xref: /haiku/src/libs/compat/freebsd_wlan/net80211/ieee80211_phy.c (revision 820dca4df6c7bf955c46e8f6521b9408f50b2900)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11 PHY-related support.
31  */
32 
33 #include "opt_inet.h"
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/systm.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_media.h>
43 
44 #include <net80211/ieee80211_var.h>
45 #include <net80211/ieee80211_phy.h>
46 
47 #ifdef notyet
48 struct ieee80211_ds_plcp_hdr {
49 	uint8_t		i_signal;
50 	uint8_t		i_service;
51 	uint16_t	i_length;
52 	uint16_t	i_crc;
53 } __packed;
54 
55 #endif	/* notyet */
56 
57 /* shorthands to compact tables for readability */
58 #define	OFDM	IEEE80211_T_OFDM
59 #define	CCK	IEEE80211_T_CCK
60 #define	TURBO	IEEE80211_T_TURBO
61 #define	HALF	IEEE80211_T_OFDM_HALF
62 #define	QUART	IEEE80211_T_OFDM_QUARTER
63 #define	PBCC	(IEEE80211_T_OFDM_QUARTER+1)		/* XXX */
64 #define	B(r)	(0x80 | r)
65 #define	Mb(x)	(x*1000)
66 
67 static struct ieee80211_rate_table ieee80211_11b_table = {
68     .rateCount = 4,		/* XXX no PBCC */
69     .info = {
70 /*                                   short            ctrl  */
71 /*                                Preamble  dot11Rate Rate */
72      [0] = { .phy = CCK,     1000,    0x00,      B(2),   0 },/*   1 Mb */
73      [1] = { .phy = CCK,     2000,    0x04,      B(4),   1 },/*   2 Mb */
74      [2] = { .phy = CCK,     5500,    0x04,     B(11),   1 },/* 5.5 Mb */
75      [3] = { .phy = CCK,    11000,    0x04,     B(22),   1 },/*  11 Mb */
76      [4] = { .phy = PBCC,   22000,    0x04,        44,   3 } /*  22 Mb */
77     },
78 };
79 
80 static struct ieee80211_rate_table ieee80211_11g_table = {
81     .rateCount = 12,
82     .info = {
83 /*                                   short            ctrl  */
84 /*                                Preamble  dot11Rate Rate */
85      [0] = { .phy = CCK,     1000,    0x00,      B(2),   0 },
86      [1] = { .phy = CCK,     2000,    0x04,      B(4),   1 },
87      [2] = { .phy = CCK,     5500,    0x04,     B(11),   2 },
88      [3] = { .phy = CCK,    11000,    0x04,     B(22),   3 },
89      [4] = { .phy = OFDM,    6000,    0x00,        12,   4 },
90      [5] = { .phy = OFDM,    9000,    0x00,        18,   4 },
91      [6] = { .phy = OFDM,   12000,    0x00,        24,   6 },
92      [7] = { .phy = OFDM,   18000,    0x00,        36,   6 },
93      [8] = { .phy = OFDM,   24000,    0x00,        48,   8 },
94      [9] = { .phy = OFDM,   36000,    0x00,        72,   8 },
95     [10] = { .phy = OFDM,   48000,    0x00,        96,   8 },
96     [11] = { .phy = OFDM,   54000,    0x00,       108,   8 }
97     },
98 };
99 
100 static struct ieee80211_rate_table ieee80211_11a_table = {
101     .rateCount = 8,
102     .info = {
103 /*                                   short            ctrl  */
104 /*                                Preamble  dot11Rate Rate */
105      [0] = { .phy = OFDM,    6000,    0x00,     B(12),   0 },
106      [1] = { .phy = OFDM,    9000,    0x00,        18,   0 },
107      [2] = { .phy = OFDM,   12000,    0x00,     B(24),   2 },
108      [3] = { .phy = OFDM,   18000,    0x00,        36,   2 },
109      [4] = { .phy = OFDM,   24000,    0x00,     B(48),   4 },
110      [5] = { .phy = OFDM,   36000,    0x00,        72,   4 },
111      [6] = { .phy = OFDM,   48000,    0x00,        96,   4 },
112      [7] = { .phy = OFDM,   54000,    0x00,       108,   4 }
113     },
