1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211_output.c 330688 2018-03-09 11:33:56Z avos $"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 129 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 130 (m->m_flags & M_PWR_SAV) == 0) { 131 /* 132 * Station in power save mode; pass the frame 133 * to the 802.11 layer and continue. We'll get 134 * the frame back when the time is right. 135 * XXX lose WDS vap linkage? 136 */ 137 if (ieee80211_pwrsave(ni, m) != 0) 138 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 139 ieee80211_free_node(ni); 140 141 /* 142 * We queued it fine, so tell the upper layer 143 * that we consumed it. 144 */ 145 return (0); 146 } 147 /* calculate priority so drivers can find the tx queue */ 148 if (ieee80211_classify(ni, m)) { 149 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 150 ni->ni_macaddr, NULL, 151 "%s", "classification failure"); 152 vap->iv_stats.is_tx_classify++; 153 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 154 m_freem(m); 155 ieee80211_free_node(ni); 156 157 /* XXX better status? */ 158 return (0); 159 } 160 /* 161 * Stash the node pointer. Note that we do this after 162 * any call to ieee80211_dwds_mcast because that code 163 * uses any existing value for rcvif to identify the 164 * interface it (might have been) received on. 165 */ 166 m->m_pkthdr.rcvif = (void *)ni; 167 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 168 169 BPF_MTAP(ifp, m); /* 802.3 tx */ 170 171 /* 172 * Check if A-MPDU tx aggregation is setup or if we 173 * should try to enable it. The sta must be associated 174 * with HT and A-MPDU enabled for use. When the policy 175 * routine decides we should enable A-MPDU we issue an 176 * ADDBA request and wait for a reply. The frame being 177 * encapsulated will go out w/o using A-MPDU, or possibly 178 * it might be collected by the driver and held/retransmit. 179 * The default ic_ampdu_enable routine handles staggering 180 * ADDBA requests in case the receiver NAK's us or we are 181 * otherwise unable to establish a BA stream. 182 * 183 * Don't treat group-addressed frames as candidates for aggregation; 184 * net80211 doesn't support 802.11aa-2012 and so group addressed 185 * frames will always have sequence numbers allocated from the NON_QOS 186 * TID. 187 */ 188 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 189 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 190 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 191 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 192 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 193 194 ieee80211_txampdu_count_packet(tap); 195 if (IEEE80211_AMPDU_RUNNING(tap)) { 196 /* 197 * Operational, mark frame for aggregation. 198 * 199 * XXX do tx aggregation here 200 */ 201 m->m_flags |= M_AMPDU_MPDU; 202 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 203 ic->ic_ampdu_enable(ni, tap)) { 204 /* 205 * Not negotiated yet, request service. 206 */ 207 ieee80211_ampdu_request(ni, tap); 208 /* XXX hold frame for reply? */ 209 } 210 } 211 } 212 213 #ifdef IEEE80211_SUPPORT_SUPERG 214 /* 215 * Check for AMSDU/FF; queue for aggregation 216 * 217 * Note: we don't bother trying to do fast frames or 218 * A-MSDU encapsulation for 802.3 drivers. Now, we 219 * likely could do it for FF (because it's a magic 220 * atheros tunnel LLC type) but I don't think we're going 221 * to really need to. For A-MSDU we'd have to set the 222 * A-MSDU QoS bit in the wifi header, so we just plain 223 * can't do it. 224 * 225 * Strictly speaking, we could actually /do/ A-MSDU / FF 226 * with A-MPDU together which for certain circumstances 227 * is beneficial (eg A-MSDU of TCK ACKs.) However, 228 * I'll ignore that for now so existing behaviour is maintained. 229 * Later on it would be good to make "amsdu + ampdu" configurable. 230 */ 231 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 232 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 233 m = ieee80211_amsdu_check(ni, m); 234 if (m == NULL) { 235 /* NB: any ni ref held on stageq */ 236 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 237 "%s: amsdu_check queued frame\n", 238 __func__); 239 return (0); 240 } 241 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 242 IEEE80211_NODE_FF)) { 243 m = ieee80211_ff_check(ni, m); 244 if (m == NULL) { 245 /* NB: any ni ref held on stageq */ 246 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 247 "%s: ff_check queued frame\n", 248 __func__); 249 return (0); 250 } 251 } 252 } 253 #endif /* IEEE80211_SUPPORT_SUPERG */ 254 255 /* 256 * Grab the TX lock - serialise the TX process from this 257 * point (where TX state is being checked/modified) 258 * through to driver queue. 259 */ 260 IEEE80211_TX_LOCK(ic); 261 262 /* 263 * XXX make the encap and transmit code a separate function 264 * so things like the FF (and later A-MSDU) path can just call 265 * it for flushed frames. 266 */ 267 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 268 /* 269 * Encapsulate the packet in prep for transmission. 270 */ 271 m = ieee80211_encap(vap, ni, m); 272 if (m == NULL) { 273 /* NB: stat+msg handled in ieee80211_encap */ 274 IEEE80211_TX_UNLOCK(ic); 275 ieee80211_free_node(ni); 276 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 277 return (ENOBUFS); 278 } 279 } 280 (void) ieee80211_parent_xmitpkt(ic, m); 281 282 /* 283 * Unlock at this point - no need to hold it across 284 * ieee80211_free_node() (ie, the comlock) 285 */ 286 IEEE80211_TX_UNLOCK(ic); 287 ic->ic_lastdata = ticks; 288 289 return (0); 290 } 291 292 293 294 /* 295 * Send the given mbuf through the given vap. 296 * 297 * This consumes the mbuf regardless of whether the transmit 298 * was successful or not. 299 * 300 * This does none of the initial checks that ieee80211_start() 301 * does (eg CAC timeout, interface wakeup) - the caller must 302 * do this first. 303 */ 304 static int 305 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 306 { 307 #define IS_DWDS(vap) \ 308 (vap->iv_opmode == IEEE80211_M_WDS && \ 309 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 310 struct ieee80211com *ic = vap->iv_ic; 311 struct ifnet *ifp = vap->iv_ifp; 312 struct ieee80211_node *ni; 313 struct ether_header *eh; 314 315 /* 316 * Cancel any background scan. 317 */ 318 if (ic->ic_flags & IEEE80211_F_SCAN) 319 ieee80211_cancel_anyscan(vap); 320 /* 321 * Find the node for the destination so we can do 322 * things like power save and fast frames aggregation. 323 * 324 * NB: past this point various code assumes the first 325 * mbuf has the 802.3 header present (and contiguous). 326 */ 327 ni = NULL; 328 if (m->m_len < sizeof(struct ether_header) && 329 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 330 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 331 "discard frame, %s\n", "m_pullup failed"); 332 vap->iv_stats.is_tx_nobuf++; /* XXX */ 333 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 334 return (ENOBUFS); 335 } 336 eh = mtod(m, struct ether_header *); 337 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 338 if (IS_DWDS(vap)) { 339 /* 340 * Only unicast frames from the above go out 341 * DWDS vaps; multicast frames are handled by 342 * dispatching the frame as it comes through 343 * the AP vap (see below). 344 */ 345 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 346 eh->ether_dhost, "mcast", "%s", "on DWDS"); 347 vap->iv_stats.is_dwds_mcast++; 348 m_freem(m); 349 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 350 /* XXX better status? */ 351 return (ENOBUFS); 352 } 353 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 354 /* 355 * Spam DWDS vap's w/ multicast traffic. 