2219 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2220 		/* Process in a taskq, the handler may reenter the driver */
2221 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
2222 	}
2223 	IEEE80211_UNLOCK(ic);
2224 }
2225 
2226 static void
2227 beacon_miss(void *arg, int npending)
2228 {
2229 	struct ieee80211com *ic = arg;
2230 	struct ieee80211vap *vap;
2231 
2232 	IEEE80211_LOCK(ic);
2233 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2234 		/*
2235 		 * We only pass events through for sta vap's in RUN+ state;
2236 		 * may be too restrictive but for now this saves all the
2237 		 * handlers duplicating these checks.
2238 		 */
2239 		if (vap->iv_opmode == IEEE80211_M_STA &&
2240 		    vap->iv_state >= IEEE80211_S_RUN &&
2241 		    vap->iv_bmiss != NULL)
2242 			vap->iv_bmiss(vap);
2243 	}
2244 	IEEE80211_UNLOCK(ic);
2245 }
2246 
2247 static void
2248 beacon_swmiss(void *arg, int npending)
2249 {
2250 	struct ieee80211vap *vap = arg;
2251 	struct ieee80211com *ic = vap->iv_ic;
2252 
2253 	IEEE80211_LOCK(ic);
2254 	if (vap->iv_state >= IEEE80211_S_RUN) {
2255 		/* XXX Call multiple times if npending > zero? */
2256 		vap->iv_bmiss(vap);
2257 	}
2258 	IEEE80211_UNLOCK(ic);
2259 }
2260 
2261 /*
2262  * Software beacon miss handling.  Check if any beacons
2263  * were received in the last period.  If not post a
2264  * beacon miss; otherwise reset the counter.
2265  */
2266 void
2267 ieee80211_swbmiss(void *arg)
2268 {
2269 	struct ieee80211vap *vap = arg;
2270 	struct ieee80211com *ic = vap->iv_ic;
2271 
2272 	IEEE80211_LOCK_ASSERT(ic);
2273 
2274 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2275 	    ("wrong state %d", vap->iv_state));
2276 
2277 	if (ic->ic_flags & IEEE80211_F_SCAN) {
2278 		/*
2279 		 * If scanning just ignore and reset state.  If we get a
2280 		 * bmiss after coming out of scan because we haven't had
2281 		 * time to receive a beacon then we should probe the AP
2282 		 * before posting a real bmiss (unless iv_bmiss_max has
2283 		 * been artifiically lowered).  A cleaner solution might
2284 		 * be to disable the timer on scan start/end but to handle
2285 		 * case of multiple sta vap's we'd need to disable the
2286 		 * timers of all affected vap's.
2287 		 */
2288 		vap->iv_swbmiss_count = 0;
2289 	} else if (vap->iv_swbmiss_count == 0) {
2290 		if (vap->iv_bmiss != NULL)
2291 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
2292 	} else
2293 		vap->iv_swbmiss_count = 0;
2294 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
2295 		ieee80211_swbmiss, vap);
2296 }
2297 
2298 /*
2299  * Start an 802.11h channel switch.  We record the parameters,
2300  * mark the operation pending, notify each vap through the
2301  * beacon update mechanism so it can update the beacon frame
2302  * contents, and then switch vap's to CSA state to block outbound
2303  * traffic.  Devices that handle CSA directly can use the state
2304  * switch to do the right thing so long as they call
2305  * ieee80211_csa_completeswitch when it's time to complete the
2306  * channel change.  Devices that depend on the net80211 layer can
2307  * use ieee80211_beacon_update to handle the countdown and the
2308  * channel switch.
2309  */
2310 void
2311 ieee80211_csa_startswitch(struct ieee80211com *ic,
2312 	struct ieee80211_channel *c, int mode, int count)
2313 {
2314 	struct ieee80211vap *vap;
2315 
2316 	IEEE80211_LOCK_ASSERT(ic);
2317 
2318 	ic->ic_csa_newchan = c;
2319 	ic->ic_csa_mode = mode;
2320 	ic->ic_csa_count = count;
2321 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
2322 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2323 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2324 		    vap->iv_opmode == IEEE80211_M_IBSS ||
2325 		    vap->iv_opmode == IEEE80211_M_MBSS)
2326 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
2327 		/* switch to CSA state to block outbound traffic */
2328 		if (vap->iv_state == IEEE80211_S_RUN)
2329 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
2330 	}
2331 	ieee80211_notify_csa(ic, c, mode, count);
2332 }
2333 
2334 /*
2335  * Complete the channel switch by transitioning all CSA VAPs to RUN.
