xref: /haiku/src/libs/compat/freebsd_wlan/net80211/ieee80211_output.c (revision b8a45b3a2df2379b4301bf3bd5949b9a105be4ba)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/if_vlan_var.h>
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_regdomain.h>
54 #ifdef IEEE80211_SUPPORT_SUPERG
55 #include <net80211/ieee80211_superg.h>
56 #endif
57 #ifdef IEEE80211_SUPPORT_TDMA
58 #include <net80211/ieee80211_tdma.h>
59 #endif
60 #include <net80211/ieee80211_wds.h>
61 #include <net80211/ieee80211_mesh.h>
62 #include <net80211/ieee80211_vht.h>
63 
64 #if defined(INET) || defined(INET6)
65 #include <netinet/in.h>
66 #endif
67 
68 #ifdef INET
69 #include <netinet/if_ether.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/ip.h>
72 #endif
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #endif
76 
77 #include <security/mac/mac_framework.h>
78 
79 #define	ETHER_HEADER_COPY(dst, src) \
80 	memcpy(dst, src, sizeof(struct ether_header))
81 
82 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
83 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
84 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
85 
86 #ifdef IEEE80211_DEBUG
87 /*
88  * Decide if an outbound management frame should be
89  * printed when debugging is enabled.  This filters some
90  * of the less interesting frames that come frequently
91  * (e.g. beacons).
92  */
93 static __inline int
94 doprint(struct ieee80211vap *vap, int subtype)
95 {
96 	switch (subtype) {
97 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
98 		return (vap->iv_opmode == IEEE80211_M_IBSS);
99 	}
100 	return 1;
101 }
102 #endif
103 
104 /*
105  * Transmit a frame to the given destination on the given VAP.
106  *
107  * It's up to the caller to figure out the details of who this
108  * is going to and resolving the node.
109  *
110  * This routine takes care of queuing it for power save,
111  * A-MPDU state stuff, fast-frames state stuff, encapsulation
112  * if required, then passing it up to the driver layer.
113  *
114  * This routine (for now) consumes the mbuf and frees the node
115  * reference; it ideally will return a TX status which reflects
116  * whether the mbuf was consumed or not, so the caller can
117  * free the mbuf (if appropriate) and the node reference (again,
118  * if appropriate.)
119  */
120 int
121 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
122     struct ieee80211_node *ni)
123 {
124 	struct ieee80211com *ic = vap->iv_ic;
125 	struct ifnet *ifp = vap->iv_ifp;
126 	int mcast;
127 	int do_ampdu = 0;
128 #ifdef IEEE80211_SUPPORT_SUPERG
129 	int do_amsdu = 0;
130 	int do_ampdu_amsdu = 0;
131 	int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
132 	int do_ff = 0;
133 #endif
134 
135 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
136 	    (m->m_flags & M_PWR_SAV) == 0) {
137 		/*
138 		 * Station in power save mode; pass the frame
139 		 * to the 802.11 layer and continue.  We'll get
140 		 * the frame back when the time is right.
141 		 * XXX lose WDS vap linkage?
142 		 */
143 		if (ieee80211_pwrsave(ni, m) != 0)
144 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
145 		ieee80211_free_node(ni);
146 
147 		/*
148 		 * We queued it fine, so tell the upper layer
149 		 * that we consumed it.
150 		 */
151 		return (0);
152 	}
153 	/* calculate priority so drivers can find the tx queue */
154 	if (ieee80211_classify(ni, m)) {
155 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
156 		    ni->ni_macaddr, NULL,
157 		    "%s", "classification failure");
158 		vap->iv_stats.is_tx_classify++;
159 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
160 		m_freem(m);
161 		ieee80211_free_node(ni);
162 
163 		/* XXX better status? */
164 		return (0);
165 	}
166 	/*
167 	 * Stash the node pointer.  Note that we do this after
168 	 * any call to ieee80211_dwds_mcast because that code
169 	 * uses any existing value for rcvif to identify the
170 	 * interface it (might have been) received on.
171 	 */
172 	//MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
173 	m->m_pkthdr.rcvif = (void *)ni;
174 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
175 
176 	BPF_MTAP(ifp, m);		/* 802.3 tx */
177 
178 	/*
179 	 * Figure out if we can do A-MPDU, A-MSDU or FF.
180 	 *
181 	 * A-MPDU depends upon vap/node config.
182 	 * A-MSDU depends upon vap/node config.
183 	 * FF depends upon vap config, IE and whether
184 	 *  it's 11abg (and not 11n/11ac/etc.)
185 	 *
186 	 * Note that these flags indiciate whether we can do
187 	 * it at all, rather than the situation (eg traffic type.)
188 	 */
189 	do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
190 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
191 #ifdef IEEE80211_SUPPORT_SUPERG
192 	do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
193 	    (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
194 	do_ff =
195 	    ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
196 	    ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
197 	    (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
198 #endif
199 
200 	/*
201 	 * Check if A-MPDU tx aggregation is setup or if we
202 	 * should try to enable it.  The sta must be associated
203 	 * with HT and A-MPDU enabled for use.  When the policy
204 	 * routine decides we should enable A-MPDU we issue an
205 	 * ADDBA request and wait for a reply.  The frame being
206 	 * encapsulated will go out w/o using A-MPDU, or possibly
207 	 * it might be collected by the driver and held/retransmit.
208 	 * The default ic_ampdu_enable routine handles staggering
209 	 * ADDBA requests in case the receiver NAK's us or we are
210 	 * otherwise unable to establish a BA stream.
211 	 *
212 	 * Don't treat group-addressed frames as candidates for aggregation;
213 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
214 	 * frames will always have sequence numbers allocated from the NON_QOS
215 	 * TID.
216 	 */
217 	if (do_ampdu) {
218 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
219 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
220 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
221 
222 			ieee80211_txampdu_count_packet(tap);
223 			if (IEEE80211_AMPDU_RUNNING(tap)) {
224 				/*
225 				 * Operational, mark frame for aggregation.
226 				 *
227 				 * XXX do tx aggregation here
228 				 */
229 				m->m_flags |= M_AMPDU_MPDU;
230 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
231 			    ic->ic_ampdu_enable(ni, tap)) {
232 				/*
233 				 * Not negotiated yet, request service.
234 				 */
235 				ieee80211_ampdu_request(ni, tap);
236 				/* XXX hold frame for reply? */
237 			}
238 			/*
239 			 * Now update the no-ampdu flag.  A-MPDU may have been
240 			 * started or administratively disabled above; so now we
241 			 * know whether we're running yet or not.
242 			 *
243 			 * This will let us know whether we should be doing A-MSDU
244 			 * at this point.  We only do A-MSDU if we're either not
245 			 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
246 			 * is available.
247 			 *
248 			 * Whilst here, update the amsdu-ampdu flag.  The above may
249 			 * have also set or cleared the amsdu-in-ampdu txa_flags
250 			 * combination so we can correctly do A-MPDU + A-MSDU.
251 			 */
252 #ifdef IEEE80211_SUPPORT_SUPERG
253 			no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
254 			    || (IEEE80211_AMPDU_NACKED(tap)));
255 			do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
256 #endif
257 		}
258 	}
259 
260 #ifdef IEEE80211_SUPPORT_SUPERG
261 	/*
262 	 * Check for AMSDU/FF; queue for aggregation
263 	 *
264 	 * Note: we don't bother trying to do fast frames or
265 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
266 	 * likely could do it for FF (because it's a magic
267 	 * atheros tunnel LLC type) but I don't think we're going
268 	 * to really need to.  For A-MSDU we'd have to set the
269 	 * A-MSDU QoS bit in the wifi header, so we just plain
270 	 * can't do it.
271 	 */
272 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
273 		if ((! mcast) &&
274 		    (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
275 		    ieee80211_amsdu_tx_ok(ni)) {
276 			m = ieee80211_amsdu_check(ni, m);
277 			if (m == NULL) {
278 				/* NB: any ni ref held on stageq */
279 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
280 				    "%s: amsdu_check queued frame\n",
281 				    __func__);
282 				return (0);
283 			}
284 		} else if ((! mcast) && do_ff) {
285 			m = ieee80211_ff_check(ni, m);
286 			if (m == NULL) {
287 				/* NB: any ni ref held on stageq */
288 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
289 				    "%s: ff_check queued frame\n",
290 				    __func__);
291 				return (0);
292 			}
293 		}
294 	}
295 #endif /* IEEE80211_SUPPORT_SUPERG */
296 
297 	/*
298 	 * Grab the TX lock - serialise the TX process from this
299 	 * point (where TX state is being checked/modified)
300 	 * through to driver queue.
301 	 */
302 	IEEE80211_TX_LOCK(ic);
303 
304 	/*
305 	 * XXX make the encap and transmit code a separate function
306 	 * so things like the FF (and later A-MSDU) path can just call
307 	 * it for flushed frames.
308 	 */
309 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
310 		/*
311 		 * Encapsulate the packet in prep for transmission.
312 		 */
313 		m = ieee80211_encap(vap, ni, m);
314 		if (m == NULL) {
315 			/* NB: stat+msg handled in ieee80211_encap */
316 			IEEE80211_TX_UNLOCK(ic);
317 			ieee80211_free_node(ni);
318 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
319 			return (ENOBUFS);
320 		}
321 	}
322 	(void) ieee80211_parent_xmitpkt(ic, m);
323 
324 	/*
325 	 * Unlock at this point - no need to hold it across
326 	 * ieee80211_free_node() (ie, the comlock)
327 	 */
328 	IEEE80211_TX_UNLOCK(ic);
329 	ic->ic_lastdata = ticks;
330 
331 	return (0);
332 }
333 
334 /*
335  * Send the given mbuf through the given vap.
336  *
337  * This consumes the mbuf regardless of whether the transmit
338  * was successful or not.
339  *
340  * This does none of the initial checks that ieee80211_start()
341  * does (eg CAC timeout, interface wakeup) - the caller must
342  * do this first.
343  */
344 static int
345 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
346 {
347 #define	IS_DWDS(vap) \
348 	(vap->iv_opmode == IEEE80211_M_WDS && \
349 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
350 	struct ieee80211com *ic = vap->iv_ic;
351 	struct ifnet *ifp = vap->iv_ifp;
352 	struct ieee80211_node *ni;
353 	struct ether_header *eh;
354 
355 	/*
356 	 * Cancel any background scan.
357 	 */
358 	if (ic->ic_flags & IEEE80211_F_SCAN)
359 		ieee80211_cancel_anyscan(vap);
360 	/*
361 	 * Find the node for the destination so we can do
362 	 * things like power save and fast frames aggregation.
363 	 *
364 	 * NB: past this point various code assumes the first
365 	 *     mbuf has the 802.3 header present (and contiguous).
366 	 */
367 	ni = NULL;
368 	if (m->m_len < sizeof(struct ether_header) &&
369 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
370 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
371 		    "discard frame, %s\n", "m_pullup failed");
372 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
373 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374 		return (ENOBUFS);
375 	}
376 	eh = mtod(m, struct ether_header *);
377 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
378 		if (IS_DWDS(vap)) {
379 			/*
380 			 * Only unicast frames from the above go out
381 			 * DWDS vaps; multicast frames are handled by
382 			 * dispatching the frame as it comes through
383 			 * the AP vap (see below).
384 			 */
385 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
386 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
387 			vap->iv_stats.is_dwds_mcast++;
388 			m_freem(m);
389 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
390 			/* XXX better status? */
391 			return (ENOBUFS);
392 		}
393 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
394 			/*
395 			 * Spam DWDS vap's w/ multicast traffic.
396 			 */
397 			/* XXX only if dwds in use? */
398 			ieee80211_dwds_mcast(vap, m);
399 		}
400 	}
401 #ifdef IEEE80211_SUPPORT_MESH
402 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
403 #endif
404 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
405 		if (ni == NULL) {
406 			/* NB: ieee80211_find_txnode does stat+msg */
407 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
408 			m_freem(m);
409 			/* XXX better status? */
410 			return (ENOBUFS);
411 		}
412 		if (ni->ni_associd == 0 &&
413 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
414 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
415 			    eh->ether_dhost, NULL,
416 			    "sta not associated (type 0x%04x)",
417 			    htons(eh->ether_type));
418 			vap->iv_stats.is_tx_notassoc++;
419 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
420 			m_freem(m);
421 			ieee80211_free_node(ni);
422 			/* XXX better status? */
423 			return (ENOBUFS);
424 		}
425 #ifdef IEEE80211_SUPPORT_MESH
426 	} else {
427 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
428 			/*
429 			 * Proxy station only if configured.
430 			 */
431 			if (!ieee80211_mesh_isproxyena(vap)) {
432 				IEEE80211_DISCARD_MAC(vap,
433 				    IEEE80211_MSG_OUTPUT |
434 				    IEEE80211_MSG_MESH,
435 				    eh->ether_dhost, NULL,
436 				    "%s", "proxy not enabled");
437 				vap->iv_stats.is_mesh_notproxy++;
438 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
439 				m_freem(m);
440 				/* XXX better status? */
441 				return (ENOBUFS);
442 			}
443 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
444 			    "forward frame from DS SA(%6D), DA(%6D)\n",
445 			    eh->ether_shost, ":",
446 			    eh->ether_dhost, ":");
447 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
448 		}
449 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
450 		if (ni == NULL) {
451 			/*
452 			 * NB: ieee80211_mesh_discover holds/disposes
453 			 * frame (e.g. queueing on path discovery).
454 			 */
455 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
456 			/* XXX better status? */
457 			return (ENOBUFS);
458 		}
459 	}
460 #endif
461 
462 	/*
463 	 * We've resolved the sender, so attempt to transmit it.
464 	 */
465 
466 	if (vap->iv_state == IEEE80211_S_SLEEP) {
467 		/*
468 		 * In power save; queue frame and then  wakeup device
469 		 * for transmit.
470 		 */
471 		ic->ic_lastdata = ticks;
472 		if (ieee80211_pwrsave(ni, m) != 0)
473 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
474 		ieee80211_free_node(ni);
475 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
476 		return (0);
477 	}
478 
479 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
480 		return (ENOBUFS);
481 	return (0);
482 #undef	IS_DWDS
483 }
484 
485 /*
486  * Start method for vap's.  All packets from the stack come
487  * through here.  We handle common processing of the packets
488  * before dispatching them to the underlying device.
489  *
490  * if_transmit() requires that the mbuf be consumed by this call
491  * regardless of the return condition.
492  */
493 int
494 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
495 {
496 	struct ieee80211vap *vap = ifp->if_softc;
497 	struct ieee80211com *ic = vap->iv_ic;
498 
499 	/*
500 	 * No data frames go out unless we're running.
501 	 * Note in particular this covers CAC and CSA
502 	 * states (though maybe we should check muting
503 	 * for CSA).
504 	 */
505 	if (vap->iv_state != IEEE80211_S_RUN &&
506 	    vap->iv_state != IEEE80211_S_SLEEP) {
507 		IEEE80211_LOCK(ic);
508 		/* re-check under the com lock to avoid races */
509 		if (vap->iv_state != IEEE80211_S_RUN &&
510 		    vap->iv_state != IEEE80211_S_SLEEP) {
511 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
512 			    "%s: ignore queue, in %s state\n",
513 			    __func__, ieee80211_state_name[vap->iv_state]);
514 			vap->iv_stats.is_tx_badstate++;
515 			IEEE80211_UNLOCK(ic);
516 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
517 			m_freem(m);
518 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
519 			return (ENETDOWN);
520 		}
521 		IEEE80211_UNLOCK(ic);
522 	}
523 
524 	/*
525 	 * Sanitize mbuf flags for net80211 use.  We cannot
526 	 * clear M_PWR_SAV or M_MORE_DATA because these may
527 	 * be set for frames that are re-submitted from the
528 	 * power save queue.
529 	 *
530 	 * NB: This must be done before ieee80211_classify as
531 	 *     it marks EAPOL in frames with M_EAPOL.
532 	 */
533 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
534 
535 	/*
536 	 * Bump to the packet transmission path.
537 	 * The mbuf will be consumed here.
538 	 */
539 	return (ieee80211_start_pkt(vap, m));
540 }
541 
542 void
543 ieee80211_vap_qflush(struct ifnet *ifp)
544 {
545 
546 	/* Empty for now */
547 }
548 
549 /*
550  * 802.11 raw output routine.
551  *
552  * XXX TODO: this (and other send routines) should correctly
553  * XXX keep the pwr mgmt bit set if it decides to call into the
554  * XXX driver to send a frame whilst the state is SLEEP.
555  *
556  * Otherwise the peer may decide that we're awake and flood us
557  * with traffic we are still too asleep to receive!
558  */
559 int
560 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
561     struct mbuf *m, const struct ieee80211_bpf_params *params)
562 {
563 	struct ieee80211com *ic = vap->iv_ic;
564 	int error;
565 
566 	/*
567 	 * Set node - the caller has taken a reference, so ensure
568 	 * that the mbuf has the same node value that
569 	 * it would if it were going via the normal path.
570 	 */
571 	//MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
572 	m->m_pkthdr.rcvif = (void *)ni;
573 
574 	/*
575 	 * Attempt to add bpf transmit parameters.