356 */ 357 /* XXX only if dwds in use? */ 358 ieee80211_dwds_mcast(vap, m); 359 } 360 } 361 #ifdef IEEE80211_SUPPORT_MESH 362 if (vap->iv_opmode != IEEE80211_M_MBSS) { 363 #endif 364 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 365 if (ni == NULL) { 366 /* NB: ieee80211_find_txnode does stat+msg */ 367 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 368 m_freem(m); 369 /* XXX better status? */ 370 return (ENOBUFS); 371 } 372 if (ni->ni_associd == 0 && 373 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 374 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 375 eh->ether_dhost, NULL, 376 "sta not associated (type 0x%04x)", 377 htons(eh->ether_type)); 378 vap->iv_stats.is_tx_notassoc++; 379 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 380 m_freem(m); 381 ieee80211_free_node(ni); 382 /* XXX better status? */ 383 return (ENOBUFS); 384 } 385 #ifdef IEEE80211_SUPPORT_MESH 386 } else { 387 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 388 /* 389 * Proxy station only if configured. 390 */ 391 if (!ieee80211_mesh_isproxyena(vap)) { 392 IEEE80211_DISCARD_MAC(vap, 393 IEEE80211_MSG_OUTPUT | 394 IEEE80211_MSG_MESH, 395 eh->ether_dhost, NULL, 396 "%s", "proxy not enabled"); 397 vap->iv_stats.is_mesh_notproxy++; 398 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 399 m_freem(m); 400 /* XXX better status? */ 401 return (ENOBUFS); 402 } 403 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 404 "forward frame from DS SA(%6D), DA(%6D)\n", 405 eh->ether_shost, ":", 406 eh->ether_dhost, ":"); 407 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 408 } 409 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 410 if (ni == NULL) { 411 /* 412 * NB: ieee80211_mesh_discover holds/disposes 413 * frame (e.g. queueing on path discovery). 414 */ 415 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 416 /* XXX better status? */ 417 return (ENOBUFS); 418 } 419 } 420 #endif 421 422 /* 423 * We've resolved the sender, so attempt to transmit it. 424 */ 425 426 if (vap->iv_state == IEEE80211_S_SLEEP) { 427 /* 428 * In power save; queue frame and then wakeup device 429 * for transmit. 430 */ 431 ic->ic_lastdata = ticks; 432 if (ieee80211_pwrsave(ni, m) != 0) 433 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 434 ieee80211_free_node(ni); 435 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 436 return (0); 437 } 438 439 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 440 return (ENOBUFS); 441 return (0); 442 #undef IS_DWDS 443 } 444 445 /* 446 * Start method for vap's. All packets from the stack come 447 * through here. We handle common processing of the packets 448 * before dispatching them to the underlying device. 449 * 450 * if_transmit() requires that the mbuf be consumed by this call 451 * regardless of the return condition. 452 */ 453 int 454 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 455 { 456 struct ieee80211vap *vap = ifp->if_softc; 457 struct ieee80211com *ic = vap->iv_ic; 458 459 /* 460 * No data frames go out unless we're running. 461 * Note in particular this covers CAC and CSA 462 * states (though maybe we should check muting 463 * for CSA). 464 */ 465 if (vap->iv_state != IEEE80211_S_RUN && 466 vap->iv_state != IEEE80211_S_SLEEP) { 467 IEEE80211_LOCK(ic); 468 /* re-check under the com lock to avoid races */ 469 if (vap->iv_state != IEEE80211_S_RUN && 470 vap->iv_state != IEEE80211_S_SLEEP) { 471 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 472 "%s: ignore queue, in %s state\n", 473 __func__, ieee80211_state_name[vap->iv_state]); 474 vap->iv_stats.is_tx_badstate++; 475 IEEE80211_UNLOCK(ic); 476 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 477 m_freem(m); 478 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 479 return (ENETDOWN); 480 } 481 IEEE80211_UNLOCK(ic); 482 } 483 484 /* 485 * Sanitize mbuf flags for net80211 use. We cannot 486 * clear M_PWR_SAV or M_MORE_DATA because these may 487 * be set for frames that are re-submitted from the 488 * power save queue. 489 * 490 * NB: This must be done before ieee80211_classify as 491 * it marks EAPOL in frames with M_EAPOL. 492 */ 493 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 494 495 /* 496 * Bump to the packet transmission path. 497 * The mbuf will be consumed here. 498 */ 499 return (ieee80211_start_pkt(vap, m)); 500 } 501 502 void 503 ieee80211_vap_qflush(struct ifnet *ifp) 504 { 505 506 /* Empty for now */ 507 } 508 509 /* 510 * 802.11 raw output routine. 511 * 512 * XXX TODO: this (and other send routines) should correctly 513 * XXX keep the pwr mgmt bit set if it decides to call into the 514 * XXX driver to send a frame whilst the state is SLEEP. 515 * 516 * Otherwise the peer may decide that we're awake and flood us 517 * with traffic we are still too asleep to receive! 518 */ 519 int 520 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 521 struct mbuf *m, const struct ieee80211_bpf_params *params) 522 { 523 struct ieee80211com *ic = vap->iv_ic; 524 int error; 525 526 /* 527 * Set node - the caller has taken a reference, so ensure 528 * that the mbuf has the same node value that 529 * it would if it were going via the normal path. 530 */ 531 m->m_pkthdr.rcvif = (void *)ni; 532 533 /* 534 * Attempt to add bpf transmit parameters. 535 * 536 * For now it's ok to fail; the raw_xmit api still takes 537 * them as an option. 538 * 539 * Later on when ic_raw_xmit() has params removed, 540 * they'll have to be added - so fail the transmit if 541 * they can't be. 542 */ 543 if (params) 544 (void) ieee80211_add_xmit_params(m, params); 545 546 error = ic->ic_raw_xmit(ni, m, params); 547 if (error) { 548 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 549 ieee80211_free_node(ni); 550 } 551 return (error); 552 } 553 554 static int 555 ieee80211_validate_frame(struct mbuf *m, 556 const struct ieee80211_bpf_params *params) 557 { 558 struct ieee80211_frame *wh; 559 int type; 560 561 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 562 return (EINVAL); 563 564 wh = mtod(m, struct ieee80211_frame *); 565 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 566 IEEE80211_FC0_VERSION_0) 567 return (EINVAL); 568 569 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 570 if (type != IEEE80211_FC0_TYPE_DATA) { 571 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 572 IEEE80211_FC1_DIR_NODS) 573 return (EINVAL); 574 575 if (type != IEEE80211_FC0_TYPE_MGT && 576 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 577 return (EINVAL); 578 579 /* XXX skip other field checks? */ 580 } 581 582 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 583 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 584 int subtype; 585 586 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 587 588 /* 589 * See IEEE Std 802.11-2012, 590 * 8.2.4.1.9 'Protected Frame field' 591 */ 592 /* XXX no support for robust management frames yet. */ 593 if (!(type == IEEE80211_FC0_TYPE_DATA || 594 (type == IEEE80211_FC0_TYPE_MGT && 595 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 596 return (EINVAL); 597 598 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 599 } 600 601 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 602 return (EINVAL); 603 604 return (0); 605 } 606 607 /* 608 * 802.11 output routine. This is (currently) used only to 609 * connect bpf write calls to the 802.11 layer for injecting 610 * raw 802.11 frames. 