xref: /haiku/src/libs/compat/freebsd_wlan/net80211/ieee80211_output.c (revision bb83316a5811a550c4f850d07fa8e328e7ac0a94)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211_output.c 330688 2018-03-09 11:33:56Z avos $");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/ethernet.h>
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_llc.h>
50 #include <net/if_media.h>
51 #include <net/if_vlan_var.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #ifdef IEEE80211_SUPPORT_TDMA
59 #include <net80211/ieee80211_tdma.h>
60 #endif
61 #include <net80211/ieee80211_wds.h>
62 #include <net80211/ieee80211_mesh.h>
63 #include <net80211/ieee80211_vht.h>
64 
65 #if defined(INET) || defined(INET6)
66 #include <netinet/in.h>
67 #endif
68 
69 #ifdef INET
70 #include <netinet/if_ether.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #endif
74 #ifdef INET6
75 #include <netinet/ip6.h>
76 #endif
77 
78 #include <security/mac/mac_framework.h>
79 
80 #define	ETHER_HEADER_COPY(dst, src) \
81 	memcpy(dst, src, sizeof(struct ether_header))
82 
83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
84 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
85 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
86 
87 #ifdef IEEE80211_DEBUG
88 /*
89  * Decide if an outbound management frame should be
90  * printed when debugging is enabled.  This filters some
91  * of the less interesting frames that come frequently
92  * (e.g. beacons).
93  */
94 static __inline int
95 doprint(struct ieee80211vap *vap, int subtype)
96 {
97 	switch (subtype) {
98 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
99 		return (vap->iv_opmode == IEEE80211_M_IBSS);
100 	}
101 	return 1;
102 }
103 #endif
104 
105 /*
106  * Transmit a frame to the given destination on the given VAP.
107  *
108  * It's up to the caller to figure out the details of who this
109  * is going to and resolving the node.
110  *
111  * This routine takes care of queuing it for power save,
112  * A-MPDU state stuff, fast-frames state stuff, encapsulation
113  * if required, then passing it up to the driver layer.
114  *
115  * This routine (for now) consumes the mbuf and frees the node
116  * reference; it ideally will return a TX status which reflects
117  * whether the mbuf was consumed or not, so the caller can
118  * free the mbuf (if appropriate) and the node reference (again,
119  * if appropriate.)
120  */
121 int
122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
123     struct ieee80211_node *ni)
124 {
125 	struct ieee80211com *ic = vap->iv_ic;
126 	struct ifnet *ifp = vap->iv_ifp;
127 	int mcast;
128 	int do_ampdu = 0;
129 	int do_amsdu = 0;
130 	int do_ampdu_amsdu = 0;
131 	int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
132 	int do_ff = 0;
133 
134 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
135 	    (m->m_flags & M_PWR_SAV) == 0) {
136 		/*
137 		 * Station in power save mode; pass the frame
138 		 * to the 802.11 layer and continue.  We'll get
139 		 * the frame back when the time is right.
140 		 * XXX lose WDS vap linkage?
141 		 */
142 		if (ieee80211_pwrsave(ni, m) != 0)
143 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
144 		ieee80211_free_node(ni);
145 
146 		/*
147 		 * We queued it fine, so tell the upper layer
148 		 * that we consumed it.
149 		 */
150 		return (0);
151 	}
152 	/* calculate priority so drivers can find the tx queue */
153 	if (ieee80211_classify(ni, m)) {
154 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
155 		    ni->ni_macaddr, NULL,
156 		    "%s", "classification failure");
157 		vap->iv_stats.is_tx_classify++;
158 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
159 		m_freem(m);
160 		ieee80211_free_node(ni);
161 
162 		/* XXX better status? */
163 		return (0);
164 	}
165 	/*
166 	 * Stash the node pointer.  Note that we do this after
167 	 * any call to ieee80211_dwds_mcast because that code
168 	 * uses any existing value for rcvif to identify the
169 	 * interface it (might have been) received on.
170 	 */
171 	m->m_pkthdr.rcvif = (void *)ni;
172 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
173 
174 	BPF_MTAP(ifp, m);		/* 802.3 tx */
175 
176 
177 	/*
178 	 * Figure out if we can do A-MPDU, A-MSDU or FF.
179 	 *
180 	 * A-MPDU depends upon vap/node config.
181 	 * A-MSDU depends upon vap/node config.
182 	 * FF depends upon vap config, IE and whether
183 	 *  it's 11abg (and not 11n/11ac/etc.)
184 	 *
185 	 * Note that these flags indiciate whether we can do
186 	 * it at all, rather than the situation (eg traffic type.)
187 	 */
188 	do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
189 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
190 	do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
191 	    (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
192 	do_ff =
193 	    ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
194 	    ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
195 	    (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
196 
197 	/*
198 	 * Check if A-MPDU tx aggregation is setup or if we
199 	 * should try to enable it.  The sta must be associated
200 	 * with HT and A-MPDU enabled for use.  When the policy
201 	 * routine decides we should enable A-MPDU we issue an
202 	 * ADDBA request and wait for a reply.  The frame being
203 	 * encapsulated will go out w/o using A-MPDU, or possibly
204 	 * it might be collected by the driver and held/retransmit.
205 	 * The default ic_ampdu_enable routine handles staggering
206 	 * ADDBA requests in case the receiver NAK's us or we are
207 	 * otherwise unable to establish a BA stream.
208 	 *
209 	 * Don't treat group-addressed frames as candidates for aggregation;
210 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
211 	 * frames will always have sequence numbers allocated from the NON_QOS
212 	 * TID.
213 	 */
214 	if (do_ampdu) {
215 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
216 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
217 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
218 
219 			ieee80211_txampdu_count_packet(tap);
220 			if (IEEE80211_AMPDU_RUNNING(tap)) {
221 				/*
222 				 * Operational, mark frame for aggregation.
223 				 *
224 				 * XXX do tx aggregation here
225 				 */
226 				m->m_flags |= M_AMPDU_MPDU;
227 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
228 			    ic->ic_ampdu_enable(ni, tap)) {
229 				/*
230 				 * Not negotiated yet, request service.
231 				 */
232 				ieee80211_ampdu_request(ni, tap);
233 				/* XXX hold frame for reply? */
234 			}
235 			/*
236 			 * Now update the no-ampdu flag.  A-MPDU may have been
237 			 * started or administratively disabled above; so now we
238 			 * know whether we're running yet or not.
239 			 *
240 			 * This will let us know whether we should be doing A-MSDU
241 			 * at this point.  We only do A-MSDU if we're either not
242 			 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
243 			 * is available.
244 			 *
245 			 * Whilst here, update the amsdu-ampdu flag.  The above may
246 			 * have also set or cleared the amsdu-in-ampdu txa_flags
247 			 * combination so we can correctly do A-MPDU + A-MSDU.
248 			 */
249 			no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
250 			    || (IEEE80211_AMPDU_NACKED(tap)));
251 			do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
252 		}
253 	}
254 
255 #ifdef IEEE80211_SUPPORT_SUPERG
256 	/*
257 	 * Check for AMSDU/FF; queue for aggregation
258 	 *
259 	 * Note: we don't bother trying to do fast frames or
260 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
261 	 * likely could do it for FF (because it's a magic
262 	 * atheros tunnel LLC type) but I don't think we're going
263 	 * to really need to.  For A-MSDU we'd have to set the
264 	 * A-MSDU QoS bit in the wifi header, so we just plain
265 	 * can't do it.
266 	 */
267 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
268 		if ((! mcast) &&
269 		    (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
270 		    ieee80211_amsdu_tx_ok(ni)) {
271 			m = ieee80211_amsdu_check(ni, m);
272 			if (m == NULL) {
273 				/* NB: any ni ref held on stageq */
274 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
275 				    "%s: amsdu_check queued frame\n",
276 				    __func__);
277 				return (0);
278 			}
279 		} else if ((! mcast) && do_ff) {
280 			m = ieee80211_ff_check(ni, m);
281 			if (m == NULL) {
282 				/* NB: any ni ref held on stageq */
283 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
284 				    "%s: ff_check queued frame\n",
285 				    __func__);
286 				return (0);
287 			}
288 		}
289 	}
290 #endif /* IEEE80211_SUPPORT_SUPERG */
291 
292 	/*
293 	 * Grab the TX lock - serialise the TX process from this
294 	 * point (where TX state is being checked/modified)
295 	 * through to driver queue.
296 	 */
297 	IEEE80211_TX_LOCK(ic);
298 
299 	/*
300 	 * XXX make the encap and transmit code a separate function
301 	 * so things like the FF (and later A-MSDU) path can just call
302 	 * it for flushed frames.
303 	 */
304 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
305 		/*
306 		 * Encapsulate the packet in prep for transmission.
307 		 */
308 		m = ieee80211_encap(vap, ni, m);
309 		if (m == NULL) {
310 			/* NB: stat+msg handled in ieee80211_encap */
311 			IEEE80211_TX_UNLOCK(ic);
312 			ieee80211_free_node(ni);
313 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
314 			return (ENOBUFS);
315 		}
316 	}
317 	(void) ieee80211_parent_xmitpkt(ic, m);
318 
319 	/*
320 	 * Unlock at this point - no need to hold it across
321 	 * ieee80211_free_node() (ie, the comlock)
322 	 */
323 	IEEE80211_TX_UNLOCK(ic);
324 	ic->ic_lastdata = ticks;
325 
326 	return (0);
327 }
328 
329 
330 
331 /*
332  * Send the given mbuf through the given vap.
333  *
334  * This consumes the mbuf regardless of whether the transmit
335  * was successful or not.
336  *
337  * This does none of the initial checks that ieee80211_start()
338  * does (eg CAC timeout, interface wakeup) - the caller must
339  * do this first.
340  */
341 static int
342 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
343 {
344 #define	IS_DWDS(vap) \
345 	(vap->iv_opmode == IEEE80211_M_WDS && \
346 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
347 	struct ieee80211com *ic = vap->iv_ic;
348 	struct ifnet *ifp = vap->iv_ifp;
349 	struct ieee80211_node *ni;
350 	struct ether_header *eh;
351 
352 	/*
353 	 * Cancel any background scan.
354 	 */
355 	if (ic->ic_flags & IEEE80211_F_SCAN)
356 		ieee80211_cancel_anyscan(vap);
357 	/*
358 	 * Find the node for the destination so we can do
359 	 * things like power save and fast frames aggregation.
360 	 *
361 	 * NB: past this point various code assumes the first
362 	 *     mbuf has the 802.3 header present (and contiguous).
363 	 */
364 	ni = NULL;
365 	if (m->m_len < sizeof(struct ether_header) &&
366 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
367 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
368 		    "discard frame, %s\n", "m_pullup failed");
369 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
370 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
371 		return (ENOBUFS);
372 	}
373 	eh = mtod(m, struct ether_header *);
374 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
375 		if (IS_DWDS(vap)) {
376 			/*
377 			 * Only unicast frames from the above go out
378 			 * DWDS vaps; multicast frames are handled by
379 			 * dispatching the frame as it comes through
380 			 * the AP vap (see below).
381 			 */
382 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
383 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
384 			vap->iv_stats.is_dwds_mcast++;
385 			m_freem(m);
386 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
387 			/* XXX better status? */
388 			return (ENOBUFS);
389 		}
390 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
391 			/*
392 			 * Spam DWDS vap's w/ multicast traffic.
393 			 */
394 			/* XXX only if dwds in use? */
395 			ieee80211_dwds_mcast(vap, m);
396 		}
397 	}
398 #ifdef IEEE80211_SUPPORT_MESH
399 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
400 #endif
401 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
402 		if (ni == NULL) {
403 			/* NB: ieee80211_find_txnode does stat+msg */
404 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
405 			m_freem(m);
406 			/* XXX better status? */
407 			return (ENOBUFS);
408 		}
409 		if (ni->ni_associd == 0 &&
410 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
411 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
412 			    eh->ether_dhost, NULL,
413 			    "sta not associated (type 0x%04x)",
414 			    htons(eh->ether_type));
415 			vap->iv_stats.is_tx_notassoc++;
416 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
417 			m_freem(m);
418 			ieee80211_free_node(ni);
419 			/* XXX better status? */
420 			return (ENOBUFS);
421 		}
422 #ifdef IEEE80211_SUPPORT_MESH
423 	} else {
424 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
425 			/*
426 			 * Proxy station only if configured.
427 			 */
428 			if (!ieee80211_mesh_isproxyena(vap)) {
429 				IEEE80211_DISCARD_MAC(vap,
430 				    IEEE80211_MSG_OUTPUT |
431 				    IEEE80211_MSG_MESH,
432 				    eh->ether_dhost, NULL,
433 				    "%s", "proxy not enabled");
434 				vap->iv_stats.is_mesh_notproxy++;
435 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
436 				m_freem(m);
437 				/* XXX better status? */
438 				return (ENOBUFS);
439 			}
440 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
441 			    "forward frame from DS SA(%6D), DA(%6D)\n",
442 			    eh->ether_shost, ":",
443 			    eh->ether_dhost, ":");
444 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
445 		}
446 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
447 		if (ni == NULL) {
448 			/*
449 			 * NB: ieee80211_mesh_discover holds/disposes
450 			 * frame (e.g. queueing on path discovery).
451 			 */
452 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
453 			/* XXX better status? */
454 			return (ENOBUFS);
455 		}
456 	}
457 #endif
458 
459 	/*
460 	 * We've resolved the sender, so attempt to transmit it.
461 	 */
462 
463 	if (vap->iv_state == IEEE80211_S_SLEEP) {
464 		/*
465 		 * In power save; queue frame and then  wakeup device
466 		 * for transmit.
467 		 */
468 		ic->ic_lastdata = ticks;
469 		if (ieee80211_pwrsave(ni, m) != 0)
470 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
471 		ieee80211_free_node(ni);
472 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
473 		return (0);
474 	}
475 
476 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
477 		return (ENOBUFS);
478 	return (0);
479 #undef	IS_DWDS
480 }
481 
482 /*
483  * Start method for vap's.  All packets from the stack come
484  * through here.  We handle common processing of the packets
485  * before dispatching them to the underlying device.
486  *
487  * if_transmit() requires that the mbuf be consumed by this call
488  * regardless of the return condition.
489  */
490 int
491 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
492 {
493 	struct ieee80211vap *vap = ifp->if_softc;
494 	struct ieee80211com *ic = vap->iv_ic;
495 
496 	/*
497 	 * No data frames go out unless we're running.
498 	 * Note in particular this covers CAC and CSA
499 	 * states (though maybe we should check muting
500 	 * for CSA).
501 	 */
502 	if (vap->iv_state != IEEE80211_S_RUN &&
503 	    vap->iv_state != IEEE80211_S_SLEEP) {
504 		IEEE80211_LOCK(ic);
505 		/* re-check under the com lock to avoid races */
506 		if (vap->iv_state != IEEE80211_S_RUN &&
507 		    vap->iv_state != IEEE80211_S_SLEEP) {
508 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
509 			    "%s: ignore queue, in %s state\n",
510 			    __func__, ieee80211_state_name[vap->iv_state]);
511 			vap->iv_stats.is_tx_badstate++;
512 			IEEE80211_UNLOCK(ic);
513 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
514 			m_freem(m);
515 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
516 			return (ENETDOWN);
517 		}
518 		IEEE80211_UNLOCK(ic);
519 	}
520 
521 	/*
522 	 * Sanitize mbuf flags for net80211 use.  We cannot
523 	 * clear M_PWR_SAV or M_MORE_DATA because these may
524 	 * be set for frames that are re-submitted from the
525 	 * power save queue.
526 	 *
527 	 * NB: This must be done before ieee80211_classify as
528 	 *     it marks EAPOL in frames with M_EAPOL.
529 	 */
530 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
531 
532 	/*
533 	 * Bump to the packet transmission path.
534 	 * The mbuf will be consumed here.
535 	 */
536 	return (ieee80211_start_pkt(vap, m));
537 }
538 
539 void
540 ieee80211_vap_qflush(struct ifnet *ifp)
541 {
542 
543 	/* Empty for now */
544 }
545 
546 /*
547  * 802.11 raw output routine.
548  *
549  * XXX TODO: this (and other send routines) should correctly
550  * XXX keep the pwr mgmt bit set if it decides to call into the
551  * XXX driver to send a frame whilst the state is SLEEP.
552  *
553  * Otherwise the peer may decide that we're awake and flood us
554  * with traffic we are still too asleep to receive!
555  */
556 int
557 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
558     struct mbuf *m, const struct ieee80211_bpf_params *params)
559 {
560 	struct ieee80211com *ic = vap->iv_ic;
561 	int error;
562 
563 	/*
564 	 * Set node - the caller has taken a reference, so ensure
565 	 * that the mbuf has the same node value that
566 	 * it would if it were going via the normal path.