576 	 *
577 	 * For now it's ok to fail; the raw_xmit api still takes
578 	 * them as an option.
579 	 *
580 	 * Later on when ic_raw_xmit() has params removed,
581 	 * they'll have to be added - so fail the transmit if
582 	 * they can't be.
583 	 */
584 	if (params)
585 		(void) ieee80211_add_xmit_params(m, params);
586 
587 	error = ic->ic_raw_xmit(ni, m, params);
588 	if (error) {
589 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
590 		ieee80211_free_node(ni);
591 	}
592 	return (error);
593 }
594 
595 static int
596 ieee80211_validate_frame(struct mbuf *m,
597     const struct ieee80211_bpf_params *params)
598 {
599 	struct ieee80211_frame *wh;
600 	int type;
601 
602 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
603 		return (EINVAL);
604 
605 	wh = mtod(m, struct ieee80211_frame *);
606 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
607 	    IEEE80211_FC0_VERSION_0)
608 		return (EINVAL);
609 
610 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
611 	if (type != IEEE80211_FC0_TYPE_DATA) {
612 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
613 		    IEEE80211_FC1_DIR_NODS)
614 			return (EINVAL);
615 
616 		if (type != IEEE80211_FC0_TYPE_MGT &&
617 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
618 			return (EINVAL);
619 
620 		/* XXX skip other field checks? */
621 	}
622 
623 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
624 	    (IEEE80211_IS_PROTECTED(wh))) {
625 		int subtype;
626 
627 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
628 
629 		/*
630 		 * See IEEE Std 802.11-2012,
631 		 * 8.2.4.1.9 'Protected Frame field'
632 		 */
633 		/* XXX no support for robust management frames yet. */
634 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
635 		    (type == IEEE80211_FC0_TYPE_MGT &&
636 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
637 			return (EINVAL);
638 
639 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
640 	}
641 
642 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
643 		return (EINVAL);
644 
645 	return (0);
646 }
647 
648 static int
649 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
650 {
651 	struct ieee80211com *ic = ni->ni_ic;
652 
653 	if (IEEE80211_IS_HT_RATE(rate)) {
654 		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
655 			return (EINVAL);
656 
657 		rate = IEEE80211_RV(rate);
658 		if (rate <= 31) {
659 			if (rate > ic->ic_txstream * 8 - 1)
660 				return (EINVAL);
661 
662 			return (0);
663 		}
664 
665 		if (rate == 32) {
666 			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
667 				return (EINVAL);
668 
669 			return (0);
670 		}
671 
672 		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
673 			return (EINVAL);
674 
675 		switch (ic->ic_txstream) {
676 		case 0:
677 		case 1:
678 			return (EINVAL);
679 		case 2:
680 			if (rate > 38)
681 				return (EINVAL);
682 
683 			return (0);
684 		case 3:
685 			if (rate > 52)
686 				return (EINVAL);
687 
688 			return (0);
689 		case 4:
690 		default:
691 			if (rate > 76)
692 				return (EINVAL);
693 
694 			return (0);
695 		}
696 	}
697 
698 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
699 		return (EINVAL);
700 
701 	return (0);
702 }
703 
704 static int
705 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
706     const struct ieee80211_bpf_params *params)
707 {
708 	int error;
709 
710 	if (!params)
711 		return (0);	/* nothing to do */
712 
713 	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
714 	if (params->ibp_rate0 != 0) {
715 		error = ieee80211_validate_rate(ni, params->ibp_rate0);
716 		if (error != 0)
717 			return (error);
718 	} else {
719 		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
720 		/* XXX __DECONST? */
721 		(void) m;
722 	}
723 
724 	if (params->ibp_rate1 != 0 &&
725 	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
726 		return (error);
727 
728 	if (params->ibp_rate2 != 0 &&
729 	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
730 		return (error);
731 
732 	if (params->ibp_rate3 != 0 &&
733 	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
734 		return (error);
735 
736 	return (0);
737 }
738 
739 /*
740  * 802.11 output routine. This is (currently) used only to
741  * connect bpf write calls to the 802.11 layer for injecting
742  * raw 802.11 frames.
743  */
744 int
745 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
746 	const struct sockaddr *dst, struct route *ro)
747 {
748 #define senderr(e) do { error = (e); goto bad;} while (0)
749 	const struct ieee80211_bpf_params *params = NULL;
750 	struct ieee80211_node *ni = NULL;
751 	struct ieee80211vap *vap;
752 	struct ieee80211_frame *wh;
753 	struct ieee80211com *ic = NULL;
754 	int error;
755 	int ret;
756 
757 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
758 		/*
759 		 * Short-circuit requests if the vap is marked OACTIVE
760 		 * as this can happen because a packet came down through
761 		 * ieee80211_start before the vap entered RUN state in
762 		 * which case it's ok to just drop the frame.  This
763 		 * should not be necessary but callers of if_output don't
764 		 * check OACTIVE.
765 		 */
766 		senderr(ENETDOWN);
767 	}
768 	vap = ifp->if_softc;
769 	ic = vap->iv_ic;
770 	/*
771 	 * Hand to the 802.3 code if not tagged as
772 	 * a raw 802.11 frame.
773 	 */
774 #ifdef __HAIKU__
775 	// FIXME why is this different on Haiku?
776 	if (!dst || dst->sa_family != AF_IEEE80211)
777 		return ieee80211_vap_xmitpkt(vap, m);
778 #else
779 	if (dst->sa_family != AF_IEEE80211)
780 		return vap->iv_output(ifp, m, dst, ro);
781 #endif
782 #ifdef MAC
783 	error = mac_ifnet_check_transmit(ifp, m);
784 	if (error)
785 		senderr(error);
786 #endif
787 	if (ifp->if_flags & IFF_MONITOR)
788 		senderr(ENETDOWN);
789 	if (!IFNET_IS_UP_RUNNING(ifp))
790 		senderr(ENETDOWN);
791 	if (vap->iv_state == IEEE80211_S_CAC) {
792 		IEEE80211_DPRINTF(vap,
793 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
794 		    "block %s frame in CAC state\n", "raw data");
795 		vap->iv_stats.is_tx_badstate++;
796 		senderr(EIO);		/* XXX */
797 	} else if (vap->iv_state == IEEE80211_S_SCAN)
798 		senderr(EIO);
799 	/* XXX bypass bridge, pfil, carp, etc. */
800 
801 	/*
802 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
803 	 * present by setting the sa_len field of the sockaddr (yes,
804 	 * this is a hack).
805 	 * NB: we assume sa_data is suitably aligned to cast.
806 	 */
807 	if (dst->sa_len != 0)
808 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
809 
810 	error = ieee80211_validate_frame(m, params);
811 	if (error != 0)
812 		senderr(error);
813 
814 	wh = mtod(m, struct ieee80211_frame *);
815 
816 	/* locate destination node */
817 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
818 	case IEEE80211_FC1_DIR_NODS:
819 	case IEEE80211_FC1_DIR_FROMDS:
820 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
821 		break;
822 	case IEEE80211_FC1_DIR_TODS:
823 	case IEEE80211_FC1_DIR_DSTODS:
824 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
825 		break;
826 	default:
827 		senderr(EDOOFUS);
828 	}
829 	if (ni == NULL) {
830 		/*
831 		 * Permit packets w/ bpf params through regardless
832 		 * (see below about sa_len).
833 		 */
834 		if (dst->sa_len == 0)
835 			senderr(EHOSTUNREACH);
836 		ni = ieee80211_ref_node(vap->iv_bss);
837 	}
838 
839 	/*
840 	 * Sanitize mbuf for net80211 flags leaked from above.
841 	 *
842 	 * NB: This must be done before ieee80211_classify as
843 	 *     it marks EAPOL in frames with M_EAPOL.
844 	 */
845 	m->m_flags &= ~M_80211_TX;
846 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
847 
848 	if (IEEE80211_IS_DATA(wh)) {
849 		/* calculate priority so drivers can find the tx queue */
850 		if (ieee80211_classify(ni, m))
851 			senderr(EIO);		/* XXX */
852 
853 		/* NB: ieee80211_encap does not include 802.11 header */
854 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
855 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
856 	} else
857 		M_WME_SETAC(m, WME_AC_BE);
858 
859 	error = ieee80211_sanitize_rates(ni, m, params);
860 	if (error != 0)
861 		senderr(error);
862 
863 	IEEE80211_NODE_STAT(ni, tx_data);
864 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
865 		IEEE80211_NODE_STAT(ni, tx_mcast);
866 		m->m_flags |= M_MCAST;
867 	} else
868 		IEEE80211_NODE_STAT(ni, tx_ucast);
869 
870 	IEEE80211_TX_LOCK(ic);
871 	ret = ieee80211_raw_output(vap, ni, m, params);
872 	IEEE80211_TX_UNLOCK(ic);
873 	return (ret);
874 bad:
875 	if (m != NULL)
876 		m_freem(m);
877 	if (ni != NULL)
878 		ieee80211_free_node(ni);
879 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
880 	return error;
881 #undef senderr
882 }
883 
884 /*
885  * Set the direction field and address fields of an outgoing
886  * frame.  Note this should be called early on in constructing
887  * a frame as it sets i_fc[1]; other bits can then be or'd in.
888  */
889 void
890 ieee80211_send_setup(
891 	struct ieee80211_node *ni,
892 	struct mbuf *m,
893 	int type, int tid,
894 	const uint8_t sa[IEEE80211_ADDR_LEN],
895 	const uint8_t da[IEEE80211_ADDR_LEN],
896 	const uint8_t bssid[IEEE80211_ADDR_LEN])
897 {
898 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
899 	struct ieee80211vap *vap = ni->ni_vap;
900 	struct ieee80211_tx_ampdu *tap;
901 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
902 	ieee80211_seq seqno;
903 
904 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
905 
906 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
907 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
908 		switch (vap->iv_opmode) {
909 		case IEEE80211_M_STA:
910 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
911 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
912 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
913 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
914 			break;
915 		case IEEE80211_M_IBSS:
916 		case IEEE80211_M_AHDEMO:
917 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
918 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
919 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
920 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
921 			break;
922 		case IEEE80211_M_HOSTAP:
923 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
924 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
925 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
926 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
927 			break;
928 		case IEEE80211_M_WDS:
929 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
930 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
931 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
932 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
933 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
934 			break;
935 		case IEEE80211_M_MBSS:
936 #ifdef IEEE80211_SUPPORT_MESH
937 			if (IEEE80211_IS_MULTICAST(da)) {
938 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
939 				/* XXX next hop */
940 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
941 				IEEE80211_ADDR_COPY(wh->i_addr2,
942 				    vap->iv_myaddr);
943 			} else {
944 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
945 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
946 				IEEE80211_ADDR_COPY(wh->i_addr2,
947 				    vap->iv_myaddr);
948 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
949 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
950 			}
951 #endif
952 			break;
953 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
954 			break;
955 		}
956 	} else {
957 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
958 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
959 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
960 #ifdef IEEE80211_SUPPORT_MESH
961 		if (vap->iv_opmode == IEEE80211_M_MBSS)
962 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
963 		else
964 #endif
965 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
966 	}
967 	*(uint16_t *)&wh->i_dur[0] = 0;
968 
969 	/*
970 	 * XXX TODO: this is what the TX lock is for.
971 	 * Here we're incrementing sequence numbers, and they
972 	 * need to be in lock-step with what the driver is doing
973 	 * both in TX ordering and crypto encap (IV increment.)
974 	 *
975 	 * If the driver does seqno itself, then we can skip
976 	 * assigning sequence numbers here, and we can avoid
977 	 * requiring the TX lock.
978 	 */
979 	tap = &ni->ni_tx_ampdu[tid];
980 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
981 		m->m_flags |= M_AMPDU_MPDU;
982 
983 		/* NB: zero out i_seq field (for s/w encryption etc) */
984 		*(uint16_t *)&wh->i_seq[0] = 0;
985 	} else {
986 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
987 				      type & IEEE80211_FC0_SUBTYPE_MASK))
988 			/*
989 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
990 			 * come out of a different seqno space.
991 			 */
992 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
993 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
994 			} else {
995 				seqno = ni->ni_txseqs[tid]++;
996 			}
997 		else
998 			seqno = 0;
999 
1000 		*(uint16_t *)&wh->i_seq[0] =
1001 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1002 		M_SEQNO_SET(m, seqno);
1003 	}
1004 
1005 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1006 		m->m_flags |= M_MCAST;
1007 #undef WH4
1008 }
1009 
1010 /*
1011  * Send a management frame to the specified node.  The node pointer
1012  * must have a reference as the pointer will be passed to the driver
1013  * and potentially held for a long time.  If the frame is successfully
1014  * dispatched to the driver, then it is responsible for freeing the
1015  * reference (and potentially free'ing up any associated storage);
1016  * otherwise deal with reclaiming any reference (on error).
1017  */
1018 int
1019 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
1020 	struct ieee80211_bpf_params *params)
1021 {
1022 	struct ieee80211vap *vap = ni->ni_vap;
1023 	struct ieee80211com *ic = ni->ni_ic;
1024 	struct ieee80211_frame *wh;
1025 	int ret;
1026 
1027 	KASSERT(ni != NULL, ("null node"));
1028 
1029 	if (vap->iv_state == IEEE80211_S_CAC) {
1030 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1031 		    ni, "block %s frame in CAC state",
1032 			ieee80211_mgt_subtype_name(type));
1033 		vap->iv_stats.is_tx_badstate++;
1034 		ieee80211_free_node(ni);
1035 		m_freem(m);
1036 		return EIO;		/* XXX */
1037 	}
1038 
1039 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
1040 	if (m == NULL) {
1041 		ieee80211_free_node(ni);
1042 		return ENOMEM;
1043 	}
1044 
1045 	IEEE80211_TX_LOCK(ic);
1046 
1047 	wh = mtod(m, struct ieee80211_frame *);
1048 	ieee80211_send_setup(ni, m,
1049 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1050 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1051 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1052 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1053 		    "encrypting frame (%s)", __func__);
1054 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1055 	}
1056 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1057 
1058 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1059 	M_WME_SETAC(m, params->ibp_pri);
1060 
1061 #ifdef IEEE80211_DEBUG
1062 	/* avoid printing too many frames */
1063 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1064 	    ieee80211_msg_dumppkts(vap)) {
1065 		ieee80211_note(vap, "[%s] send %s on channel %u\n",
1066 		    ether_sprintf(wh->i_addr1),
1067 		    ieee80211_mgt_subtype_name(type),
1068 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
1069 	}
1070 #endif
1071 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1072 
1073 	ret = ieee80211_raw_output(vap, ni, m, params);
1074 	IEEE80211_TX_UNLOCK(ic);
1075 	return (ret);
1076 }
1077 
1078 static void
1079 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1080     int status)
1081 {
1082 	struct ieee80211vap *vap = ni->ni_vap;
1083 
1084 	wakeup(vap);
1085 }
1086 
1087 /*
1088  * Send a null data frame to the specified node.  If the station
1089  * is setup for QoS then a QoS Null Data frame is constructed.
1090  * If this is a WDS station then a 4-address frame is constructed.
1091  *
1092  * NB: the caller is assumed to have setup a node reference
1093  *     for use; this is necessary to deal with a race condition
1094  *     when probing for inactive stations.  Like ieee80211_mgmt_output
1095  *     we must cleanup any node reference on error;  however we
1096  *     can safely just unref it as we know it will never be the
1097  *     last reference to the node.
1098  */
1099 int
1100 ieee80211_send_nulldata(struct ieee80211_node *ni)
1101 {
1102 	struct ieee80211vap *vap = ni->ni_vap;
1103 	struct ieee80211com *ic = ni->ni_ic;
1104 	struct mbuf *m;
1105 	struct ieee80211_frame *wh;
1106 	int hdrlen;
1107 	uint8_t *frm;
1108 	int ret;
1109 
1110 	if (vap->iv_state == IEEE80211_S_CAC) {
1111 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1112 		    ni, "block %s frame in CAC state", "null data");
1113 		ieee80211_node_decref(ni);
1114 		vap->iv_stats.is_tx_badstate++;
1115 		return EIO;		/* XXX */
1116 	}
1117 
1118 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1119 		hdrlen = sizeof(struct ieee80211_qosframe);
1120 	else
1121 		hdrlen = sizeof(struct ieee80211_frame);
1122 	/* NB: only WDS vap's get 4-address frames */
1123 	if (vap->iv_opmode == IEEE80211_M_WDS)
1124 		hdrlen += IEEE80211_ADDR_LEN;
1125 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1126 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1127 
1128 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1129 	if (m == NULL) {
1130 		/* XXX debug msg */
1131 		ieee80211_node_decref(ni);
1132 		vap->iv_stats.is_tx_nobuf++;
1133 		return ENOMEM;
1134 	}
1135 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1136 	    ("leading space %zd", M_LEADINGSPACE(m)));
1137 	M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT);
1138 	if (m == NULL) {
1139 		/* NB: cannot happen */
1140 		ieee80211_free_node(ni);
1141 		return ENOMEM;
1142 	}
1143 
1144 	IEEE80211_TX_LOCK(ic);
1145 
1146 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1147 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1148 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1149 		uint8_t *qos;
1150 
1151 		ieee80211_send_setup(ni, m,
1152 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1153 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1154 
1155 		if (vap->iv_opmode == IEEE80211_M_WDS)
1156 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1157 		else
1158 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1159 		qos[0] = tid & IEEE80211_QOS_TID;
1160 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1161 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1162 		qos[1] = 0;
1163 	} else {
1164 		ieee80211_send_setup(ni, m,
1165 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1166 		    IEEE80211_NONQOS_TID,
1167 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1168 	}
1169 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1170 		/* NB: power management bit is never sent by an AP */
1171 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1172 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1173 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1174 	}
1175 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1176 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1177 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1178 		    NULL);
1179 	}
1180 	m->m_len = m->m_pkthdr.len = hdrlen;
1181 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1182 
1183 	M_WME_SETAC(m, WME_AC_BE);
1184 
1185 	IEEE80211_NODE_STAT(ni, tx_data);
1186 
1187 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1188 	    "send %snull data frame on channel %u, pwr mgt %s",
1189 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1190 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1191 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1192 
1193 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1194 	IEEE80211_TX_UNLOCK(ic);
1195 	return (ret);
1196 }
1197 
1198 /*
1199  * Assign priority to a frame based on any vlan tag assigned
1200  * to the station and/or any Diffserv setting in an IP header.