611 */ 612 int 613 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 614 const struct sockaddr *dst, struct route *ro) 615 { 616 #define senderr(e) do { error = (e); goto bad;} while (0) 617 const struct ieee80211_bpf_params *params = NULL; 618 struct ieee80211_node *ni = NULL; 619 struct ieee80211vap *vap; 620 struct ieee80211_frame *wh; 621 struct ieee80211com *ic = NULL; 622 int error; 623 int ret; 624 625 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 626 /* 627 * Short-circuit requests if the vap is marked OACTIVE 628 * as this can happen because a packet came down through 629 * ieee80211_start before the vap entered RUN state in 630 * which case it's ok to just drop the frame. This 631 * should not be necessary but callers of if_output don't 632 * check OACTIVE. 633 */ 634 senderr(ENETDOWN); 635 } 636 vap = ifp->if_softc; 637 ic = vap->iv_ic; 638 /* 639 * Hand to the 802.3 code if not tagged as 640 * a raw 802.11 frame. 641 */ 642 #ifdef __HAIKU__ 643 // FIXME why is this different on Haiku? 644 if (!dst || dst->sa_family != AF_IEEE80211) 645 return ieee80211_vap_xmitpkt(vap, m); 646 #else 647 if (dst->sa_family != AF_IEEE80211) 648 return vap->iv_output(ifp, m, dst, ro); 649 #endif 650 #ifdef MAC 651 error = mac_ifnet_check_transmit(ifp, m); 652 if (error) 653 senderr(error); 654 #endif 655 if (ifp->if_flags & IFF_MONITOR) 656 senderr(ENETDOWN); 657 if (!IFNET_IS_UP_RUNNING(ifp)) 658 senderr(ENETDOWN); 659 if (vap->iv_state == IEEE80211_S_CAC) { 660 IEEE80211_DPRINTF(vap, 661 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 662 "block %s frame in CAC state\n", "raw data"); 663 vap->iv_stats.is_tx_badstate++; 664 senderr(EIO); /* XXX */ 665 } else if (vap->iv_state == IEEE80211_S_SCAN) 666 senderr(EIO); 667 /* XXX bypass bridge, pfil, carp, etc. */ 668 669 /* 670 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 671 * present by setting the sa_len field of the sockaddr (yes, 672 * this is a hack). 673 * NB: we assume sa_data is suitably aligned to cast. 674 */ 675 if (dst->sa_len != 0) 676 params = (const struct ieee80211_bpf_params *)dst->sa_data; 677 678 error = ieee80211_validate_frame(m, params); 679 if (error != 0) 680 senderr(error); 681 682 wh = mtod(m, struct ieee80211_frame *); 683 684 /* locate destination node */ 685 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 686 case IEEE80211_FC1_DIR_NODS: 687 case IEEE80211_FC1_DIR_FROMDS: 688 ni = ieee80211_find_txnode(vap, wh->i_addr1); 689 break; 690 case IEEE80211_FC1_DIR_TODS: 691 case IEEE80211_FC1_DIR_DSTODS: 692 ni = ieee80211_find_txnode(vap, wh->i_addr3); 693 break; 694 default: 695 senderr(EDOOFUS); 696 } 697 if (ni == NULL) { 698 /* 699 * Permit packets w/ bpf params through regardless 700 * (see below about sa_len). 701 */ 702 if (dst->sa_len == 0) 703 senderr(EHOSTUNREACH); 704 ni = ieee80211_ref_node(vap->iv_bss); 705 } 706 707 /* 708 * Sanitize mbuf for net80211 flags leaked from above. 709 * 710 * NB: This must be done before ieee80211_classify as 711 * it marks EAPOL in frames with M_EAPOL. 712 */ 713 m->m_flags &= ~M_80211_TX; 714 m->m_flags |= M_ENCAP; /* mark encapsulated */ 715 716 if (IEEE80211_IS_DATA(wh)) { 717 /* calculate priority so drivers can find the tx queue */ 718 if (ieee80211_classify(ni, m)) 719 senderr(EIO); /* XXX */ 720 721 /* NB: ieee80211_encap does not include 802.11 header */ 722 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 723 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 724 } else 725 M_WME_SETAC(m, WME_AC_BE); 726 727 IEEE80211_NODE_STAT(ni, tx_data); 728 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 729 IEEE80211_NODE_STAT(ni, tx_mcast); 730 m->m_flags |= M_MCAST; 731 } else 732 IEEE80211_NODE_STAT(ni, tx_ucast); 733 734 IEEE80211_TX_LOCK(ic); 735 ret = ieee80211_raw_output(vap, ni, m, params); 736 IEEE80211_TX_UNLOCK(ic); 737 return (ret); 738 bad: 739 if (m != NULL) 740 m_freem(m); 741 if (ni != NULL) 742 ieee80211_free_node(ni); 743 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 744 return error; 745 #undef senderr 746 } 747 748 /* 749 * Set the direction field and address fields of an outgoing 750 * frame. Note this should be called early on in constructing 751 * a frame as it sets i_fc[1]; other bits can then be or'd in. 752 */ 753 void 754 ieee80211_send_setup( 755 struct ieee80211_node *ni, 756 struct mbuf *m, 757 int type, int tid, 758 const uint8_t sa[IEEE80211_ADDR_LEN], 759 const uint8_t da[IEEE80211_ADDR_LEN], 760 const uint8_t bssid[IEEE80211_ADDR_LEN]) 761 { 762 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 763 struct ieee80211vap *vap = ni->ni_vap; 764 struct ieee80211_tx_ampdu *tap; 765 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 766 ieee80211_seq seqno; 767 768 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 769 770 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 771 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 772 switch (vap->iv_opmode) { 773 case IEEE80211_M_STA: 774 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 775 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 776 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 777 IEEE80211_ADDR_COPY(wh->i_addr3, da); 778 break; 779 case IEEE80211_M_IBSS: 780 case IEEE80211_M_AHDEMO: 781 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 782 IEEE80211_ADDR_COPY(wh->i_addr1, da); 783 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 784 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 785 break; 786 case IEEE80211_M_HOSTAP: 787 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 788 IEEE80211_ADDR_COPY(wh->i_addr1, da); 789 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 790 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 791 break; 792 case IEEE80211_M_WDS: 793 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 794 IEEE80211_ADDR_COPY(wh->i_addr1, da); 795 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 796 IEEE80211_ADDR_COPY(wh->i_addr3, da); 797 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 798 break; 799 case IEEE80211_M_MBSS: 800 #ifdef IEEE80211_SUPPORT_MESH 801 if (IEEE80211_IS_MULTICAST(da)) { 802 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 803 /* XXX next hop */ 804 IEEE80211_ADDR_COPY(wh->i_addr1, da); 805 IEEE80211_ADDR_COPY(wh->i_addr2, 806 vap->iv_myaddr); 807 } else { 808 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 809 IEEE80211_ADDR_COPY(wh->i_addr1, da); 810 IEEE80211_ADDR_COPY(wh->i_addr2, 811 vap->iv_myaddr); 812 IEEE80211_ADDR_COPY(wh->i_addr3, da); 813 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 814 } 815 #endif 816 break; 817 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 818 break; 819 } 820 } else { 821 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 822 IEEE80211_ADDR_COPY(wh->i_addr1, da); 823 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 824 #ifdef IEEE80211_SUPPORT_MESH 825 if (vap->iv_opmode == IEEE80211_M_MBSS) 826 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 827 else 828 #endif 829 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 830 } 831 *(uint16_t *)&wh->i_dur[0] = 0; 832 833 /* 834 * XXX TODO: this is what the TX lock is for. 835 * Here we're incrementing sequence numbers, and they 836 * need to be in lock-step with what the driver is doing 837 * both in TX ordering and crypto encap (IV increment.) 838 * 839 * If the driver does seqno itself, then we can skip 840 * assigning sequence numbers here, and we can avoid 841 * requiring the TX lock. 842 */ 843 tap = &ni->ni_tx_ampdu[tid]; 844 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 845 m->m_flags |= M_AMPDU_MPDU; 846 847 /* NB: zero out i_seq field (for s/w encryption etc) */ 848 *(uint16_t *)&wh->i_seq[0] = 0; 849 } else { 850 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 851 type & IEEE80211_FC0_SUBTYPE_MASK)) 852 /* 853 * 802.11-2012 9.3.2.10 - QoS multicast frames 854 * come out of a different seqno space. 