2336  * This is called by both the completion and cancellation functions
2337  * so each VAP is placed back in the RUN state and can thus transmit.
2338  */
2339 static void
2340 csa_completeswitch(struct ieee80211com *ic)
2341 {
2342 	struct ieee80211vap *vap;
2343 
2344 	ic->ic_csa_newchan = NULL;
2345 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
2346 
2347 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2348 		if (vap->iv_state == IEEE80211_S_CSA)
2349 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2350 }
2351 
2352 /*
2353  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
2354  * We clear state and move all vap's in CSA state to RUN state
2355  * so they can again transmit.
2356  *
2357  * Although this may not be completely correct, update the BSS channel
2358  * for each VAP to the newly configured channel. The setcurchan sets
2359  * the current operating channel for the interface (so the radio does
2360  * switch over) but the VAP BSS isn't updated, leading to incorrectly
2361  * reported information via ioctl.
2362  */
2363 void
2364 ieee80211_csa_completeswitch(struct ieee80211com *ic)
2365 {
2366 	struct ieee80211vap *vap;
2367 
2368 	IEEE80211_LOCK_ASSERT(ic);
2369 
2370 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
2371 
2372 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
2373 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2374 		if (vap->iv_state == IEEE80211_S_CSA)
2375 			vap->iv_bss->ni_chan = ic->ic_curchan;
2376 
2377 	csa_completeswitch(ic);
2378 }
2379 
2380 /*
2381  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
2382  * We clear state and move all vap's in CSA state to RUN state
2383  * so they can again transmit.
2384  */
2385 void
2386 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
2387 {
2388 	IEEE80211_LOCK_ASSERT(ic);
2389 
2390 	csa_completeswitch(ic);
2391 }
2392 
2393 /*
2394  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
2395  * We clear state and move all vap's in CAC state to RUN state.
2396  */
2397 void
2398 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
2399 {
2400 	struct ieee80211com *ic = vap0->iv_ic;
2401 	struct ieee80211vap *vap;
2402 
2403 	IEEE80211_LOCK(ic);
2404 	/*
2405 	 * Complete CAC state change for lead vap first; then
2406 	 * clock all the other vap's waiting.
2407 	 */
2408 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
2409 	    ("wrong state %d", vap0->iv_state));
2410 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
2411 
2412 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2413 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
2414 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2415 	IEEE80211_UNLOCK(ic);
2416 }
2417 
2418 /*
2419  * Force all vap's other than the specified vap to the INIT state
2420  * and mark them as waiting for a scan to complete.  These vaps
2421  * will be brought up when the scan completes and the scanning vap
2422  * reaches RUN state by wakeupwaiting.
2423  */
2424 static void
2425 markwaiting(struct ieee80211vap *vap0)
2426 {
2427 	struct ieee80211com *ic = vap0->iv_ic;
2428 	struct ieee80211vap *vap;
2429 
2430 	IEEE80211_LOCK_ASSERT(ic);
2431 
2432 	/*
2433 	 * A vap list entry can not disappear since we are running on the
2434 	 * taskqueue and a vap destroy will queue and drain another state
2435 	 * change task.
2436 	 */
2437 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2438 		if (vap == vap0)
2439 			continue;
2440 		if (vap->iv_state != IEEE80211_S_INIT) {
2441 			/* NB: iv_newstate may drop the lock */
2442 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
2443 			IEEE80211_LOCK_ASSERT(ic);
2444 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2445 		}
2446 	}
2447 }
2448 
2449 /*
2450  * Wakeup all vap's waiting for a scan to complete.  This is the
2451  * companion to markwaiting (above) and is used to coordinate
2452  * multiple vaps scanning.
2453  * This is called from the state taskqueue.
2454  */
2455 static void
2456 wakeupwaiting(struct ieee80211vap *vap0)
2457 {
2458 	struct ieee80211com *ic = vap0->iv_ic;
2459 	struct ieee80211vap *vap;
2460 
2461 	IEEE80211_LOCK_ASSERT(ic);
2462 
2463 	/*
2464 	 * A vap list entry can not disappear since we are running on the
2465 	 * taskqueue and a vap destroy will queue and drain another state
2466 	 * change task.