1201  * Finally, if an ACM policy is setup (in station mode) it's
1202  * applied.
1203  */
1204 int
1205 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1206 {
1207 	const struct ether_header *eh = NULL;
1208 	uint16_t ether_type;
1209 	int v_wme_ac, d_wme_ac, ac;
1210 
1211 	if (__predict_false(m->m_flags & M_ENCAP)) {
1212 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1213 		struct llc *llc;
1214 		int hdrlen, subtype;
1215 
1216 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1217 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1218 			ac = WME_AC_BE;
1219 			goto done;
1220 		}
1221 
1222 		hdrlen = ieee80211_hdrsize(wh);
1223 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1224 			return 1;
1225 
1226 		llc = (struct llc *)mtodo(m, hdrlen);
1227 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1228 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1229 		    llc->llc_control != LLC_UI ||
1230 		    llc->llc_snap.org_code[0] != 0 ||
1231 		    llc->llc_snap.org_code[1] != 0 ||
1232 		    llc->llc_snap.org_code[2] != 0)
1233 			return 1;
1234 
1235 		ether_type = llc->llc_snap.ether_type;
1236 	} else {
1237 		eh = mtod(m, struct ether_header *);
1238 		ether_type = eh->ether_type;
1239 	}
1240 
1241 	/*
1242 	 * Always promote PAE/EAPOL frames to high priority.
1243 	 */
1244 	if (ether_type == htons(ETHERTYPE_PAE)) {
1245 		/* NB: mark so others don't need to check header */
1246 		m->m_flags |= M_EAPOL;
1247 		ac = WME_AC_VO;
1248 		goto done;
1249 	}
1250 	/*
1251 	 * Non-qos traffic goes to BE.
1252 	 */
1253 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1254 		ac = WME_AC_BE;
1255 		goto done;
1256 	}
1257 
1258 	/*
1259 	 * If node has a vlan tag then all traffic
1260 	 * to it must have a matching tag.
1261 	 */
1262 	v_wme_ac = 0;
1263 	if (ni->ni_vlan != 0) {
1264 		 if ((m->m_flags & M_VLANTAG) == 0) {
1265 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1266 			return 1;
1267 		}
1268 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1269 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1270 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1271 			return 1;
1272 		}
1273 		/* map vlan priority to AC */
1274 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1275 	}
1276 
1277 	if (eh == NULL)
1278 		goto no_eh;
1279 
1280 	/* XXX m_copydata may be too slow for fast path */
1281 	switch (ntohs(eh->ether_type)) {
1282 #ifdef INET
1283 	case ETHERTYPE_IP:
1284 	{
1285 		uint8_t tos;
1286 		/*
1287 		 * IP frame, map the DSCP bits from the TOS field.
1288 		 */
1289 		/* NB: ip header may not be in first mbuf */
1290 		m_copydata(m, sizeof(struct ether_header) +
1291 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1292 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1293 		d_wme_ac = TID_TO_WME_AC(tos);
1294 		break;
1295 	}
1296 #endif
1297 #ifdef INET6
1298 	case ETHERTYPE_IPV6:
1299 	{
1300 		uint32_t flow;
1301 		uint8_t tos;
1302 		/*
1303 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1304 		 */
1305 		m_copydata(m, sizeof(struct ether_header) +
1306 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1307 		    (caddr_t) &flow);
1308 		tos = (uint8_t)(ntohl(flow) >> 20);
1309 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1310 		d_wme_ac = TID_TO_WME_AC(tos);
1311 		break;
1312 	}
1313 #endif
1314 	default:
1315 no_eh:
1316 		d_wme_ac = WME_AC_BE;
1317 		break;
1318 	}
1319 
1320 	/*
1321 	 * Use highest priority AC.
1322 	 */
1323 	if (v_wme_ac > d_wme_ac)
1324 		ac = v_wme_ac;
1325 	else
1326 		ac = d_wme_ac;
1327 
1328 	/*
1329 	 * Apply ACM policy.
1330 	 */
1331 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1332 		static const int acmap[4] = {
1333 			WME_AC_BK,	/* WME_AC_BE */
1334 			WME_AC_BK,	/* WME_AC_BK */
1335 			WME_AC_BE,	/* WME_AC_VI */
1336 			WME_AC_VI,	/* WME_AC_VO */
1337 		};
1338 		struct ieee80211com *ic = ni->ni_ic;
1339 
1340 		while (ac != WME_AC_BK &&
1341 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1342 			ac = acmap[ac];
1343 	}
1344 done:
1345 	M_WME_SETAC(m, ac);
1346 	return 0;
1347 }
1348 
1349 /*
1350  * Insure there is sufficient contiguous space to encapsulate the
1351  * 802.11 data frame.  If room isn't already there, arrange for it.
1352  * Drivers and cipher modules assume we have done the necessary work
1353  * and fail rudely if they don't find the space they need.
1354  */
1355 struct mbuf *
1356 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1357 	struct ieee80211_key *key, struct mbuf *m)
1358 {
1359 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1360 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1361 
1362 	if (key != NULL) {
1363 		/* XXX belongs in crypto code? */
1364 		needed_space += key->wk_cipher->ic_header;
1365 		/* XXX frags */
1366 		/*
1367 		 * When crypto is being done in the host we must insure
1368 		 * the data are writable for the cipher routines; clone
1369 		 * a writable mbuf chain.
1370 		 * XXX handle SWMIC specially
1371 		 */
1372 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1373 			m = m_unshare(m, IEEE80211_M_NOWAIT);
1374 			if (m == NULL) {
1375 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1376 				    "%s: cannot get writable mbuf\n", __func__);
1377 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1378 				return NULL;
1379 			}
1380 		}
1381 	}
1382 	/*
1383 	 * We know we are called just before stripping an Ethernet
1384 	 * header and prepending an LLC header.  This means we know
1385 	 * there will be
1386 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1387 	 * bytes recovered to which we need additional space for the
1388 	 * 802.11 header and any crypto header.
1389 	 */
1390 	/* XXX check trailing space and copy instead? */
1391 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1392 		struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type);
1393 		if (n == NULL) {
1394 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1395 			    "%s: cannot expand storage\n", __func__);
1396 			vap->iv_stats.is_tx_nobuf++;
1397 			m_freem(m);
1398 			return NULL;
1399 		}
1400 		KASSERT(needed_space <= MHLEN,
1401 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1402 		/*
1403 		 * Setup new mbuf to have leading space to prepend the
1404 		 * 802.11 header and any crypto header bits that are
1405 		 * required (the latter are added when the driver calls
1406 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1407 		 */
1408 		/* NB: must be first 'cuz it clobbers m_data */
1409 		m_move_pkthdr(n, m);
1410 		n->m_len = 0;			/* NB: m_gethdr does not set */
1411 		n->m_data += needed_space;
1412 		/*
1413 		 * Pull up Ethernet header to create the expected layout.
1414 		 * We could use m_pullup but that's overkill (i.e. we don't
1415 		 * need the actual data) and it cannot fail so do it inline
1416 		 * for speed.
1417 		 */
1418 		/* NB: struct ether_header is known to be contiguous */
1419 		n->m_len += sizeof(struct ether_header);
1420 		m->m_len -= sizeof(struct ether_header);
1421 		m->m_data += sizeof(struct ether_header);
1422 		/*
1423 		 * Replace the head of the chain.
1424 		 */
1425 		n->m_next = m;
1426 		m = n;
1427 	}
1428 	return m;
1429 #undef TO_BE_RECLAIMED
1430 }
1431 
1432 /*
1433  * Return the transmit key to use in sending a unicast frame.
1434  * If a unicast key is set we use that.  When no unicast key is set
1435  * we fall back to the default transmit key.
1436  */
1437 static __inline struct ieee80211_key *
1438 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1439 	struct ieee80211_node *ni)
1440 {
1441 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1442 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1443 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1444 			return NULL;
1445 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1446 	} else {
1447 		return &ni->ni_ucastkey;
1448 	}
1449 }
1450 
1451 /*
1452  * Return the transmit key to use in sending a multicast frame.
1453  * Multicast traffic always uses the group key which is installed as
1454  * the default tx key.
1455  */
1456 static __inline struct ieee80211_key *
1457 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1458 	struct ieee80211_node *ni)
1459 {
1460 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1461 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1462 		return NULL;
1463 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1464 }
1465 
1466 /*
1467  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1468  * If an error is encountered NULL is returned.  The caller is required
1469  * to provide a node reference and pullup the ethernet header in the
1470  * first mbuf.
1471  *
1472  * NB: Packet is assumed to be processed by ieee80211_classify which
1473  *     marked EAPOL frames w/ M_EAPOL.
1474  */
1475 struct mbuf *
1476 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1477     struct mbuf *m)
1478 {
1479 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1480 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1481 	struct ieee80211com *ic = ni->ni_ic;
1482 #ifdef IEEE80211_SUPPORT_MESH
1483 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1484 	struct ieee80211_meshcntl_ae10 *mc;
1485 	struct ieee80211_mesh_route *rt = NULL;
1486 	int dir = -1;
1487 #endif
1488 	struct ether_header eh;
1489 	struct ieee80211_frame *wh;
1490 	struct ieee80211_key *key;
1491 	struct llc *llc;
1492 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1493 	ieee80211_seq seqno;
1494 	int meshhdrsize, meshae;
1495 	uint8_t *qos;
1496 	int is_amsdu = 0;
1497 
1498 	IEEE80211_TX_LOCK_ASSERT(ic);
1499 
1500 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1501 
1502 	/*
1503 	 * Copy existing Ethernet header to a safe place.  The
1504 	 * rest of the code assumes it's ok to strip it when
1505 	 * reorganizing state for the final encapsulation.
1506 	 */
1507 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1508 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1509 
1510 	/*
1511 	 * Insure space for additional headers.  First identify
1512 	 * transmit key to use in calculating any buffer adjustments
1513 	 * required.  This is also used below to do privacy
1514 	 * encapsulation work.  Then calculate the 802.11 header
1515 	 * size and any padding required by the driver.
1516 	 *
1517 	 * Note key may be NULL if we fall back to the default
1518 	 * transmit key and that is not set.  In that case the
1519 	 * buffer may not be expanded as needed by the cipher
1520 	 * routines, but they will/should discard it.
1521 	 */
1522 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1523 		if (vap->iv_opmode == IEEE80211_M_STA ||
1524 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1525 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1526 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1527 			key = ieee80211_crypto_getucastkey(vap, ni);
1528 		} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1529 		    (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1530 			/*
1531 			 * Use ucastkey for DWDS transmit nodes, multicast
1532 			 * or otherwise.
1533 			 *
1534 			 * This is required to ensure that multicast frames
1535 			 * from a DWDS AP to a DWDS STA is encrypted with
1536 			 * a key that can actually work.
1537 			 *
1538 			 * There's no default key for multicast traffic
1539 			 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1540 			 * AP VAP, the dynamically created per-STA WDS node)
1541 			 * so encap fails and transmit fails.
1542 			 */
1543 			key = ieee80211_crypto_getucastkey(vap, ni);
1544 		} else {
1545 			key = ieee80211_crypto_getmcastkey(vap, ni);
1546 		}
1547 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1548 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1549 			    eh.ether_dhost,
1550 			    "no default transmit key (%s) deftxkey %u",
1551 			    __func__, vap->iv_def_txkey);
1552 			vap->iv_stats.is_tx_nodefkey++;
1553 			goto bad;
1554 		}
1555 	} else
1556 		key = NULL;
1557 	/*
1558 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1559 	 * frames so suppress use.  This may be an issue if other
1560 	 * ap's require all data frames to be QoS-encapsulated
1561 	 * once negotiated in which case we'll need to make this
1562 	 * configurable.
1563 	 *
1564 	 * Don't send multicast QoS frames.
1565 	 * Technically multicast frames can be QoS if all stations in the
1566 	 * BSS are also QoS.
1567 	 *
1568 	 * NB: mesh data frames are QoS, including multicast frames.
1569 	 */
1570 	addqos =
1571 	    (((is_mcast == 0) && (ni->ni_flags &
1572 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1573 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1574 	    (m->m_flags & M_EAPOL) == 0;
1575 
1576 	if (addqos)
1577 		hdrsize = sizeof(struct ieee80211_qosframe);
1578 	else
1579 		hdrsize = sizeof(struct ieee80211_frame);
1580 #ifdef IEEE80211_SUPPORT_MESH
1581 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1582 		/*
1583 		 * Mesh data frames are encapsulated according to the
1584 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1585 		 * o Group Addressed data (aka multicast) originating
1586 		 *   at the local sta are sent w/ 3-address format and
1587 		 *   address extension mode 00
1588 		 * o Individually Addressed data (aka unicast) originating
1589 		 *   at the local sta are sent w/ 4-address format and
1590 		 *   address extension mode 00
1591 		 * o Group Addressed data forwarded from a non-mesh sta are
1592 		 *   sent w/ 3-address format and address extension mode 01
1593 		 * o Individually Address data from another sta are sent
1594 		 *   w/ 4-address format and address extension mode 10
1595 		 */
1596 		is4addr = 0;		/* NB: don't use, disable */
1597 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1598 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1599 			KASSERT(rt != NULL, ("route is NULL"));
1600 			dir = IEEE80211_FC1_DIR_DSTODS;
1601 			hdrsize += IEEE80211_ADDR_LEN;
1602 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1603 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1604 				    vap->iv_myaddr)) {
1605 					IEEE80211_NOTE_MAC(vap,
1606 					    IEEE80211_MSG_MESH,
1607 					    eh.ether_dhost,
1608 					    "%s", "trying to send to ourself");
1609 					goto bad;
1610 				}
1611 				meshae = IEEE80211_MESH_AE_10;
1612 				meshhdrsize =
1613 				    sizeof(struct ieee80211_meshcntl_ae10);
1614 			} else {
1615 				meshae = IEEE80211_MESH_AE_00;
1616 				meshhdrsize =
1617 				    sizeof(struct ieee80211_meshcntl);
1618 			}
1619 		} else {
1620 			dir = IEEE80211_FC1_DIR_FROMDS;
1621 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1622 				/* proxy group */
1623 				meshae = IEEE80211_MESH_AE_01;
1624 				meshhdrsize =
1625 				    sizeof(struct ieee80211_meshcntl_ae01);
1626 			} else {
1627 				/* group */
1628 				meshae = IEEE80211_MESH_AE_00;
1629 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1630 			}
1631 		}
1632 	} else {
1633 #endif
1634 		/*
1635 		 * 4-address frames need to be generated for:
1636 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1637 		 * o packets sent through a vap marked for relaying
1638 		 *   (e.g. a station operating with dynamic WDS)
1639 		 */
1640 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1641 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1642 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1643 		if (is4addr)
1644 			hdrsize += IEEE80211_ADDR_LEN;
1645 		meshhdrsize = meshae = 0;
1646 #ifdef IEEE80211_SUPPORT_MESH
1647 	}
1648 #endif
1649 	/*
1650 	 * Honor driver DATAPAD requirement.
1651 	 */
1652 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1653 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1654 	else
1655 		hdrspace = hdrsize;
1656 
1657 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1658 		/*
1659 		 * Normal frame.