855 */ 856 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 857 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 858 } else { 859 seqno = ni->ni_txseqs[tid]++; 860 } 861 else 862 seqno = 0; 863 864 *(uint16_t *)&wh->i_seq[0] = 865 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 866 M_SEQNO_SET(m, seqno); 867 } 868 869 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 870 m->m_flags |= M_MCAST; 871 #undef WH4 872 } 873 874 /* 875 * Send a management frame to the specified node. The node pointer 876 * must have a reference as the pointer will be passed to the driver 877 * and potentially held for a long time. If the frame is successfully 878 * dispatched to the driver, then it is responsible for freeing the 879 * reference (and potentially free'ing up any associated storage); 880 * otherwise deal with reclaiming any reference (on error). 881 */ 882 int 883 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 884 struct ieee80211_bpf_params *params) 885 { 886 struct ieee80211vap *vap = ni->ni_vap; 887 struct ieee80211com *ic = ni->ni_ic; 888 struct ieee80211_frame *wh; 889 int ret; 890 891 KASSERT(ni != NULL, ("null node")); 892 893 if (vap->iv_state == IEEE80211_S_CAC) { 894 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 895 ni, "block %s frame in CAC state", 896 ieee80211_mgt_subtype_name(type)); 897 vap->iv_stats.is_tx_badstate++; 898 ieee80211_free_node(ni); 899 m_freem(m); 900 return EIO; /* XXX */ 901 } 902 903 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 904 if (m == NULL) { 905 ieee80211_free_node(ni); 906 return ENOMEM; 907 } 908 909 IEEE80211_TX_LOCK(ic); 910 911 wh = mtod(m, struct ieee80211_frame *); 912 ieee80211_send_setup(ni, m, 913 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 914 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 915 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 916 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 917 "encrypting frame (%s)", __func__); 918 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 919 } 920 m->m_flags |= M_ENCAP; /* mark encapsulated */ 921 922 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 923 M_WME_SETAC(m, params->ibp_pri); 924 925 #ifdef IEEE80211_DEBUG 926 /* avoid printing too many frames */ 927 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 928 ieee80211_msg_dumppkts(vap)) { 929 printf("[%s] send %s on channel %u\n", 930 ether_sprintf(wh->i_addr1), 931 ieee80211_mgt_subtype_name(type), 932 ieee80211_chan2ieee(ic, ic->ic_curchan)); 933 } 934 #endif 935 IEEE80211_NODE_STAT(ni, tx_mgmt); 936 937 ret = ieee80211_raw_output(vap, ni, m, params); 938 IEEE80211_TX_UNLOCK(ic); 939 return (ret); 940 } 941 942 static void 943 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 944 int status) 945 { 946 struct ieee80211vap *vap = ni->ni_vap; 947 948 wakeup(vap); 949 } 950 951 /* 952 * Send a null data frame to the specified node. If the station 953 * is setup for QoS then a QoS Null Data frame is constructed. 954 * If this is a WDS station then a 4-address frame is constructed. 955 * 956 * NB: the caller is assumed to have setup a node reference 957 * for use; this is necessary to deal with a race condition 958 * when probing for inactive stations. Like ieee80211_mgmt_output 959 * we must cleanup any node reference on error; however we 960 * can safely just unref it as we know it will never be the 961 * last reference to the node. 962 */ 963 int 964 ieee80211_send_nulldata(struct ieee80211_node *ni) 965 { 966 struct ieee80211vap *vap = ni->ni_vap; 967 struct ieee80211com *ic = ni->ni_ic; 968 struct mbuf *m; 969 struct ieee80211_frame *wh; 970 int hdrlen; 971 uint8_t *frm; 972 int ret; 973 974 if (vap->iv_state == IEEE80211_S_CAC) { 975 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 976 ni, "block %s frame in CAC state", "null data"); 977 ieee80211_unref_node(&ni); 978 vap->iv_stats.is_tx_badstate++; 979 return EIO; /* XXX */ 980 } 981 982 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 983 hdrlen = sizeof(struct ieee80211_qosframe); 984 else 985 hdrlen = sizeof(struct ieee80211_frame); 986 /* NB: only WDS vap's get 4-address frames */ 987 if (vap->iv_opmode == IEEE80211_M_WDS) 988 hdrlen += IEEE80211_ADDR_LEN; 989 if (ic->ic_flags & IEEE80211_F_DATAPAD) 990 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 991 992 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 993 if (m == NULL) { 994 /* XXX debug msg */ 995 ieee80211_unref_node(&ni); 996 vap->iv_stats.is_tx_nobuf++; 997 return ENOMEM; 998 } 999 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 1000 ("leading space %zd", M_LEADINGSPACE(m))); 1001 M_PREPEND(m, hdrlen, M_NOWAIT); 1002 if (m == NULL) { 1003 /* NB: cannot happen */ 1004 ieee80211_free_node(ni); 1005 return ENOMEM; 1006 } 1007 1008 IEEE80211_TX_LOCK(ic); 1009 1010 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1011 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1012 const int tid = WME_AC_TO_TID(WME_AC_BE); 1013 uint8_t *qos; 1014 1015 ieee80211_send_setup(ni, m, 1016 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1017 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1018 1019 if (vap->iv_opmode == IEEE80211_M_WDS) 1020 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1021 else 1022 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1023 qos[0] = tid & IEEE80211_QOS_TID; 1024 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1025 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1026 qos[1] = 0; 1027 } else { 1028 ieee80211_send_setup(ni, m, 1029 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1030 IEEE80211_NONQOS_TID, 1031 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1032 } 1033 if (vap->iv_opmode != IEEE80211_M_WDS) { 1034 /* NB: power management bit is never sent by an AP */ 1035 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1036 vap->iv_opmode != IEEE80211_M_HOSTAP) 1037 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1038 } 1039 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1040 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1041 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1042 NULL); 1043 } 1044 m->m_len = m->m_pkthdr.len = hdrlen; 1045 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1046 1047 M_WME_SETAC(m, WME_AC_BE); 1048 1049 IEEE80211_NODE_STAT(ni, tx_data); 1050 1051 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1052 "send %snull data frame on channel %u, pwr mgt %s", 1053 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1054 ieee80211_chan2ieee(ic, ic->ic_curchan), 1055 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1056 1057 ret = ieee80211_raw_output(vap, ni, m, NULL); 1058 IEEE80211_TX_UNLOCK(ic); 1059 return (ret); 1060 } 1061 1062 /* 1063 * Assign priority to a frame based on any vlan tag assigned 1064 * to the station and/or any Diffserv setting in an IP header. 1065 * Finally, if an ACM policy is setup (in station mode) it's 1066 * applied. 1067 */ 1068 int 1069 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1070 { 1071 const struct ether_header *eh = NULL; 1072 uint16_t ether_type; 1073 int v_wme_ac, d_wme_ac, ac; 1074 1075 if (__predict_false(m->m_flags & M_ENCAP)) { 1076 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1077 struct llc *llc; 1078 int hdrlen, subtype; 1079 1080 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1081 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1082 ac = WME_AC_BE; 1083 goto done; 1084 } 1085 1086 hdrlen = ieee80211_hdrsize(wh); 1087 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1088 return 1; 1089 1090 llc = (struct llc *)mtodo(m, hdrlen); 1091 if (llc->llc_dsap != LLC_SNAP_LSAP || 1092 llc->llc_ssap != LLC_SNAP_LSAP || 1093 llc->llc_control != LLC_UI || 1094 llc->llc_snap.org_code[0] != 0 || 1095 llc->llc_snap.org_code[1] != 0 || 1096 llc->llc_snap.org_code[2] != 0) 1097 return 1; 1098 1099 ether_type = llc->llc_snap.ether_type; 1100 } else { 1101 eh = mtod(m, struct ether_header *); 1102 ether_type = eh->ether_type; 1103 } 1104 1105 /* 1106 * Always promote PAE/EAPOL frames to high priority. 