567 	 */
568 	m->m_pkthdr.rcvif = (void *)ni;
569 
570 	/*
571 	 * Attempt to add bpf transmit parameters.
572 	 *
573 	 * For now it's ok to fail; the raw_xmit api still takes
574 	 * them as an option.
575 	 *
576 	 * Later on when ic_raw_xmit() has params removed,
577 	 * they'll have to be added - so fail the transmit if
578 	 * they can't be.
579 	 */
580 	if (params)
581 		(void) ieee80211_add_xmit_params(m, params);
582 
583 	error = ic->ic_raw_xmit(ni, m, params);
584 	if (error) {
585 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
586 		ieee80211_free_node(ni);
587 	}
588 	return (error);
589 }
590 
591 static int
592 ieee80211_validate_frame(struct mbuf *m,
593     const struct ieee80211_bpf_params *params)
594 {
595 	struct ieee80211_frame *wh;
596 	int type;
597 
598 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
599 		return (EINVAL);
600 
601 	wh = mtod(m, struct ieee80211_frame *);
602 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
603 	    IEEE80211_FC0_VERSION_0)
604 		return (EINVAL);
605 
606 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
607 	if (type != IEEE80211_FC0_TYPE_DATA) {
608 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
609 		    IEEE80211_FC1_DIR_NODS)
610 			return (EINVAL);
611 
612 		if (type != IEEE80211_FC0_TYPE_MGT &&
613 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
614 			return (EINVAL);
615 
616 		/* XXX skip other field checks? */
617 	}
618 
619 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
620 	    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) {
621 		int subtype;
622 
623 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
624 
625 		/*
626 		 * See IEEE Std 802.11-2012,
627 		 * 8.2.4.1.9 'Protected Frame field'
628 		 */
629 		/* XXX no support for robust management frames yet. */
630 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
631 		    (type == IEEE80211_FC0_TYPE_MGT &&
632 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
633 			return (EINVAL);
634 
635 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
636 	}
637 
638 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
639 		return (EINVAL);
640 
641 	return (0);
642 }
643 
644 static int
645 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
646 {
647 	struct ieee80211com *ic = ni->ni_ic;
648 
649 	if (IEEE80211_IS_HT_RATE(rate)) {
650 		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
651 			return (EINVAL);
652 
653 		rate = IEEE80211_RV(rate);
654 		if (rate <= 31) {
655 			if (rate > ic->ic_txstream * 8 - 1)
656 				return (EINVAL);
657 
658 			return (0);
659 		}
660 
661 		if (rate == 32) {
662 			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
663 				return (EINVAL);
664 
665 			return (0);
666 		}
667 
668 		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
669 			return (EINVAL);
670 
671 		switch (ic->ic_txstream) {
672 		case 0:
673 		case 1:
674 			return (EINVAL);
675 		case 2:
676 			if (rate > 38)
677 				return (EINVAL);
678 
679 			return (0);
680 		case 3:
681 			if (rate > 52)
682 				return (EINVAL);
683 
684 			return (0);
685 		case 4:
686 		default:
687 			if (rate > 76)
688 				return (EINVAL);
689 
690 			return (0);
691 		}
692 	}
693 
694 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
695 		return (EINVAL);
696 
697 	return (0);
698 }
699 
700 static int
701 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
702     const struct ieee80211_bpf_params *params)
703 {
704 	int error;
705 
706 	if (!params)
707 		return (0);	/* nothing to do */
708 
709 	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
710 	if (params->ibp_rate0 != 0) {
711 		error = ieee80211_validate_rate(ni, params->ibp_rate0);
712 		if (error != 0)
713 			return (error);
714 	} else {
715 		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
716 		/* XXX __DECONST? */
717 		(void) m;
718 	}
719 
720 	if (params->ibp_rate1 != 0 &&
721 	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
722 		return (error);
723 
724 	if (params->ibp_rate2 != 0 &&
725 	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
726 		return (error);
727 
728 	if (params->ibp_rate3 != 0 &&
729 	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
730 		return (error);
731 
732 	return (0);
733 }
734 
735 /*
736  * 802.11 output routine. This is (currently) used only to
737  * connect bpf write calls to the 802.11 layer for injecting
738  * raw 802.11 frames.
739  */
740 int
741 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
742 	const struct sockaddr *dst, struct route *ro)
743 {
744 #define senderr(e) do { error = (e); goto bad;} while (0)
745 	const struct ieee80211_bpf_params *params = NULL;
746 	struct ieee80211_node *ni = NULL;
747 	struct ieee80211vap *vap;
748 	struct ieee80211_frame *wh;
749 	struct ieee80211com *ic = NULL;
750 	int error;
751 	int ret;
752 
753 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
754 		/*
755 		 * Short-circuit requests if the vap is marked OACTIVE
756 		 * as this can happen because a packet came down through
757 		 * ieee80211_start before the vap entered RUN state in
758 		 * which case it's ok to just drop the frame.  This
759 		 * should not be necessary but callers of if_output don't
760 		 * check OACTIVE.
761 		 */
762 		senderr(ENETDOWN);
763 	}
764 	vap = ifp->if_softc;
765 	ic = vap->iv_ic;
766 	/*
767 	 * Hand to the 802.3 code if not tagged as
768 	 * a raw 802.11 frame.
769 	 */
770 #ifdef __HAIKU__
771 	// FIXME why is this different on Haiku?
772 	if (!dst || dst->sa_family != AF_IEEE80211)
773 		return ieee80211_vap_xmitpkt(vap, m);
774 #else
775 	if (dst->sa_family != AF_IEEE80211)
776 		return vap->iv_output(ifp, m, dst, ro);
777 #endif
778 #ifdef MAC
779 	error = mac_ifnet_check_transmit(ifp, m);
780 	if (error)
781 		senderr(error);
782 #endif
783 	if (ifp->if_flags & IFF_MONITOR)
784 		senderr(ENETDOWN);
785 	if (!IFNET_IS_UP_RUNNING(ifp))
786 		senderr(ENETDOWN);
787 	if (vap->iv_state == IEEE80211_S_CAC) {
788 		IEEE80211_DPRINTF(vap,
789 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
790 		    "block %s frame in CAC state\n", "raw data");
791 		vap->iv_stats.is_tx_badstate++;
792 		senderr(EIO);		/* XXX */
793 	} else if (vap->iv_state == IEEE80211_S_SCAN)
794 		senderr(EIO);
795 	/* XXX bypass bridge, pfil, carp, etc. */
796 
797 	/*
798 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
799 	 * present by setting the sa_len field of the sockaddr (yes,
800 	 * this is a hack).
801 	 * NB: we assume sa_data is suitably aligned to cast.
802 	 */
803 	if (dst->sa_len != 0)
804 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
805 
806 	error = ieee80211_validate_frame(m, params);
807 	if (error != 0)
808 		senderr(error);
809 
810 	wh = mtod(m, struct ieee80211_frame *);
811 
812 	/* locate destination node */
813 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
814 	case IEEE80211_FC1_DIR_NODS:
815 	case IEEE80211_FC1_DIR_FROMDS:
816 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
817 		break;
818 	case IEEE80211_FC1_DIR_TODS:
819 	case IEEE80211_FC1_DIR_DSTODS:
820 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
821 		break;
822 	default:
823 		senderr(EDOOFUS);
824 	}
825 	if (ni == NULL) {
826 		/*
827 		 * Permit packets w/ bpf params through regardless
828 		 * (see below about sa_len).
829 		 */
830 		if (dst->sa_len == 0)
831 			senderr(EHOSTUNREACH);
832 		ni = ieee80211_ref_node(vap->iv_bss);
833 	}
834 
835 	/*
836 	 * Sanitize mbuf for net80211 flags leaked from above.
837 	 *
838 	 * NB: This must be done before ieee80211_classify as
839 	 *     it marks EAPOL in frames with M_EAPOL.
840 	 */
841 	m->m_flags &= ~M_80211_TX;
842 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
843 
844 	if (IEEE80211_IS_DATA(wh)) {
845 		/* calculate priority so drivers can find the tx queue */
846 		if (ieee80211_classify(ni, m))
847 			senderr(EIO);		/* XXX */
848 
849 		/* NB: ieee80211_encap does not include 802.11 header */
850 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
851 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
852 	} else
853 		M_WME_SETAC(m, WME_AC_BE);
854 
855 	error = ieee80211_sanitize_rates(ni, m, params);
856 	if (error != 0)
857 		senderr(error);
858 
859 	IEEE80211_NODE_STAT(ni, tx_data);
860 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
861 		IEEE80211_NODE_STAT(ni, tx_mcast);
862 		m->m_flags |= M_MCAST;
863 	} else
864 		IEEE80211_NODE_STAT(ni, tx_ucast);
865 
866 	IEEE80211_TX_LOCK(ic);
867 	ret = ieee80211_raw_output(vap, ni, m, params);
868 	IEEE80211_TX_UNLOCK(ic);
869 	return (ret);
870 bad:
871 	if (m != NULL)
872 		m_freem(m);
873 	if (ni != NULL)
874 		ieee80211_free_node(ni);
875 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
876 	return error;
877 #undef senderr
878 }
879 
880 /*
881  * Set the direction field and address fields of an outgoing
882  * frame.  Note this should be called early on in constructing
883  * a frame as it sets i_fc[1]; other bits can then be or'd in.
884  */
885 void
886 ieee80211_send_setup(
887 	struct ieee80211_node *ni,
888 	struct mbuf *m,
889 	int type, int tid,
890 	const uint8_t sa[IEEE80211_ADDR_LEN],
891 	const uint8_t da[IEEE80211_ADDR_LEN],
892 	const uint8_t bssid[IEEE80211_ADDR_LEN])
893 {
894 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
895 	struct ieee80211vap *vap = ni->ni_vap;
896 	struct ieee80211_tx_ampdu *tap;
897 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
898 	ieee80211_seq seqno;
899 
900 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
901 
902 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
903 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
904 		switch (vap->iv_opmode) {
905 		case IEEE80211_M_STA:
906 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
907 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
908 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
909 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
910 			break;
911 		case IEEE80211_M_IBSS:
912 		case IEEE80211_M_AHDEMO:
913 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
914 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
915 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
916 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
917 			break;
918 		case IEEE80211_M_HOSTAP:
919 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
920 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
921 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
922 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
923 			break;
924 		case IEEE80211_M_WDS:
925 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
926 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
927 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
928 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
929 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
930 			break;
931 		case IEEE80211_M_MBSS:
932 #ifdef IEEE80211_SUPPORT_MESH
933 			if (IEEE80211_IS_MULTICAST(da)) {
934 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
935 				/* XXX next hop */
936 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
937 				IEEE80211_ADDR_COPY(wh->i_addr2,
938 				    vap->iv_myaddr);
939 			} else {
940 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
941 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
942 				IEEE80211_ADDR_COPY(wh->i_addr2,
943 				    vap->iv_myaddr);
944 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
945 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
946 			}
947 #endif
948 			break;
949 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
950 			break;
951 		}
952 	} else {
953 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
954 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
955 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
956 #ifdef IEEE80211_SUPPORT_MESH
957 		if (vap->iv_opmode == IEEE80211_M_MBSS)
958 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
959 		else
960 #endif
961 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
962 	}
963 	*(uint16_t *)&wh->i_dur[0] = 0;
964 
965 	/*
966 	 * XXX TODO: this is what the TX lock is for.
967 	 * Here we're incrementing sequence numbers, and they
968 	 * need to be in lock-step with what the driver is doing
969 	 * both in TX ordering and crypto encap (IV increment.)
970 	 *
971 	 * If the driver does seqno itself, then we can skip
972 	 * assigning sequence numbers here, and we can avoid
973 	 * requiring the TX lock.
974 	 */
975 	tap = &ni->ni_tx_ampdu[tid];
976 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
977 		m->m_flags |= M_AMPDU_MPDU;
978 
979 		/* NB: zero out i_seq field (for s/w encryption etc) */
980 		*(uint16_t *)&wh->i_seq[0] = 0;
981 	} else {
982 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
983 				      type & IEEE80211_FC0_SUBTYPE_MASK))
984 			/*
985 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
986 			 * come out of a different seqno space.
987 			 */
988 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
989 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
990 			} else {
991 				seqno = ni->ni_txseqs[tid]++;
992 			}
993 		else
994 			seqno = 0;
995 
996 		*(uint16_t *)&wh->i_seq[0] =
997 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
998 		M_SEQNO_SET(m, seqno);
999 	}
1000 
1001 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1002 		m->m_flags |= M_MCAST;
1003 #undef WH4
1004 }
1005 
1006 /*
1007  * Send a management frame to the specified node.  The node pointer
1008  * must have a reference as the pointer will be passed to the driver
1009  * and potentially held for a long time.  If the frame is successfully
1010  * dispatched to the driver, then it is responsible for freeing the
1011  * reference (and potentially free'ing up any associated storage);
1012  * otherwise deal with reclaiming any reference (on error).
1013  */
1014 int
1015 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
1016 	struct ieee80211_bpf_params *params)
1017 {
1018 	struct ieee80211vap *vap = ni->ni_vap;
1019 	struct ieee80211com *ic = ni->ni_ic;
1020 	struct ieee80211_frame *wh;
1021 	int ret;
1022 
1023 	KASSERT(ni != NULL, ("null node"));
1024 
1025 	if (vap->iv_state == IEEE80211_S_CAC) {
1026 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1027 		    ni, "block %s frame in CAC state",
1028 			ieee80211_mgt_subtype_name(type));
1029 		vap->iv_stats.is_tx_badstate++;
1030 		ieee80211_free_node(ni);
1031 		m_freem(m);
1032 		return EIO;		/* XXX */
1033 	}
1034 
1035 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
1036 	if (m == NULL) {
1037 		ieee80211_free_node(ni);
1038 		return ENOMEM;
1039 	}
1040 
1041 	IEEE80211_TX_LOCK(ic);
1042 
1043 	wh = mtod(m, struct ieee80211_frame *);
1044 	ieee80211_send_setup(ni, m,
1045 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1046 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1047 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1048 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1049 		    "encrypting frame (%s)", __func__);
1050 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1051 	}
1052 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1053 
1054 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1055 	M_WME_SETAC(m, params->ibp_pri);
1056 
1057 #ifdef IEEE80211_DEBUG
1058 	/* avoid printing too many frames */
1059 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1060 	    ieee80211_msg_dumppkts(vap)) {
1061 		printf("[%s] send %s on channel %u\n",
1062 		    ether_sprintf(wh->i_addr1),
1063 		    ieee80211_mgt_subtype_name(type),
1064 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
1065 	}
1066 #endif
1067 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1068 
1069 	ret = ieee80211_raw_output(vap, ni, m, params);
1070 	IEEE80211_TX_UNLOCK(ic);
1071 	return (ret);
1072 }
1073 
1074 static void
1075 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1076     int status)
1077 {
1078 	struct ieee80211vap *vap = ni->ni_vap;
1079 
1080 	wakeup(vap);
1081 }
1082 
1083 /*
1084  * Send a null data frame to the specified node.  If the station
1085  * is setup for QoS then a QoS Null Data frame is constructed.
1086  * If this is a WDS station then a 4-address frame is constructed.
1087  *
1088  * NB: the caller is assumed to have setup a node reference
1089  *     for use; this is necessary to deal with a race condition
1090  *     when probing for inactive stations.  Like ieee80211_mgmt_output
1091  *     we must cleanup any node reference on error;  however we
1092  *     can safely just unref it as we know it will never be the
1093  *     last reference to the node.