2467 	 */
2468 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2469 		if (vap == vap0)
2470 			continue;
2471 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
2472 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2473 			/* NB: sta's cannot go INIT->RUN */
2474 			/* NB: iv_newstate may drop the lock */
2475 
2476 			/*
2477 			 * This is problematic if the interface has OACTIVE
2478 			 * set.  Only the deferred ieee80211_newstate_cb()
2479 			 * will end up actually /clearing/ the OACTIVE
2480 			 * flag on a state transition to RUN from a non-RUN
2481 			 * state.
2482 			 *
2483 			 * But, we're not actually deferring this callback;
2484 			 * and when the deferred call occurs it shows up as
2485 			 * a RUN->RUN transition!  So the flag isn't/wasn't
2486 			 * cleared!
2487 			 *
2488 			 * I'm also not sure if it's correct to actually
2489 			 * do the transitions here fully through the deferred
2490 			 * paths either as other things can be invoked as
2491 			 * part of that state machine.
2492 			 *
2493 			 * So just keep this in mind when looking at what
2494 			 * the markwaiting/wakeupwaiting routines are doing
2495 			 * and how they invoke vap state changes.
2496 			 */
2497 
2498 			vap->iv_newstate(vap,
2499 			    vap->iv_opmode == IEEE80211_M_STA ?
2500 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
2501 			IEEE80211_LOCK_ASSERT(ic);
2502 		}
2503 	}
2504 }
2505 
2506 static int
2507 _ieee80211_newstate_get_next_empty_slot(struct ieee80211vap *vap)
2508 {
2509 	int nstate_num;
2510 
2511 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
2512 
2513 	if (vap->iv_nstate_n >= NET80211_IV_NSTATE_NUM)
2514 		return (-1);
2515 
2516 	nstate_num = vap->iv_nstate_b + vap->iv_nstate_n;
2517 	nstate_num %= NET80211_IV_NSTATE_NUM;
2518 	vap->iv_nstate_n++;
2519 
2520 	return (nstate_num);
2521 }
2522 
2523 static int
2524 _ieee80211_newstate_get_next_pending_slot(struct ieee80211vap *vap)
2525 {
2526 	int nstate_num;
2527 
2528 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
2529 
2530 	KASSERT(vap->iv_nstate_n > 0, ("%s: vap %p iv_nstate_n %d\n",
2531 	    __func__, vap, vap->iv_nstate_n));
2532 
2533 	nstate_num = vap->iv_nstate_b;
2534 	vap->iv_nstate_b++;
2535 	if (vap->iv_nstate_b >= NET80211_IV_NSTATE_NUM)
2536 		vap->iv_nstate_b = 0;
2537 	vap->iv_nstate_n--;
2538 
2539 	return (nstate_num);
2540 }
2541 
2542 static int
2543 _ieee80211_newstate_get_npending(struct ieee80211vap *vap)
2544 {
2545 
2546 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
2547 
2548 	return (vap->iv_nstate_n);
2549 }
2550 
2551 /*
2552  * Handle post state change work common to all operating modes.
2553  */
2554 static void
2555 ieee80211_newstate_cb(void *xvap, int npending)
2556 {
2557 	struct ieee80211vap *vap = xvap;
2558 	struct ieee80211com *ic = vap->iv_ic;
2559 	enum ieee80211_state nstate, ostate;
2560 	int arg, rc, nstate_num;
2561 
2562 	KASSERT(npending == 1, ("%s: vap %p with npending %d != 1\n",
2563 	    __func__, vap, npending));
2564 	IEEE80211_LOCK(ic);
2565 	nstate_num = _ieee80211_newstate_get_next_pending_slot(vap);
2566 
2567 	/*
2568 	 * Update the historic fields for now as they are used in some
2569 	 * drivers and reduce code changes for now.
2570 	 */
2571 	vap->iv_nstate = nstate = vap->iv_nstates[nstate_num];
2572 	arg = vap->iv_nstate_args[nstate_num];
2573 
2574 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2575 	    "%s:%d: running state update %s -> %s (%d)\n",
2576 	    __func__, __LINE__,
2577 	    ieee80211_state_name[vap->iv_state],
2578 	    ieee80211_state_name[nstate],
2579 	    npending);
2580 
2581 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
2582 		/*
2583 		 * We have been requested to drop back to the INIT before
2584 		 * proceeding to the new state.