1107 */ 1108 if (ether_type == htons(ETHERTYPE_PAE)) { 1109 /* NB: mark so others don't need to check header */ 1110 m->m_flags |= M_EAPOL; 1111 ac = WME_AC_VO; 1112 goto done; 1113 } 1114 /* 1115 * Non-qos traffic goes to BE. 1116 */ 1117 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1118 ac = WME_AC_BE; 1119 goto done; 1120 } 1121 1122 /* 1123 * If node has a vlan tag then all traffic 1124 * to it must have a matching tag. 1125 */ 1126 v_wme_ac = 0; 1127 if (ni->ni_vlan != 0) { 1128 if ((m->m_flags & M_VLANTAG) == 0) { 1129 IEEE80211_NODE_STAT(ni, tx_novlantag); 1130 return 1; 1131 } 1132 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1133 EVL_VLANOFTAG(ni->ni_vlan)) { 1134 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1135 return 1; 1136 } 1137 /* map vlan priority to AC */ 1138 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1139 } 1140 1141 /* XXX m_copydata may be too slow for fast path */ 1142 #ifdef INET 1143 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1144 uint8_t tos; 1145 /* 1146 * IP frame, map the DSCP bits from the TOS field. 1147 */ 1148 /* NB: ip header may not be in first mbuf */ 1149 m_copydata(m, sizeof(struct ether_header) + 1150 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1151 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1152 d_wme_ac = TID_TO_WME_AC(tos); 1153 } else { 1154 #endif /* INET */ 1155 #ifdef INET6 1156 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1157 uint32_t flow; 1158 uint8_t tos; 1159 /* 1160 * IPv6 frame, map the DSCP bits from the traffic class field. 1161 */ 1162 m_copydata(m, sizeof(struct ether_header) + 1163 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1164 (caddr_t) &flow); 1165 tos = (uint8_t)(ntohl(flow) >> 20); 1166 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1167 d_wme_ac = TID_TO_WME_AC(tos); 1168 } else { 1169 #endif /* INET6 */ 1170 d_wme_ac = WME_AC_BE; 1171 #ifdef INET6 1172 } 1173 #endif 1174 #ifdef INET 1175 } 1176 #endif 1177 /* 1178 * Use highest priority AC. 1179 */ 1180 if (v_wme_ac > d_wme_ac) 1181 ac = v_wme_ac; 1182 else 1183 ac = d_wme_ac; 1184 1185 /* 1186 * Apply ACM policy. 1187 */ 1188 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1189 static const int acmap[4] = { 1190 WME_AC_BK, /* WME_AC_BE */ 1191 WME_AC_BK, /* WME_AC_BK */ 1192 WME_AC_BE, /* WME_AC_VI */ 1193 WME_AC_VI, /* WME_AC_VO */ 1194 }; 1195 struct ieee80211com *ic = ni->ni_ic; 1196 1197 while (ac != WME_AC_BK && 1198 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1199 ac = acmap[ac]; 1200 } 1201 done: 1202 M_WME_SETAC(m, ac); 1203 return 0; 1204 } 1205 1206 /* 1207 * Insure there is sufficient contiguous space to encapsulate the 1208 * 802.11 data frame. If room isn't already there, arrange for it. 1209 * Drivers and cipher modules assume we have done the necessary work 1210 * and fail rudely if they don't find the space they need. 1211 */ 1212 struct mbuf * 1213 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1214 struct ieee80211_key *key, struct mbuf *m) 1215 { 1216 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1217 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1218 1219 if (key != NULL) { 1220 /* XXX belongs in crypto code? */ 1221 needed_space += key->wk_cipher->ic_header; 1222 /* XXX frags */ 1223 /* 1224 * When crypto is being done in the host we must insure 1225 * the data are writable for the cipher routines; clone 1226 * a writable mbuf chain. 1227 * XXX handle SWMIC specially 1228 */ 1229 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1230 m = m_unshare(m, M_NOWAIT); 1231 if (m == NULL) { 1232 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1233 "%s: cannot get writable mbuf\n", __func__); 1234 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1235 return NULL; 1236 } 1237 } 1238 } 1239 /* 1240 * We know we are called just before stripping an Ethernet 1241 * header and prepending an LLC header. This means we know 1242 * there will be 1243 * sizeof(struct ether_header) - sizeof(struct llc) 1244 * bytes recovered to which we need additional space for the 1245 * 802.11 header and any crypto header. 1246 */ 1247 /* XXX check trailing space and copy instead? */ 1248 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1249 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1250 if (n == NULL) { 1251 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1252 "%s: cannot expand storage\n", __func__); 1253 vap->iv_stats.is_tx_nobuf++; 1254 m_freem(m); 1255 return NULL; 1256 } 1257 KASSERT(needed_space <= MHLEN, 1258 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1259 /* 1260 * Setup new mbuf to have leading space to prepend the 1261 * 802.11 header and any crypto header bits that are 1262 * required (the latter are added when the driver calls 1263 * back to ieee80211_crypto_encap to do crypto encapsulation). 1264 */ 1265 /* NB: must be first 'cuz it clobbers m_data */ 1266 m_move_pkthdr(n, m); 1267 n->m_len = 0; /* NB: m_gethdr does not set */ 1268 n->m_data += needed_space; 1269 /* 1270 * Pull up Ethernet header to create the expected layout. 1271 * We could use m_pullup but that's overkill (i.e. we don't 1272 * need the actual data) and it cannot fail so do it inline 1273 * for speed. 1274 */ 1275 /* NB: struct ether_header is known to be contiguous */ 1276 n->m_len += sizeof(struct ether_header); 1277 m->m_len -= sizeof(struct ether_header); 1278 m->m_data += sizeof(struct ether_header); 1279 /* 1280 * Replace the head of the chain. 1281 */ 1282 n->m_next = m; 1283 m = n; 1284 } 1285 return m; 1286 #undef TO_BE_RECLAIMED 1287 } 1288 1289 /* 1290 * Return the transmit key to use in sending a unicast frame. 1291 * If a unicast key is set we use that. When no unicast key is set 1292 * we fall back to the default transmit key. 1293 */ 1294 static __inline struct ieee80211_key * 1295 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1296 struct ieee80211_node *ni) 1297 { 1298 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1299 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1300 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1301 return NULL; 1302 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1303 } else { 1304 return &ni->ni_ucastkey; 1305 } 1306 } 1307 1308 /* 1309 * Return the transmit key to use in sending a multicast frame. 1310 * Multicast traffic always uses the group key which is installed as 1311 * the default tx key. 1312 */ 1313 static __inline struct ieee80211_key * 1314 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1315 struct ieee80211_node *ni) 1316 { 1317 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1318 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1319 return NULL; 1320 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1321 } 1322 1323 /* 1324 * Encapsulate an outbound data frame. The mbuf chain is updated. 1325 * If an error is encountered NULL is returned. The caller is required 1326 * to provide a node reference and pullup the ethernet header in the 1327 * first mbuf. 1328 * 1329 * NB: Packet is assumed to be processed by ieee80211_classify which 1330 * marked EAPOL frames w/ M_EAPOL. 