1094  */
1095 int
1096 ieee80211_send_nulldata(struct ieee80211_node *ni)
1097 {
1098 	struct ieee80211vap *vap = ni->ni_vap;
1099 	struct ieee80211com *ic = ni->ni_ic;
1100 	struct mbuf *m;
1101 	struct ieee80211_frame *wh;
1102 	int hdrlen;
1103 	uint8_t *frm;
1104 	int ret;
1105 
1106 	if (vap->iv_state == IEEE80211_S_CAC) {
1107 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1108 		    ni, "block %s frame in CAC state", "null data");
1109 		ieee80211_unref_node(&ni);
1110 		vap->iv_stats.is_tx_badstate++;
1111 		return EIO;		/* XXX */
1112 	}
1113 
1114 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1115 		hdrlen = sizeof(struct ieee80211_qosframe);
1116 	else
1117 		hdrlen = sizeof(struct ieee80211_frame);
1118 	/* NB: only WDS vap's get 4-address frames */
1119 	if (vap->iv_opmode == IEEE80211_M_WDS)
1120 		hdrlen += IEEE80211_ADDR_LEN;
1121 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1122 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1123 
1124 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1125 	if (m == NULL) {
1126 		/* XXX debug msg */
1127 		ieee80211_unref_node(&ni);
1128 		vap->iv_stats.is_tx_nobuf++;
1129 		return ENOMEM;
1130 	}
1131 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1132 	    ("leading space %zd", M_LEADINGSPACE(m)));
1133 	M_PREPEND(m, hdrlen, M_NOWAIT);
1134 	if (m == NULL) {
1135 		/* NB: cannot happen */
1136 		ieee80211_free_node(ni);
1137 		return ENOMEM;
1138 	}
1139 
1140 	IEEE80211_TX_LOCK(ic);
1141 
1142 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1143 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1144 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1145 		uint8_t *qos;
1146 
1147 		ieee80211_send_setup(ni, m,
1148 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1149 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1150 
1151 		if (vap->iv_opmode == IEEE80211_M_WDS)
1152 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1153 		else
1154 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1155 		qos[0] = tid & IEEE80211_QOS_TID;
1156 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1157 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1158 		qos[1] = 0;
1159 	} else {
1160 		ieee80211_send_setup(ni, m,
1161 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1162 		    IEEE80211_NONQOS_TID,
1163 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1164 	}
1165 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1166 		/* NB: power management bit is never sent by an AP */
1167 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1168 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1169 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1170 	}
1171 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1172 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1173 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1174 		    NULL);
1175 	}
1176 	m->m_len = m->m_pkthdr.len = hdrlen;
1177 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1178 
1179 	M_WME_SETAC(m, WME_AC_BE);
1180 
1181 	IEEE80211_NODE_STAT(ni, tx_data);
1182 
1183 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1184 	    "send %snull data frame on channel %u, pwr mgt %s",
1185 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1186 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1187 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1188 
1189 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1190 	IEEE80211_TX_UNLOCK(ic);
1191 	return (ret);
1192 }
1193 
1194 /*
1195  * Assign priority to a frame based on any vlan tag assigned
1196  * to the station and/or any Diffserv setting in an IP header.
1197  * Finally, if an ACM policy is setup (in station mode) it's
1198  * applied.
1199  */
1200 int
1201 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1202 {
1203 	const struct ether_header *eh = NULL;
1204 	uint16_t ether_type;
1205 	int v_wme_ac, d_wme_ac, ac;
1206 
1207 	if (__predict_false(m->m_flags & M_ENCAP)) {
1208 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1209 		struct llc *llc;
1210 		int hdrlen, subtype;
1211 
1212 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1213 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1214 			ac = WME_AC_BE;
1215 			goto done;
1216 		}
1217 
1218 		hdrlen = ieee80211_hdrsize(wh);
1219 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1220 			return 1;
1221 
1222 		llc = (struct llc *)mtodo(m, hdrlen);
1223 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1224 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1225 		    llc->llc_control != LLC_UI ||
1226 		    llc->llc_snap.org_code[0] != 0 ||
1227 		    llc->llc_snap.org_code[1] != 0 ||
1228 		    llc->llc_snap.org_code[2] != 0)
1229 			return 1;
1230 
1231 		ether_type = llc->llc_snap.ether_type;
1232 	} else {
1233 		eh = mtod(m, struct ether_header *);
1234 		ether_type = eh->ether_type;
1235 	}
1236 
1237 	/*
1238 	 * Always promote PAE/EAPOL frames to high priority.
1239 	 */
1240 	if (ether_type == htons(ETHERTYPE_PAE)) {
1241 		/* NB: mark so others don't need to check header */
1242 		m->m_flags |= M_EAPOL;
1243 		ac = WME_AC_VO;
1244 		goto done;
1245 	}
1246 	/*
1247 	 * Non-qos traffic goes to BE.
1248 	 */
1249 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1250 		ac = WME_AC_BE;
1251 		goto done;
1252 	}
1253 
1254 	/*
1255 	 * If node has a vlan tag then all traffic
1256 	 * to it must have a matching tag.
1257 	 */
1258 	v_wme_ac = 0;
1259 	if (ni->ni_vlan != 0) {
1260 		 if ((m->m_flags & M_VLANTAG) == 0) {
1261 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1262 			return 1;
1263 		}
1264 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1265 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1266 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1267 			return 1;
1268 		}
1269 		/* map vlan priority to AC */
1270 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1271 	}
1272 
1273 	/* XXX m_copydata may be too slow for fast path */
1274 #ifdef INET
1275 	if (eh && eh->ether_type == htons(ETHERTYPE_IP)) {
1276 		uint8_t tos;
1277 		/*
1278 		 * IP frame, map the DSCP bits from the TOS field.
1279 		 */
1280 		/* NB: ip header may not be in first mbuf */
1281 		m_copydata(m, sizeof(struct ether_header) +
1282 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1283 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1284 		d_wme_ac = TID_TO_WME_AC(tos);
1285 	} else {
1286 #endif /* INET */
1287 #ifdef INET6
1288 	if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) {
1289 		uint32_t flow;
1290 		uint8_t tos;
1291 		/*
1292 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1293 		 */
1294 		m_copydata(m, sizeof(struct ether_header) +
1295 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1296 		    (caddr_t) &flow);
1297 		tos = (uint8_t)(ntohl(flow) >> 20);
1298 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1299 		d_wme_ac = TID_TO_WME_AC(tos);
1300 	} else {
1301 #endif /* INET6 */
1302 		d_wme_ac = WME_AC_BE;
1303 #ifdef INET6
1304 	}
1305 #endif
1306 #ifdef INET
1307 	}
1308 #endif
1309 	/*
1310 	 * Use highest priority AC.
1311 	 */
1312 	if (v_wme_ac > d_wme_ac)
1313 		ac = v_wme_ac;
1314 	else
1315 		ac = d_wme_ac;
1316 
1317 	/*
1318 	 * Apply ACM policy.
1319 	 */
1320 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1321 		static const int acmap[4] = {
1322 			WME_AC_BK,	/* WME_AC_BE */
1323 			WME_AC_BK,	/* WME_AC_BK */
1324 			WME_AC_BE,	/* WME_AC_VI */
1325 			WME_AC_VI,	/* WME_AC_VO */
1326 		};
1327 		struct ieee80211com *ic = ni->ni_ic;
1328 
1329 		while (ac != WME_AC_BK &&
1330 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1331 			ac = acmap[ac];
1332 	}
1333 done:
1334 	M_WME_SETAC(m, ac);
1335 	return 0;
1336 }
1337 
1338 /*
1339  * Insure there is sufficient contiguous space to encapsulate the
1340  * 802.11 data frame.  If room isn't already there, arrange for it.
1341  * Drivers and cipher modules assume we have done the necessary work
1342  * and fail rudely if they don't find the space they need.
1343  */
1344 struct mbuf *
1345 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1346 	struct ieee80211_key *key, struct mbuf *m)
1347 {
1348 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1349 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1350 
1351 	if (key != NULL) {
1352 		/* XXX belongs in crypto code? */
1353 		needed_space += key->wk_cipher->ic_header;
1354 		/* XXX frags */
1355 		/*
1356 		 * When crypto is being done in the host we must insure
1357 		 * the data are writable for the cipher routines; clone
1358 		 * a writable mbuf chain.
1359 		 * XXX handle SWMIC specially
1360 		 */
1361 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1362 			m = m_unshare(m, M_NOWAIT);
1363 			if (m == NULL) {
1364 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1365 				    "%s: cannot get writable mbuf\n", __func__);
1366 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1367 				return NULL;
1368 			}
1369 		}
1370 	}
1371 	/*
1372 	 * We know we are called just before stripping an Ethernet
1373 	 * header and prepending an LLC header.  This means we know
1374 	 * there will be
1375 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1376 	 * bytes recovered to which we need additional space for the
1377 	 * 802.11 header and any crypto header.
1378 	 */
1379 	/* XXX check trailing space and copy instead? */
1380 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1381 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1382 		if (n == NULL) {
1383 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1384 			    "%s: cannot expand storage\n", __func__);
1385 			vap->iv_stats.is_tx_nobuf++;
1386 			m_freem(m);
1387 			return NULL;
1388 		}
1389 		KASSERT(needed_space <= MHLEN,
1390 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1391 		/*
1392 		 * Setup new mbuf to have leading space to prepend the
1393 		 * 802.11 header and any crypto header bits that are
1394 		 * required (the latter are added when the driver calls
1395 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1396 		 */
1397 		/* NB: must be first 'cuz it clobbers m_data */
1398 		m_move_pkthdr(n, m);
1399 		n->m_len = 0;			/* NB: m_gethdr does not set */
1400 		n->m_data += needed_space;
1401 		/*
1402 		 * Pull up Ethernet header to create the expected layout.
1403 		 * We could use m_pullup but that's overkill (i.e. we don't
1404 		 * need the actual data) and it cannot fail so do it inline
1405 		 * for speed.
1406 		 */
1407 		/* NB: struct ether_header is known to be contiguous */
1408 		n->m_len += sizeof(struct ether_header);
1409 		m->m_len -= sizeof(struct ether_header);
1410 		m->m_data += sizeof(struct ether_header);
1411 		/*
1412 		 * Replace the head of the chain.
1413 		 */
1414 		n->m_next = m;
1415 		m = n;
1416 	}
1417 	return m;
1418 #undef TO_BE_RECLAIMED
1419 }
1420 
1421 /*
1422  * Return the transmit key to use in sending a unicast frame.
1423  * If a unicast key is set we use that.  When no unicast key is set
1424  * we fall back to the default transmit key.
1425  */
1426 static __inline struct ieee80211_key *
1427 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1428 	struct ieee80211_node *ni)
1429 {
1430 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1431 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1432 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1433 			return NULL;
1434 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1435 	} else {
1436 		return &ni->ni_ucastkey;
1437 	}
1438 }
1439 
1440 /*
1441  * Return the transmit key to use in sending a multicast frame.
1442  * Multicast traffic always uses the group key which is installed as
1443  * the default tx key.
1444  */
1445 static __inline struct ieee80211_key *
1446 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1447 	struct ieee80211_node *ni)
1448 {
1449 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1450 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1451 		return NULL;
1452 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1453 }
1454 
1455 /*
1456  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1457  * If an error is encountered NULL is returned.  The caller is required
1458  * to provide a node reference and pullup the ethernet header in the
1459  * first mbuf.
1460  *
1461  * NB: Packet is assumed to be processed by ieee80211_classify which
1462  *     marked EAPOL frames w/ M_EAPOL.
1463  */
1464 struct mbuf *
1465 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1466     struct mbuf *m)
1467 {
1468 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1469 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1470 	struct ieee80211com *ic = ni->ni_ic;
1471 #ifdef IEEE80211_SUPPORT_MESH
1472 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1473 	struct ieee80211_meshcntl_ae10 *mc;
1474 	struct ieee80211_mesh_route *rt = NULL;
1475 	int dir = -1;
1476 #endif
1477 	struct ether_header eh;
1478 	struct ieee80211_frame *wh;
1479 	struct ieee80211_key *key;
1480 	struct llc *llc;
1481 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1482 	ieee80211_seq seqno;
1483 	int meshhdrsize, meshae;
1484 	uint8_t *qos;
1485 	int is_amsdu = 0;
1486 
1487 	IEEE80211_TX_LOCK_ASSERT(ic);
1488 
1489 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1490 
1491 	/*
1492 	 * Copy existing Ethernet header to a safe place.  The
1493 	 * rest of the code assumes it's ok to strip it when
1494 	 * reorganizing state for the final encapsulation.
1495 	 */
1496 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1497 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1498 
1499 	/*
1500 	 * Insure space for additional headers.  First identify
1501 	 * transmit key to use in calculating any buffer adjustments
1502 	 * required.  This is also used below to do privacy
1503 	 * encapsulation work.  Then calculate the 802.11 header
1504 	 * size and any padding required by the driver.
1505 	 *
1506 	 * Note key may be NULL if we fall back to the default
1507 	 * transmit key and that is not set.  In that case the
1508 	 * buffer may not be expanded as needed by the cipher
1509 	 * routines, but they will/should discard it.
1510 	 */
1511 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1512 		if (vap->iv_opmode == IEEE80211_M_STA ||
1513 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1514 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1515 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1516 			key = ieee80211_crypto_getucastkey(vap, ni);
1517 		} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1518 		    (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1519 			/*
1520 			 * Use ucastkey for DWDS transmit nodes, multicast
1521 			 * or otherwise.
1522 			 *
1523 			 * This is required to ensure that multicast frames
1524 			 * from a DWDS AP to a DWDS STA is encrypted with
1525 			 * a key that can actually work.
1526 			 *
1527 			 * There's no default key for multicast traffic
1528 			 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1529 			 * AP VAP, the dynamically created per-STA WDS node)
1530 			 * so encap fails and transmit fails.
1531 			 */
1532 			key = ieee80211_crypto_getucastkey(vap, ni);
1533 		} else {
1534 			key = ieee80211_crypto_getmcastkey(vap, ni);
1535 		}
1536 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1537 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1538 			    eh.ether_dhost,
1539 			    "no default transmit key (%s) deftxkey %u",
1540 			    __func__, vap->iv_def_txkey);
1541 			vap->iv_stats.is_tx_nodefkey++;
1542 			goto bad;
1543 		}
1544 	} else
1545 		key = NULL;
1546 	/*
1547 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1548 	 * frames so suppress use.  This may be an issue if other
1549 	 * ap's require all data frames to be QoS-encapsulated
1550 	 * once negotiated in which case we'll need to make this
1551 	 * configurable.
1552 	 *
1553 	 * Don't send multicast QoS frames.
1554 	 * Technically multicast frames can be QoS if all stations in the
1555 	 * BSS are also QoS.
1556 	 *
1557 	 * NB: mesh data frames are QoS, including multicast frames.
1558 	 */
1559 	addqos =
1560 	    (((is_mcast == 0) && (ni->ni_flags &
1561 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1562 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1563 	    (m->m_flags & M_EAPOL) == 0;
1564 
1565 	if (addqos)
1566 		hdrsize = sizeof(struct ieee80211_qosframe);
1567 	else
1568 		hdrsize = sizeof(struct ieee80211_frame);
1569 #ifdef IEEE80211_SUPPORT_MESH
1570 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1571 		/*
1572 		 * Mesh data frames are encapsulated according to the
1573 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1574 		 * o Group Addressed data (aka multicast) originating
1575 		 *   at the local sta are sent w/ 3-address format and
1576 		 *   address extension mode 00
1577 		 * o Individually Addressed data (aka unicast) originating
1578 		 *   at the local sta are sent w/ 4-address format and
1579 		 *   address extension mode 00
1580 		 * o Group Addressed data forwarded from a non-mesh sta are
1581 		 *   sent w/ 3-address format and address extension mode 01
1582 		 * o Individually Address data from another sta are sent
1583 		 *   w/ 4-address format and address extension mode 10
1584 		 */
1585 		is4addr = 0;		/* NB: don't use, disable */
1586 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1587 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1588 			KASSERT(rt != NULL, ("route is NULL"));
1589 			dir = IEEE80211_FC1_DIR_DSTODS;
1590 			hdrsize += IEEE80211_ADDR_LEN;
1591 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1592 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1593 				    vap->iv_myaddr)) {
1594 					IEEE80211_NOTE_MAC(vap,
1595 					    IEEE80211_MSG_MESH,
1596 					    eh.ether_dhost,
1597 					    "%s", "trying to send to ourself");
1598 					goto bad;
1599 				}
1600 				meshae = IEEE80211_MESH_AE_10;
1601 				meshhdrsize =
1602 				    sizeof(struct ieee80211_meshcntl_ae10);
1603 			} else {
1604 				meshae = IEEE80211_MESH_AE_00;
1605 				meshhdrsize =
1606 				    sizeof(struct ieee80211_meshcntl);
1607 			}
1608 		} else {
1609 			dir = IEEE80211_FC1_DIR_FROMDS;
1610 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1611 				/* proxy group */
1612 				meshae = IEEE80211_MESH_AE_01;
1613 				meshhdrsize =
1614 				    sizeof(struct ieee80211_meshcntl_ae01);
1615 			} else {
1616 				/* group */
1617 				meshae = IEEE80211_MESH_AE_00;
1618 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1619 			}
1620 		}
1621 	} else {
1622 #endif
1623 		/*
1624 		 * 4-address frames need to be generated for:
1625 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1626 		 * o packets sent through a vap marked for relaying
1627 		 *   (e.g. a station operating with dynamic WDS)
1628 		 */
1629 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1630 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1631 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1632 		if (is4addr)
1633 			hdrsize += IEEE80211_ADDR_LEN;
1634 		meshhdrsize = meshae = 0;
1635 #ifdef IEEE80211_SUPPORT_MESH
1636 	}
1637 #endif
1638 	/*
1639 	 * Honor driver DATAPAD requirement.