1660 		 */
1661 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1662 		if (m == NULL) {
1663 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1664 			goto bad;
1665 		}
1666 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1667 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1668 		llc = mtod(m, struct llc *);
1669 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1670 		llc->llc_control = LLC_UI;
1671 		llc->llc_snap.org_code[0] = 0;
1672 		llc->llc_snap.org_code[1] = 0;
1673 		llc->llc_snap.org_code[2] = 0;
1674 		llc->llc_snap.ether_type = eh.ether_type;
1675 	} else {
1676 #ifdef IEEE80211_SUPPORT_SUPERG
1677 		/*
1678 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1679 		 *
1680 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1681 		 * anywhere for some reason.  But, since 11n requires
1682 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1683 		 */
1684 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1685 		if (ieee80211_amsdu_tx_ok(ni)) {
1686 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1687 			is_amsdu = 1;
1688 		} else {
1689 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1690 		}
1691 		if (m == NULL)
1692 #endif
1693 			goto bad;
1694 	}
1695 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1696 
1697 	M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT);
1698 	if (m == NULL) {
1699 		vap->iv_stats.is_tx_nobuf++;
1700 		goto bad;
1701 	}
1702 	wh = mtod(m, struct ieee80211_frame *);
1703 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1704 	*(uint16_t *)wh->i_dur = 0;
1705 	qos = NULL;	/* NB: quiet compiler */
1706 	if (is4addr) {
1707 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1708 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1709 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1710 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1711 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1712 	} else switch (vap->iv_opmode) {
1713 	case IEEE80211_M_STA:
1714 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1715 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1716 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1717 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1718 		break;
1719 	case IEEE80211_M_IBSS:
1720 	case IEEE80211_M_AHDEMO:
1721 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1722 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1723 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1724 		/*
1725 		 * NB: always use the bssid from iv_bss as the
1726 		 *     neighbor's may be stale after an ibss merge
1727 		 */
1728 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1729 		break;
1730 	case IEEE80211_M_HOSTAP:
1731 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1732 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1733 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1734 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1735 		break;
1736 #ifdef IEEE80211_SUPPORT_MESH
1737 	case IEEE80211_M_MBSS:
1738 		/* NB: offset by hdrspace to deal with DATAPAD */
1739 		mc = (struct ieee80211_meshcntl_ae10 *)
1740 		     (mtod(m, uint8_t *) + hdrspace);
1741 		wh->i_fc[1] = dir;
1742 		switch (meshae) {
1743 		case IEEE80211_MESH_AE_00:	/* no proxy */
1744 			mc->mc_flags = 0;
1745 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1746 				IEEE80211_ADDR_COPY(wh->i_addr1,
1747 				    ni->ni_macaddr);
1748 				IEEE80211_ADDR_COPY(wh->i_addr2,
1749 				    vap->iv_myaddr);
1750 				IEEE80211_ADDR_COPY(wh->i_addr3,
1751 				    eh.ether_dhost);
1752 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1753 				    eh.ether_shost);
1754 				qos =((struct ieee80211_qosframe_addr4 *)
1755 				    wh)->i_qos;
1756 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1757 				 /* mcast */
1758 				IEEE80211_ADDR_COPY(wh->i_addr1,
1759 				    eh.ether_dhost);
1760 				IEEE80211_ADDR_COPY(wh->i_addr2,
1761 				    vap->iv_myaddr);
1762 				IEEE80211_ADDR_COPY(wh->i_addr3,
1763 				    eh.ether_shost);
1764 				qos = ((struct ieee80211_qosframe *)
1765 				    wh)->i_qos;
1766 			}
1767 			break;
1768 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1769 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1770 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1771 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1772 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1773 			mc->mc_flags = 1;
1774 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1775 			    eh.ether_shost);
1776 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1777 			break;
1778 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1779 			KASSERT(rt != NULL, ("route is NULL"));
1780 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1781 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1782 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1783 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1784 			mc->mc_flags = IEEE80211_MESH_AE_10;
1785 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1786 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1787 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1788 			break;
1789 		default:
1790 			KASSERT(0, ("meshae %d", meshae));
1791 			break;
1792 		}
1793 		mc->mc_ttl = ms->ms_ttl;
1794 		ms->ms_seq++;
1795 		le32enc(mc->mc_seq, ms->ms_seq);
1796 		break;
1797 #endif
1798 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1799 	default:
1800 		goto bad;
1801 	}
1802 	if (m->m_flags & M_MORE_DATA)
1803 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1804 	if (addqos) {
1805 		int ac, tid;
1806 
1807 		if (is4addr) {
1808 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1809 		/* NB: mesh case handled earlier */
1810 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1811 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1812 		ac = M_WME_GETAC(m);
1813 		/* map from access class/queue to 11e header priorty value */
1814 		tid = WME_AC_TO_TID(ac);
1815 		qos[0] = tid & IEEE80211_QOS_TID;
1816 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1817 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1818 #ifdef IEEE80211_SUPPORT_MESH
1819 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1820 			qos[1] = IEEE80211_QOS_MC;
1821 		else
1822 #endif
1823 			qos[1] = 0;
1824 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA;
1825 
1826 		/*
1827 		 * If this is an A-MSDU then ensure we set the
1828 		 * relevant field.
1829 		 */
1830 		if (is_amsdu)
1831 			qos[0] |= IEEE80211_QOS_AMSDU;
1832 
1833 		/*
1834 		 * XXX TODO TX lock is needed for atomic updates of sequence
1835 		 * numbers.  If the driver does it, then don't do it here;
1836 		 * and we don't need the TX lock held.
1837 		 */
1838 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1839 			/*
1840 			 * 802.11-2012 9.3.2.10 -
1841 			 *
1842 			 * If this is a multicast frame then we need
1843 			 * to ensure that the sequence number comes from
1844 			 * a separate seqno space and not the TID space.
1845 			 *
1846 			 * Otherwise multicast frames may actually cause
1847 			 * holes in the TX blockack window space and
1848 			 * upset various things.
1849 			 */
1850 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1851 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1852 			else
1853 				seqno = ni->ni_txseqs[tid]++;
1854 
1855 			/*
1856 			 * NB: don't assign a sequence # to potential
1857 			 * aggregates; we expect this happens at the
1858 			 * point the frame comes off any aggregation q
1859 			 * as otherwise we may introduce holes in the
1860 			 * BA sequence space and/or make window accouting
1861 			 * more difficult.
1862 			 *
1863 			 * XXX may want to control this with a driver
1864 			 * capability; this may also change when we pull
1865 			 * aggregation up into net80211
1866 			 */
1867 			*(uint16_t *)wh->i_seq =
1868 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1869 			M_SEQNO_SET(m, seqno);
1870 		} else {
1871 			/* NB: zero out i_seq field (for s/w encryption etc) */
1872 			*(uint16_t *)wh->i_seq = 0;
1873 		}
1874 	} else {
1875 		/*
1876 		 * XXX TODO TX lock is needed for atomic updates of sequence
1877 		 * numbers.  If the driver does it, then don't do it here;
1878 		 * and we don't need the TX lock held.
1879 		 */
1880 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1881 		*(uint16_t *)wh->i_seq =
1882 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1883 		M_SEQNO_SET(m, seqno);
1884 
1885 		/*
1886 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1887 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1888 		 */
1889 		if (is_amsdu)
1890 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1891 			    __func__);
1892 	}
1893 
1894 	/*
1895 	 * Check if xmit fragmentation is required.
1896 	 *
1897 	 * If the hardware does fragmentation offload, then don't bother
1898 	 * doing it here.
1899 	 */
1900 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1901 		txfrag = 0;
1902 	else
1903 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1904 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1905 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1906 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1907 
1908 	if (key != NULL) {
1909 		/*
1910 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1911 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1912 		 */
1913 		if ((m->m_flags & M_EAPOL) == 0 ||
1914 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1915 		     (vap->iv_opmode == IEEE80211_M_STA ?
1916 		      !IEEE80211_KEY_UNDEFINED(key) :
1917 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1918 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1919 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1920 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1921 				    eh.ether_dhost,
1922 				    "%s", "enmic failed, discard frame");
1923 				vap->iv_stats.is_crypto_enmicfail++;
1924 				goto bad;
1925 			}
1926 		}
1927 	}
1928 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1929 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1930 		goto bad;
1931 
1932 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1933 
1934 	IEEE80211_NODE_STAT(ni, tx_data);
1935 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1936 		IEEE80211_NODE_STAT(ni, tx_mcast);
1937 		m->m_flags |= M_MCAST;
1938 	} else
1939 		IEEE80211_NODE_STAT(ni, tx_ucast);
1940 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1941 
1942 	return m;
1943 bad:
1944 	if (m != NULL)
1945 		m_freem(m);
1946 	return NULL;
1947 #undef WH4
1948 #undef MC01
1949 }
1950 
1951 void
1952 ieee80211_free_mbuf(struct mbuf *m)
1953 {
1954 	struct mbuf *next;
1955 
1956 	if (m == NULL)
1957 		return;
1958 
1959 	do {
1960 		next = m->m_nextpkt;
1961 		m->m_nextpkt = NULL;
1962 		m_freem(m);
1963 	} while ((m = next) != NULL);
1964 }
1965 
1966 /*
1967  * Fragment the frame according to the specified mtu.
1968  * The size of the 802.11 header (w/o padding) is provided
1969  * so we don't need to recalculate it.  We create a new
1970  * mbuf for each fragment and chain it through m_nextpkt;
1971  * we might be able to optimize this by reusing the original
1972  * packet's mbufs but that is significantly more complicated.
1973  */
1974 static int
1975 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1976 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1977 {
1978 	struct ieee80211com *ic = vap->iv_ic;
1979 	struct ieee80211_frame *wh, *whf;
1980 	struct mbuf *m, *prev;
1981 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1982 	u_int hdrspace;
1983 
1984 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1985 	KASSERT(m0->m_pkthdr.len > mtu,
1986 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1987 
1988 	/*
1989 	 * Honor driver DATAPAD requirement.
1990 	 */
1991 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1992 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1993 	else
1994 		hdrspace = hdrsize;
1995 
1996 	wh = mtod(m0, struct ieee80211_frame *);
1997 	/* NB: mark the first frag; it will be propagated below */
1998 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1999 	totalhdrsize = hdrspace + ciphdrsize;
2000 	fragno = 1;
2001 	off = mtu - ciphdrsize;
2002 	remainder = m0->m_pkthdr.len - off;
2003 	prev = m0;
2004 	do {
2005 		fragsize = MIN(totalhdrsize + remainder, mtu);
2006 		m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
2007 		if (m == NULL)
2008 			goto bad;
2009 		/* leave room to prepend any cipher header */
2010 		m_align(m, fragsize - ciphdrsize);
2011 
2012 		/*
2013 		 * Form the header in the fragment.  Note that since
2014 		 * we mark the first fragment with the MORE_FRAG bit
2015 		 * it automatically is propagated to each fragment; we
2016 		 * need only clear it on the last fragment (done below).
2017 		 * NB: frag 1+ dont have Mesh Control field present.
2018 		 */
2019 		whf = mtod(m, struct ieee80211_frame *);
2020 		memcpy(whf, wh, hdrsize);
2021 #ifdef IEEE80211_SUPPORT_MESH
2022 		if (vap->iv_opmode == IEEE80211_M_MBSS)
2023 			ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2024 #endif
2025 		*(uint16_t *)&whf->i_seq[0] |= htole16(
2026 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
2027 				IEEE80211_SEQ_FRAG_SHIFT);
2028 		fragno++;
2029 
2030 		payload = fragsize - totalhdrsize;
2031 		/* NB: destination is known to be contiguous */
2032 
2033 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2034 		m->m_len = hdrspace + payload;
2035 		m->m_pkthdr.len = hdrspace + payload;
2036 		m->m_flags |= M_FRAG;
2037 
2038 		/* chain up the fragment */
2039 		prev->m_nextpkt = m;
2040 		prev = m;
2041 
2042 		/* deduct fragment just formed */
2043 		remainder -= payload;
2044 		off += payload;
2045 	} while (remainder != 0);
2046 
2047 	/* set the last fragment */
2048 	m->m_flags |= M_LASTFRAG;
2049 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2050 
2051 	/* strip first mbuf now that everything has been copied */
2052 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2053 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2054 
2055 	vap->iv_stats.is_tx_fragframes++;
2056 	vap->iv_stats.is_tx_frags += fragno-1;
2057 
2058 	return 1;
2059 bad:
2060 	/* reclaim fragments but leave original frame for caller to free */
2061 	ieee80211_free_mbuf(m0->m_nextpkt);
2062 	m0->m_nextpkt = NULL;
2063 	return 0;
2064 }
2065 
2066 /*
2067  * Add a supported rates element id to a frame.
2068  */
2069 uint8_t *
2070 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2071 {
2072 	int nrates;
2073 
2074 	*frm++ = IEEE80211_ELEMID_RATES;
2075 	nrates = rs->rs_nrates;
2076 	if (nrates > IEEE80211_RATE_SIZE)
2077 		nrates = IEEE80211_RATE_SIZE;
2078 	*frm++ = nrates;
2079 	memcpy(frm, rs->rs_rates, nrates);
2080 	return frm + nrates;
2081 }
2082 
2083 /*
2084  * Add an extended supported rates element id to a frame.
2085  */
2086 uint8_t *
2087 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2088 {
2089 	/*
2090 	 * Add an extended supported rates element if operating in 11g mode.
2091 	 */
2092 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2093 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2094 		*frm++ = IEEE80211_ELEMID_XRATES;
2095 		*frm++ = nrates;
2096 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2097 		frm += nrates;
2098 	}
2099 	return frm;
2100 }
2101 
2102 /*
2103  * Add an ssid element to a frame.
2104  */
2105 uint8_t *
2106 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2107 {
2108 	*frm++ = IEEE80211_ELEMID_SSID;
2109 	*frm++ = len;
2110 	memcpy(frm, ssid, len);
2111 	return frm + len;
2112 }
2113 
2114 /*
2115  * Add an erp element to a frame.
2116  */
2117 static uint8_t *
2118 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2119 {
2120 	struct ieee80211com *ic = vap->iv_ic;
2121 	uint8_t erp;
2122 
2123 	*frm++ = IEEE80211_ELEMID_ERP;
2124 	*frm++ = 1;
2125 	erp = 0;
2126 
2127 	/*
2128 	 * TODO:  This uses the global flags for now because
2129 	 * the per-VAP flags are fine for per-VAP, but don't
2130 	 * take into account which VAPs share the same channel
2131 	 * and which are on different channels.
2132 	 *
2133 	 * ERP and HT/VHT protection mode is a function of
2134 	 * how many stations are on a channel, not specifically
2135 	 * the VAP or global.  But, until we grow that status,
2136 	 * the global flag will have to do.
2137 	 */
2138 	if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2139 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2140 
2141 	/*
2142 	 * TODO: same as above; these should be based not
2143 	 * on the vap or ic flags, but instead on a combination
2144 	 * of per-VAP and channels.
2145 	 */
2146 	if (ic->ic_flags & IEEE80211_F_USEPROT)
2147 		erp |= IEEE80211_ERP_USE_PROTECTION;
2148 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
2149 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
2150 	*frm++ = erp;
2151 	return frm;
2152 }
2153 
2154 /*
2155  * Add a CFParams element to a frame.
2156  */
2157 static uint8_t *
2158 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2159 {
2160 #define	ADDSHORT(frm, v) do {	\
2161 	le16enc(frm, v);	\
2162 	frm += 2;		\
2163 } while (0)
2164 	*frm++ = IEEE80211_ELEMID_CFPARMS;
2165 	*frm++ = 6;
2166 	*frm++ = 0;		/* CFP count */
2167 	*frm++ = 2;		/* CFP period */
2168 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
2169 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
2170 	return frm;
2171 #undef ADDSHORT
2172 }
2173 
2174 static __inline uint8_t *
2175 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2176 {
2177 	memcpy(frm, ie->ie_data, ie->ie_len);
2178 	return frm + ie->ie_len;
2179 }
2180 
2181 static __inline uint8_t *
2182 add_ie(uint8_t *frm, const uint8_t *ie)
2183 {
2184 	memcpy(frm, ie, 2 + ie[1]);
2185 	return frm + 2 + ie[1];
2186 }
2187 
2188 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2189 /*
2190  * Add a WME information element to a frame.
2191  */
2192 uint8_t *
2193 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2194     struct ieee80211_node *ni)
2195 {
2196 	static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2197 	struct ieee80211vap *vap = ni->ni_vap;
2198 
2199 	*frm++ = IEEE80211_ELEMID_VENDOR;
2200 	*frm++ = sizeof(struct ieee80211_wme_info) - 2;
2201 	memcpy(frm, oui, sizeof(oui));
2202 	frm += sizeof(oui);
2203 	*frm++ = WME_INFO_OUI_SUBTYPE;
2204 	*frm++ = WME_VERSION;
2205 
2206 	/* QoS info field depends upon operating mode */
2207 	switch (vap->iv_opmode) {
2208 	case IEEE80211_M_HOSTAP:
2209 		*frm = wme->wme_bssChanParams.cap_info;
2210 		if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2211 			*frm |= WME_CAPINFO_UAPSD_EN;
2212 		frm++;
2213 		break;
2214 	case IEEE80211_M_STA:
2215 		/*
2216 		 * NB: UAPSD drivers must set this up in their
2217 		 * VAP creation method.
2218 		 */
2219 		*frm++ = vap->iv_uapsdinfo;
2220 		break;
2221 	default:
2222 		*frm++ = 0;
2223 		break;
2224 	}
2225 
2226 	return frm;
2227 }
2228 
2229 /*
2230  * Add a WME parameters element to a frame.