114 };
115 
116 static struct ieee80211_rate_table ieee80211_half_table = {
117     .rateCount = 8,
118     .info = {
119 /*                                   short            ctrl  */
120 /*                                Preamble  dot11Rate Rate */
121      [0] = { .phy = HALF,    3000,    0x00,      B(6),   0 },
122      [1] = { .phy = HALF,    4500,    0x00,         9,   0 },
123      [2] = { .phy = HALF,    6000,    0x00,     B(12),   2 },
124      [3] = { .phy = HALF,    9000,    0x00,        18,   2 },
125      [4] = { .phy = HALF,   12000,    0x00,     B(24),   4 },
126      [5] = { .phy = HALF,   18000,    0x00,        36,   4 },
127      [6] = { .phy = HALF,   24000,    0x00,        48,   4 },
128      [7] = { .phy = HALF,   27000,    0x00,        54,   4 }
129     },
130 };
131 
132 static struct ieee80211_rate_table ieee80211_quarter_table = {
133     .rateCount = 8,
134     .info = {
135 /*                                   short            ctrl  */
136 /*                                Preamble  dot11Rate Rate */
137      [0] = { .phy = QUART,   1500,    0x00,      B(3),   0 },
138      [1] = { .phy = QUART,   2250,    0x00,         4,   0 },
139      [2] = { .phy = QUART,   3000,    0x00,      B(9),   2 },
140      [3] = { .phy = QUART,   4500,    0x00,         9,   2 },
141      [4] = { .phy = QUART,   6000,    0x00,     B(12),   4 },
142      [5] = { .phy = QUART,   9000,    0x00,        18,   4 },
143      [6] = { .phy = QUART,  12000,    0x00,        24,   4 },
144      [7] = { .phy = QUART,  13500,    0x00,        27,   4 }
145     },
146 };
147 
148 static struct ieee80211_rate_table ieee80211_turbog_table = {
149     .rateCount = 7,
150     .info = {
151 /*                                   short            ctrl  */
152 /*                                Preamble  dot11Rate Rate */
153      [0] = { .phy = TURBO,   12000,   0x00,     B(12),   0 },
154      [1] = { .phy = TURBO,   24000,   0x00,     B(24),   1 },
155      [2] = { .phy = TURBO,   36000,   0x00,        36,   1 },
156      [3] = { .phy = TURBO,   48000,   0x00,     B(48),   3 },
157      [4] = { .phy = TURBO,   72000,   0x00,        72,   3 },
158      [5] = { .phy = TURBO,   96000,   0x00,        96,   3 },
159      [6] = { .phy = TURBO,  108000,   0x00,       108,   3 }
160     },
161 };
162 
163 static struct ieee80211_rate_table ieee80211_turboa_table = {
164     .rateCount = 8,
165     .info = {
166 /*                                   short            ctrl  */
167 /*                                Preamble  dot11Rate Rate */
168      [0] = { .phy = TURBO,   12000,   0x00,     B(12),   0 },
169      [1] = { .phy = TURBO,   18000,   0x00,        18,   0 },
170      [2] = { .phy = TURBO,   24000,   0x00,     B(24),   2 },
171      [3] = { .phy = TURBO,   36000,   0x00,        36,   2 },
172      [4] = { .phy = TURBO,   48000,   0x00,     B(48),   4 },
173      [5] = { .phy = TURBO,   72000,   0x00,        72,   4 },
174      [6] = { .phy = TURBO,   96000,   0x00,        96,   4 },
175      [7] = { .phy = TURBO,  108000,   0x00,       108,   4 }
176     },
177 };
178 
179 #undef	Mb
180 #undef	B
181 #undef	OFDM
182 #undef	HALF
183 #undef	QUART
184 #undef	CCK
185 #undef	TURBO
186 #undef	XR
187 
188 /*
189  * Setup a rate table's reverse lookup table and fill in
190  * ack durations.  The reverse lookup tables are assumed
191  * to be initialized to zero (or at least the first entry).