1331 */ 1332 struct mbuf * 1333 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1334 struct mbuf *m) 1335 { 1336 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1337 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1338 struct ieee80211com *ic = ni->ni_ic; 1339 #ifdef IEEE80211_SUPPORT_MESH 1340 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1341 struct ieee80211_meshcntl_ae10 *mc; 1342 struct ieee80211_mesh_route *rt = NULL; 1343 int dir = -1; 1344 #endif 1345 struct ether_header eh; 1346 struct ieee80211_frame *wh; 1347 struct ieee80211_key *key; 1348 struct llc *llc; 1349 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1350 ieee80211_seq seqno; 1351 int meshhdrsize, meshae; 1352 uint8_t *qos; 1353 int is_amsdu = 0; 1354 1355 IEEE80211_TX_LOCK_ASSERT(ic); 1356 1357 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1358 1359 /* 1360 * Copy existing Ethernet header to a safe place. The 1361 * rest of the code assumes it's ok to strip it when 1362 * reorganizing state for the final encapsulation. 1363 */ 1364 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1365 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1366 1367 /* 1368 * Insure space for additional headers. First identify 1369 * transmit key to use in calculating any buffer adjustments 1370 * required. This is also used below to do privacy 1371 * encapsulation work. Then calculate the 802.11 header 1372 * size and any padding required by the driver. 1373 * 1374 * Note key may be NULL if we fall back to the default 1375 * transmit key and that is not set. In that case the 1376 * buffer may not be expanded as needed by the cipher 1377 * routines, but they will/should discard it. 1378 */ 1379 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1380 if (vap->iv_opmode == IEEE80211_M_STA || 1381 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1382 (vap->iv_opmode == IEEE80211_M_WDS && 1383 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1384 key = ieee80211_crypto_getucastkey(vap, ni); 1385 else 1386 key = ieee80211_crypto_getmcastkey(vap, ni); 1387 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1388 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1389 eh.ether_dhost, 1390 "no default transmit key (%s) deftxkey %u", 1391 __func__, vap->iv_def_txkey); 1392 vap->iv_stats.is_tx_nodefkey++; 1393 goto bad; 1394 } 1395 } else 1396 key = NULL; 1397 /* 1398 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1399 * frames so suppress use. This may be an issue if other 1400 * ap's require all data frames to be QoS-encapsulated 1401 * once negotiated in which case we'll need to make this 1402 * configurable. 1403 * 1404 * Don't send multicast QoS frames. 1405 * Technically multicast frames can be QoS if all stations in the 1406 * BSS are also QoS. 1407 * 1408 * NB: mesh data frames are QoS, including multicast frames. 1409 */ 1410 addqos = 1411 (((is_mcast == 0) && (ni->ni_flags & 1412 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1413 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1414 (m->m_flags & M_EAPOL) == 0; 1415 1416 if (addqos) 1417 hdrsize = sizeof(struct ieee80211_qosframe); 1418 else 1419 hdrsize = sizeof(struct ieee80211_frame); 1420 #ifdef IEEE80211_SUPPORT_MESH 1421 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1422 /* 1423 * Mesh data frames are encapsulated according to the 1424 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1425 * o Group Addressed data (aka multicast) originating 1426 * at the local sta are sent w/ 3-address format and 1427 * address extension mode 00 1428 * o Individually Addressed data (aka unicast) originating 1429 * at the local sta are sent w/ 4-address format and 1430 * address extension mode 00 1431 * o Group Addressed data forwarded from a non-mesh sta are 1432 * sent w/ 3-address format and address extension mode 01 1433 * o Individually Address data from another sta are sent 1434 * w/ 4-address format and address extension mode 10 1435 */ 1436 is4addr = 0; /* NB: don't use, disable */ 1437 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1438 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1439 KASSERT(rt != NULL, ("route is NULL")); 1440 dir = IEEE80211_FC1_DIR_DSTODS; 1441 hdrsize += IEEE80211_ADDR_LEN; 1442 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1443 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1444 vap->iv_myaddr)) { 1445 IEEE80211_NOTE_MAC(vap, 1446 IEEE80211_MSG_MESH, 1447 eh.ether_dhost, 1448 "%s", "trying to send to ourself"); 1449 goto bad; 1450 } 1451 meshae = IEEE80211_MESH_AE_10; 1452 meshhdrsize = 1453 sizeof(struct ieee80211_meshcntl_ae10); 1454 } else { 1455 meshae = IEEE80211_MESH_AE_00; 1456 meshhdrsize = 1457 sizeof(struct ieee80211_meshcntl); 1458 } 1459 } else { 1460 dir = IEEE80211_FC1_DIR_FROMDS; 1461 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1462 /* proxy group */ 1463 meshae = IEEE80211_MESH_AE_01; 1464 meshhdrsize = 1465 sizeof(struct ieee80211_meshcntl_ae01); 1466 } else { 1467 /* group */ 1468 meshae = IEEE80211_MESH_AE_00; 1469 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1470 } 1471 } 1472 } else { 1473 #endif 1474 /* 1475 * 4-address frames need to be generated for: 1476 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1477 * o packets sent through a vap marked for relaying 1478 * (e.g. a station operating with dynamic WDS) 1479 */ 1480 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1481 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1482 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1483 if (is4addr) 1484 hdrsize += IEEE80211_ADDR_LEN; 1485 meshhdrsize = meshae = 0; 1486 #ifdef IEEE80211_SUPPORT_MESH 1487 } 1488 #endif 1489 /* 1490 * Honor driver DATAPAD requirement. 1491 */ 1492 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1493 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1494 else 1495 hdrspace = hdrsize; 1496 1497 if (__predict_true((m->m_flags & M_FF) == 0)) { 1498 /* 1499 * Normal frame. 1500 */ 1501 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1502 if (m == NULL) { 1503 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1504 goto bad; 1505 } 1506 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1507 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1508 llc = mtod(m, struct llc *); 1509 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1510 llc->llc_control = LLC_UI; 1511 llc->llc_snap.org_code[0] = 0; 1512 llc->llc_snap.org_code[1] = 0; 1513 llc->llc_snap.org_code[2] = 0; 1514 llc->llc_snap.ether_type = eh.ether_type; 1515 } else { 1516 #ifdef IEEE80211_SUPPORT_SUPERG 1517 /* 1518 * Aggregated frame. Check if it's for AMSDU or FF. 1519 * 1520 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1521 * anywhere for some reason. But, since 11n requires 1522 * AMSDU RX, we can just assume "11n" == "AMSDU". 