2231  */
2232 static uint8_t *
2233 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2234     int uapsd_enable)
2235 {
2236 #define	ADDSHORT(frm, v) do {	\
2237 	le16enc(frm, v);	\
2238 	frm += 2;		\
2239 } while (0)
2240 	/* NB: this works 'cuz a param has an info at the front */
2241 	static const struct ieee80211_wme_info param = {
2242 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2243 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2244 		.wme_oui	= { WME_OUI_BYTES },
2245 		.wme_type	= WME_OUI_TYPE,
2246 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2247 		.wme_version	= WME_VERSION,
2248 	};
2249 	int i;
2250 
2251 	memcpy(frm, &param, sizeof(param));
2252 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2253 	*frm = wme->wme_bssChanParams.cap_info;	/* AC info */
2254 	if (uapsd_enable)
2255 		*frm |= WME_CAPINFO_UAPSD_EN;
2256 	frm++;
2257 	*frm++ = 0;					/* reserved field */
2258 	/* XXX TODO - U-APSD bits - SP, flags below */
2259 	for (i = 0; i < WME_NUM_AC; i++) {
2260 		const struct wmeParams *ac =
2261 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2262 		*frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2263 		       | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2264 		       | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2265 		       ;
2266 		*frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2267 			    WME_PARAM_LOGCWMAX)
2268 		       | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2269 			    WME_PARAM_LOGCWMIN)
2270 		       ;
2271 		ADDSHORT(frm, ac->wmep_txopLimit);
2272 	}
2273 	return frm;
2274 #undef ADDSHORT
2275 }
2276 #undef WME_OUI_BYTES
2277 
2278 /*
2279  * Add an 11h Power Constraint element to a frame.
2280  */
2281 static uint8_t *
2282 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2283 {
2284 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2285 	/* XXX per-vap tx power limit? */
2286 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2287 
2288 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2289 	frm[1] = 1;
2290 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2291 	return frm + 3;
2292 }
2293 
2294 /*
2295  * Add an 11h Power Capability element to a frame.
2296  */
2297 static uint8_t *
2298 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2299 {
2300 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2301 	frm[1] = 2;
2302 	frm[2] = c->ic_minpower;
2303 	frm[3] = c->ic_maxpower;
2304 	return frm + 4;
2305 }
2306 
2307 /*
2308  * Add an 11h Supported Channels element to a frame.
2309  */
2310 static uint8_t *
2311 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2312 {
2313 	static const int ielen = 26;
2314 
2315 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2316 	frm[1] = ielen;
2317 	/* XXX not correct */
2318 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2319 	return frm + 2 + ielen;
2320 }
2321 
2322 /*
2323  * Add an 11h Quiet time element to a frame.
2324  */
2325 static uint8_t *
2326 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2327 {
2328 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2329 
2330 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2331 	quiet->len = 6;
2332 
2333 	/*
2334 	 * Only update every beacon interval - otherwise probe responses
2335 	 * would update the quiet count value.
2336 	 */
2337 	if (update) {
2338 		if (vap->iv_quiet_count_value == 1)
2339 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2340 		else if (vap->iv_quiet_count_value > 1)
2341 			vap->iv_quiet_count_value--;
2342 	}
2343 
2344 	if (vap->iv_quiet_count_value == 0) {
2345 		/* value 0 is reserved as per 802.11h standerd */
2346 		vap->iv_quiet_count_value = 1;
2347 	}
2348 
2349 	quiet->tbttcount = vap->iv_quiet_count_value;
2350 	quiet->period = vap->iv_quiet_period;
2351 	quiet->duration = htole16(vap->iv_quiet_duration);
2352 	quiet->offset = htole16(vap->iv_quiet_offset);
2353 	return frm + sizeof(*quiet);
2354 }
2355 
2356 /*
2357  * Add an 11h Channel Switch Announcement element to a frame.
2358  * Note that we use the per-vap CSA count to adjust the global
2359  * counter so we can use this routine to form probe response
2360  * frames and get the current count.
2361  */
2362 static uint8_t *
2363 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2364 {
2365 	struct ieee80211com *ic = vap->iv_ic;
2366 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2367 
2368 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2369 	csa->csa_len = 3;
2370 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2371 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2372 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2373 	return frm + sizeof(*csa);
2374 }
2375 
2376 /*
2377  * Add an 11h country information element to a frame.
2378  */
2379 static uint8_t *
2380 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2381 {
2382 
2383 	if (ic->ic_countryie == NULL ||
2384 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2385 		/*
2386 		 * Handle lazy construction of ie.  This is done on
2387 		 * first use and after a channel change that requires
2388 		 * re-calculation.
2389 		 */
2390 		if (ic->ic_countryie != NULL)
2391 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2392 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2393 		if (ic->ic_countryie == NULL)
2394 			return frm;
2395 		ic->ic_countryie_chan = ic->ic_bsschan;
2396 	}
2397 	return add_appie(frm, ic->ic_countryie);
2398 }
2399 
2400 uint8_t *
2401 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2402 {
2403 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2404 		return (add_ie(frm, vap->iv_wpa_ie));
2405 	else {
2406 		/* XXX else complain? */
2407 		return (frm);
2408 	}
2409 }
2410 
2411 uint8_t *
2412 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2413 {
2414 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2415 		return (add_ie(frm, vap->iv_rsn_ie));
2416 	else {
2417 		/* XXX else complain? */
2418 		return (frm);
2419 	}
2420 }
2421 
2422 uint8_t *
2423 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2424 {
2425 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2426 		*frm++ = IEEE80211_ELEMID_QOS;
2427 		*frm++ = 1;
2428 		*frm++ = 0;
2429 	}
2430 
2431 	return (frm);
2432 }
2433 
2434 /*
2435  * ieee80211_send_probereq(): send a probe request frame with the specified ssid
2436  * and any optional information element data;  some helper functions as FW based
2437  * HW scans need some of that information passed too.
2438  */
2439 static uint32_t
2440 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
2441 {
2442 	const struct ieee80211_rateset *rs;
2443 
2444 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2445 
2446 	/*
2447 	 * prreq frame format
2448 	 *	[tlv] ssid
2449 	 *	[tlv] supported rates
2450 	 *	[tlv] extended supported rates (if needed)
2451 	 *	[tlv] HT cap (optional)
2452 	 *	[tlv] VHT cap (optional)
2453 	 *	[tlv] WPA (optional)
2454 	 *	[tlv] user-specified ie's
2455 	 */
2456 	return ( 2 + IEEE80211_NWID_LEN
2457 	       + 2 + IEEE80211_RATE_SIZE
2458 	       + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
2459 	           2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
2460 	       + (((vap->iv_opmode == IEEE80211_M_IBSS) &&
2461 		    (vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
2462 	                sizeof(struct ieee80211_ie_htcap) : 0)
2463 #ifdef notyet
2464 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2465 	       + 2 + sizeof(struct ieee80211_vht_cap)
2466 #endif
2467 	       + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
2468 	           vap->iv_wpa_ie[1] : 0)
2469 	       + (vap->iv_appie_probereq != NULL ?
2470 		   vap->iv_appie_probereq->ie_len : 0)
2471 	);
2472 }
2473 
2474 int
2475 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
2476     uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
2477     bool alloc)
2478 {
2479 	const struct ieee80211_rateset *rs;
2480 	uint8_t	*frm;
2481 	uint32_t len;
2482 
2483 	if (!alloc && (frmp == NULL || frmlen == NULL))
2484 		return (EINVAL);
2485 
2486 	len = ieee80211_probereq_ie_len(vap, ic);
2487 	if (!alloc && len > *frmlen)
2488 		return (ENOBUFS);
2489 
2490 	/* For HW scans we usually do not pass in the SSID as IE. */
2491 	if (ssidlen == -1)
2492 		len -= (2 + IEEE80211_NWID_LEN);
2493 
2494 	if (alloc) {
2495 		frm = IEEE80211_MALLOC(len, M_80211_VAP,
2496 		    IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
2497 		*frmp = frm;
2498 		*frmlen = len;
2499 	} else
2500 		frm = *frmp;
2501 
2502 	if (ssidlen != -1)
2503 		frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2504 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2505 	frm = ieee80211_add_rates(frm, rs);
2506 	frm = ieee80211_add_xrates(frm, rs);
2507 
2508 	/*
2509 	 * Note: we can't use bss; we don't have one yet.
2510 	 *
2511 	 * So, we should announce our capabilities
2512 	 * in this channel mode (2g/5g), not the
2513 	 * channel details itself.
2514 	 */
2515 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2516 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2517 		struct ieee80211_channel *c;
2518 
2519 		/*
2520 		 * Get the HT channel that we should try upgrading to.
2521 		 * If we can do 40MHz then this'll upgrade it appropriately.
2522 		 */
2523 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2524 		    vap->iv_flags_ht);
2525 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2526 	}
2527 
2528 	/*
2529 	 * XXX TODO: need to figure out what/how to update the
2530 	 * VHT channel.
2531 	 */
2532 #ifdef notyet
2533 	if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) {
2534 		struct ieee80211_channel *c;
2535 
2536 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2537 		    vap->iv_flags_ht);
2538 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_vht_flags);
2539 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2540 	}
2541 #endif
2542 
2543 	frm = ieee80211_add_wpa(frm, vap);
2544 	if (vap->iv_appie_probereq != NULL)
2545 		frm = add_appie(frm, vap->iv_appie_probereq);
2546 
2547 	if (!alloc) {
2548 		*frmp = frm;
2549 		*frmlen = len;
2550 	}
2551 
2552 	return (0);
2553 }
2554 
2555 int
2556 ieee80211_send_probereq(struct ieee80211_node *ni,
2557 	const uint8_t sa[IEEE80211_ADDR_LEN],
2558 	const uint8_t da[IEEE80211_ADDR_LEN],
2559 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2560 	const uint8_t *ssid, size_t ssidlen)
2561 {
2562 	struct ieee80211vap *vap = ni->ni_vap;
2563 	struct ieee80211com *ic = ni->ni_ic;
2564 	struct ieee80211_node *bss;
2565 	const struct ieee80211_txparam *tp;
2566 	struct ieee80211_bpf_params params;
2567 	struct mbuf *m;
2568 	uint8_t *frm;
2569 	uint32_t frmlen;
2570 	int ret;
2571 
2572 	bss = ieee80211_ref_node(vap->iv_bss);
2573 
2574 	if (vap->iv_state == IEEE80211_S_CAC) {
2575 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2576 		    "block %s frame in CAC state", "probe request");
2577 		vap->iv_stats.is_tx_badstate++;
2578 		ieee80211_free_node(bss);
2579 		return EIO;		/* XXX */
2580 	}
2581 
2582 	/*
2583 	 * Hold a reference on the node so it doesn't go away until after
2584 	 * the xmit is complete all the way in the driver.  On error we
2585 	 * will remove our reference.
2586 	 */
2587 #ifndef __HAIKU__
2588 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2589 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2590 		__func__, __LINE__,
2591 		ni, ether_sprintf(ni->ni_macaddr),
2592 		ieee80211_node_refcnt(ni)+1);
2593 #endif
2594 	ieee80211_ref_node(ni);
2595 
2596 	/* See comments above for entire frame format. */
2597 	frmlen = ieee80211_probereq_ie_len(vap, ic);
2598 	m = ieee80211_getmgtframe(&frm,
2599 	    ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
2600 	if (m == NULL) {
2601 		vap->iv_stats.is_tx_nobuf++;
2602 		ieee80211_free_node(ni);
2603 		ieee80211_free_node(bss);
2604 		return ENOMEM;
2605 	}
2606 
2607 	ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
2608 	    false);
2609 	KASSERT(ret == 0,
2610 	    ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret));
2611 
2612 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2613 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2614 	    ("leading space %zd", M_LEADINGSPACE(m)));
2615 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
2616 	if (m == NULL) {
2617 		/* NB: cannot happen */
2618 		ieee80211_free_node(ni);
2619 		ieee80211_free_node(bss);
2620 		return ENOMEM;
2621 	}
2622 
2623 	IEEE80211_TX_LOCK(ic);
2624 	ieee80211_send_setup(ni, m,
2625 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2626 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2627 	/* XXX power management? */
2628 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2629 
2630 	M_WME_SETAC(m, WME_AC_BE);
2631 
2632 	IEEE80211_NODE_STAT(ni, tx_probereq);
2633 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2634 
2635 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2636 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2637 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2638 	    ether_sprintf(bssid),
2639 	    sa, ":",
2640 	    da, ":",
2641 	    ssidlen, ssid);
2642 
2643 	memset(&params, 0, sizeof(params));
2644 	params.ibp_pri = M_WME_GETAC(m);
2645 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2646 	params.ibp_rate0 = tp->mgmtrate;
2647 	if (IEEE80211_IS_MULTICAST(da)) {
2648 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2649 		params.ibp_try0 = 1;
2650 	} else
2651 		params.ibp_try0 = tp->maxretry;
2652 	params.ibp_power = ni->ni_txpower;
2653 	ret = ieee80211_raw_output(vap, ni, m, &params);
2654 	IEEE80211_TX_UNLOCK(ic);
2655 	ieee80211_free_node(bss);
2656 	return (ret);
2657 }
2658 
2659 /*
2660  * Calculate capability information for mgt frames.
2661  */
2662 uint16_t
2663 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2664 {
2665 	uint16_t capinfo;
2666 
2667 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2668 
2669 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2670 		capinfo = IEEE80211_CAPINFO_ESS;
2671 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2672 		capinfo = IEEE80211_CAPINFO_IBSS;
2673 	else
2674 		capinfo = 0;
2675 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2676 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2677 	if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2678 	    IEEE80211_IS_CHAN_2GHZ(chan))
2679 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2680 	if (vap->iv_flags & IEEE80211_F_SHSLOT)
2681 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2682 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2683 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2684 	return capinfo;
2685 }
2686 
2687 /*
2688  * Send a management frame.  The node is for the destination (or ic_bss
2689  * when in station mode).  Nodes other than ic_bss have their reference
2690  * count bumped to reflect our use for an indeterminant time.
2691  */
2692 int
2693 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2694 {
2695 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2696 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2697 	struct ieee80211vap *vap = ni->ni_vap;
2698 	struct ieee80211com *ic = ni->ni_ic;
2699 	struct ieee80211_node *bss = vap->iv_bss;
2700 	struct ieee80211_bpf_params params;
2701 	struct mbuf *m;
2702 	uint8_t *frm;
2703 	uint16_t capinfo;
2704 	int has_challenge, is_shared_key, ret, status;
2705 
2706 	KASSERT(ni != NULL, ("null node"));
2707 
2708 	/*
2709 	 * Hold a reference on the node so it doesn't go away until after
2710 	 * the xmit is complete all the way in the driver.  On error we
2711 	 * will remove our reference.
2712 	 */
2713 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2714 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2715 		__func__, __LINE__,
2716 		ni, ether_sprintf(ni->ni_macaddr),
2717 		ieee80211_node_refcnt(ni)+1);
2718 	ieee80211_ref_node(ni);
2719 
2720 	memset(&params, 0, sizeof(params));
2721 	switch (type) {
2722 	case IEEE80211_FC0_SUBTYPE_AUTH:
2723 		status = arg >> 16;
2724 		arg &= 0xffff;
2725 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2726 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2727 		    ni->ni_challenge != NULL);
2728 
2729 		/*
2730 		 * Deduce whether we're doing open authentication or
2731 		 * shared key authentication.  We do the latter if
2732 		 * we're in the middle of a shared key authentication
2733 		 * handshake or if we're initiating an authentication
2734 		 * request and configured to use shared key.