1640 	 */
1641 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1642 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1643 	else
1644 		hdrspace = hdrsize;
1645 
1646 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1647 		/*
1648 		 * Normal frame.
1649 		 */
1650 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1651 		if (m == NULL) {
1652 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1653 			goto bad;
1654 		}
1655 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1656 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1657 		llc = mtod(m, struct llc *);
1658 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1659 		llc->llc_control = LLC_UI;
1660 		llc->llc_snap.org_code[0] = 0;
1661 		llc->llc_snap.org_code[1] = 0;
1662 		llc->llc_snap.org_code[2] = 0;
1663 		llc->llc_snap.ether_type = eh.ether_type;
1664 	} else {
1665 #ifdef IEEE80211_SUPPORT_SUPERG
1666 		/*
1667 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1668 		 *
1669 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1670 		 * anywhere for some reason.  But, since 11n requires
1671 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1672 		 */
1673 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1674 		if (ieee80211_amsdu_tx_ok(ni)) {
1675 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1676 			is_amsdu = 1;
1677 		} else {
1678 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1679 		}
1680 		if (m == NULL)
1681 #endif
1682 			goto bad;
1683 	}
1684 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1685 
1686 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1687 	if (m == NULL) {
1688 		vap->iv_stats.is_tx_nobuf++;
1689 		goto bad;
1690 	}
1691 	wh = mtod(m, struct ieee80211_frame *);
1692 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1693 	*(uint16_t *)wh->i_dur = 0;
1694 	qos = NULL;	/* NB: quiet compiler */
1695 	if (is4addr) {
1696 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1697 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1698 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1699 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1700 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1701 	} else switch (vap->iv_opmode) {
1702 	case IEEE80211_M_STA:
1703 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1704 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1705 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1706 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1707 		break;
1708 	case IEEE80211_M_IBSS:
1709 	case IEEE80211_M_AHDEMO:
1710 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1711 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1712 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1713 		/*
1714 		 * NB: always use the bssid from iv_bss as the
1715 		 *     neighbor's may be stale after an ibss merge
1716 		 */
1717 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1718 		break;
1719 	case IEEE80211_M_HOSTAP:
1720 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1721 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1722 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1723 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1724 		break;
1725 #ifdef IEEE80211_SUPPORT_MESH
1726 	case IEEE80211_M_MBSS:
1727 		/* NB: offset by hdrspace to deal with DATAPAD */
1728 		mc = (struct ieee80211_meshcntl_ae10 *)
1729 		     (mtod(m, uint8_t *) + hdrspace);
1730 		wh->i_fc[1] = dir;
1731 		switch (meshae) {
1732 		case IEEE80211_MESH_AE_00:	/* no proxy */
1733 			mc->mc_flags = 0;
1734 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1735 				IEEE80211_ADDR_COPY(wh->i_addr1,
1736 				    ni->ni_macaddr);
1737 				IEEE80211_ADDR_COPY(wh->i_addr2,
1738 				    vap->iv_myaddr);
1739 				IEEE80211_ADDR_COPY(wh->i_addr3,
1740 				    eh.ether_dhost);
1741 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1742 				    eh.ether_shost);
1743 				qos =((struct ieee80211_qosframe_addr4 *)
1744 				    wh)->i_qos;
1745 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1746 				 /* mcast */
1747 				IEEE80211_ADDR_COPY(wh->i_addr1,
1748 				    eh.ether_dhost);
1749 				IEEE80211_ADDR_COPY(wh->i_addr2,
1750 				    vap->iv_myaddr);
1751 				IEEE80211_ADDR_COPY(wh->i_addr3,
1752 				    eh.ether_shost);
1753 				qos = ((struct ieee80211_qosframe *)
1754 				    wh)->i_qos;
1755 			}
1756 			break;
1757 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1758 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1759 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1760 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1761 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1762 			mc->mc_flags = 1;
1763 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1764 			    eh.ether_shost);
1765 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1766 			break;
1767 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1768 			KASSERT(rt != NULL, ("route is NULL"));
1769 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1770 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1771 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1772 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1773 			mc->mc_flags = IEEE80211_MESH_AE_10;
1774 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1775 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1776 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1777 			break;
1778 		default:
1779 			KASSERT(0, ("meshae %d", meshae));
1780 			break;
1781 		}
1782 		mc->mc_ttl = ms->ms_ttl;
1783 		ms->ms_seq++;
1784 		le32enc(mc->mc_seq, ms->ms_seq);
1785 		break;
1786 #endif
1787 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1788 	default:
1789 		goto bad;
1790 	}
1791 	if (m->m_flags & M_MORE_DATA)
1792 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1793 	if (addqos) {
1794 		int ac, tid;
1795 
1796 		if (is4addr) {
1797 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1798 		/* NB: mesh case handled earlier */
1799 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1800 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1801 		ac = M_WME_GETAC(m);
1802 		/* map from access class/queue to 11e header priorty value */
1803 		tid = WME_AC_TO_TID(ac);
1804 		qos[0] = tid & IEEE80211_QOS_TID;
1805 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1806 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1807 #ifdef IEEE80211_SUPPORT_MESH
1808 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1809 			qos[1] = IEEE80211_QOS_MC;
1810 		else
1811 #endif
1812 			qos[1] = 0;
1813 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1814 
1815 		/*
1816 		 * If this is an A-MSDU then ensure we set the
1817 		 * relevant field.
1818 		 */
1819 		if (is_amsdu)
1820 			qos[0] |= IEEE80211_QOS_AMSDU;
1821 
1822 		/*
1823 		 * XXX TODO TX lock is needed for atomic updates of sequence
1824 		 * numbers.  If the driver does it, then don't do it here;
1825 		 * and we don't need the TX lock held.
1826 		 */
1827 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1828 			/*
1829 			 * 802.11-2012 9.3.2.10 -
1830 			 *
1831 			 * If this is a multicast frame then we need
1832 			 * to ensure that the sequence number comes from
1833 			 * a separate seqno space and not the TID space.
1834 			 *
1835 			 * Otherwise multicast frames may actually cause
1836 			 * holes in the TX blockack window space and
1837 			 * upset various things.
1838 			 */
1839 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1840 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1841 			else
1842 				seqno = ni->ni_txseqs[tid]++;
1843 
1844 			/*
1845 			 * NB: don't assign a sequence # to potential
1846 			 * aggregates; we expect this happens at the
1847 			 * point the frame comes off any aggregation q
1848 			 * as otherwise we may introduce holes in the
1849 			 * BA sequence space and/or make window accouting
1850 			 * more difficult.
1851 			 *
1852 			 * XXX may want to control this with a driver
1853 			 * capability; this may also change when we pull
1854 			 * aggregation up into net80211
1855 			 */
1856 			*(uint16_t *)wh->i_seq =
1857 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1858 			M_SEQNO_SET(m, seqno);
1859 		} else {
1860 			/* NB: zero out i_seq field (for s/w encryption etc) */
1861 			*(uint16_t *)wh->i_seq = 0;
1862 		}
1863 	} else {
1864 		/*
1865 		 * XXX TODO TX lock is needed for atomic updates of sequence
1866 		 * numbers.  If the driver does it, then don't do it here;
1867 		 * and we don't need the TX lock held.
1868 		 */
1869 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1870 		*(uint16_t *)wh->i_seq =
1871 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1872 		M_SEQNO_SET(m, seqno);
1873 
1874 		/*
1875 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1876 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1877 		 */
1878 		if (is_amsdu)
1879 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1880 			    __func__);
1881 	}
1882 
1883 	/*
1884 	 * Check if xmit fragmentation is required.
1885 	 *
1886 	 * If the hardware does fragmentation offload, then don't bother
1887 	 * doing it here.
1888 	 */
1889 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1890 		txfrag = 0;
1891 	else
1892 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1893 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1894 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1895 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1896 
1897 	if (key != NULL) {
1898 		/*
1899 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1900 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1901 		 */
1902 		if ((m->m_flags & M_EAPOL) == 0 ||
1903 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1904 		     (vap->iv_opmode == IEEE80211_M_STA ?
1905 		      !IEEE80211_KEY_UNDEFINED(key) :
1906 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1907 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1908 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1909 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1910 				    eh.ether_dhost,
1911 				    "%s", "enmic failed, discard frame");
1912 				vap->iv_stats.is_crypto_enmicfail++;
1913 				goto bad;
1914 			}
1915 		}
1916 	}
1917 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1918 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1919 		goto bad;
1920 
1921 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1922 
1923 	IEEE80211_NODE_STAT(ni, tx_data);
1924 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1925 		IEEE80211_NODE_STAT(ni, tx_mcast);
1926 		m->m_flags |= M_MCAST;
1927 	} else
1928 		IEEE80211_NODE_STAT(ni, tx_ucast);
1929 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1930 
1931 	return m;
1932 bad:
1933 	if (m != NULL)
1934 		m_freem(m);
1935 	return NULL;
1936 #undef WH4
1937 #undef MC01
1938 }
1939 
1940 void
1941 ieee80211_free_mbuf(struct mbuf *m)
1942 {
1943 	struct mbuf *next;
1944 
1945 	if (m == NULL)
1946 		return;
1947 
1948 	do {
1949 		next = m->m_nextpkt;
1950 		m->m_nextpkt = NULL;
1951 		m_freem(m);
1952 	} while ((m = next) != NULL);
1953 }
1954 
1955 /*
1956  * Fragment the frame according to the specified mtu.
1957  * The size of the 802.11 header (w/o padding) is provided
1958  * so we don't need to recalculate it.  We create a new
1959  * mbuf for each fragment and chain it through m_nextpkt;
1960  * we might be able to optimize this by reusing the original
1961  * packet's mbufs but that is significantly more complicated.
1962  */
1963 static int
1964 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1965 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1966 {
1967 	struct ieee80211com *ic = vap->iv_ic;
1968 	struct ieee80211_frame *wh, *whf;
1969 	struct mbuf *m, *prev;
1970 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1971 	u_int hdrspace;
1972 
1973 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1974 	KASSERT(m0->m_pkthdr.len > mtu,
1975 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1976 
1977 	/*
1978 	 * Honor driver DATAPAD requirement.
1979 	 */
1980 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1981 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1982 	else
1983 		hdrspace = hdrsize;
1984 
1985 	wh = mtod(m0, struct ieee80211_frame *);
1986 	/* NB: mark the first frag; it will be propagated below */
1987 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1988 	totalhdrsize = hdrspace + ciphdrsize;
1989 	fragno = 1;
1990 	off = mtu - ciphdrsize;
1991 	remainder = m0->m_pkthdr.len - off;
1992 	prev = m0;
1993 	do {
1994 		fragsize = MIN(totalhdrsize + remainder, mtu);
1995 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1996 		if (m == NULL)
1997 			goto bad;
1998 		/* leave room to prepend any cipher header */
1999 		m_align(m, fragsize - ciphdrsize);
2000 
2001 		/*
2002 		 * Form the header in the fragment.  Note that since
2003 		 * we mark the first fragment with the MORE_FRAG bit
2004 		 * it automatically is propagated to each fragment; we
2005 		 * need only clear it on the last fragment (done below).
2006 		 * NB: frag 1+ dont have Mesh Control field present.
2007 		 */
2008 		whf = mtod(m, struct ieee80211_frame *);
2009 		memcpy(whf, wh, hdrsize);
2010 #ifdef IEEE80211_SUPPORT_MESH
2011 		if (vap->iv_opmode == IEEE80211_M_MBSS)
2012 			ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2013 #endif
2014 		*(uint16_t *)&whf->i_seq[0] |= htole16(
2015 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
2016 				IEEE80211_SEQ_FRAG_SHIFT);
2017 		fragno++;
2018 
2019 		payload = fragsize - totalhdrsize;
2020 		/* NB: destination is known to be contiguous */
2021 
2022 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2023 		m->m_len = hdrspace + payload;
2024 		m->m_pkthdr.len = hdrspace + payload;
2025 		m->m_flags |= M_FRAG;
2026 
2027 		/* chain up the fragment */
2028 		prev->m_nextpkt = m;
2029 		prev = m;
2030 
2031 		/* deduct fragment just formed */
2032 		remainder -= payload;
2033 		off += payload;
2034 	} while (remainder != 0);
2035 
2036 	/* set the last fragment */
2037 	m->m_flags |= M_LASTFRAG;
2038 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2039 
2040 	/* strip first mbuf now that everything has been copied */
2041 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2042 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2043 
2044 	vap->iv_stats.is_tx_fragframes++;
2045 	vap->iv_stats.is_tx_frags += fragno-1;
2046 
2047 	return 1;
2048 bad:
2049 	/* reclaim fragments but leave original frame for caller to free */
2050 	ieee80211_free_mbuf(m0->m_nextpkt);
2051 	m0->m_nextpkt = NULL;
2052 	return 0;
2053 }
2054 
2055 /*
2056  * Add a supported rates element id to a frame.
2057  */
2058 uint8_t *
2059 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2060 {
2061 	int nrates;
2062 
2063 	*frm++ = IEEE80211_ELEMID_RATES;
2064 	nrates = rs->rs_nrates;
2065 	if (nrates > IEEE80211_RATE_SIZE)
2066 		nrates = IEEE80211_RATE_SIZE;
2067 	*frm++ = nrates;
2068 	memcpy(frm, rs->rs_rates, nrates);
2069 	return frm + nrates;
2070 }
2071 
2072 /*
2073  * Add an extended supported rates element id to a frame.
2074  */
2075 uint8_t *
2076 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2077 {
2078 	/*
2079 	 * Add an extended supported rates element if operating in 11g mode.
2080 	 */
2081 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2082 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2083 		*frm++ = IEEE80211_ELEMID_XRATES;
2084 		*frm++ = nrates;
2085 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2086 		frm += nrates;
2087 	}
2088 	return frm;
2089 }
2090 
2091 /*
2092  * Add an ssid element to a frame.
2093  */
2094 uint8_t *
2095 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2096 {
2097 	*frm++ = IEEE80211_ELEMID_SSID;
2098 	*frm++ = len;
2099 	memcpy(frm, ssid, len);
2100 	return frm + len;
2101 }
2102 
2103 /*
2104  * Add an erp element to a frame.
2105  */
2106 static uint8_t *
2107 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2108 {
2109 	struct ieee80211com *ic = vap->iv_ic;
2110 	uint8_t erp;
2111 
2112 	*frm++ = IEEE80211_ELEMID_ERP;
2113 	*frm++ = 1;
2114 	erp = 0;
2115 
2116 	/*
2117 	 * TODO:  This uses the global flags for now because
2118 	 * the per-VAP flags are fine for per-VAP, but don't
2119 	 * take into account which VAPs share the same channel
2120 	 * and which are on different channels.
2121 	 *
2122 	 * ERP and HT/VHT protection mode is a function of
2123 	 * how many stations are on a channel, not specifically
2124 	 * the VAP or global.  But, until we grow that status,
2125 	 * the global flag will have to do.
2126 	 */
2127 	if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2128 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2129 
2130 	/*
2131 	 * TODO: same as above; these should be based not
2132 	 * on the vap or ic flags, but instead on a combination
2133 	 * of per-VAP and channels.
2134 	 */
2135 	if (ic->ic_flags & IEEE80211_F_USEPROT)
2136 		erp |= IEEE80211_ERP_USE_PROTECTION;
2137 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
2138 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
2139 	*frm++ = erp;
2140 	return frm;
2141 }
2142 
2143 /*
2144  * Add a CFParams element to a frame.
2145  */
2146 static uint8_t *
2147 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2148 {
2149 #define	ADDSHORT(frm, v) do {	\
2150 	le16enc(frm, v);	\
2151 	frm += 2;		\
2152 } while (0)
2153 	*frm++ = IEEE80211_ELEMID_CFPARMS;
2154 	*frm++ = 6;
2155 	*frm++ = 0;		/* CFP count */
2156 	*frm++ = 2;		/* CFP period */
2157 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
2158 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
2159 	return frm;
2160 #undef ADDSHORT
2161 }
2162 
2163 static __inline uint8_t *
2164 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2165 {
2166 	memcpy(frm, ie->ie_data, ie->ie_len);
2167 	return frm + ie->ie_len;
2168 }
2169 
2170 static __inline uint8_t *
2171 add_ie(uint8_t *frm, const uint8_t *ie)
2172 {
2173 	memcpy(frm, ie, 2 + ie[1]);
2174 	return frm + 2 + ie[1];
2175 }
2176 
2177 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2178 /*
2179  * Add a WME information element to a frame.