2585 		 */
2586 		/* Deny any state changes while we are here. */
2587 		vap->iv_nstate = IEEE80211_S_INIT;
2588 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2589 		    "%s: %s -> %s arg %d -> %s arg %d\n", __func__,
2590 		    ieee80211_state_name[vap->iv_state],
2591 		    ieee80211_state_name[vap->iv_nstate], 0,
2592 		    ieee80211_state_name[nstate], arg);
2593 		vap->iv_newstate(vap, vap->iv_nstate, 0);
2594 		IEEE80211_LOCK_ASSERT(ic);
2595 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
2596 		    IEEE80211_FEXT_STATEWAIT);
2597 		/* enqueue new state transition after cancel_scan() task */
2598 		ieee80211_new_state_locked(vap, nstate, arg);
2599 		goto done;
2600 	}
2601 
2602 	ostate = vap->iv_state;
2603 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
2604 		/*
2605 		 * SCAN was forced; e.g. on beacon miss.  Force other running
2606 		 * vap's to INIT state and mark them as waiting for the scan to
2607 		 * complete.  This insures they don't interfere with our
2608 		 * scanning.  Since we are single threaded the vaps can not
2609 		 * transition again while we are executing.
2610 		 *
2611 		 * XXX not always right, assumes ap follows sta
2612 		 */
2613 		markwaiting(vap);
2614 	}
2615 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2616 	    "%s: %s -> %s arg %d\n", __func__,
2617 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2618 
2619 	rc = vap->iv_newstate(vap, nstate, arg);
2620 	IEEE80211_LOCK_ASSERT(ic);
2621 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2622 	if (rc != 0) {
2623 		/* State transition failed */
2624 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2625 		KASSERT(nstate != IEEE80211_S_INIT,
2626 		    ("INIT state change failed"));
2627 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2628 		    "%s: %s returned error %d\n", __func__,
2629 		    ieee80211_state_name[nstate], rc);
2630 		goto done;
2631 	}
2632 
2633 	/*
2634 	 * Handle the case of a RUN->RUN transition occuring when STA + AP
2635 	 * VAPs occur on the same radio.
2636 	 *
2637 	 * The mark and wakeup waiting routines call iv_newstate() directly,
2638 	 * but they do not end up deferring state changes here.
2639 	 * Thus, although the VAP newstate method sees a transition
2640 	 * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN
2641 	 * transition.  If OACTIVE is set then it is never cleared.
2642 	 *
2643 	 * So, if we're here and the state is RUN, just clear OACTIVE.
2644 	 * At some point if the markwaiting/wakeupwaiting paths end up
2645 	 * also invoking the deferred state updates then this will
2646 	 * be no-op code - and also if OACTIVE is finally retired, it'll
2647 	 * also be no-op code.
2648 	 */
2649 	if (nstate == IEEE80211_S_RUN) {
2650 		/*
2651 		 * OACTIVE may be set on the vap if the upper layer
2652 		 * tried to transmit (e.g. IPv6 NDP) before we reach
2653 		 * RUN state.  Clear it and restart xmit.
2654 		 *
2655 		 * Note this can also happen as a result of SLEEP->RUN
2656 		 * (i.e. coming out of power save mode).
2657 		 *
2658 		 * Historically this was done only for a state change
2659 		 * but is needed earlier; see next comment.  The 2nd half
2660 		 * of the work is still only done in case of an actual
2661 		 * state change below.
2662 		 */
2663 		/*
2664 		 * Unblock the VAP queue; a RUN->RUN state can happen
2665 		 * on a STA+AP setup on the AP vap.  See wakeupwaiting().
2666 		 */
2667 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2668 
2669 		/*
2670 		 * XXX TODO Kick-start a VAP queue - this should be a method!
2671 		 */
2672 	}
2673 
2674 	/* No actual transition, skip post processing */
2675 	if (ostate == nstate)
2676 		goto done;
2677 
2678 	if (nstate == IEEE80211_S_RUN) {
2679 
2680 		/* bring up any vaps waiting on us */
2681 		wakeupwaiting(vap);
2682 	} else if (nstate == IEEE80211_S_INIT) {
2683 		/*
2684 		 * Flush the scan cache if we did the last scan (XXX?)
2685 		 * and flush any frames on send queues from this vap.
2686 		 * Note the mgt q is used only for legacy drivers and
2687 		 * will go away shortly.
2688 		 */
2689 		ieee80211_scan_flush(vap);
2690 
2691 		/*
2692 		 * XXX TODO: ic/vap queue flush
2693 		 */
2694 	}
2695 done:
2696 	IEEE80211_UNLOCK(ic);
2697 }
2698 
2699 /*
2700  * Public interface for initiating a state machine change.