2735 		 */
2736 		is_shared_key = has_challenge ||
2737 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2738 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2739 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2740 
2741 		m = ieee80211_getmgtframe(&frm,
2742 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2743 			  3 * sizeof(uint16_t)
2744 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2745 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0));
2746 		if (m == NULL)
2747 			senderr(ENOMEM, is_tx_nobuf);
2748 
2749 		((uint16_t *)frm)[0] =
2750 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2751 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2752 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2753 		((uint16_t *)frm)[2] = htole16(status);/* status */
2754 
2755 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2756 			((uint16_t *)frm)[3] =
2757 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2758 			    IEEE80211_ELEMID_CHALLENGE);
2759 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2760 			    IEEE80211_CHALLENGE_LEN);
2761 			m->m_pkthdr.len = m->m_len =
2762 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2763 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2764 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2765 				    "request encrypt frame (%s)", __func__);
2766 				/* mark frame for encryption */
2767 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2768 			}
2769 		} else
2770 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2771 
2772 		/* XXX not right for shared key */
2773 		if (status == IEEE80211_STATUS_SUCCESS)
2774 			IEEE80211_NODE_STAT(ni, tx_auth);
2775 		else
2776 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2777 
2778 		if (vap->iv_opmode == IEEE80211_M_STA)
2779 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2780 				(void *) vap->iv_state);
2781 		break;
2782 
2783 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2784 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2785 		    "send station deauthenticate (reason: %d (%s))", arg,
2786 		    ieee80211_reason_to_string(arg));
2787 		m = ieee80211_getmgtframe(&frm,
2788 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2789 			sizeof(uint16_t));
2790 		if (m == NULL)
2791 			senderr(ENOMEM, is_tx_nobuf);
2792 		*(uint16_t *)frm = htole16(arg);	/* reason */
2793 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2794 
2795 		IEEE80211_NODE_STAT(ni, tx_deauth);
2796 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2797 
2798 		ieee80211_node_unauthorize(ni);		/* port closed */
2799 		break;
2800 
2801 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2802 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2803 		/*
2804 		 * asreq frame format
2805 		 *	[2] capability information
2806 		 *	[2] listen interval
2807 		 *	[6*] current AP address (reassoc only)
2808 		 *	[tlv] ssid
2809 		 *	[tlv] supported rates
2810 		 *	[tlv] extended supported rates
2811 		 *	[4] power capability (optional)
2812 		 *	[28] supported channels (optional)
2813 		 *	[tlv] HT capabilities
2814 		 *	[tlv] VHT capabilities
2815 		 *	[tlv] WME (optional)
2816 		 *	[tlv] Vendor OUI HT capabilities (optional)
2817 		 *	[tlv] Atheros capabilities (if negotiated)
2818 		 *	[tlv] AppIE's (optional)
2819 		 */
2820 		m = ieee80211_getmgtframe(&frm,
2821 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2822 			 sizeof(uint16_t)
2823 		       + sizeof(uint16_t)
2824 		       + IEEE80211_ADDR_LEN
2825 		       + 2 + IEEE80211_NWID_LEN
2826 		       + 2 + IEEE80211_RATE_SIZE
2827 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2828 		       + 4
2829 		       + 2 + 26
2830 		       + sizeof(struct ieee80211_wme_info)
2831 		       + sizeof(struct ieee80211_ie_htcap)
2832 		       + 2 + sizeof(struct ieee80211_vht_cap)
2833 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2834 #ifdef IEEE80211_SUPPORT_SUPERG
2835 		       + sizeof(struct ieee80211_ath_ie)
2836 #endif
2837 		       + (vap->iv_appie_wpa != NULL ?
2838 				vap->iv_appie_wpa->ie_len : 0)
2839 		       + (vap->iv_appie_assocreq != NULL ?
2840 				vap->iv_appie_assocreq->ie_len : 0)
2841 		);
2842 		if (m == NULL)
2843 			senderr(ENOMEM, is_tx_nobuf);
2844 
2845 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2846 		    ("wrong mode %u", vap->iv_opmode));
2847 		capinfo = IEEE80211_CAPINFO_ESS;
2848 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2849 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2850 		/*
2851 		 * NB: Some 11a AP's reject the request when
2852 		 *     short preamble is set.
2853 		 */
2854 		if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2855 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2856 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2857 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2858 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2859 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2860 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2861 		    (vap->iv_flags & IEEE80211_F_DOTH))
2862 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2863 		*(uint16_t *)frm = htole16(capinfo);
2864 		frm += 2;
2865 
2866 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2867 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2868 						    bss->ni_intval));
2869 		frm += 2;
2870 
2871 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2872 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2873 			frm += IEEE80211_ADDR_LEN;
2874 		}
2875 
2876 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2877 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2878 		frm = ieee80211_add_rsn(frm, vap);
2879 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2880 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2881 			frm = ieee80211_add_powercapability(frm,
2882 			    ic->ic_curchan);
2883 			frm = ieee80211_add_supportedchannels(frm, ic);
2884 		}
2885 
2886 		/*
2887 		 * Check the channel - we may be using an 11n NIC with an
2888 		 * 11n capable station, but we're configured to be an 11b
2889 		 * channel.
2890 		 */
2891 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2892 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2893 		    ni->ni_ies.htcap_ie != NULL &&
2894 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2895 			frm = ieee80211_add_htcap(frm, ni);
2896 		}
2897 
2898 		if ((vap->iv_vht_flags & IEEE80211_FVHT_VHT) &&
2899 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2900 		    ni->ni_ies.vhtcap_ie != NULL &&
2901 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2902 			frm = ieee80211_add_vhtcap(frm, ni);
2903 		}
2904 
2905 		frm = ieee80211_add_wpa(frm, vap);
2906 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2907 		    ni->ni_ies.wme_ie != NULL)
2908 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2909 
2910 		/*
2911 		 * Same deal - only send HT info if we're on an 11n
2912 		 * capable channel.
2913 		 */
2914 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2915 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2916 		    ni->ni_ies.htcap_ie != NULL &&
2917 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2918 			frm = ieee80211_add_htcap_vendor(frm, ni);
2919 		}
2920 #ifdef IEEE80211_SUPPORT_SUPERG
2921 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2922 			frm = ieee80211_add_ath(frm,
2923 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2924 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2925 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2926 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2927 		}
2928 #endif /* IEEE80211_SUPPORT_SUPERG */
2929 		if (vap->iv_appie_assocreq != NULL)
2930 			frm = add_appie(frm, vap->iv_appie_assocreq);
2931 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2932 
2933 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2934 			(void *) vap->iv_state);
2935 		break;
2936 
2937 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2938 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2939 		/*
2940 		 * asresp frame format
2941 		 *	[2] capability information
2942 		 *	[2] status
2943 		 *	[2] association ID
2944 		 *	[tlv] supported rates
2945 		 *	[tlv] extended supported rates
2946 		 *	[tlv] HT capabilities (standard, if STA enabled)
2947 		 *	[tlv] HT information (standard, if STA enabled)
2948 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2949 		 *	[tlv] VHT information (standard, if STA enabled)
2950 		 *	[tlv] WME (if configured and STA enabled)
2951 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2952 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2953 		 *	[tlv] Atheros capabilities (if STA enabled)
2954 		 *	[tlv] AppIE's (optional)
2955 		 */
2956 		m = ieee80211_getmgtframe(&frm,
2957 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2958 			 sizeof(uint16_t)
2959 		       + sizeof(uint16_t)
2960 		       + sizeof(uint16_t)
2961 		       + 2 + IEEE80211_RATE_SIZE
2962 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2963 		       + sizeof(struct ieee80211_ie_htcap) + 4
2964 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2965 		       + 2 + sizeof(struct ieee80211_vht_cap)
2966 		       + 2 + sizeof(struct ieee80211_vht_operation)
2967 		       + sizeof(struct ieee80211_wme_param)
2968 #ifdef IEEE80211_SUPPORT_SUPERG
2969 		       + sizeof(struct ieee80211_ath_ie)
2970 #endif
2971 		       + (vap->iv_appie_assocresp != NULL ?
2972 				vap->iv_appie_assocresp->ie_len : 0)
2973 		);
2974 		if (m == NULL)
2975 			senderr(ENOMEM, is_tx_nobuf);
2976 
2977 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2978 		*(uint16_t *)frm = htole16(capinfo);
2979 		frm += 2;
2980 
2981 		*(uint16_t *)frm = htole16(arg);	/* status */
2982 		frm += 2;
2983 
2984 		if (arg == IEEE80211_STATUS_SUCCESS) {
2985 			*(uint16_t *)frm = htole16(ni->ni_associd);
2986 			IEEE80211_NODE_STAT(ni, tx_assoc);
2987 		} else
2988 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2989 		frm += 2;
2990 
2991 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2992 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2993 		/* NB: respond according to what we received */
2994 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2995 			frm = ieee80211_add_htcap(frm, ni);
2996 			frm = ieee80211_add_htinfo(frm, ni);
2997 		}
2998 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2999 		    ni->ni_ies.wme_ie != NULL)
3000 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3001 			    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3002 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
3003 			frm = ieee80211_add_htcap_vendor(frm, ni);
3004 			frm = ieee80211_add_htinfo_vendor(frm, ni);
3005 		}
3006 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
3007 			frm = ieee80211_add_vhtcap(frm, ni);
3008 			frm = ieee80211_add_vhtinfo(frm, ni);
3009 		}
3010 #ifdef IEEE80211_SUPPORT_SUPERG
3011 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
3012 			frm = ieee80211_add_ath(frm,
3013 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
3014 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
3015 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
3016 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
3017 #endif /* IEEE80211_SUPPORT_SUPERG */
3018 		if (vap->iv_appie_assocresp != NULL)
3019 			frm = add_appie(frm, vap->iv_appie_assocresp);
3020 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3021 		break;
3022 
3023 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
3024 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
3025 		    "send station disassociate (reason: %d (%s))", arg,
3026 		    ieee80211_reason_to_string(arg));
3027 		m = ieee80211_getmgtframe(&frm,
3028 			ic->ic_headroom + sizeof(struct ieee80211_frame),
3029 			sizeof(uint16_t));
3030 		if (m == NULL)
3031 			senderr(ENOMEM, is_tx_nobuf);
3032 		*(uint16_t *)frm = htole16(arg);	/* reason */
3033 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
3034 
3035 		IEEE80211_NODE_STAT(ni, tx_disassoc);
3036 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
3037 		break;
3038 
3039 	default:
3040 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
3041 		    "invalid mgmt frame type %u", type);
3042 		senderr(EINVAL, is_tx_unknownmgt);
3043 		/* NOTREACHED */
3044 	}
3045 
3046 	/* NB: force non-ProbeResp frames to the highest queue */
3047 	params.ibp_pri = WME_AC_VO;
3048 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
3049 	/* NB: we know all frames are unicast */
3050 	params.ibp_try0 = bss->ni_txparms->maxretry;
3051 	params.ibp_power = bss->ni_txpower;
3052 	return ieee80211_mgmt_output(ni, m, type, &params);
3053 bad:
3054 	ieee80211_free_node(ni);
3055 	return ret;
3056 #undef senderr
3057 #undef HTFLAGS
3058 }
3059 
3060 /*
3061  * Return an mbuf with a probe response frame in it.
3062  * Space is left to prepend and 802.11 header at the
3063  * front but it's left to the caller to fill in.
3064  */
3065 struct mbuf *
3066 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3067 {
3068 	struct ieee80211vap *vap = bss->ni_vap;
3069 	struct ieee80211com *ic = bss->ni_ic;
3070 	const struct ieee80211_rateset *rs;
3071 	struct mbuf *m;
3072 	uint16_t capinfo;
3073 	uint8_t *frm;
3074 
3075 	/*
3076 	 * probe response frame format
3077 	 *	[8] time stamp
3078 	 *	[2] beacon interval
3079 	 *	[2] cabability information
3080 	 *	[tlv] ssid
3081 	 *	[tlv] supported rates
3082 	 *	[tlv] parameter set (FH/DS)
3083 	 *	[tlv] parameter set (IBSS)
3084 	 *	[tlv] country (optional)
3085 	 *	[3] power control (optional)
3086 	 *	[5] channel switch announcement (CSA) (optional)
3087 	 *	[tlv] extended rate phy (ERP)
3088 	 *	[tlv] extended supported rates
3089 	 *	[tlv] RSN (optional)
3090 	 *	[tlv] HT capabilities
3091 	 *	[tlv] HT information
3092 	 *	[tlv] VHT capabilities
3093 	 *	[tlv] VHT information
3094 	 *	[tlv] WPA (optional)
3095 	 *	[tlv] WME (optional)
3096 	 *	[tlv] Vendor OUI HT capabilities (optional)
3097 	 *	[tlv] Vendor OUI HT information (optional)
3098 	 *	[tlv] Atheros capabilities
3099 	 *	[tlv] AppIE's (optional)
3100 	 *	[tlv] Mesh ID (MBSS)
3101 	 *	[tlv] Mesh Conf (MBSS)
3102 	 */
3103 	m = ieee80211_getmgtframe(&frm,
3104 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
3105 		 8
3106 	       + sizeof(uint16_t)
3107 	       + sizeof(uint16_t)
3108 	       + 2 + IEEE80211_NWID_LEN
3109 	       + 2 + IEEE80211_RATE_SIZE
3110 	       + 7	/* max(7,3) */
3111 	       + IEEE80211_COUNTRY_MAX_SIZE
3112 	       + 3
3113 	       + sizeof(struct ieee80211_csa_ie)
3114 	       + sizeof(struct ieee80211_quiet_ie)
3115 	       + 3
3116 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3117 	       + sizeof(struct ieee80211_ie_wpa)
3118 	       + sizeof(struct ieee80211_ie_htcap)
3119 	       + sizeof(struct ieee80211_ie_htinfo)
3120 	       + sizeof(struct ieee80211_ie_wpa)
3121 	       + sizeof(struct ieee80211_wme_param)
3122 	       + 4 + sizeof(struct ieee80211_ie_htcap)
3123 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
3124 	       + 2 + sizeof(struct ieee80211_vht_cap)
3125 	       + 2 + sizeof(struct ieee80211_vht_operation)
3126 #ifdef IEEE80211_SUPPORT_SUPERG
3127 	       + sizeof(struct ieee80211_ath_ie)
3128 #endif
3129 #ifdef IEEE80211_SUPPORT_MESH
3130 	       + 2 + IEEE80211_MESHID_LEN
3131 	       + sizeof(struct ieee80211_meshconf_ie)
3132 #endif
3133 	       + (vap->iv_appie_proberesp != NULL ?
3134 			vap->iv_appie_proberesp->ie_len : 0)
3135 	);
3136 	if (m == NULL) {
3137 		vap->iv_stats.is_tx_nobuf++;
3138 		return NULL;
3139 	}
3140 
3141 	memset(frm, 0, 8);	/* timestamp should be filled later */
3142 	frm += 8;
3143 	*(uint16_t *)frm = htole16(bss->ni_intval);
3144 	frm += 2;
3145 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3146 	*(uint16_t *)frm = htole16(capinfo);
3147 	frm += 2;
3148 
3149 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3150 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
3151 	frm = ieee80211_add_rates(frm, rs);
3152 
3153 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3154 		*frm++ = IEEE80211_ELEMID_FHPARMS;
3155 		*frm++ = 5;
3156 		*frm++ = bss->ni_fhdwell & 0x00ff;
3157 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3158 		*frm++ = IEEE80211_FH_CHANSET(
3159 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3160 		*frm++ = IEEE80211_FH_CHANPAT(
3161 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3162 		*frm++ = bss->ni_fhindex;
3163 	} else {
3164 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3165 		*frm++ = 1;
3166 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3167 	}
3168 
3169 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3170 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3171 		*frm++ = 2;
3172 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3173 	}
3174 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3175 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3176 		frm = ieee80211_add_countryie(frm, ic);
3177 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3178 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3179 			frm = ieee80211_add_powerconstraint(frm, vap);
3180 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3181 			frm = ieee80211_add_csa(frm, vap);
3182 	}
3183 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3184 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3185 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3186 			if (vap->iv_quiet)
3187 				frm = ieee80211_add_quiet(frm, vap, 0);
3188 		}
3189 	}
3190 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3191 		frm = ieee80211_add_erp(frm, vap);
3192 	frm = ieee80211_add_xrates(frm, rs);
3193 	frm = ieee80211_add_rsn(frm, vap);
3194 	/*
3195 	 * NB: legacy 11b clients do not get certain ie's.
3196 	 *     The caller identifies such clients by passing
3197 	 *     a token in legacy to us.  Could expand this to be
3198 	 *     any legacy client for stuff like HT ie's.
3199 	 */
3200 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3201 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3202 		frm = ieee80211_add_htcap(frm, bss);
3203 		frm = ieee80211_add_htinfo(frm, bss);
3204 	}
3205 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3206 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3207 		frm = ieee80211_add_vhtcap(frm, bss);
3208 		frm = ieee80211_add_vhtinfo(frm, bss);
3209 	}
3210 	frm = ieee80211_add_wpa(frm, vap);
3211 	if (vap->iv_flags & IEEE80211_F_WME)
3212 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3213 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3214 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3215 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3216 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3217 		frm = ieee80211_add_htcap_vendor(frm, bss);
3218 		frm = ieee80211_add_htinfo_vendor(frm, bss);
3219 	}
3220 #ifdef IEEE80211_SUPPORT_SUPERG
3221 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3222 	    legacy != IEEE80211_SEND_LEGACY_11B)
3223 		frm = ieee80211_add_athcaps(frm, bss);
3224 #endif
3225 	if (vap->iv_appie_proberesp != NULL)
3226 		frm = add_appie(frm, vap->iv_appie_proberesp);
3227 #ifdef IEEE80211_SUPPORT_MESH
3228 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3229 		frm = ieee80211_add_meshid(frm, vap);
3230 		frm = ieee80211_add_meshconf(frm, vap);
3231 	}
3232 #endif
3233 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3234 
3235 	return m;
3236 }
3237 
3238 /*
3239  * Send a probe response frame to the specified mac address.
3240  * This does not go through the normal mgt frame api so we
3241  * can specify the destination address and re-use the bss node
3242  * for the sta reference.