2180  */
2181 uint8_t *
2182 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2183     struct ieee80211_node *ni)
2184 {
2185 	static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2186 	struct ieee80211vap *vap = ni->ni_vap;
2187 
2188 	*frm++ = IEEE80211_ELEMID_VENDOR;
2189 	*frm++ = sizeof(struct ieee80211_wme_info) - 2;
2190 	memcpy(frm, oui, sizeof(oui));
2191 	frm += sizeof(oui);
2192 	*frm++ = WME_INFO_OUI_SUBTYPE;
2193 	*frm++ = WME_VERSION;
2194 
2195 	/* QoS info field depends upon operating mode */
2196 	switch (vap->iv_opmode) {
2197 	case IEEE80211_M_HOSTAP:
2198 		*frm = wme->wme_bssChanParams.cap_info;
2199 		if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2200 			*frm |= WME_CAPINFO_UAPSD_EN;
2201 		frm++;
2202 		break;
2203 	case IEEE80211_M_STA:
2204 		/*
2205 		 * NB: UAPSD drivers must set this up in their
2206 		 * VAP creation method.
2207 		 */
2208 		*frm++ = vap->iv_uapsdinfo;
2209 		break;
2210 	default:
2211 		*frm++ = 0;
2212 		break;
2213 	}
2214 
2215 	return frm;
2216 }
2217 
2218 /*
2219  * Add a WME parameters element to a frame.
2220  */
2221 static uint8_t *
2222 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2223     int uapsd_enable)
2224 {
2225 #define	ADDSHORT(frm, v) do {	\
2226 	le16enc(frm, v);	\
2227 	frm += 2;		\
2228 } while (0)
2229 	/* NB: this works 'cuz a param has an info at the front */
2230 	static const struct ieee80211_wme_info param = {
2231 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2232 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2233 		.wme_oui	= { WME_OUI_BYTES },
2234 		.wme_type	= WME_OUI_TYPE,
2235 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2236 		.wme_version	= WME_VERSION,
2237 	};
2238 	int i;
2239 
2240 	memcpy(frm, &param, sizeof(param));
2241 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2242 	*frm = wme->wme_bssChanParams.cap_info;	/* AC info */
2243 	if (uapsd_enable)
2244 		*frm |= WME_CAPINFO_UAPSD_EN;
2245 	frm++;
2246 	*frm++ = 0;					/* reserved field */
2247 	/* XXX TODO - U-APSD bits - SP, flags below */
2248 	for (i = 0; i < WME_NUM_AC; i++) {
2249 		const struct wmeParams *ac =
2250 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2251 		*frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2252 		       | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2253 		       | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2254 		       ;
2255 		*frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2256 			    WME_PARAM_LOGCWMAX)
2257 		       | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2258 			    WME_PARAM_LOGCWMIN)
2259 		       ;
2260 		ADDSHORT(frm, ac->wmep_txopLimit);
2261 	}
2262 	return frm;
2263 #undef ADDSHORT
2264 }
2265 #undef WME_OUI_BYTES
2266 
2267 /*
2268  * Add an 11h Power Constraint element to a frame.
2269  */
2270 static uint8_t *
2271 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2272 {
2273 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2274 	/* XXX per-vap tx power limit? */
2275 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2276 
2277 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2278 	frm[1] = 1;
2279 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2280 	return frm + 3;
2281 }
2282 
2283 /*
2284  * Add an 11h Power Capability element to a frame.
2285  */
2286 static uint8_t *
2287 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2288 {
2289 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2290 	frm[1] = 2;
2291 	frm[2] = c->ic_minpower;
2292 	frm[3] = c->ic_maxpower;
2293 	return frm + 4;
2294 }
2295 
2296 /*
2297  * Add an 11h Supported Channels element to a frame.
2298  */
2299 static uint8_t *
2300 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2301 {
2302 	static const int ielen = 26;
2303 
2304 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2305 	frm[1] = ielen;
2306 	/* XXX not correct */
2307 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2308 	return frm + 2 + ielen;
2309 }
2310 
2311 /*
2312  * Add an 11h Quiet time element to a frame.
2313  */
2314 static uint8_t *
2315 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2316 {
2317 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2318 
2319 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2320 	quiet->len = 6;
2321 
2322 	/*
2323 	 * Only update every beacon interval - otherwise probe responses
2324 	 * would update the quiet count value.
2325 	 */
2326 	if (update) {
2327 		if (vap->iv_quiet_count_value == 1)
2328 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2329 		else if (vap->iv_quiet_count_value > 1)
2330 			vap->iv_quiet_count_value--;
2331 	}
2332 
2333 	if (vap->iv_quiet_count_value == 0) {
2334 		/* value 0 is reserved as per 802.11h standerd */
2335 		vap->iv_quiet_count_value = 1;
2336 	}
2337 
2338 	quiet->tbttcount = vap->iv_quiet_count_value;
2339 	quiet->period = vap->iv_quiet_period;
2340 	quiet->duration = htole16(vap->iv_quiet_duration);
2341 	quiet->offset = htole16(vap->iv_quiet_offset);
2342 	return frm + sizeof(*quiet);
2343 }
2344 
2345 /*
2346  * Add an 11h Channel Switch Announcement element to a frame.
2347  * Note that we use the per-vap CSA count to adjust the global
2348  * counter so we can use this routine to form probe response
2349  * frames and get the current count.
2350  */
2351 static uint8_t *
2352 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2353 {
2354 	struct ieee80211com *ic = vap->iv_ic;
2355 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2356 
2357 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2358 	csa->csa_len = 3;
2359 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2360 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2361 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2362 	return frm + sizeof(*csa);
2363 }
2364 
2365 /*
2366  * Add an 11h country information element to a frame.
2367  */
2368 static uint8_t *
2369 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2370 {
2371 
2372 	if (ic->ic_countryie == NULL ||
2373 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2374 		/*
2375 		 * Handle lazy construction of ie.  This is done on
2376 		 * first use and after a channel change that requires
2377 		 * re-calculation.
2378 		 */
2379 		if (ic->ic_countryie != NULL)
2380 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2381 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2382 		if (ic->ic_countryie == NULL)
2383 			return frm;
2384 		ic->ic_countryie_chan = ic->ic_bsschan;
2385 	}
2386 	return add_appie(frm, ic->ic_countryie);
2387 }
2388 
2389 uint8_t *
2390 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2391 {
2392 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2393 		return (add_ie(frm, vap->iv_wpa_ie));
2394 	else {
2395 		/* XXX else complain? */
2396 		return (frm);
2397 	}
2398 }
2399 
2400 uint8_t *
2401 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2402 {
2403 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2404 		return (add_ie(frm, vap->iv_rsn_ie));
2405 	else {
2406 		/* XXX else complain? */
2407 		return (frm);
2408 	}
2409 }
2410 
2411 uint8_t *
2412 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2413 {
2414 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2415 		*frm++ = IEEE80211_ELEMID_QOS;
2416 		*frm++ = 1;
2417 		*frm++ = 0;
2418 	}
2419 
2420 	return (frm);
2421 }
2422 
2423 /*
2424  * Send a probe request frame with the specified ssid
2425  * and any optional information element data.
2426  */
2427 int
2428 ieee80211_send_probereq(struct ieee80211_node *ni,
2429 	const uint8_t sa[IEEE80211_ADDR_LEN],
2430 	const uint8_t da[IEEE80211_ADDR_LEN],
2431 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2432 	const uint8_t *ssid, size_t ssidlen)
2433 {
2434 	struct ieee80211vap *vap = ni->ni_vap;
2435 	struct ieee80211com *ic = ni->ni_ic;
2436 	struct ieee80211_node *bss;
2437 	const struct ieee80211_txparam *tp;
2438 	struct ieee80211_bpf_params params;
2439 	const struct ieee80211_rateset *rs;
2440 	struct mbuf *m;
2441 	uint8_t *frm;
2442 	int ret;
2443 
2444 	bss = ieee80211_ref_node(vap->iv_bss);
2445 
2446 	if (vap->iv_state == IEEE80211_S_CAC) {
2447 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2448 		    "block %s frame in CAC state", "probe request");
2449 		vap->iv_stats.is_tx_badstate++;
2450 		ieee80211_free_node(bss);
2451 		return EIO;		/* XXX */
2452 	}
2453 
2454 	/*
2455 	 * Hold a reference on the node so it doesn't go away until after
2456 	 * the xmit is complete all the way in the driver.  On error we
2457 	 * will remove our reference.
2458 	 */
2459 #ifndef __HAIKU__
2460 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2461 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2462 		__func__, __LINE__,
2463 		ni, ether_sprintf(ni->ni_macaddr),
2464 		ieee80211_node_refcnt(ni)+1);
2465 #endif
2466 	ieee80211_ref_node(ni);
2467 
2468 	/*
2469 	 * prreq frame format
2470 	 *	[tlv] ssid
2471 	 *	[tlv] supported rates
2472 	 *	[tlv] RSN (optional)
2473 	 *	[tlv] extended supported rates
2474 	 *	[tlv] HT cap (optional)
2475 	 *	[tlv] VHT cap (optional)
2476 	 *	[tlv] WPA (optional)
2477 	 *	[tlv] user-specified ie's
2478 	 */
2479 	m = ieee80211_getmgtframe(&frm,
2480 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2481 	       	 2 + IEEE80211_NWID_LEN
2482 	       + 2 + IEEE80211_RATE_SIZE
2483 	       + sizeof(struct ieee80211_ie_htcap)
2484 	       + sizeof(struct ieee80211_ie_vhtcap)
2485 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2486 	       + sizeof(struct ieee80211_ie_wpa)
2487 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2488 	       + sizeof(struct ieee80211_ie_wpa)
2489 	       + (vap->iv_appie_probereq != NULL ?
2490 		   vap->iv_appie_probereq->ie_len : 0)
2491 	);
2492 	if (m == NULL) {
2493 		vap->iv_stats.is_tx_nobuf++;
2494 		ieee80211_free_node(ni);
2495 		ieee80211_free_node(bss);
2496 		return ENOMEM;
2497 	}
2498 
2499 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2500 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2501 	frm = ieee80211_add_rates(frm, rs);
2502 	frm = ieee80211_add_rsn(frm, vap);
2503 	frm = ieee80211_add_xrates(frm, rs);
2504 
2505 	/*
2506 	 * Note: we can't use bss; we don't have one yet.
2507 	 *
2508 	 * So, we should announce our capabilities
2509 	 * in this channel mode (2g/5g), not the
2510 	 * channel details itself.
2511 	 */
2512 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2513 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2514 		struct ieee80211_channel *c;
2515 
2516 		/*
2517 		 * Get the HT channel that we should try upgrading to.
2518 		 * If we can do 40MHz then this'll upgrade it appropriately.
2519 		 */
2520 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2521 		    vap->iv_flags_ht);
2522 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2523 	}
2524 
2525 	/*
2526 	 * XXX TODO: need to figure out what/how to update the
2527 	 * VHT channel.
2528 	 */
2529 #if 0
2530 	(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2531 		struct ieee80211_channel *c;
2532 
2533 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2534 		    vap->iv_flags_ht);
2535 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2536 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2537 	}
2538 #endif
2539 
2540 	frm = ieee80211_add_wpa(frm, vap);
2541 	if (vap->iv_appie_probereq != NULL)
2542 		frm = add_appie(frm, vap->iv_appie_probereq);
2543 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2544 
2545 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2546 	    ("leading space %zd", M_LEADINGSPACE(m)));
2547 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2548 	if (m == NULL) {
2549 		/* NB: cannot happen */
2550 		ieee80211_free_node(ni);
2551 		ieee80211_free_node(bss);
2552 		return ENOMEM;
2553 	}
2554 
2555 	IEEE80211_TX_LOCK(ic);
2556 	ieee80211_send_setup(ni, m,
2557 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2558 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2559 	/* XXX power management? */
2560 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2561 
2562 	M_WME_SETAC(m, WME_AC_BE);
2563 
2564 	IEEE80211_NODE_STAT(ni, tx_probereq);
2565 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2566 
2567 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2568 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2569 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2570 	    ether_sprintf(bssid),
2571 	    sa, ":",
2572 	    da, ":",
2573 	    ssidlen, ssid);
2574 
2575 	memset(&params, 0, sizeof(params));
2576 	params.ibp_pri = M_WME_GETAC(m);
2577 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2578 	params.ibp_rate0 = tp->mgmtrate;
2579 	if (IEEE80211_IS_MULTICAST(da)) {
2580 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2581 		params.ibp_try0 = 1;
2582 	} else
2583 		params.ibp_try0 = tp->maxretry;
2584 	params.ibp_power = ni->ni_txpower;
2585 	ret = ieee80211_raw_output(vap, ni, m, &params);
2586 	IEEE80211_TX_UNLOCK(ic);
2587 	ieee80211_free_node(bss);
2588 	return (ret);
2589 }
2590 
2591 /*
2592  * Calculate capability information for mgt frames.
2593  */
2594 uint16_t
2595 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2596 {
2597 	uint16_t capinfo;
2598 
2599 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2600 
2601 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2602 		capinfo = IEEE80211_CAPINFO_ESS;
2603 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2604 		capinfo = IEEE80211_CAPINFO_IBSS;
2605 	else
2606 		capinfo = 0;
2607 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2608 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2609 	if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2610 	    IEEE80211_IS_CHAN_2GHZ(chan))
2611 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2612 	if (vap->iv_flags & IEEE80211_F_SHSLOT)
2613 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2614 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2615 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2616 	return capinfo;
2617 }
2618 
2619 /*
2620  * Send a management frame.  The node is for the destination (or ic_bss
2621  * when in station mode).  Nodes other than ic_bss have their reference
2622  * count bumped to reflect our use for an indeterminant time.
2623  */
2624 int
2625 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2626 {
2627 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2628 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2629 	struct ieee80211vap *vap = ni->ni_vap;
2630 	struct ieee80211com *ic = ni->ni_ic;
2631 	struct ieee80211_node *bss = vap->iv_bss;
2632 	struct ieee80211_bpf_params params;
2633 	struct mbuf *m;
2634 	uint8_t *frm;
2635 	uint16_t capinfo;
2636 	int has_challenge, is_shared_key, ret, status;
2637 
2638 	KASSERT(ni != NULL, ("null node"));
2639 
2640 	/*
2641 	 * Hold a reference on the node so it doesn't go away until after
2642 	 * the xmit is complete all the way in the driver.  On error we
2643 	 * will remove our reference.
2644 	 */
2645 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2646 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2647 		__func__, __LINE__,
2648 		ni, ether_sprintf(ni->ni_macaddr),
2649 		ieee80211_node_refcnt(ni)+1);
2650 	ieee80211_ref_node(ni);
2651 
2652 	memset(&params, 0, sizeof(params));
2653 	switch (type) {
2654 
2655 	case IEEE80211_FC0_SUBTYPE_AUTH:
2656 		status = arg >> 16;
2657 		arg &= 0xffff;
2658 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2659 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2660 		    ni->ni_challenge != NULL);
2661 
2662 		/*
2663 		 * Deduce whether we're doing open authentication or
2664 		 * shared key authentication.  We do the latter if
2665 		 * we're in the middle of a shared key authentication
2666 		 * handshake or if we're initiating an authentication
2667 		 * request and configured to use shared key.