2701  * This routine single-threads the request and coordinates
2702  * the scheduling of multiple vaps for the purpose of selecting
2703  * an operating channel.  Specifically the following scenarios
2704  * are handled:
2705  * o only one vap can be selecting a channel so on transition to
2706  *   SCAN state if another vap is already scanning then
2707  *   mark the caller for later processing and return without
2708  *   doing anything (XXX? expectations by caller of synchronous operation)
2709  * o only one vap can be doing CAC of a channel so on transition to
2710  *   CAC state if another vap is already scanning for radar then
2711  *   mark the caller for later processing and return without
2712  *   doing anything (XXX? expectations by caller of synchronous operation)
2713  * o if another vap is already running when a request is made
2714  *   to SCAN then an operating channel has been chosen; bypass
2715  *   the scan and just join the channel
2716  *
2717  * Note that the state change call is done through the iv_newstate
2718  * method pointer so any driver routine gets invoked.  The driver
2719  * will normally call back into operating mode-specific
2720  * ieee80211_newstate routines (below) unless it needs to completely
2721  * bypass the state machine (e.g. because the firmware has it's
2722  * own idea how things should work).  Bypassing the net80211 layer
2723  * is usually a mistake and indicates lack of proper integration
2724  * with the net80211 layer.
2725  */
2726 int
2727 ieee80211_new_state_locked(struct ieee80211vap *vap,
2728 	enum ieee80211_state nstate, int arg)
2729 {
2730 	struct ieee80211com *ic = vap->iv_ic;
2731 	struct ieee80211vap *vp;
2732 	enum ieee80211_state ostate;
2733 	int nrunning, nscanning, nstate_num;
2734 
2735 	IEEE80211_LOCK_ASSERT(ic);
2736 
2737 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2738 		if (vap->iv_nstate == IEEE80211_S_INIT ||
2739 		    ((vap->iv_state == IEEE80211_S_INIT ||
2740 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2741 		    vap->iv_nstate == IEEE80211_S_SCAN &&
2742 		    nstate > IEEE80211_S_SCAN)) {
2743 			/*
2744 			 * XXX The vap is being stopped/started,
2745 			 * do not allow any other state changes
2746 			 * until this is completed.
2747 			 */
2748 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2749 			    "%s:%d: %s -> %s (%s) transition discarded\n",
2750 			    __func__, __LINE__,
2751 			    ieee80211_state_name[vap->iv_state],
2752 			    ieee80211_state_name[nstate],
2753 			    ieee80211_state_name[vap->iv_nstate]);
2754 			return -1;
2755 		}
2756 	}
2757 
2758 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2759 	    "%s:%d: starting state update %s -> %s (%s)\n",
2760 	    __func__, __LINE__,
2761 	    ieee80211_state_name[vap->iv_state],
2762 	    ieee80211_state_name[vap->iv_nstate],
2763 	    ieee80211_state_name[nstate]);
2764 
2765 	nrunning = nscanning = 0;
2766 	/* XXX can track this state instead of calculating */
2767 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2768 		if (vp != vap) {
2769 			if (vp->iv_state >= IEEE80211_S_RUN)
2770 				nrunning++;
2771 			/* XXX doesn't handle bg scan */
2772 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2773 			else if (vp->iv_state > IEEE80211_S_INIT)
2774 				nscanning++;
2775 		}
2776 	}
2777 	/*
2778 	 * Look ahead for the "old state" at that point when the last queued
2779 	 * state transition is run.
2780 	 */
2781 	if (vap->iv_nstate_n == 0) {
2782 		ostate = vap->iv_state;
2783 	} else {
2784 		nstate_num = (vap->iv_nstate_b + vap->iv_nstate_n - 1) % NET80211_IV_NSTATE_NUM;
2785 		ostate = vap->iv_nstates[nstate_num];
2786 	}
2787 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2788 	    "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__,
2789 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg,
2790 	    nrunning, nscanning);
2791 	switch (nstate) {
2792 	case IEEE80211_S_SCAN:
2793 		if (ostate == IEEE80211_S_INIT) {
2794 			/*
2795 			 * INIT -> SCAN happens on initial bringup.
2796 			 */
2797 			KASSERT(!(nscanning && nrunning),
2798 			    ("%d scanning and %d running", nscanning, nrunning));
2799 			if (nscanning) {
2800 				/*
2801 				 * Someone is scanning, defer our state
2802 				 * change until the work has completed.
2803 				 */
2804 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2805 				    "%s: defer %s -> %s\n",
2806 				    __func__, ieee80211_state_name[ostate],
2807 				    ieee80211_state_name[nstate]);
2808 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2809 				return 0;
2810 			}
2811 			if (nrunning) {
2812 				/*
2813 				 * Someone is operating; just join the channel
2814 				 * they have chosen.