3243  */
3244 int
3245 ieee80211_send_proberesp(struct ieee80211vap *vap,
3246 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3247 {
3248 	struct ieee80211_node *bss = vap->iv_bss;
3249 	struct ieee80211com *ic = vap->iv_ic;
3250 	struct mbuf *m;
3251 	int ret;
3252 
3253 	if (vap->iv_state == IEEE80211_S_CAC) {
3254 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3255 		    "block %s frame in CAC state", "probe response");
3256 		vap->iv_stats.is_tx_badstate++;
3257 		return EIO;		/* XXX */
3258 	}
3259 
3260 	/*
3261 	 * Hold a reference on the node so it doesn't go away until after
3262 	 * the xmit is complete all the way in the driver.  On error we
3263 	 * will remove our reference.
3264 	 */
3265 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3266 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3267 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3268 	    ieee80211_node_refcnt(bss)+1);
3269 	ieee80211_ref_node(bss);
3270 
3271 	m = ieee80211_alloc_proberesp(bss, legacy);
3272 	if (m == NULL) {
3273 		ieee80211_free_node(bss);
3274 		return ENOMEM;
3275 	}
3276 
3277 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3278 	KASSERT(m != NULL, ("no room for header"));
3279 
3280 	IEEE80211_TX_LOCK(ic);
3281 	ieee80211_send_setup(bss, m,
3282 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3283 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3284 	/* XXX power management? */
3285 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3286 
3287 	M_WME_SETAC(m, WME_AC_BE);
3288 
3289 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3290 	    "send probe resp on channel %u to %s%s\n",
3291 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3292 	    legacy ? " <legacy>" : "");
3293 	IEEE80211_NODE_STAT(bss, tx_mgmt);
3294 
3295 	ret = ieee80211_raw_output(vap, bss, m, NULL);
3296 	IEEE80211_TX_UNLOCK(ic);
3297 	return (ret);
3298 }
3299 
3300 /*
3301  * Allocate and build a RTS (Request To Send) control frame.
3302  */
3303 struct mbuf *
3304 ieee80211_alloc_rts(struct ieee80211com *ic,
3305 	const uint8_t ra[IEEE80211_ADDR_LEN],
3306 	const uint8_t ta[IEEE80211_ADDR_LEN],
3307 	uint16_t dur)
3308 {
3309 	struct ieee80211_frame_rts *rts;
3310 	struct mbuf *m;
3311 
3312 	/* XXX honor ic_headroom */
3313 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3314 	if (m != NULL) {
3315 		rts = mtod(m, struct ieee80211_frame_rts *);
3316 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3317 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3318 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3319 		*(u_int16_t *)rts->i_dur = htole16(dur);
3320 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3321 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3322 
3323 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3324 	}
3325 	return m;
3326 }
3327 
3328 /*
3329  * Allocate and build a CTS (Clear To Send) control frame.
3330  */
3331 struct mbuf *
3332 ieee80211_alloc_cts(struct ieee80211com *ic,
3333 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3334 {
3335 	struct ieee80211_frame_cts *cts;
3336 	struct mbuf *m;
3337 
3338 	/* XXX honor ic_headroom */
3339 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3340 	if (m != NULL) {
3341 		cts = mtod(m, struct ieee80211_frame_cts *);
3342 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3343 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3344 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3345 		*(u_int16_t *)cts->i_dur = htole16(dur);
3346 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3347 
3348 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3349 	}
3350 	return m;
3351 }
3352 
3353 /*
3354  * Wrapper for CTS/RTS frame allocation.
3355  */
3356 struct mbuf *
3357 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3358     uint8_t rate, int prot)
3359 {
3360 	struct ieee80211com *ic = ni->ni_ic;
3361 	struct ieee80211vap *vap = ni->ni_vap;
3362 	const struct ieee80211_frame *wh;
3363 	struct mbuf *mprot;
3364 	uint16_t dur;
3365 	int pktlen, isshort;
3366 
3367 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3368 	    prot == IEEE80211_PROT_CTSONLY,
3369 	    ("wrong protection type %d", prot));
3370 
3371 	wh = mtod(m, const struct ieee80211_frame *);
3372 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3373 	isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3374 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3375 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3376 
3377 	if (prot == IEEE80211_PROT_RTSCTS) {
3378 		/* NB: CTS is the same size as an ACK */
3379 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3380 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3381 	} else
3382 		mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3383 
3384 	return (mprot);
3385 }
3386 
3387 static void
3388 ieee80211_tx_mgt_timeout(void *arg)
3389 {
3390 	struct ieee80211vap *vap = arg;
3391 
3392 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3393 	    "vap %p mode %s state %s flags %#x & %#x\n", vap,
3394 	    ieee80211_opmode_name[vap->iv_opmode],
3395 	    ieee80211_state_name[vap->iv_state],
3396 	    vap->iv_ic->ic_flags, IEEE80211_F_SCAN);
3397 
3398 	IEEE80211_LOCK(vap->iv_ic);
3399 	if (vap->iv_state != IEEE80211_S_INIT &&
3400 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3401 		/*
3402 		 * NB: it's safe to specify a timeout as the reason here;
3403 		 *     it'll only be used in the right state.
3404 		 */
3405 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3406 			IEEE80211_SCAN_FAIL_TIMEOUT);
3407 	}
3408 	IEEE80211_UNLOCK(vap->iv_ic);
3409 }
3410 
3411 /*
3412  * This is the callback set on net80211-sourced transmitted
3413  * authentication request frames.
3414  *
3415  * This does a couple of things:
3416  *
3417  * + If the frame transmitted was a success, it schedules a future
3418  *   event which will transition the interface to scan.
3419  *   If a state transition _then_ occurs before that event occurs,
3420  *   said state transition will cancel this callout.
3421  *
3422  * + If the frame transmit was a failure, it immediately schedules
3423  *   the transition back to scan.
3424  */
3425 static void
3426 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3427 {
3428 	struct ieee80211vap *vap = ni->ni_vap;
3429 	enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3430 
3431 	/*
3432 	 * Frame transmit completed; arrange timer callback.  If
3433 	 * transmit was successfully we wait for response.  Otherwise
3434 	 * we arrange an immediate callback instead of doing the
3435 	 * callback directly since we don't know what state the driver
3436 	 * is in (e.g. what locks it is holding).  This work should
3437 	 * not be too time-critical and not happen too often so the
3438 	 * added overhead is acceptable.
3439 	 *
3440 	 * XXX what happens if !acked but response shows up before callback?
3441 	 */
3442 	if (vap->iv_state == ostate) {
3443 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3444 		    "ni %p mode %s state %s arg %p status %d\n", ni,
3445 		    ieee80211_opmode_name[vap->iv_opmode],
3446 		    ieee80211_state_name[vap->iv_state], arg, status);
3447 
3448 		callout_reset(&vap->iv_mgtsend,
3449 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3450 			ieee80211_tx_mgt_timeout, vap);
3451 	}
3452 }
3453 
3454 static void
3455 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3456 	struct ieee80211_node *ni)
3457 {
3458 	struct ieee80211vap *vap = ni->ni_vap;
3459 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3460 	struct ieee80211com *ic = ni->ni_ic;
3461 	struct ieee80211_rateset *rs = &ni->ni_rates;
3462 	uint16_t capinfo;
3463 
3464 	/*
3465 	 * beacon frame format
3466 	 *
3467 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3468 	 * vendor extensions should be at the end, etc.
3469 	 *
3470 	 *	[8] time stamp
3471 	 *	[2] beacon interval
3472 	 *	[2] cabability information
3473 	 *	[tlv] ssid
3474 	 *	[tlv] supported rates
3475 	 *	[3] parameter set (DS)
3476 	 *	[8] CF parameter set (optional)
3477 	 *	[tlv] parameter set (IBSS/TIM)
3478 	 *	[tlv] country (optional)
3479 	 *	[3] power control (optional)
3480 	 *	[5] channel switch announcement (CSA) (optional)
3481 	 * XXX TODO: Quiet
3482 	 * XXX TODO: IBSS DFS
3483 	 * XXX TODO: TPC report
3484 	 *	[tlv] extended rate phy (ERP)
3485 	 *	[tlv] extended supported rates
3486 	 *	[tlv] RSN parameters
3487 	 * XXX TODO: BSSLOAD
3488 	 * (XXX EDCA parameter set, QoS capability?)
3489 	 * XXX TODO: AP channel report
3490 	 *
3491 	 *	[tlv] HT capabilities
3492 	 *	[tlv] HT information
3493 	 *	XXX TODO: 20/40 BSS coexistence
3494 	 * Mesh:
3495 	 * XXX TODO: Meshid
3496 	 * XXX TODO: mesh config
3497 	 * XXX TODO: mesh awake window
3498 	 * XXX TODO: beacon timing (mesh, etc)
3499 	 * XXX TODO: MCCAOP Advertisement Overview
3500 	 * XXX TODO: MCCAOP Advertisement
3501 	 * XXX TODO: Mesh channel switch parameters
3502 	 * VHT:
3503 	 * XXX TODO: VHT capabilities
3504 	 * XXX TODO: VHT operation
3505 	 * XXX TODO: VHT transmit power envelope
3506 	 * XXX TODO: channel switch wrapper element
3507 	 * XXX TODO: extended BSS load element
3508 	 *
3509 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3510 	 *	[tlv] WPA parameters
3511 	 *	[tlv] WME parameters
3512 	 *	[tlv] Vendor OUI HT capabilities (optional)
3513 	 *	[tlv] Vendor OUI HT information (optional)
3514 	 *	[tlv] Atheros capabilities (optional)
3515 	 *	[tlv] TDMA parameters (optional)
3516 	 *	[tlv] Mesh ID (MBSS)
3517 	 *	[tlv] Mesh Conf (MBSS)
3518 	 *	[tlv] application data (optional)
3519 	 */
3520 
3521 	memset(bo, 0, sizeof(*bo));
3522 
3523 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3524 	frm += 8;
3525 	*(uint16_t *)frm = htole16(ni->ni_intval);
3526 	frm += 2;
3527 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3528 	bo->bo_caps = (uint16_t *)frm;
3529 	*(uint16_t *)frm = htole16(capinfo);
3530 	frm += 2;
3531 	*frm++ = IEEE80211_ELEMID_SSID;
3532 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3533 		*frm++ = ni->ni_esslen;
3534 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3535 		frm += ni->ni_esslen;
3536 	} else
3537 		*frm++ = 0;
3538 	frm = ieee80211_add_rates(frm, rs);
3539 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3540 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3541 		*frm++ = 1;
3542 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3543 	}
3544 	if (ic->ic_flags & IEEE80211_F_PCF) {
3545 		bo->bo_cfp = frm;
3546 		frm = ieee80211_add_cfparms(frm, ic);
3547 	}
3548 	bo->bo_tim = frm;
3549 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3550 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3551 		*frm++ = 2;
3552 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3553 		bo->bo_tim_len = 0;
3554 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3555 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3556 		/* TIM IE is the same for Mesh and Hostap */
3557 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3558 
3559 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3560 		tie->tim_len = 4;	/* length */
3561 		tie->tim_count = 0;	/* DTIM count */
3562 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3563 		tie->tim_bitctl = 0;	/* bitmap control */
3564 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3565 		frm += sizeof(struct ieee80211_tim_ie);
3566 		bo->bo_tim_len = 1;
3567 	}
3568 	bo->bo_tim_trailer = frm;
3569 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3570 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3571 		frm = ieee80211_add_countryie(frm, ic);
3572 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3573 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3574 			frm = ieee80211_add_powerconstraint(frm, vap);
3575 		bo->bo_csa = frm;
3576 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3577 			frm = ieee80211_add_csa(frm, vap);
3578 	} else
3579 		bo->bo_csa = frm;
3580 
3581 	bo->bo_quiet = NULL;
3582 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3583 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3584 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3585 		    (vap->iv_quiet == 1)) {
3586 			/*
3587 			 * We only insert the quiet IE offset if
3588 			 * the quiet IE is enabled.  Otherwise don't
3589 			 * put it here or we'll just overwrite
3590 			 * some other beacon contents.
3591 			 */
3592 			if (vap->iv_quiet) {
3593 				bo->bo_quiet = frm;
3594 				frm = ieee80211_add_quiet(frm,vap, 0);
3595 			}
3596 		}
3597 	}
3598 
3599 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3600 		bo->bo_erp = frm;
3601 		frm = ieee80211_add_erp(frm, vap);
3602 	}
3603 	frm = ieee80211_add_xrates(frm, rs);
3604 	frm = ieee80211_add_rsn(frm, vap);
3605 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3606 		frm = ieee80211_add_htcap(frm, ni);
3607 		bo->bo_htinfo = frm;
3608 		frm = ieee80211_add_htinfo(frm, ni);
3609 	}
3610 
3611 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3612 		frm = ieee80211_add_vhtcap(frm, ni);
3613 		bo->bo_vhtinfo = frm;
3614 		frm = ieee80211_add_vhtinfo(frm, ni);
3615 		/* Transmit power envelope */
3616 		/* Channel switch wrapper element */
3617 		/* Extended bss load element */
3618 	}
3619 
3620 	frm = ieee80211_add_wpa(frm, vap);
3621 	if (vap->iv_flags & IEEE80211_F_WME) {
3622 		bo->bo_wme = frm;
3623 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3624 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3625 	}
3626 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3627 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3628 		frm = ieee80211_add_htcap_vendor(frm, ni);
3629 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3630 	}
3631 
3632 #ifdef IEEE80211_SUPPORT_SUPERG
3633 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3634 		bo->bo_ath = frm;
3635 		frm = ieee80211_add_athcaps(frm, ni);
3636 	}
3637 #endif
3638 #ifdef IEEE80211_SUPPORT_TDMA
3639 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3640 		bo->bo_tdma = frm;
3641 		frm = ieee80211_add_tdma(frm, vap);
3642 	}
3643 #endif
3644 	if (vap->iv_appie_beacon != NULL) {
3645 		bo->bo_appie = frm;
3646 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3647 		frm = add_appie(frm, vap->iv_appie_beacon);
3648 	}
3649 
3650 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3651 #ifdef IEEE80211_SUPPORT_MESH
3652 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3653 		frm = ieee80211_add_meshid(frm, vap);
3654 		bo->bo_meshconf = frm;
3655 		frm = ieee80211_add_meshconf(frm, vap);
3656 	}
3657 #endif
3658 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3659 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3660 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3661 }
3662 
3663 /*
3664  * Allocate a beacon frame and fillin the appropriate bits.
3665  */
3666 struct mbuf *
3667 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3668 {
3669 	struct ieee80211vap *vap = ni->ni_vap;
3670 	struct ieee80211com *ic = ni->ni_ic;
3671 	struct ifnet *ifp = vap->iv_ifp;
3672 	struct ieee80211_frame *wh;
3673 	struct mbuf *m;
3674 	int pktlen;
3675 	uint8_t *frm;
3676 
3677 	/*
3678 	 * Update the "We're putting the quiet IE in the beacon" state.
3679 	 */
3680 	if (vap->iv_quiet == 1)
3681 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3682 	else if (vap->iv_quiet == 0)
3683 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3684 
3685 	/*
3686 	 * beacon frame format
3687 	 *
3688 	 * Note: This needs updating for 802.11-2012.
3689 	 *
3690 	 *	[8] time stamp
3691 	 *	[2] beacon interval
3692 	 *	[2] cabability information
3693 	 *	[tlv] ssid
3694 	 *	[tlv] supported rates
3695 	 *	[3] parameter set (DS)
3696 	 *	[8] CF parameter set (optional)
3697 	 *	[tlv] parameter set (IBSS/TIM)
3698 	 *	[tlv] country (optional)
3699 	 *	[3] power control (optional)
3700 	 *	[5] channel switch announcement (CSA) (optional)
3701 	 *	[tlv] extended rate phy (ERP)
3702 	 *	[tlv] extended supported rates
3703 	 *	[tlv] RSN parameters
3704 	 *	[tlv] HT capabilities
3705 	 *	[tlv] HT information
3706 	 *	[tlv] VHT capabilities
3707 	 *	[tlv] VHT operation
3708 	 *	[tlv] Vendor OUI HT capabilities (optional)
3709 	 *	[tlv] Vendor OUI HT information (optional)
3710 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3711 	 *	[tlv] WPA parameters
3712 	 *	[tlv] WME parameters
3713 	 *	[tlv] TDMA parameters (optional)
3714 	 *	[tlv] Mesh ID (MBSS)
3715 	 *	[tlv] Mesh Conf (MBSS)
3716 	 *	[tlv] application data (optional)
3717 	 * NB: we allocate the max space required for the TIM bitmap.
3718 	 * XXX how big is this?