2668 		 */
2669 		is_shared_key = has_challenge ||
2670 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2671 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2672 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2673 
2674 		m = ieee80211_getmgtframe(&frm,
2675 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2676 			  3 * sizeof(uint16_t)
2677 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2678 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2679 		);
2680 		if (m == NULL)
2681 			senderr(ENOMEM, is_tx_nobuf);
2682 
2683 		((uint16_t *)frm)[0] =
2684 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2685 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2686 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2687 		((uint16_t *)frm)[2] = htole16(status);/* status */
2688 
2689 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2690 			((uint16_t *)frm)[3] =
2691 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2692 			    IEEE80211_ELEMID_CHALLENGE);
2693 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2694 			    IEEE80211_CHALLENGE_LEN);
2695 			m->m_pkthdr.len = m->m_len =
2696 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2697 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2698 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2699 				    "request encrypt frame (%s)", __func__);
2700 				/* mark frame for encryption */
2701 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2702 			}
2703 		} else
2704 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2705 
2706 		/* XXX not right for shared key */
2707 		if (status == IEEE80211_STATUS_SUCCESS)
2708 			IEEE80211_NODE_STAT(ni, tx_auth);
2709 		else
2710 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2711 
2712 		if (vap->iv_opmode == IEEE80211_M_STA)
2713 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2714 				(void *) vap->iv_state);
2715 		break;
2716 
2717 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2718 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2719 		    "send station deauthenticate (reason: %d (%s))", arg,
2720 		    ieee80211_reason_to_string(arg));
2721 		m = ieee80211_getmgtframe(&frm,
2722 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2723 			sizeof(uint16_t));
2724 		if (m == NULL)
2725 			senderr(ENOMEM, is_tx_nobuf);
2726 		*(uint16_t *)frm = htole16(arg);	/* reason */
2727 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2728 
2729 		IEEE80211_NODE_STAT(ni, tx_deauth);
2730 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2731 
2732 		ieee80211_node_unauthorize(ni);		/* port closed */
2733 		break;
2734 
2735 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2736 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2737 		/*
2738 		 * asreq frame format
2739 		 *	[2] capability information
2740 		 *	[2] listen interval
2741 		 *	[6*] current AP address (reassoc only)
2742 		 *	[tlv] ssid
2743 		 *	[tlv] supported rates
2744 		 *	[tlv] extended supported rates
2745 		 *	[4] power capability (optional)
2746 		 *	[28] supported channels (optional)
2747 		 *	[tlv] HT capabilities
2748 		 *	[tlv] VHT capabilities
2749 		 *	[tlv] WME (optional)
2750 		 *	[tlv] Vendor OUI HT capabilities (optional)
2751 		 *	[tlv] Atheros capabilities (if negotiated)
2752 		 *	[tlv] AppIE's (optional)
2753 		 */
2754 		m = ieee80211_getmgtframe(&frm,
2755 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2756 			 sizeof(uint16_t)
2757 		       + sizeof(uint16_t)
2758 		       + IEEE80211_ADDR_LEN
2759 		       + 2 + IEEE80211_NWID_LEN
2760 		       + 2 + IEEE80211_RATE_SIZE
2761 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2762 		       + 4
2763 		       + 2 + 26
2764 		       + sizeof(struct ieee80211_wme_info)
2765 		       + sizeof(struct ieee80211_ie_htcap)
2766 		       + sizeof(struct ieee80211_ie_vhtcap)
2767 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2768 #ifdef IEEE80211_SUPPORT_SUPERG
2769 		       + sizeof(struct ieee80211_ath_ie)
2770 #endif
2771 		       + (vap->iv_appie_wpa != NULL ?
2772 				vap->iv_appie_wpa->ie_len : 0)
2773 		       + (vap->iv_appie_assocreq != NULL ?
2774 				vap->iv_appie_assocreq->ie_len : 0)
2775 		);
2776 		if (m == NULL)
2777 			senderr(ENOMEM, is_tx_nobuf);
2778 
2779 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2780 		    ("wrong mode %u", vap->iv_opmode));
2781 		capinfo = IEEE80211_CAPINFO_ESS;
2782 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2783 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2784 		/*
2785 		 * NB: Some 11a AP's reject the request when
2786 		 *     short preamble is set.
2787 		 */
2788 		if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2789 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2790 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2791 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2792 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2793 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2794 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2795 		    (vap->iv_flags & IEEE80211_F_DOTH))
2796 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2797 		*(uint16_t *)frm = htole16(capinfo);
2798 		frm += 2;
2799 
2800 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2801 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2802 						    bss->ni_intval));
2803 		frm += 2;
2804 
2805 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2806 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2807 			frm += IEEE80211_ADDR_LEN;
2808 		}
2809 
2810 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2811 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2812 		frm = ieee80211_add_rsn(frm, vap);
2813 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2814 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2815 			frm = ieee80211_add_powercapability(frm,
2816 			    ic->ic_curchan);
2817 			frm = ieee80211_add_supportedchannels(frm, ic);
2818 		}
2819 
2820 		/*
2821 		 * Check the channel - we may be using an 11n NIC with an
2822 		 * 11n capable station, but we're configured to be an 11b
2823 		 * channel.
2824 		 */
2825 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2826 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2827 		    ni->ni_ies.htcap_ie != NULL &&
2828 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2829 			frm = ieee80211_add_htcap(frm, ni);
2830 		}
2831 
2832 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2833 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2834 		    ni->ni_ies.vhtcap_ie != NULL &&
2835 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2836 			frm = ieee80211_add_vhtcap(frm, ni);
2837 		}
2838 
2839 		frm = ieee80211_add_wpa(frm, vap);
2840 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2841 		    ni->ni_ies.wme_ie != NULL)
2842 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2843 
2844 		/*
2845 		 * Same deal - only send HT info if we're on an 11n
2846 		 * capable channel.
2847 		 */
2848 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2849 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2850 		    ni->ni_ies.htcap_ie != NULL &&
2851 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2852 			frm = ieee80211_add_htcap_vendor(frm, ni);
2853 		}
2854 #ifdef IEEE80211_SUPPORT_SUPERG
2855 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2856 			frm = ieee80211_add_ath(frm,
2857 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2858 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2859 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2860 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2861 		}
2862 #endif /* IEEE80211_SUPPORT_SUPERG */
2863 		if (vap->iv_appie_assocreq != NULL)
2864 			frm = add_appie(frm, vap->iv_appie_assocreq);
2865 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2866 
2867 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2868 			(void *) vap->iv_state);
2869 		break;
2870 
2871 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2872 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2873 		/*
2874 		 * asresp frame format
2875 		 *	[2] capability information
2876 		 *	[2] status
2877 		 *	[2] association ID
2878 		 *	[tlv] supported rates
2879 		 *	[tlv] extended supported rates
2880 		 *	[tlv] HT capabilities (standard, if STA enabled)
2881 		 *	[tlv] HT information (standard, if STA enabled)
2882 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2883 		 *	[tlv] VHT information (standard, if STA enabled)
2884 		 *	[tlv] WME (if configured and STA enabled)
2885 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2886 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2887 		 *	[tlv] Atheros capabilities (if STA enabled)
2888 		 *	[tlv] AppIE's (optional)
2889 		 */
2890 		m = ieee80211_getmgtframe(&frm,
2891 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2892 			 sizeof(uint16_t)
2893 		       + sizeof(uint16_t)
2894 		       + sizeof(uint16_t)
2895 		       + 2 + IEEE80211_RATE_SIZE
2896 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2897 		       + sizeof(struct ieee80211_ie_htcap) + 4
2898 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2899 		       + sizeof(struct ieee80211_ie_vhtcap)
2900 		       + sizeof(struct ieee80211_ie_vht_operation)
2901 		       + sizeof(struct ieee80211_wme_param)
2902 #ifdef IEEE80211_SUPPORT_SUPERG
2903 		       + sizeof(struct ieee80211_ath_ie)
2904 #endif
2905 		       + (vap->iv_appie_assocresp != NULL ?
2906 				vap->iv_appie_assocresp->ie_len : 0)
2907 		);
2908 		if (m == NULL)
2909 			senderr(ENOMEM, is_tx_nobuf);
2910 
2911 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2912 		*(uint16_t *)frm = htole16(capinfo);
2913 		frm += 2;
2914 
2915 		*(uint16_t *)frm = htole16(arg);	/* status */
2916 		frm += 2;
2917 
2918 		if (arg == IEEE80211_STATUS_SUCCESS) {
2919 			*(uint16_t *)frm = htole16(ni->ni_associd);
2920 			IEEE80211_NODE_STAT(ni, tx_assoc);
2921 		} else
2922 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2923 		frm += 2;
2924 
2925 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2926 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2927 		/* NB: respond according to what we received */
2928 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2929 			frm = ieee80211_add_htcap(frm, ni);
2930 			frm = ieee80211_add_htinfo(frm, ni);
2931 		}
2932 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2933 		    ni->ni_ies.wme_ie != NULL)
2934 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
2935 			    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
2936 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2937 			frm = ieee80211_add_htcap_vendor(frm, ni);
2938 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2939 		}
2940 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2941 			frm = ieee80211_add_vhtcap(frm, ni);
2942 			frm = ieee80211_add_vhtinfo(frm, ni);
2943 		}
2944 #ifdef IEEE80211_SUPPORT_SUPERG
2945 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2946 			frm = ieee80211_add_ath(frm,
2947 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2948 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2949 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2950 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2951 #endif /* IEEE80211_SUPPORT_SUPERG */
2952 		if (vap->iv_appie_assocresp != NULL)
2953 			frm = add_appie(frm, vap->iv_appie_assocresp);
2954 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2955 		break;
2956 
2957 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2958 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2959 		    "send station disassociate (reason: %d (%s))", arg,
2960 		    ieee80211_reason_to_string(arg));
2961 		m = ieee80211_getmgtframe(&frm,
2962 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2963 			sizeof(uint16_t));
2964 		if (m == NULL)
2965 			senderr(ENOMEM, is_tx_nobuf);
2966 		*(uint16_t *)frm = htole16(arg);	/* reason */
2967 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2968 
2969 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2970 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2971 		break;
2972 
2973 	default:
2974 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2975 		    "invalid mgmt frame type %u", type);
2976 		senderr(EINVAL, is_tx_unknownmgt);
2977 		/* NOTREACHED */
2978 	}
2979 
2980 	/* NB: force non-ProbeResp frames to the highest queue */
2981 	params.ibp_pri = WME_AC_VO;
2982 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2983 	/* NB: we know all frames are unicast */
2984 	params.ibp_try0 = bss->ni_txparms->maxretry;
2985 	params.ibp_power = bss->ni_txpower;
2986 	return ieee80211_mgmt_output(ni, m, type, &params);
2987 bad:
2988 	ieee80211_free_node(ni);
2989 	return ret;
2990 #undef senderr
2991 #undef HTFLAGS
2992 }
2993 
2994 /*
2995  * Return an mbuf with a probe response frame in it.
2996  * Space is left to prepend and 802.11 header at the
2997  * front but it's left to the caller to fill in.
2998  */
2999 struct mbuf *
3000 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3001 {
3002 	struct ieee80211vap *vap = bss->ni_vap;
3003 	struct ieee80211com *ic = bss->ni_ic;
3004 	const struct ieee80211_rateset *rs;
3005 	struct mbuf *m;
3006 	uint16_t capinfo;
3007 	uint8_t *frm;
3008 
3009 	/*
3010 	 * probe response frame format
3011 	 *	[8] time stamp
3012 	 *	[2] beacon interval
3013 	 *	[2] cabability information
3014 	 *	[tlv] ssid
3015 	 *	[tlv] supported rates
3016 	 *	[tlv] parameter set (FH/DS)
3017 	 *	[tlv] parameter set (IBSS)
3018 	 *	[tlv] country (optional)
3019 	 *	[3] power control (optional)
3020 	 *	[5] channel switch announcement (CSA) (optional)
3021 	 *	[tlv] extended rate phy (ERP)
3022 	 *	[tlv] extended supported rates
3023 	 *	[tlv] RSN (optional)
3024 	 *	[tlv] HT capabilities
3025 	 *	[tlv] HT information
3026 	 *	[tlv] VHT capabilities
3027 	 *	[tlv] VHT information
3028 	 *	[tlv] WPA (optional)
3029 	 *	[tlv] WME (optional)
3030 	 *	[tlv] Vendor OUI HT capabilities (optional)
3031 	 *	[tlv] Vendor OUI HT information (optional)
3032 	 *	[tlv] Atheros capabilities
3033 	 *	[tlv] AppIE's (optional)
3034 	 *	[tlv] Mesh ID (MBSS)
3035 	 *	[tlv] Mesh Conf (MBSS)
3036 	 */
3037 	m = ieee80211_getmgtframe(&frm,
3038 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
3039 		 8
3040 	       + sizeof(uint16_t)
3041 	       + sizeof(uint16_t)
3042 	       + 2 + IEEE80211_NWID_LEN
3043 	       + 2 + IEEE80211_RATE_SIZE
3044 	       + 7	/* max(7,3) */
3045 	       + IEEE80211_COUNTRY_MAX_SIZE
3046 	       + 3
3047 	       + sizeof(struct ieee80211_csa_ie)
3048 	       + sizeof(struct ieee80211_quiet_ie)
3049 	       + 3
3050 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3051 	       + sizeof(struct ieee80211_ie_wpa)
3052 	       + sizeof(struct ieee80211_ie_htcap)
3053 	       + sizeof(struct ieee80211_ie_htinfo)
3054 	       + sizeof(struct ieee80211_ie_wpa)
3055 	       + sizeof(struct ieee80211_wme_param)
3056 	       + 4 + sizeof(struct ieee80211_ie_htcap)
3057 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
3058 	       +  sizeof(struct ieee80211_ie_vhtcap)
3059 	       +  sizeof(struct ieee80211_ie_vht_operation)
3060 #ifdef IEEE80211_SUPPORT_SUPERG
3061 	       + sizeof(struct ieee80211_ath_ie)
3062 #endif
3063 #ifdef IEEE80211_SUPPORT_MESH
3064 	       + 2 + IEEE80211_MESHID_LEN
3065 	       + sizeof(struct ieee80211_meshconf_ie)
3066 #endif
3067 	       + (vap->iv_appie_proberesp != NULL ?
3068 			vap->iv_appie_proberesp->ie_len : 0)
3069 	);
3070 	if (m == NULL) {
3071 		vap->iv_stats.is_tx_nobuf++;
3072 		return NULL;
3073 	}
3074 
3075 	memset(frm, 0, 8);	/* timestamp should be filled later */
3076 	frm += 8;
3077 	*(uint16_t *)frm = htole16(bss->ni_intval);
3078 	frm += 2;
3079 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3080 	*(uint16_t *)frm = htole16(capinfo);
3081 	frm += 2;
3082 
3083 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3084 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
3085 	frm = ieee80211_add_rates(frm, rs);
3086 
3087 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3088 		*frm++ = IEEE80211_ELEMID_FHPARMS;
3089 		*frm++ = 5;
3090 		*frm++ = bss->ni_fhdwell & 0x00ff;
3091 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3092 		*frm++ = IEEE80211_FH_CHANSET(
3093 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3094 		*frm++ = IEEE80211_FH_CHANPAT(
3095 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3096 		*frm++ = bss->ni_fhindex;
3097 	} else {
3098 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3099 		*frm++ = 1;
3100 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3101 	}
3102 
3103 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3104 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3105 		*frm++ = 2;
3106 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3107 	}
3108 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3109 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3110 		frm = ieee80211_add_countryie(frm, ic);
3111 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3112 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3113 			frm = ieee80211_add_powerconstraint(frm, vap);
3114 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3115 			frm = ieee80211_add_csa(frm, vap);
3116 	}
3117 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3118 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3119 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3120 			if (vap->iv_quiet)
3121 				frm = ieee80211_add_quiet(frm, vap, 0);
3122 		}
3123 	}
3124 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3125 		frm = ieee80211_add_erp(frm, vap);
3126 	frm = ieee80211_add_xrates(frm, rs);
3127 	frm = ieee80211_add_rsn(frm, vap);
3128 	/*
3129 	 * NB: legacy 11b clients do not get certain ie's.
3130 	 *     The caller identifies such clients by passing
3131 	 *     a token in legacy to us.  Could expand this to be
3132 	 *     any legacy client for stuff like HT ie's.
3133 	 */
3134 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3135 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3136 		frm = ieee80211_add_htcap(frm, bss);
3137 		frm = ieee80211_add_htinfo(frm, bss);
3138 	}
3139 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3140 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3141 		frm = ieee80211_add_vhtcap(frm, bss);
3142 		frm = ieee80211_add_vhtinfo(frm, bss);
3143 	}
3144 	frm = ieee80211_add_wpa(frm, vap);
3145 	if (vap->iv_flags & IEEE80211_F_WME)
3146 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3147 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3148 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3149 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3150 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3151 		frm = ieee80211_add_htcap_vendor(frm, bss);
3152 		frm = ieee80211_add_htinfo_vendor(frm, bss);
3153 	}
3154 #ifdef IEEE80211_SUPPORT_SUPERG
3155 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3156 	    legacy != IEEE80211_SEND_LEGACY_11B)
3157 		frm = ieee80211_add_athcaps(frm, bss);
3158 #endif
3159 	if (vap->iv_appie_proberesp != NULL)
3160 		frm = add_appie(frm, vap->iv_appie_proberesp);
3161 #ifdef IEEE80211_SUPPORT_MESH
3162 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3163 		frm = ieee80211_add_meshid(frm, vap);
3164 		frm = ieee80211_add_meshconf(frm, vap);
3165 	}
3166 #endif
3167 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3168 
3169 	return m;
3170 }
3171 
3172 /*
3173  * Send a probe response frame to the specified mac address.
3174  * This does not go through the normal mgt frame api so we
3175  * can specify the destination address and re-use the bss node
3176  * for the sta reference.