192  * We use this as a key that indicates whether or not
193  * we've previously setup the reverse lookup table.
194  *
195  * XXX not reentrant, but shouldn't matter
196  */
197 static void
198 ieee80211_setup_ratetable(struct ieee80211_rate_table *rt)
199 {
200 #define	N(a)	(sizeof(a)/sizeof(a[0]))
201 #define	WLAN_CTRL_FRAME_SIZE \
202 	(sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN)
203 
204 	int i;
205 
206 	for (i = 0; i < N(rt->rateCodeToIndex); i++)
207 		rt->rateCodeToIndex[i] = (uint8_t) -1;
208 	for (i = 0; i < rt->rateCount; i++) {
209 		uint8_t code = rt->info[i].dot11Rate;
210 		uint8_t cix = rt->info[i].ctlRateIndex;
211 		uint8_t ctl_rate = rt->info[cix].dot11Rate;
212 
213 		rt->rateCodeToIndex[code] = i;
214 		if (code & IEEE80211_RATE_BASIC) {
215 			/*
216 			 * Map w/o basic rate bit too.
217 			 */
218 			code &= IEEE80211_RATE_VAL;
219 			rt->rateCodeToIndex[code] = i;
220 		}
221 
222 		/*
223 		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
224 		 *     depends on whether they are marked as basic rates;
225 		 *     the static tables are setup with an 11b-compatible
226 		 *     2Mb/s rate which will work but is suboptimal
227 		 *
228 		 * NB: Control rate is always less than or equal to the
229 		 *     current rate, so control rate's reverse lookup entry
230 		 *     has been installed and following call is safe.
231 		 */
232 		rt->info[i].lpAckDuration = ieee80211_compute_duration(rt,
233 			WLAN_CTRL_FRAME_SIZE, ctl_rate, 0);
234 		rt->info[i].spAckDuration = ieee80211_compute_duration(rt,
235 			WLAN_CTRL_FRAME_SIZE, ctl_rate, IEEE80211_F_SHPREAMBLE);
236 	}
237 
238 #undef WLAN_CTRL_FRAME_SIZE
239 #undef N
240 }
241 
242 /* Setup all rate tables */
243 void
244 ieee80211_phy_init(void)
245 {
246 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
247 	static struct ieee80211_rate_table * const ratetables[] = {
248 		&ieee80211_half_table,
249 		&ieee80211_quarter_table,
250 		&ieee80211_11a_table,
251 		&ieee80211_11g_table,
252 		&ieee80211_turbog_table,
253 		&ieee80211_turboa_table,
254 		&ieee80211_turboa_table,
255 		&ieee80211_11a_table,
256 		&ieee80211_11g_table,
257 		&ieee80211_11b_table
258 	};
259 	int i;
260 
261 	for (i = 0; i < N(ratetables); ++i)
262 		ieee80211_setup_ratetable(ratetables[i]);
263 
264 #undef N
265 }
266 SYSINIT(wlan_phy, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_phy_init, NULL);
267 
268 const struct ieee80211_rate_table *
269 ieee80211_get_ratetable(struct ieee80211_channel *c)
270 {
271 	const struct ieee80211_rate_table *rt;
272 
273 	/* XXX HT */
274 	if (IEEE80211_IS_CHAN_HALF(c))
275 		rt = &ieee80211_half_table;
276 	else if (IEEE80211_IS_CHAN_QUARTER(c))
277 		rt = &ieee80211_quarter_table;
278 	else if (IEEE80211_IS_CHAN_HTA(c))
279 		rt = &ieee80211_11a_table;	/* XXX */
280 	else if (IEEE80211_IS_CHAN_HTG(c))
281 		rt = &ieee80211_11g_table;	/* XXX */
282 	else if (IEEE80211_IS_CHAN_108G(c))
283 		rt = &ieee80211_turbog_table;
284 	else if (IEEE80211_IS_CHAN_ST(c))
285 		rt = &ieee80211_turboa_table;
286 	else if (IEEE80211_IS_CHAN_TURBO(c))