3719 	 */
3720 	pktlen =   8					/* time stamp */
3721 		 + sizeof(uint16_t)			/* beacon interval */
3722 		 + sizeof(uint16_t)			/* capabilities */
3723 		 + 2 + ni->ni_esslen			/* ssid */
3724 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3725 	         + 2 + 1				/* DS parameters */
3726 		 + 2 + 6				/* CF parameters */
3727 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3728 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3729 		 + 2 + 1				/* power control */
3730 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3731 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3732 		 + 2 + 1				/* ERP */
3733 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3734 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3735 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3736 		 /* XXX conditional? */
3737 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3738 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3739 		 + 2 + sizeof(struct ieee80211_vht_cap)/* VHT caps */
3740 		 + 2 + sizeof(struct ieee80211_vht_operation)/* VHT info */
3741 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3742 			sizeof(struct ieee80211_wme_param) : 0)
3743 #ifdef IEEE80211_SUPPORT_SUPERG
3744 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3745 #endif
3746 #ifdef IEEE80211_SUPPORT_TDMA
3747 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3748 			sizeof(struct ieee80211_tdma_param) : 0)
3749 #endif
3750 #ifdef IEEE80211_SUPPORT_MESH
3751 		 + 2 + ni->ni_meshidlen
3752 		 + sizeof(struct ieee80211_meshconf_ie)
3753 #endif
3754 		 + IEEE80211_MAX_APPIE
3755 		 ;
3756 	m = ieee80211_getmgtframe(&frm,
3757 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3758 	if (m == NULL) {
3759 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3760 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3761 		vap->iv_stats.is_tx_nobuf++;
3762 		return NULL;
3763 	}
3764 	ieee80211_beacon_construct(m, frm, ni);
3765 
3766 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3767 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3768 	wh = mtod(m, struct ieee80211_frame *);
3769 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3770 	    IEEE80211_FC0_SUBTYPE_BEACON;
3771 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3772 	*(uint16_t *)wh->i_dur = 0;
3773 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3774 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3775 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3776 	*(uint16_t *)wh->i_seq = 0;
3777 
3778 	return m;
3779 }
3780 
3781 /*
3782  * Update the dynamic parts of a beacon frame based on the current state.
3783  */
3784 int
3785 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3786 {
3787 	struct ieee80211vap *vap = ni->ni_vap;
3788 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3789 	struct ieee80211com *ic = ni->ni_ic;
3790 	int len_changed = 0;
3791 	uint16_t capinfo;
3792 	struct ieee80211_frame *wh;
3793 	ieee80211_seq seqno;
3794 
3795 	IEEE80211_LOCK(ic);
3796 	/*
3797 	 * Handle 11h channel change when we've reached the count.
3798 	 * We must recalculate the beacon frame contents to account
3799 	 * for the new channel.  Note we do this only for the first
3800 	 * vap that reaches this point; subsequent vaps just update
3801 	 * their beacon state to reflect the recalculated channel.
3802 	 */
3803 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3804 	    vap->iv_csa_count == ic->ic_csa_count) {
3805 		vap->iv_csa_count = 0;
3806 		/*
3807 		 * Effect channel change before reconstructing the beacon
3808 		 * frame contents as many places reference ni_chan.
3809 		 */
3810 		if (ic->ic_csa_newchan != NULL)
3811 			ieee80211_csa_completeswitch(ic);
3812 		/*
3813 		 * NB: ieee80211_beacon_construct clears all pending
3814 		 * updates in bo_flags so we don't need to explicitly
3815 		 * clear IEEE80211_BEACON_CSA.
3816 		 */
3817 		ieee80211_beacon_construct(m,
3818 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3819 
3820 		/* XXX do WME aggressive mode processing? */
3821 		IEEE80211_UNLOCK(ic);
3822 		return 1;		/* just assume length changed */
3823 	}
3824 
3825 	/*
3826 	 * Handle the quiet time element being added and removed.
3827 	 * Again, for now we just cheat and reconstruct the whole
3828 	 * beacon - that way the gap is provided as appropriate.
3829 	 *
3830 	 * So, track whether we have already added the IE versus
3831 	 * whether we want to be adding the IE.
3832 	 */
3833 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3834 	    (vap->iv_quiet == 0)) {
3835 		/*
3836 		 * Quiet time beacon IE enabled, but it's disabled;
3837 		 * recalc
3838 		 */
3839 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3840 		ieee80211_beacon_construct(m,
3841 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3842 		/* XXX do WME aggressive mode processing? */
3843 		IEEE80211_UNLOCK(ic);
3844 		return 1;		/* just assume length changed */
3845 	}
3846 
3847 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3848 	    (vap->iv_quiet == 1)) {
3849 		/*
3850 		 * Quiet time beacon IE disabled, but it's now enabled;
3851 		 * recalc
3852 		 */
3853 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3854 		ieee80211_beacon_construct(m,
3855 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3856 		/* XXX do WME aggressive mode processing? */
3857 		IEEE80211_UNLOCK(ic);
3858 		return 1;		/* just assume length changed */
3859 	}
3860 
3861 	wh = mtod(m, struct ieee80211_frame *);
3862 
3863 	/*
3864 	 * XXX TODO Strictly speaking this should be incremented with the TX
3865 	 * lock held so as to serialise access to the non-qos TID sequence
3866 	 * number space.
3867 	 *
3868 	 * If the driver identifies it does its own TX seqno management then
3869 	 * we can skip this (and still not do the TX seqno.)
3870 	 */
3871 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3872 	*(uint16_t *)&wh->i_seq[0] =
3873 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3874 	M_SEQNO_SET(m, seqno);
3875 
3876 	/* XXX faster to recalculate entirely or just changes? */
3877 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3878 	*bo->bo_caps = htole16(capinfo);
3879 
3880 	if (vap->iv_flags & IEEE80211_F_WME) {
3881 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3882 
3883 		/*
3884 		 * Check for aggressive mode change.  When there is
3885 		 * significant high priority traffic in the BSS
3886 		 * throttle back BE traffic by using conservative
3887 		 * parameters.  Otherwise BE uses aggressive params
3888 		 * to optimize performance of legacy/non-QoS traffic.
3889 		 */
3890 		if (wme->wme_flags & WME_F_AGGRMODE) {
3891 			if (wme->wme_hipri_traffic >
3892 			    wme->wme_hipri_switch_thresh) {
3893 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3894 				    "%s: traffic %u, disable aggressive mode\n",
3895 				    __func__, wme->wme_hipri_traffic);
3896 				wme->wme_flags &= ~WME_F_AGGRMODE;
3897 				ieee80211_wme_updateparams_locked(vap);
3898 				wme->wme_hipri_traffic =
3899 					wme->wme_hipri_switch_hysteresis;
3900 			} else
3901 				wme->wme_hipri_traffic = 0;
3902 		} else {
3903 			if (wme->wme_hipri_traffic <=
3904 			    wme->wme_hipri_switch_thresh) {
3905 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3906 				    "%s: traffic %u, enable aggressive mode\n",
3907 				    __func__, wme->wme_hipri_traffic);
3908 				wme->wme_flags |= WME_F_AGGRMODE;
3909 				ieee80211_wme_updateparams_locked(vap);
3910 				wme->wme_hipri_traffic = 0;
3911 			} else
3912 				wme->wme_hipri_traffic =
3913 					wme->wme_hipri_switch_hysteresis;
3914 		}
3915 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3916 			(void) ieee80211_add_wme_param(bo->bo_wme, wme,
3917 			  vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3918 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3919 		}
3920 	}
3921 
3922 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3923 		ieee80211_ht_update_beacon(vap, bo);
3924 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3925 	}
3926 #ifdef IEEE80211_SUPPORT_TDMA
3927 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3928 		/*
3929 		 * NB: the beacon is potentially updated every TBTT.
3930 		 */
3931 		ieee80211_tdma_update_beacon(vap, bo);
3932 	}
3933 #endif
3934 #ifdef IEEE80211_SUPPORT_MESH
3935 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3936 		ieee80211_mesh_update_beacon(vap, bo);
3937 #endif
3938 
3939 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3940 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3941 		struct ieee80211_tim_ie *tie =
3942 			(struct ieee80211_tim_ie *) bo->bo_tim;
3943 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3944 			u_int timlen, timoff, i;
3945 			/*
3946 			 * ATIM/DTIM needs updating.  If it fits in the
3947 			 * current space allocated then just copy in the
3948 			 * new bits.  Otherwise we need to move any trailing
3949 			 * data to make room.  Note that we know there is
3950 			 * contiguous space because ieee80211_beacon_allocate
3951 			 * insures there is space in the mbuf to write a
3952 			 * maximal-size virtual bitmap (based on iv_max_aid).
3953 			 */
3954 			/*
3955 			 * Calculate the bitmap size and offset, copy any
3956 			 * trailer out of the way, and then copy in the
3957 			 * new bitmap and update the information element.
3958 			 * Note that the tim bitmap must contain at least
3959 			 * one byte and any offset must be even.
3960 			 */
3961 			if (vap->iv_ps_pending != 0) {
3962 				timoff = 128;		/* impossibly large */
3963 				for (i = 0; i < vap->iv_tim_len; i++)
3964 					if (vap->iv_tim_bitmap[i]) {
3965 						timoff = i &~ 1;
3966 						break;
3967 					}
3968 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3969 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3970 					if (vap->iv_tim_bitmap[i])
3971 						break;
3972 				timlen = 1 + (i - timoff);
3973 			} else {
3974 				timoff = 0;
3975 				timlen = 1;
3976 			}
3977 
3978 			/*
3979 			 * TODO: validate this!
3980 			 */
3981 			if (timlen != bo->bo_tim_len) {
3982 				/* copy up/down trailer */
3983 				int adjust = tie->tim_bitmap+timlen
3984 					   - bo->bo_tim_trailer;
3985 				ovbcopy(bo->bo_tim_trailer,
3986 				    bo->bo_tim_trailer+adjust,
3987 				    bo->bo_tim_trailer_len);
3988 				bo->bo_tim_trailer += adjust;
3989 				bo->bo_erp += adjust;
3990 				bo->bo_htinfo += adjust;
3991 				bo->bo_vhtinfo += adjust;
3992 #ifdef IEEE80211_SUPPORT_SUPERG
3993 				bo->bo_ath += adjust;
3994 #endif
3995 #ifdef IEEE80211_SUPPORT_TDMA
3996 				bo->bo_tdma += adjust;
3997 #endif
3998 #ifdef IEEE80211_SUPPORT_MESH
3999 				bo->bo_meshconf += adjust;
4000 #endif
4001 				bo->bo_appie += adjust;
4002 				bo->bo_wme += adjust;
4003 				bo->bo_csa += adjust;
4004 				bo->bo_quiet += adjust;
4005 				bo->bo_tim_len = timlen;
4006 
4007 				/* update information element */
4008 				tie->tim_len = 3 + timlen;
4009 				tie->tim_bitctl = timoff;
4010 				len_changed = 1;
4011 			}
4012 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
4013 				bo->bo_tim_len);
4014 
4015 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
4016 
4017 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
4018 				"%s: TIM updated, pending %u, off %u, len %u\n",
4019 				__func__, vap->iv_ps_pending, timoff, timlen);
4020 		}
4021 		/* count down DTIM period */
4022 		if (tie->tim_count == 0)
4023 			tie->tim_count = tie->tim_period - 1;
4024 		else
4025 			tie->tim_count--;
4026 		/* update state for buffered multicast frames on DTIM */
4027 		if (mcast && tie->tim_count == 0)
4028 			tie->tim_bitctl |= 1;
4029 		else
4030 			tie->tim_bitctl &= ~1;
4031 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
4032 			struct ieee80211_csa_ie *csa =
4033 			    (struct ieee80211_csa_ie *) bo->bo_csa;
4034 
4035 			/*
4036 			 * Insert or update CSA ie.  If we're just starting
4037 			 * to count down to the channel switch then we need
4038 			 * to insert the CSA ie.  Otherwise we just need to
4039 			 * drop the count.  The actual change happens above
4040 			 * when the vap's count reaches the target count.
4041 			 */
4042 			if (vap->iv_csa_count == 0) {
4043 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
4044 				bo->bo_erp += sizeof(*csa);
4045 				bo->bo_htinfo += sizeof(*csa);
4046 				bo->bo_vhtinfo += sizeof(*csa);
4047 				bo->bo_wme += sizeof(*csa);
4048 #ifdef IEEE80211_SUPPORT_SUPERG
4049 				bo->bo_ath += sizeof(*csa);
4050 #endif
4051 #ifdef IEEE80211_SUPPORT_TDMA
4052 				bo->bo_tdma += sizeof(*csa);
4053 #endif
4054 #ifdef IEEE80211_SUPPORT_MESH
4055 				bo->bo_meshconf += sizeof(*csa);
4056 #endif
4057 				bo->bo_appie += sizeof(*csa);
4058 				bo->bo_csa_trailer_len += sizeof(*csa);
4059 				bo->bo_quiet += sizeof(*csa);
4060 				bo->bo_tim_trailer_len += sizeof(*csa);
4061 				m->m_len += sizeof(*csa);
4062 				m->m_pkthdr.len += sizeof(*csa);
4063 
4064 				ieee80211_add_csa(bo->bo_csa, vap);
4065 			} else
4066 				csa->csa_count--;
4067 			vap->iv_csa_count++;
4068 			/* NB: don't clear IEEE80211_BEACON_CSA */
4069 		}
4070 
4071 		/*
4072 		 * Only add the quiet time IE if we've enabled it
4073 		 * as appropriate.
4074 		 */
4075 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
4076 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4077 			if (vap->iv_quiet &&
4078 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4079 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4080 			}
4081 		}
4082 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4083 			/*
4084 			 * ERP element needs updating.
4085 			 */
4086 			(void) ieee80211_add_erp(bo->bo_erp, vap);
4087 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4088 		}
4089 #ifdef IEEE80211_SUPPORT_SUPERG
4090 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
4091 			ieee80211_add_athcaps(bo->bo_ath, ni);
4092 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4093 		}
4094 #endif
4095 	}
4096 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4097 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4098 		int aielen;
4099 		uint8_t *frm;
4100 
4101 		aielen = 0;
4102 		if (aie != NULL)
4103 			aielen += aie->ie_len;
4104 		if (aielen != bo->bo_appie_len) {
4105 			/* copy up/down trailer */
4106 			int adjust = aielen - bo->bo_appie_len;
4107 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4108 				bo->bo_tim_trailer_len);
4109 			bo->bo_tim_trailer += adjust;
4110 			bo->bo_appie += adjust;
4111 			bo->bo_appie_len = aielen;
4112 
4113 			len_changed = 1;
4114 		}
4115 		frm = bo->bo_appie;
4116 		if (aie != NULL)
4117 			frm  = add_appie(frm, aie);
4118 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4119 	}
4120 	IEEE80211_UNLOCK(ic);
4121 
4122 	return len_changed;
4123 }
4124 
4125 /*
4126  * Do Ethernet-LLC encapsulation for each payload in a fast frame
4127  * tunnel encapsulation.  The frame is assumed to have an Ethernet
4128  * header at the front that must be stripped before prepending the
4129  * LLC followed by the Ethernet header passed in (with an Ethernet
4130  * type that specifies the payload size).
4131  */
4132 struct mbuf *
4133 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4134 	const struct ether_header *eh)
4135 {
4136 	struct llc *llc;
4137 	uint16_t payload;
4138 
4139 	/* XXX optimize by combining m_adj+M_PREPEND */
4140 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4141 	llc = mtod(m, struct llc *);
4142 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4143 	llc->llc_control = LLC_UI;
4144 	llc->llc_snap.org_code[0] = 0;
4145 	llc->llc_snap.org_code[1] = 0;
4146 	llc->llc_snap.org_code[2] = 0;
4147 	llc->llc_snap.ether_type = eh->ether_type;
4148 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
4149 
4150 	M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT);
4151 	if (m == NULL) {		/* XXX cannot happen */
4152 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4153 			"%s: no space for ether_header\n", __func__);
4154 		vap->iv_stats.is_tx_nobuf++;
4155 		return NULL;
4156 	}
4157 	ETHER_HEADER_COPY(mtod(m, void *), eh);
4158 	mtod(m, struct ether_header *)->ether_type = htons(payload);
4159 	return m;
4160 }
4161 
4162 /*
4163  * Complete an mbuf transmission.
4164  *
4165  * For now, this simply processes a completed frame after the
4166  * driver has completed it's transmission and/or retransmission.
4167  * It assumes the frame is an 802.11 encapsulated frame.
4168  *
4169  * Later on it will grow to become the exit path for a given frame
4170  * from the driver and, depending upon how it's been encapsulated
4171  * and already transmitted, it may end up doing A-MPDU retransmission,
4172  * power save requeuing, etc.
4173  *
4174  * In order for the above to work, the driver entry point to this
4175  * must not hold any driver locks.  Thus, the driver needs to delay
4176  * any actual mbuf completion until it can release said locks.
4177  *
4178  * This frees the mbuf and if the mbuf has a node reference,
4179  * the node reference will be freed.
4180  */
4181 void
4182 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4183 {
4184 
4185 	if (ni != NULL) {
4186 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
4187 
4188 		if (status == 0) {
4189 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4190 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4191 			if (m->m_flags & M_MCAST)
4192 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4193 		} else
4194 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4195 		if (m->m_flags & M_TXCB) {
4196 			IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
4197 			   "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap,
4198 			   ieee80211_opmode_name[ni->ni_vap->iv_opmode],
4199 			   ieee80211_state_name[ni->ni_vap->iv_state], m, status);
4200 			ieee80211_process_callback(ni, m, status);
4201 		}
4202 		ieee80211_free_node(ni);
4203 	}
4204 	m_freem(m);
4205 }
4206