1523 */ 1524 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1525 if (ieee80211_amsdu_tx_ok(ni)) { 1526 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1527 is_amsdu = 1; 1528 } else { 1529 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1530 } 1531 if (m == NULL) 1532 #endif 1533 goto bad; 1534 } 1535 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1536 1537 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1538 if (m == NULL) { 1539 vap->iv_stats.is_tx_nobuf++; 1540 goto bad; 1541 } 1542 wh = mtod(m, struct ieee80211_frame *); 1543 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1544 *(uint16_t *)wh->i_dur = 0; 1545 qos = NULL; /* NB: quiet compiler */ 1546 if (is4addr) { 1547 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1548 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1549 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1550 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1551 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1552 } else switch (vap->iv_opmode) { 1553 case IEEE80211_M_STA: 1554 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1555 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1556 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1557 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1558 break; 1559 case IEEE80211_M_IBSS: 1560 case IEEE80211_M_AHDEMO: 1561 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1562 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1563 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1564 /* 1565 * NB: always use the bssid from iv_bss as the 1566 * neighbor's may be stale after an ibss merge 1567 */ 1568 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1569 break; 1570 case IEEE80211_M_HOSTAP: 1571 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1572 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1573 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1574 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1575 break; 1576 #ifdef IEEE80211_SUPPORT_MESH 1577 case IEEE80211_M_MBSS: 1578 /* NB: offset by hdrspace to deal with DATAPAD */ 1579 mc = (struct ieee80211_meshcntl_ae10 *) 1580 (mtod(m, uint8_t *) + hdrspace); 1581 wh->i_fc[1] = dir; 1582 switch (meshae) { 1583 case IEEE80211_MESH_AE_00: /* no proxy */ 1584 mc->mc_flags = 0; 1585 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1586 IEEE80211_ADDR_COPY(wh->i_addr1, 1587 ni->ni_macaddr); 1588 IEEE80211_ADDR_COPY(wh->i_addr2, 1589 vap->iv_myaddr); 1590 IEEE80211_ADDR_COPY(wh->i_addr3, 1591 eh.ether_dhost); 1592 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1593 eh.ether_shost); 1594 qos =((struct ieee80211_qosframe_addr4 *) 1595 wh)->i_qos; 1596 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1597 /* mcast */ 1598 IEEE80211_ADDR_COPY(wh->i_addr1, 1599 eh.ether_dhost); 1600 IEEE80211_ADDR_COPY(wh->i_addr2, 1601 vap->iv_myaddr); 1602 IEEE80211_ADDR_COPY(wh->i_addr3, 1603 eh.ether_shost); 1604 qos = ((struct ieee80211_qosframe *) 1605 wh)->i_qos; 1606 } 1607 break; 1608 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1609 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1610 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1611 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1612 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1613 mc->mc_flags = 1; 1614 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1615 eh.ether_shost); 1616 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1617 break; 1618 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1619 KASSERT(rt != NULL, ("route is NULL")); 1620 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1621 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1622 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1623 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1624 mc->mc_flags = IEEE80211_MESH_AE_10; 1625 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1626 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1627 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1628 break; 1629 default: 1630 KASSERT(0, ("meshae %d", meshae)); 1631 break; 1632 } 1633 mc->mc_ttl = ms->ms_ttl; 1634 ms->ms_seq++; 1635 le32enc(mc->mc_seq, ms->ms_seq); 1636 break; 1637 #endif 1638 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1639 default: 1640 goto bad; 1641 } 1642 if (m->m_flags & M_MORE_DATA) 1643 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1644 if (addqos) { 1645 int ac, tid; 1646 1647 if (is4addr) { 1648 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1649 /* NB: mesh case handled earlier */ 1650 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1651 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1652 ac = M_WME_GETAC(m); 1653 /* map from access class/queue to 11e header priorty value */ 1654 tid = WME_AC_TO_TID(ac); 1655 qos[0] = tid & IEEE80211_QOS_TID; 1656 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1657 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1658 #ifdef IEEE80211_SUPPORT_MESH 1659 if (vap->iv_opmode == IEEE80211_M_MBSS) 1660 qos[1] = IEEE80211_QOS_MC; 1661 else 1662 #endif 1663 qos[1] = 0; 1664 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1665 1666 /* 1667 * If this is an A-MSDU then ensure we set the 1668 * relevant field. 1669 */ 1670 if (is_amsdu) 1671 qos[0] |= IEEE80211_QOS_AMSDU; 1672 1673 /* 1674 * XXX TODO TX lock is needed for atomic updates of sequence 1675 * numbers. If the driver does it, then don't do it here; 1676 * and we don't need the TX lock held. 1677 */ 1678 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1679 /* 1680 * 802.11-2012 9.3.2.10 - 1681 * 1682 * If this is a multicast frame then we need 1683 * to ensure that the sequence number comes from 1684 * a separate seqno space and not the TID space. 1685 * 1686 * Otherwise multicast frames may actually cause 1687 * holes in the TX blockack window space and 1688 * upset various things. 1689 */ 1690 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1691 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1692 else 1693 seqno = ni->ni_txseqs[tid]++; 1694 1695 /* 1696 * NB: don't assign a sequence # to potential 1697 * aggregates; we expect this happens at the 1698 * point the frame comes off any aggregation q 1699 * as otherwise we may introduce holes in the 1700 * BA sequence space and/or make window accouting 1701 * more difficult. 1702 * 1703 * XXX may want to control this with a driver 1704 * capability; this may also change when we pull 1705 * aggregation up into net80211 1706 */ 1707 seqno = ni->ni_txseqs[tid]++; 1708 *(uint16_t *)wh->i_seq = 1709 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1710 M_SEQNO_SET(m, seqno); 1711 } else { 1712 /* NB: zero out i_seq field (for s/w encryption etc) */ 1713 *(uint16_t *)wh->i_seq = 0; 1714 } 1715 } else { 1716 /* 1717 * XXX TODO TX lock is needed for atomic updates of sequence 1718 * numbers. If the driver does it, then don't do it here; 1719 * and we don't need the TX lock held. 1720 */ 1721 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1722 *(uint16_t *)wh->i_seq = 1723 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1724 M_SEQNO_SET(m, seqno); 1725 1726 /* 1727 * XXX TODO: we shouldn't allow EAPOL, etc that would 1728 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1729 */ 1730 if (is_amsdu) 1731 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1732 __func__); 1733 } 1734 1735 /* 1736 * Check if xmit fragmentation is required. 1737 * 1738 * If the hardware does fragmentation offload, then don't bother 1739 * doing it here. 1740 */ 1741 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1742 txfrag = 0; 1743 else 1744 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1745 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1746 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1747 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1748 1749 if (key != NULL) { 1750 /* 1751 * IEEE 802.1X: send EAPOL frames always in the clear. 1752 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1753 */ 1754 if ((m->m_flags & M_EAPOL) == 0 || 1755 ((vap->iv_flags & IEEE80211_F_WPA) && 1756 (vap->iv_opmode == IEEE80211_M_STA ? 