287 		rt = &ieee80211_turboa_table;
288 	else if (IEEE80211_IS_CHAN_A(c))
289 		rt = &ieee80211_11a_table;
290 	else if (IEEE80211_IS_CHAN_ANYG(c))
291 		rt = &ieee80211_11g_table;
292 	else if (IEEE80211_IS_CHAN_B(c))
293 		rt = &ieee80211_11b_table;
294 	else {
295 		/* NB: should not get here */
296 		panic("%s: no rate table for channel; freq %u flags 0x%x\n",
297 		      __func__, c->ic_freq, c->ic_flags);
298 	}
299 	return rt;
300 }
301 
302 /*
303  * Convert PLCP signal/rate field to 802.11 rate (.5Mbits/s)
304  *
305  * Note we do no parameter checking; this routine is mainly
306  * used to derive an 802.11 rate for constructing radiotap
307  * header data for rx frames.
308  *
309  * XXX might be a candidate for inline
310  */
311 uint8_t
312 ieee80211_plcp2rate(uint8_t plcp, enum ieee80211_phytype type)
313 {
314 	if (type == IEEE80211_T_OFDM) {
315 		static const uint8_t ofdm_plcp2rate[16] = {
316 			[0xb]	= 12,
317 			[0xf]	= 18,
318 			[0xa]	= 24,
319 			[0xe]	= 36,
320 			[0x9]	= 48,
321 			[0xd]	= 72,
322 			[0x8]	= 96,
323 			[0xc]	= 108
324 		};
325 		return ofdm_plcp2rate[plcp & 0xf];
326 	}
327 	if (type == IEEE80211_T_CCK) {
328 		static const uint8_t cck_plcp2rate[16] = {
329 			[0xa]	= 2,	/* 0x0a */
330 			[0x4]	= 4,	/* 0x14 */
331 			[0x7]	= 11,	/* 0x37 */
332 			[0xe]	= 22,	/* 0x6e */
333 			[0xc]	= 44,	/* 0xdc , actually PBCC */
334 		};
335 		return cck_plcp2rate[plcp & 0xf];
336 	}
337 	return 0;
338 }
339 
340 /*
341  * Covert 802.11 rate to PLCP signal.
342  */
343 uint8_t
344 ieee80211_rate2plcp(int rate, enum ieee80211_phytype type)
345 {
346 	/* XXX ignore type for now since rates are unique */
347 	switch (rate) {
348 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
349 	case 12:	return 0xb;
350 	case 18:	return 0xf;
351 	case 24:	return 0xa;
352 	case 36:	return 0xe;
353 	case 48:	return 0x9;
354 	case 72:	return 0xd;
355 	case 96:	return 0x8;
356 	case 108:	return 0xc;
357 	/* CCK rates (IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3) */
358 	case 2:		return 10;
359 	case 4:		return 20;
360 	case 11:	return 55;
361 	case 22:	return 110;
362 	/* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */
363 	case 44:	return 220;
364 	}
365 	return 0;		/* XXX unsupported/unknown rate */
366 }
367 
368 #define CCK_SIFS_TIME		10
369 #define CCK_PREAMBLE_BITS	144
370 #define CCK_PLCP_BITS		48
371 
372 #define OFDM_SIFS_TIME		16
373 #define OFDM_PREAMBLE_TIME	20
374 #define OFDM_PLCP_BITS		22
375 #define OFDM_SYMBOL_TIME	4
376 
377 #define OFDM_HALF_SIFS_TIME	32
378 #define OFDM_HALF_PREAMBLE_TIME	40
379 #define OFDM_HALF_PLCP_BITS	22
380 #define OFDM_HALF_SYMBOL_TIME	8
381 
382 #define OFDM_QUARTER_SIFS_TIME 		64
383 #define OFDM_QUARTER_PREAMBLE_TIME	80
384 #define OFDM_QUARTER_PLCP_BITS		22
385 #define OFDM_QUARTER_SYMBOL_TIME	16
386 
387 #define TURBO_SIFS_TIME		8
388 #define TURBO_PREAMBLE_TIME	14
389 #define TURBO_PLCP_BITS		22
390 #define TURBO_SYMBOL_TIME	4
391 
392 /*
393  * Compute the time to transmit a frame of length frameLen bytes
394  * using the specified rate, phy, and short preamble setting.