3177  */
3178 int
3179 ieee80211_send_proberesp(struct ieee80211vap *vap,
3180 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3181 {
3182 	struct ieee80211_node *bss = vap->iv_bss;
3183 	struct ieee80211com *ic = vap->iv_ic;
3184 	struct mbuf *m;
3185 	int ret;
3186 
3187 	if (vap->iv_state == IEEE80211_S_CAC) {
3188 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3189 		    "block %s frame in CAC state", "probe response");
3190 		vap->iv_stats.is_tx_badstate++;
3191 		return EIO;		/* XXX */
3192 	}
3193 
3194 	/*
3195 	 * Hold a reference on the node so it doesn't go away until after
3196 	 * the xmit is complete all the way in the driver.  On error we
3197 	 * will remove our reference.
3198 	 */
3199 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3200 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3201 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3202 	    ieee80211_node_refcnt(bss)+1);
3203 	ieee80211_ref_node(bss);
3204 
3205 	m = ieee80211_alloc_proberesp(bss, legacy);
3206 	if (m == NULL) {
3207 		ieee80211_free_node(bss);
3208 		return ENOMEM;
3209 	}
3210 
3211 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3212 	KASSERT(m != NULL, ("no room for header"));
3213 
3214 	IEEE80211_TX_LOCK(ic);
3215 	ieee80211_send_setup(bss, m,
3216 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3217 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3218 	/* XXX power management? */
3219 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3220 
3221 	M_WME_SETAC(m, WME_AC_BE);
3222 
3223 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3224 	    "send probe resp on channel %u to %s%s\n",
3225 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3226 	    legacy ? " <legacy>" : "");
3227 	IEEE80211_NODE_STAT(bss, tx_mgmt);
3228 
3229 	ret = ieee80211_raw_output(vap, bss, m, NULL);
3230 	IEEE80211_TX_UNLOCK(ic);
3231 	return (ret);
3232 }
3233 
3234 /*
3235  * Allocate and build a RTS (Request To Send) control frame.
3236  */
3237 struct mbuf *
3238 ieee80211_alloc_rts(struct ieee80211com *ic,
3239 	const uint8_t ra[IEEE80211_ADDR_LEN],
3240 	const uint8_t ta[IEEE80211_ADDR_LEN],
3241 	uint16_t dur)
3242 {
3243 	struct ieee80211_frame_rts *rts;
3244 	struct mbuf *m;
3245 
3246 	/* XXX honor ic_headroom */
3247 	m = m_gethdr(M_NOWAIT, MT_DATA);
3248 	if (m != NULL) {
3249 		rts = mtod(m, struct ieee80211_frame_rts *);
3250 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3251 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3252 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3253 		*(u_int16_t *)rts->i_dur = htole16(dur);
3254 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3255 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3256 
3257 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3258 	}
3259 	return m;
3260 }
3261 
3262 /*
3263  * Allocate and build a CTS (Clear To Send) control frame.
3264  */
3265 struct mbuf *
3266 ieee80211_alloc_cts(struct ieee80211com *ic,
3267 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3268 {
3269 	struct ieee80211_frame_cts *cts;
3270 	struct mbuf *m;
3271 
3272 	/* XXX honor ic_headroom */
3273 	m = m_gethdr(M_NOWAIT, MT_DATA);
3274 	if (m != NULL) {
3275 		cts = mtod(m, struct ieee80211_frame_cts *);
3276 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3277 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3278 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3279 		*(u_int16_t *)cts->i_dur = htole16(dur);
3280 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3281 
3282 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3283 	}
3284 	return m;
3285 }
3286 
3287 /*
3288  * Wrapper for CTS/RTS frame allocation.
3289  */
3290 struct mbuf *
3291 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3292     uint8_t rate, int prot)
3293 {
3294 	struct ieee80211com *ic = ni->ni_ic;
3295 	struct ieee80211vap *vap = ni->ni_vap;
3296 	const struct ieee80211_frame *wh;
3297 	struct mbuf *mprot;
3298 	uint16_t dur;
3299 	int pktlen, isshort;
3300 
3301 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3302 	    prot == IEEE80211_PROT_CTSONLY,
3303 	    ("wrong protection type %d", prot));
3304 
3305 	wh = mtod(m, const struct ieee80211_frame *);
3306 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3307 	isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3308 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3309 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3310 
3311 	if (prot == IEEE80211_PROT_RTSCTS) {
3312 		/* NB: CTS is the same size as an ACK */
3313 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3314 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3315 	} else
3316 		mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3317 
3318 	return (mprot);
3319 }
3320 
3321 static void
3322 ieee80211_tx_mgt_timeout(void *arg)
3323 {
3324 	struct ieee80211vap *vap = arg;
3325 
3326 	IEEE80211_LOCK(vap->iv_ic);
3327 	if (vap->iv_state != IEEE80211_S_INIT &&
3328 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3329 		/*
3330 		 * NB: it's safe to specify a timeout as the reason here;
3331 		 *     it'll only be used in the right state.
3332 		 */
3333 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3334 			IEEE80211_SCAN_FAIL_TIMEOUT);
3335 	}
3336 	IEEE80211_UNLOCK(vap->iv_ic);
3337 }
3338 
3339 /*
3340  * This is the callback set on net80211-sourced transmitted
3341  * authentication request frames.
3342  *
3343  * This does a couple of things:
3344  *
3345  * + If the frame transmitted was a success, it schedules a future
3346  *   event which will transition the interface to scan.
3347  *   If a state transition _then_ occurs before that event occurs,
3348  *   said state transition will cancel this callout.
3349  *
3350  * + If the frame transmit was a failure, it immediately schedules
3351  *   the transition back to scan.
3352  */
3353 static void
3354 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3355 {
3356 	struct ieee80211vap *vap = ni->ni_vap;
3357 	enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3358 
3359 	/*
3360 	 * Frame transmit completed; arrange timer callback.  If
3361 	 * transmit was successfully we wait for response.  Otherwise
3362 	 * we arrange an immediate callback instead of doing the
3363 	 * callback directly since we don't know what state the driver
3364 	 * is in (e.g. what locks it is holding).  This work should
3365 	 * not be too time-critical and not happen too often so the
3366 	 * added overhead is acceptable.
3367 	 *
3368 	 * XXX what happens if !acked but response shows up before callback?
3369 	 */
3370 	if (vap->iv_state == ostate) {
3371 		callout_reset(&vap->iv_mgtsend,
3372 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3373 			ieee80211_tx_mgt_timeout, vap);
3374 	}
3375 }
3376 
3377 static void
3378 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3379 	struct ieee80211_node *ni)
3380 {
3381 	struct ieee80211vap *vap = ni->ni_vap;
3382 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3383 	struct ieee80211com *ic = ni->ni_ic;
3384 	struct ieee80211_rateset *rs = &ni->ni_rates;
3385 	uint16_t capinfo;
3386 
3387 	/*
3388 	 * beacon frame format
3389 	 *
3390 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3391 	 * vendor extensions should be at the end, etc.
3392 	 *
3393 	 *	[8] time stamp
3394 	 *	[2] beacon interval
3395 	 *	[2] cabability information
3396 	 *	[tlv] ssid
3397 	 *	[tlv] supported rates
3398 	 *	[3] parameter set (DS)
3399 	 *	[8] CF parameter set (optional)
3400 	 *	[tlv] parameter set (IBSS/TIM)
3401 	 *	[tlv] country (optional)
3402 	 *	[3] power control (optional)
3403 	 *	[5] channel switch announcement (CSA) (optional)
3404 	 * XXX TODO: Quiet
3405 	 * XXX TODO: IBSS DFS
3406 	 * XXX TODO: TPC report
3407 	 *	[tlv] extended rate phy (ERP)
3408 	 *	[tlv] extended supported rates
3409 	 *	[tlv] RSN parameters
3410 	 * XXX TODO: BSSLOAD
3411 	 * (XXX EDCA parameter set, QoS capability?)
3412 	 * XXX TODO: AP channel report
3413 	 *
3414 	 *	[tlv] HT capabilities
3415 	 *	[tlv] HT information
3416 	 *	XXX TODO: 20/40 BSS coexistence
3417 	 * Mesh:
3418 	 * XXX TODO: Meshid
3419 	 * XXX TODO: mesh config
3420 	 * XXX TODO: mesh awake window
3421 	 * XXX TODO: beacon timing (mesh, etc)
3422 	 * XXX TODO: MCCAOP Advertisement Overview
3423 	 * XXX TODO: MCCAOP Advertisement
3424 	 * XXX TODO: Mesh channel switch parameters
3425 	 * VHT:
3426 	 * XXX TODO: VHT capabilities
3427 	 * XXX TODO: VHT operation
3428 	 * XXX TODO: VHT transmit power envelope
3429 	 * XXX TODO: channel switch wrapper element
3430 	 * XXX TODO: extended BSS load element
3431 	 *
3432 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3433 	 *	[tlv] WPA parameters
3434 	 *	[tlv] WME parameters
3435 	 *	[tlv] Vendor OUI HT capabilities (optional)
3436 	 *	[tlv] Vendor OUI HT information (optional)
3437 	 *	[tlv] Atheros capabilities (optional)
3438 	 *	[tlv] TDMA parameters (optional)
3439 	 *	[tlv] Mesh ID (MBSS)
3440 	 *	[tlv] Mesh Conf (MBSS)
3441 	 *	[tlv] application data (optional)
3442 	 */
3443 
3444 	memset(bo, 0, sizeof(*bo));
3445 
3446 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3447 	frm += 8;
3448 	*(uint16_t *)frm = htole16(ni->ni_intval);
3449 	frm += 2;
3450 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3451 	bo->bo_caps = (uint16_t *)frm;
3452 	*(uint16_t *)frm = htole16(capinfo);
3453 	frm += 2;
3454 	*frm++ = IEEE80211_ELEMID_SSID;
3455 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3456 		*frm++ = ni->ni_esslen;
3457 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3458 		frm += ni->ni_esslen;
3459 	} else
3460 		*frm++ = 0;
3461 	frm = ieee80211_add_rates(frm, rs);
3462 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3463 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3464 		*frm++ = 1;
3465 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3466 	}
3467 	if (ic->ic_flags & IEEE80211_F_PCF) {
3468 		bo->bo_cfp = frm;
3469 		frm = ieee80211_add_cfparms(frm, ic);
3470 	}
3471 	bo->bo_tim = frm;
3472 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3473 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3474 		*frm++ = 2;
3475 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3476 		bo->bo_tim_len = 0;
3477 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3478 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3479 		/* TIM IE is the same for Mesh and Hostap */
3480 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3481 
3482 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3483 		tie->tim_len = 4;	/* length */
3484 		tie->tim_count = 0;	/* DTIM count */
3485 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3486 		tie->tim_bitctl = 0;	/* bitmap control */
3487 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3488 		frm += sizeof(struct ieee80211_tim_ie);
3489 		bo->bo_tim_len = 1;
3490 	}
3491 	bo->bo_tim_trailer = frm;
3492 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3493 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3494 		frm = ieee80211_add_countryie(frm, ic);
3495 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3496 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3497 			frm = ieee80211_add_powerconstraint(frm, vap);
3498 		bo->bo_csa = frm;
3499 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3500 			frm = ieee80211_add_csa(frm, vap);
3501 	} else
3502 		bo->bo_csa = frm;
3503 
3504 	bo->bo_quiet = NULL;
3505 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3506 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3507 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3508 		    (vap->iv_quiet == 1)) {
3509 			/*
3510 			 * We only insert the quiet IE offset if
3511 			 * the quiet IE is enabled.  Otherwise don't
3512 			 * put it here or we'll just overwrite
3513 			 * some other beacon contents.
3514 			 */
3515 			if (vap->iv_quiet) {
3516 				bo->bo_quiet = frm;
3517 				frm = ieee80211_add_quiet(frm,vap, 0);
3518 			}
3519 		}
3520 	}
3521 
3522 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3523 		bo->bo_erp = frm;
3524 		frm = ieee80211_add_erp(frm, vap);
3525 	}
3526 	frm = ieee80211_add_xrates(frm, rs);
3527 	frm = ieee80211_add_rsn(frm, vap);
3528 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3529 		frm = ieee80211_add_htcap(frm, ni);
3530 		bo->bo_htinfo = frm;
3531 		frm = ieee80211_add_htinfo(frm, ni);
3532 	}
3533 
3534 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3535 		frm = ieee80211_add_vhtcap(frm, ni);
3536 		bo->bo_vhtinfo = frm;
3537 		frm = ieee80211_add_vhtinfo(frm, ni);
3538 		/* Transmit power envelope */
3539 		/* Channel switch wrapper element */
3540 		/* Extended bss load element */
3541 	}
3542 
3543 	frm = ieee80211_add_wpa(frm, vap);
3544 	if (vap->iv_flags & IEEE80211_F_WME) {
3545 		bo->bo_wme = frm;
3546 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3547 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3548 	}
3549 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3550 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3551 		frm = ieee80211_add_htcap_vendor(frm, ni);
3552 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3553 	}
3554 
3555 #ifdef IEEE80211_SUPPORT_SUPERG
3556 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3557 		bo->bo_ath = frm;
3558 		frm = ieee80211_add_athcaps(frm, ni);
3559 	}
3560 #endif
3561 #ifdef IEEE80211_SUPPORT_TDMA
3562 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3563 		bo->bo_tdma = frm;
3564 		frm = ieee80211_add_tdma(frm, vap);
3565 	}
3566 #endif
3567 	if (vap->iv_appie_beacon != NULL) {
3568 		bo->bo_appie = frm;
3569 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3570 		frm = add_appie(frm, vap->iv_appie_beacon);
3571 	}
3572 
3573 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3574 #ifdef IEEE80211_SUPPORT_MESH
3575 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3576 		frm = ieee80211_add_meshid(frm, vap);
3577 		bo->bo_meshconf = frm;
3578 		frm = ieee80211_add_meshconf(frm, vap);
3579 	}
3580 #endif
3581 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3582 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3583 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3584 }
3585 
3586 /*
3587  * Allocate a beacon frame and fillin the appropriate bits.
3588  */
3589 struct mbuf *
3590 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3591 {
3592 	struct ieee80211vap *vap = ni->ni_vap;
3593 	struct ieee80211com *ic = ni->ni_ic;
3594 	struct ifnet *ifp = vap->iv_ifp;
3595 	struct ieee80211_frame *wh;
3596 	struct mbuf *m;
3597 	int pktlen;
3598 	uint8_t *frm;
3599 
3600 	/*
3601 	 * Update the "We're putting the quiet IE in the beacon" state.
3602 	 */
3603 	if (vap->iv_quiet == 1)
3604 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3605 	else if (vap->iv_quiet == 0)
3606 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3607 
3608 	/*
3609 	 * beacon frame format
3610 	 *
3611 	 * Note: This needs updating for 802.11-2012.
3612 	 *
3613 	 *	[8] time stamp
3614 	 *	[2] beacon interval
3615 	 *	[2] cabability information
3616 	 *	[tlv] ssid
3617 	 *	[tlv] supported rates
3618 	 *	[3] parameter set (DS)
3619 	 *	[8] CF parameter set (optional)
3620 	 *	[tlv] parameter set (IBSS/TIM)
3621 	 *	[tlv] country (optional)
3622 	 *	[3] power control (optional)
3623 	 *	[5] channel switch announcement (CSA) (optional)
3624 	 *	[tlv] extended rate phy (ERP)
3625 	 *	[tlv] extended supported rates
3626 	 *	[tlv] RSN parameters
3627 	 *	[tlv] HT capabilities
3628 	 *	[tlv] HT information
3629 	 *	[tlv] VHT capabilities
3630 	 *	[tlv] VHT operation
3631 	 *	[tlv] Vendor OUI HT capabilities (optional)
3632 	 *	[tlv] Vendor OUI HT information (optional)
3633 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3634 	 *	[tlv] WPA parameters
3635 	 *	[tlv] WME parameters
3636 	 *	[tlv] TDMA parameters (optional)
3637 	 *	[tlv] Mesh ID (MBSS)
3638 	 *	[tlv] Mesh Conf (MBSS)
3639 	 *	[tlv] application data (optional)
3640 	 * NB: we allocate the max space required for the TIM bitmap.
3641 	 * XXX how big is this?