2815 				 */
2816 				/* XXX kill arg? */
2817 				/* XXX check each opmode, adhoc? */
2818 				if (vap->iv_opmode == IEEE80211_M_STA)
2819 					nstate = IEEE80211_S_SCAN;
2820 				else
2821 					nstate = IEEE80211_S_RUN;
2822 #ifdef IEEE80211_DEBUG
2823 				if (nstate != IEEE80211_S_SCAN) {
2824 					IEEE80211_DPRINTF(vap,
2825 					    IEEE80211_MSG_STATE,
2826 					    "%s: override, now %s -> %s\n",
2827 					    __func__,
2828 					    ieee80211_state_name[ostate],
2829 					    ieee80211_state_name[nstate]);
2830 				}
2831 #endif
2832 			}
2833 		}
2834 		break;
2835 	case IEEE80211_S_RUN:
2836 		if (vap->iv_opmode == IEEE80211_M_WDS &&
2837 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2838 		    nscanning) {
2839 			/*
2840 			 * Legacy WDS with someone else scanning; don't
2841 			 * go online until that completes as we should
2842 			 * follow the other vap to the channel they choose.
2843 			 */
2844 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2845 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2846 			     ieee80211_state_name[ostate],
2847 			     ieee80211_state_name[nstate]);
2848 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2849 			return 0;
2850 		}
2851 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2852 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2853 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2854 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2855 			/*
2856 			 * This is a DFS channel, transition to CAC state
2857 			 * instead of RUN.  This allows us to initiate
2858 			 * Channel Availability Check (CAC) as specified
2859 			 * by 11h/DFS.
2860 			 */
2861 			nstate = IEEE80211_S_CAC;
2862 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2863 			     "%s: override %s -> %s (DFS)\n", __func__,
2864 			     ieee80211_state_name[ostate],
2865 			     ieee80211_state_name[nstate]);
2866 		}
2867 		break;
2868 	case IEEE80211_S_INIT:
2869 		/* cancel any scan in progress */
2870 		ieee80211_cancel_scan(vap);
2871 		if (ostate == IEEE80211_S_INIT ) {
2872 			/* XXX don't believe this */
2873 			/* INIT -> INIT. nothing to do */
2874 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2875 		}
2876 		/* fall thru... */
2877 	default:
2878 		break;
2879 	}
2880 	/*
2881 	 * Defer the state change to a thread.
2882 	 * We support up-to NET80211_IV_NSTATE_NUM pending state changes
2883 	 * using a separate task for each. Otherwise, if we enqueue
2884 	 * more than one state change they will be folded together,
2885 	 * npedning will be > 1 and we may run then out of sequence with
2886 	 * other events.
2887 	 * This is kind-of a hack after 10 years but we know how to provoke
2888 	 * these cases now (and seen them in the wild).
2889 	 */
2890 	nstate_num = _ieee80211_newstate_get_next_empty_slot(vap);
2891 	if (nstate_num == -1) {
2892 		/*
2893 		 * This is really bad and we should just go kaboom.
2894 		 * Instead drop it.  No one checks the return code anyway.
2895 		 */
2896 		ic_printf(ic, "%s:%d: pending %s -> %s (now to %s) "
2897 		    "transition lost. %d/%d pending state changes:\n",
2898 		    __func__, __LINE__,
2899 		    ieee80211_state_name[vap->iv_state],
2900 		    ieee80211_state_name[vap->iv_nstate],
2901 		    ieee80211_state_name[nstate],
2902 		    _ieee80211_newstate_get_npending(vap),
2903 		    NET80211_IV_NSTATE_NUM);
2904 
2905 		return (EAGAIN);
2906 	}
2907 	vap->iv_nstates[nstate_num] = nstate;
2908 	vap->iv_nstate_args[nstate_num] = arg;
2909 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2910 	ieee80211_runtask(ic, &vap->iv_nstate_task[nstate_num]);
2911 	return EINPROGRESS;
2912 }
2913 
2914 int
2915 ieee80211_new_state(struct ieee80211vap *vap,
2916 	enum ieee80211_state nstate, int arg)
2917 {
2918 	struct ieee80211com *ic = vap->iv_ic;
2919 	int rc;
2920 
2921 	IEEE80211_LOCK(ic);
2922 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2923 	IEEE80211_UNLOCK(ic);
2924 	return rc;
2925 }
2926