395  * SIFS is included.
396  */
397 uint16_t
398 ieee80211_compute_duration(const struct ieee80211_rate_table *rt,
399 	uint32_t frameLen, uint16_t rate, int isShortPreamble)
400 {
401 	uint8_t rix = rt->rateCodeToIndex[rate];
402 	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
403 	uint32_t kbps;
404 
405 	KASSERT(rix != (uint8_t)-1, ("rate %d has no info", rate));
406 	kbps = rt->info[rix].rateKbps;
407 	if (kbps == 0)			/* XXX bandaid for channel changes */
408 		return 0;
409 
410 	switch (rt->info[rix].phy) {
411 	case IEEE80211_T_CCK:
412 		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
413 		if (isShortPreamble && rt->info[rix].shortPreamble)
414 			phyTime >>= 1;
415 		numBits		= frameLen << 3;
416 		txTime		= CCK_SIFS_TIME + phyTime
417 				+ ((numBits * 1000)/kbps);
418 		break;
419 	case IEEE80211_T_OFDM:
420 		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
421 		KASSERT(bitsPerSymbol != 0, ("full rate bps"));
422 
423 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
424 		numSymbols	= howmany(numBits, bitsPerSymbol);
425 		txTime		= OFDM_SIFS_TIME
426 				+ OFDM_PREAMBLE_TIME
427 				+ (numSymbols * OFDM_SYMBOL_TIME);
428 		break;
429 	case IEEE80211_T_OFDM_HALF:
430 		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
431 		KASSERT(bitsPerSymbol != 0, ("1/4 rate bps"));
432 
433 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
434 		numSymbols	= howmany(numBits, bitsPerSymbol);
435 		txTime		= OFDM_HALF_SIFS_TIME
436 				+ OFDM_HALF_PREAMBLE_TIME
437 				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
438 		break;
439 	case IEEE80211_T_OFDM_QUARTER:
440 		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
441 		KASSERT(bitsPerSymbol != 0, ("1/2 rate bps"));
442 
443 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
444 		numSymbols	= howmany(numBits, bitsPerSymbol);
445 		txTime		= OFDM_QUARTER_SIFS_TIME
446 				+ OFDM_QUARTER_PREAMBLE_TIME
447 				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
448 		break;
449 	case IEEE80211_T_TURBO:
450 		/* we still save OFDM rates in kbps - so double them */
451 		bitsPerSymbol = ((kbps << 1) * TURBO_SYMBOL_TIME) / 1000;
452 		KASSERT(bitsPerSymbol != 0, ("turbo bps"));
453 
454 		numBits       = TURBO_PLCP_BITS + (frameLen << 3);
455 		numSymbols    = howmany(numBits, bitsPerSymbol);
456 		txTime        = TURBO_SIFS_TIME + TURBO_PREAMBLE_TIME
457 			      + (numSymbols * TURBO_SYMBOL_TIME);
458 		break;
459 	default:
460 		panic("%s: unknown phy %u (rate %u)\n", __func__,
461 		      rt->info[rix].phy, rate);
462 		break;
463 	}
464 	return txTime;
465 }
466