3642 	 */
3643 	pktlen =   8					/* time stamp */
3644 		 + sizeof(uint16_t)			/* beacon interval */
3645 		 + sizeof(uint16_t)			/* capabilities */
3646 		 + 2 + ni->ni_esslen			/* ssid */
3647 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3648 	         + 2 + 1				/* DS parameters */
3649 		 + 2 + 6				/* CF parameters */
3650 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3651 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3652 		 + 2 + 1				/* power control */
3653 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3654 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3655 		 + 2 + 1				/* ERP */
3656 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3657 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3658 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3659 		 /* XXX conditional? */
3660 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3661 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3662 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3663 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3664 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3665 			sizeof(struct ieee80211_wme_param) : 0)
3666 #ifdef IEEE80211_SUPPORT_SUPERG
3667 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3668 #endif
3669 #ifdef IEEE80211_SUPPORT_TDMA
3670 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3671 			sizeof(struct ieee80211_tdma_param) : 0)
3672 #endif
3673 #ifdef IEEE80211_SUPPORT_MESH
3674 		 + 2 + ni->ni_meshidlen
3675 		 + sizeof(struct ieee80211_meshconf_ie)
3676 #endif
3677 		 + IEEE80211_MAX_APPIE
3678 		 ;
3679 	m = ieee80211_getmgtframe(&frm,
3680 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3681 	if (m == NULL) {
3682 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3683 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3684 		vap->iv_stats.is_tx_nobuf++;
3685 		return NULL;
3686 	}
3687 	ieee80211_beacon_construct(m, frm, ni);
3688 
3689 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3690 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3691 	wh = mtod(m, struct ieee80211_frame *);
3692 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3693 	    IEEE80211_FC0_SUBTYPE_BEACON;
3694 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3695 	*(uint16_t *)wh->i_dur = 0;
3696 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3697 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3698 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3699 	*(uint16_t *)wh->i_seq = 0;
3700 
3701 	return m;
3702 }
3703 
3704 /*
3705  * Update the dynamic parts of a beacon frame based on the current state.
3706  */
3707 int
3708 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3709 {
3710 	struct ieee80211vap *vap = ni->ni_vap;
3711 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3712 	struct ieee80211com *ic = ni->ni_ic;
3713 	int len_changed = 0;
3714 	uint16_t capinfo;
3715 	struct ieee80211_frame *wh;
3716 	ieee80211_seq seqno;
3717 
3718 	IEEE80211_LOCK(ic);
3719 	/*
3720 	 * Handle 11h channel change when we've reached the count.
3721 	 * We must recalculate the beacon frame contents to account
3722 	 * for the new channel.  Note we do this only for the first
3723 	 * vap that reaches this point; subsequent vaps just update
3724 	 * their beacon state to reflect the recalculated channel.
3725 	 */
3726 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3727 	    vap->iv_csa_count == ic->ic_csa_count) {
3728 		vap->iv_csa_count = 0;
3729 		/*
3730 		 * Effect channel change before reconstructing the beacon
3731 		 * frame contents as many places reference ni_chan.
3732 		 */
3733 		if (ic->ic_csa_newchan != NULL)
3734 			ieee80211_csa_completeswitch(ic);
3735 		/*
3736 		 * NB: ieee80211_beacon_construct clears all pending
3737 		 * updates in bo_flags so we don't need to explicitly
3738 		 * clear IEEE80211_BEACON_CSA.
3739 		 */
3740 		ieee80211_beacon_construct(m,
3741 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3742 
3743 		/* XXX do WME aggressive mode processing? */
3744 		IEEE80211_UNLOCK(ic);
3745 		return 1;		/* just assume length changed */
3746 	}
3747 
3748 	/*
3749 	 * Handle the quiet time element being added and removed.
3750 	 * Again, for now we just cheat and reconstruct the whole
3751 	 * beacon - that way the gap is provided as appropriate.
3752 	 *
3753 	 * So, track whether we have already added the IE versus
3754 	 * whether we want to be adding the IE.
3755 	 */
3756 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3757 	    (vap->iv_quiet == 0)) {
3758 		/*
3759 		 * Quiet time beacon IE enabled, but it's disabled;
3760 		 * recalc
3761 		 */
3762 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3763 		ieee80211_beacon_construct(m,
3764 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3765 		/* XXX do WME aggressive mode processing? */
3766 		IEEE80211_UNLOCK(ic);
3767 		return 1;		/* just assume length changed */
3768 	}
3769 
3770 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3771 	    (vap->iv_quiet == 1)) {
3772 		/*
3773 		 * Quiet time beacon IE disabled, but it's now enabled;
3774 		 * recalc
3775 		 */
3776 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3777 		ieee80211_beacon_construct(m,
3778 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3779 		/* XXX do WME aggressive mode processing? */
3780 		IEEE80211_UNLOCK(ic);
3781 		return 1;		/* just assume length changed */
3782 	}
3783 
3784 	wh = mtod(m, struct ieee80211_frame *);
3785 
3786 	/*
3787 	 * XXX TODO Strictly speaking this should be incremented with the TX
3788 	 * lock held so as to serialise access to the non-qos TID sequence
3789 	 * number space.
3790 	 *
3791 	 * If the driver identifies it does its own TX seqno management then
3792 	 * we can skip this (and still not do the TX seqno.)
3793 	 */
3794 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3795 	*(uint16_t *)&wh->i_seq[0] =
3796 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3797 	M_SEQNO_SET(m, seqno);
3798 
3799 	/* XXX faster to recalculate entirely or just changes? */
3800 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3801 	*bo->bo_caps = htole16(capinfo);
3802 
3803 	if (vap->iv_flags & IEEE80211_F_WME) {
3804 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3805 
3806 		/*
3807 		 * Check for aggressive mode change.  When there is
3808 		 * significant high priority traffic in the BSS
3809 		 * throttle back BE traffic by using conservative
3810 		 * parameters.  Otherwise BE uses aggressive params
3811 		 * to optimize performance of legacy/non-QoS traffic.
3812 		 */
3813 		if (wme->wme_flags & WME_F_AGGRMODE) {
3814 			if (wme->wme_hipri_traffic >
3815 			    wme->wme_hipri_switch_thresh) {
3816 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3817 				    "%s: traffic %u, disable aggressive mode\n",
3818 				    __func__, wme->wme_hipri_traffic);
3819 				wme->wme_flags &= ~WME_F_AGGRMODE;
3820 				ieee80211_wme_updateparams_locked(vap);
3821 				wme->wme_hipri_traffic =
3822 					wme->wme_hipri_switch_hysteresis;
3823 			} else
3824 				wme->wme_hipri_traffic = 0;
3825 		} else {
3826 			if (wme->wme_hipri_traffic <=
3827 			    wme->wme_hipri_switch_thresh) {
3828 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3829 				    "%s: traffic %u, enable aggressive mode\n",
3830 				    __func__, wme->wme_hipri_traffic);
3831 				wme->wme_flags |= WME_F_AGGRMODE;
3832 				ieee80211_wme_updateparams_locked(vap);
3833 				wme->wme_hipri_traffic = 0;
3834 			} else
3835 				wme->wme_hipri_traffic =
3836 					wme->wme_hipri_switch_hysteresis;
3837 		}
3838 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3839 			(void) ieee80211_add_wme_param(bo->bo_wme, wme,
3840 			  vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3841 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3842 		}
3843 	}
3844 
3845 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3846 		ieee80211_ht_update_beacon(vap, bo);
3847 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3848 	}
3849 #ifdef IEEE80211_SUPPORT_TDMA
3850 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3851 		/*
3852 		 * NB: the beacon is potentially updated every TBTT.
3853 		 */
3854 		ieee80211_tdma_update_beacon(vap, bo);
3855 	}
3856 #endif
3857 #ifdef IEEE80211_SUPPORT_MESH
3858 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3859 		ieee80211_mesh_update_beacon(vap, bo);
3860 #endif
3861 
3862 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3863 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3864 		struct ieee80211_tim_ie *tie =
3865 			(struct ieee80211_tim_ie *) bo->bo_tim;
3866 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3867 			u_int timlen, timoff, i;
3868 			/*
3869 			 * ATIM/DTIM needs updating.  If it fits in the
3870 			 * current space allocated then just copy in the
3871 			 * new bits.  Otherwise we need to move any trailing
3872 			 * data to make room.  Note that we know there is
3873 			 * contiguous space because ieee80211_beacon_allocate
3874 			 * insures there is space in the mbuf to write a
3875 			 * maximal-size virtual bitmap (based on iv_max_aid).
3876 			 */
3877 			/*
3878 			 * Calculate the bitmap size and offset, copy any
3879 			 * trailer out of the way, and then copy in the
3880 			 * new bitmap and update the information element.
3881 			 * Note that the tim bitmap must contain at least
3882 			 * one byte and any offset must be even.
3883 			 */
3884 			if (vap->iv_ps_pending != 0) {
3885 				timoff = 128;		/* impossibly large */
3886 				for (i = 0; i < vap->iv_tim_len; i++)
3887 					if (vap->iv_tim_bitmap[i]) {
3888 						timoff = i &~ 1;
3889 						break;
3890 					}
3891 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3892 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3893 					if (vap->iv_tim_bitmap[i])
3894 						break;
3895 				timlen = 1 + (i - timoff);
3896 			} else {
3897 				timoff = 0;
3898 				timlen = 1;
3899 			}
3900 
3901 			/*
3902 			 * TODO: validate this!
3903 			 */
3904 			if (timlen != bo->bo_tim_len) {
3905 				/* copy up/down trailer */
3906 				int adjust = tie->tim_bitmap+timlen
3907 					   - bo->bo_tim_trailer;
3908 				ovbcopy(bo->bo_tim_trailer,
3909 				    bo->bo_tim_trailer+adjust,
3910 				    bo->bo_tim_trailer_len);
3911 				bo->bo_tim_trailer += adjust;
3912 				bo->bo_erp += adjust;
3913 				bo->bo_htinfo += adjust;
3914 				bo->bo_vhtinfo += adjust;
3915 #ifdef IEEE80211_SUPPORT_SUPERG
3916 				bo->bo_ath += adjust;
3917 #endif
3918 #ifdef IEEE80211_SUPPORT_TDMA
3919 				bo->bo_tdma += adjust;
3920 #endif
3921 #ifdef IEEE80211_SUPPORT_MESH
3922 				bo->bo_meshconf += adjust;
3923 #endif
3924 				bo->bo_appie += adjust;
3925 				bo->bo_wme += adjust;
3926 				bo->bo_csa += adjust;
3927 				bo->bo_quiet += adjust;
3928 				bo->bo_tim_len = timlen;
3929 
3930 				/* update information element */
3931 				tie->tim_len = 3 + timlen;
3932 				tie->tim_bitctl = timoff;
3933 				len_changed = 1;
3934 			}
3935 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3936 				bo->bo_tim_len);
3937 
3938 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3939 
3940 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3941 				"%s: TIM updated, pending %u, off %u, len %u\n",
3942 				__func__, vap->iv_ps_pending, timoff, timlen);
3943 		}
3944 		/* count down DTIM period */
3945 		if (tie->tim_count == 0)
3946 			tie->tim_count = tie->tim_period - 1;
3947 		else
3948 			tie->tim_count--;
3949 		/* update state for buffered multicast frames on DTIM */
3950 		if (mcast && tie->tim_count == 0)
3951 			tie->tim_bitctl |= 1;
3952 		else
3953 			tie->tim_bitctl &= ~1;
3954 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3955 			struct ieee80211_csa_ie *csa =
3956 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3957 
3958 			/*
3959 			 * Insert or update CSA ie.  If we're just starting
3960 			 * to count down to the channel switch then we need
3961 			 * to insert the CSA ie.  Otherwise we just need to
3962 			 * drop the count.  The actual change happens above
3963 			 * when the vap's count reaches the target count.
3964 			 */
3965 			if (vap->iv_csa_count == 0) {
3966 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3967 				bo->bo_erp += sizeof(*csa);
3968 				bo->bo_htinfo += sizeof(*csa);
3969 				bo->bo_vhtinfo += sizeof(*csa);
3970 				bo->bo_wme += sizeof(*csa);
3971 #ifdef IEEE80211_SUPPORT_SUPERG
3972 				bo->bo_ath += sizeof(*csa);
3973 #endif
3974 #ifdef IEEE80211_SUPPORT_TDMA
3975 				bo->bo_tdma += sizeof(*csa);
3976 #endif
3977 #ifdef IEEE80211_SUPPORT_MESH
3978 				bo->bo_meshconf += sizeof(*csa);
3979 #endif
3980 				bo->bo_appie += sizeof(*csa);
3981 				bo->bo_csa_trailer_len += sizeof(*csa);
3982 				bo->bo_quiet += sizeof(*csa);
3983 				bo->bo_tim_trailer_len += sizeof(*csa);
3984 				m->m_len += sizeof(*csa);
3985 				m->m_pkthdr.len += sizeof(*csa);
3986 
3987 				ieee80211_add_csa(bo->bo_csa, vap);
3988 			} else
3989 				csa->csa_count--;
3990 			vap->iv_csa_count++;
3991 			/* NB: don't clear IEEE80211_BEACON_CSA */
3992 		}
3993 
3994 		/*
3995 		 * Only add the quiet time IE if we've enabled it
3996 		 * as appropriate.
3997 		 */
3998 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3999 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4000 			if (vap->iv_quiet &&
4001 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4002 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4003 			}
4004 		}
4005 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4006 			/*
4007 			 * ERP element needs updating.
4008 			 */
4009 			(void) ieee80211_add_erp(bo->bo_erp, vap);
4010 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4011 		}
4012 #ifdef IEEE80211_SUPPORT_SUPERG
4013 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
4014 			ieee80211_add_athcaps(bo->bo_ath, ni);
4015 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4016 		}
4017 #endif
4018 	}
4019 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4020 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4021 		int aielen;
4022 		uint8_t *frm;
4023 
4024 		aielen = 0;
4025 		if (aie != NULL)
4026 			aielen += aie->ie_len;
4027 		if (aielen != bo->bo_appie_len) {
4028 			/* copy up/down trailer */
4029 			int adjust = aielen - bo->bo_appie_len;
4030 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4031 				bo->bo_tim_trailer_len);
4032 			bo->bo_tim_trailer += adjust;
4033 			bo->bo_appie += adjust;
4034 			bo->bo_appie_len = aielen;
4035 
4036 			len_changed = 1;
4037 		}
4038 		frm = bo->bo_appie;
4039 		if (aie != NULL)
4040 			frm  = add_appie(frm, aie);
4041 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4042 	}
4043 	IEEE80211_UNLOCK(ic);
4044 
4045 	return len_changed;
4046 }
4047 
4048 /*
4049  * Do Ethernet-LLC encapsulation for each payload in a fast frame
4050  * tunnel encapsulation.  The frame is assumed to have an Ethernet
4051  * header at the front that must be stripped before prepending the
4052  * LLC followed by the Ethernet header passed in (with an Ethernet
4053  * type that specifies the payload size).
4054  */
4055 struct mbuf *
4056 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4057 	const struct ether_header *eh)
4058 {
4059 	struct llc *llc;
4060 	uint16_t payload;
4061 
4062 	/* XXX optimize by combining m_adj+M_PREPEND */
4063 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4064 	llc = mtod(m, struct llc *);
4065 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4066 	llc->llc_control = LLC_UI;
4067 	llc->llc_snap.org_code[0] = 0;
4068 	llc->llc_snap.org_code[1] = 0;
4069 	llc->llc_snap.org_code[2] = 0;
4070 	llc->llc_snap.ether_type = eh->ether_type;
4071 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
4072 
4073 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
4074 	if (m == NULL) {		/* XXX cannot happen */
4075 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4076 			"%s: no space for ether_header\n", __func__);
4077 		vap->iv_stats.is_tx_nobuf++;
4078 		return NULL;
4079 	}
4080 	ETHER_HEADER_COPY(mtod(m, void *), eh);
4081 	mtod(m, struct ether_header *)->ether_type = htons(payload);
4082 	return m;
4083 }
4084 
4085 /*
4086  * Complete an mbuf transmission.
4087  *
4088  * For now, this simply processes a completed frame after the
4089  * driver has completed it's transmission and/or retransmission.
4090  * It assumes the frame is an 802.11 encapsulated frame.
4091  *
4092  * Later on it will grow to become the exit path for a given frame
4093  * from the driver and, depending upon how it's been encapsulated
4094  * and already transmitted, it may end up doing A-MPDU retransmission,
4095  * power save requeuing, etc.
4096  *
4097  * In order for the above to work, the driver entry point to this
4098  * must not hold any driver locks.  Thus, the driver needs to delay
4099  * any actual mbuf completion until it can release said locks.
4100  *
4101  * This frees the mbuf and if the mbuf has a node reference,
4102  * the node reference will be freed.
4103  */
4104 void
4105 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4106 {
4107 
4108 	if (ni != NULL) {
4109 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
4110 
4111 		if (status == 0) {
4112 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4113 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4114 			if (m->m_flags & M_MCAST)
4115 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4116 		} else
4117 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4118 		if (m->m_flags & M_TXCB)
4119 			ieee80211_process_callback(ni, m, status);
4120 		ieee80211_free_node(ni);
4121 	}
4122 	m_freem(m);
4123 }
4124