1757 !IEEE80211_KEY_UNDEFINED(key) : 1758 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1759 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1760 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1761 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1762 eh.ether_dhost, 1763 "%s", "enmic failed, discard frame"); 1764 vap->iv_stats.is_crypto_enmicfail++; 1765 goto bad; 1766 } 1767 } 1768 } 1769 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1770 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1771 goto bad; 1772 1773 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1774 1775 IEEE80211_NODE_STAT(ni, tx_data); 1776 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1777 IEEE80211_NODE_STAT(ni, tx_mcast); 1778 m->m_flags |= M_MCAST; 1779 } else 1780 IEEE80211_NODE_STAT(ni, tx_ucast); 1781 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1782 1783 return m; 1784 bad: 1785 if (m != NULL) 1786 m_freem(m); 1787 return NULL; 1788 #undef WH4 1789 #undef MC01 1790 } 1791 1792 void 1793 ieee80211_free_mbuf(struct mbuf *m) 1794 { 1795 struct mbuf *next; 1796 1797 if (m == NULL) 1798 return; 1799 1800 do { 1801 next = m->m_nextpkt; 1802 m->m_nextpkt = NULL; 1803 m_freem(m); 1804 } while ((m = next) != NULL); 1805 } 1806 1807 /* 1808 * Fragment the frame according to the specified mtu. 1809 * The size of the 802.11 header (w/o padding) is provided 1810 * so we don't need to recalculate it. We create a new 1811 * mbuf for each fragment and chain it through m_nextpkt; 1812 * we might be able to optimize this by reusing the original 1813 * packet's mbufs but that is significantly more complicated. 1814 */ 1815 static int 1816 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1817 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1818 { 1819 struct ieee80211com *ic = vap->iv_ic; 1820 struct ieee80211_frame *wh, *whf; 1821 struct mbuf *m, *prev; 1822 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1823 u_int hdrspace; 1824 1825 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1826 KASSERT(m0->m_pkthdr.len > mtu, 1827 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1828 1829 /* 1830 * Honor driver DATAPAD requirement. 1831 */ 1832 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1833 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1834 else 1835 hdrspace = hdrsize; 1836 1837 wh = mtod(m0, struct ieee80211_frame *); 1838 /* NB: mark the first frag; it will be propagated below */ 1839 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1840 totalhdrsize = hdrspace + ciphdrsize; 1841 fragno = 1; 1842 off = mtu - ciphdrsize; 1843 remainder = m0->m_pkthdr.len - off; 1844 prev = m0; 1845 do { 1846 fragsize = MIN(totalhdrsize + remainder, mtu); 1847 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1848 if (m == NULL) 1849 goto bad; 1850 /* leave room to prepend any cipher header */ 1851 m_align(m, fragsize - ciphdrsize); 1852 1853 /* 1854 * Form the header in the fragment. Note that since 1855 * we mark the first fragment with the MORE_FRAG bit 1856 * it automatically is propagated to each fragment; we 1857 * need only clear it on the last fragment (done below). 1858 * NB: frag 1+ dont have Mesh Control field present. 1859 */ 1860 whf = mtod(m, struct ieee80211_frame *); 1861 memcpy(whf, wh, hdrsize); 1862 #ifdef IEEE80211_SUPPORT_MESH 1863 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1864 if (IEEE80211_IS_DSTODS(wh)) 1865 ((struct ieee80211_qosframe_addr4 *) 1866 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1867 else 1868 ((struct ieee80211_qosframe *) 1869 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1870 } 1871 #endif 1872 *(uint16_t *)&whf->i_seq[0] |= htole16( 1873 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1874 IEEE80211_SEQ_FRAG_SHIFT); 1875 fragno++; 1876 1877 payload = fragsize - totalhdrsize; 1878 /* NB: destination is known to be contiguous */ 1879 1880 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1881 m->m_len = hdrspace + payload; 1882 m->m_pkthdr.len = hdrspace + payload; 1883 m->m_flags |= M_FRAG; 1884 1885 /* chain up the fragment */ 1886 prev->m_nextpkt = m; 1887 prev = m; 1888 1889 /* deduct fragment just formed */ 1890 remainder -= payload; 1891 off += payload; 1892 } while (remainder != 0); 1893 1894 /* set the last fragment */ 1895 m->m_flags |= M_LASTFRAG; 1896 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1897 1898 /* strip first mbuf now that everything has been copied */ 1899 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1900 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1901 1902 vap->iv_stats.is_tx_fragframes++; 1903 vap->iv_stats.is_tx_frags += fragno-1; 1904 1905 return 1; 1906 bad: 1907 /* reclaim fragments but leave original frame for caller to free */ 1908 ieee80211_free_mbuf(m0->m_nextpkt); 1909 m0->m_nextpkt = NULL; 1910 return 0; 1911 } 1912 1913 /* 1914 * Add a supported rates element id to a frame. 1915 */ 1916 uint8_t * 1917 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1918 { 1919 int nrates; 1920 1921 *frm++ = IEEE80211_ELEMID_RATES; 1922 nrates = rs->rs_nrates; 1923 if (nrates > IEEE80211_RATE_SIZE) 1924 nrates = IEEE80211_RATE_SIZE; 1925 *frm++ = nrates; 1926 memcpy(frm, rs->rs_rates, nrates); 1927 return frm + nrates; 1928 } 1929 1930 /* 1931 * Add an extended supported rates element id to a frame. 1932 */ 1933 uint8_t * 1934 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1935 { 1936 /* 1937 * Add an extended supported rates element if operating in 11g mode. 1938 */ 1939 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1940 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1941 *frm++ = IEEE80211_ELEMID_XRATES; 1942 *frm++ = nrates; 1943 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1944 frm += nrates; 1945 } 1946 return frm; 1947 } 1948 1949 /* 1950 * Add an ssid element to a frame. 1951 */ 1952 uint8_t * 1953 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1954 { 1955 *frm++ = IEEE80211_ELEMID_SSID; 1956 *frm++ = len; 1957 memcpy(frm, ssid, len); 1958 return frm + len; 1959 } 1960 1961 /* 1962 * Add an erp element to a frame. 1963 */ 1964 static uint8_t * 1965 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1966 { 1967 uint8_t erp; 1968 1969 *frm++ = IEEE80211_ELEMID_ERP; 1970 *frm++ = 1; 1971 erp = 0; 1972 if (ic->ic_nonerpsta != 0) 1973 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1974 if (ic->ic_flags & IEEE80211_F_USEPROT) 1975 erp |= IEEE80211_ERP_USE_PROTECTION; 1976 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1977 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1978 *frm++ = erp; 1979 return frm; 1980 } 1981 1982 /* 1983 * Add a CFParams element to a frame. 1984 */ 1985 static uint8_t * 1986 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1987 { 1988 #define ADDSHORT(frm, v) do { \ 1989 le16enc(frm, v); \ 1990 frm += 2; \ 1991 } while (0) 1992 *frm++ = IEEE80211_ELEMID_CFPARMS; 1993 *frm++ = 6; 1994 *frm++ = 0; /* CFP count */ 1995 *frm++ = 2; /* CFP period */ 1996 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1997 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1998 return frm; 1999 #undef ADDSHORT 2000 } 2001 2002 static __inline uint8_t * 2003 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 2004 { 2005 memcpy(frm, ie->ie_data, ie->ie_len); 2006 return frm + ie->ie_len; 2007 } 2008 2009 static __inline uint8_t * 2010 add_ie(uint8_t *frm, const uint8_t *ie) 2011 { 2012 memcpy(frm, ie, 2 + ie[1]); 2013 return frm + 2 + ie[1]; 2014 } 2015 2016 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2017 /* 2018 * Add a WME information element to a frame. 2019 */ 2020 uint8_t * 2021 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 2022 { 2023 static const struct ieee80211_wme_info info = { 2024 .wme_id = IEEE80211_ELEMID_VENDOR, 2025 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 2026 .wme_oui = { WME_OUI_BYTES }, 2027 .wme_type = WME_OUI_TYPE, 2028 .wme_subtype = WME_INFO_OUI_SUBTYPE, 2029 .wme_version = WME_VERSION, 2030 .wme_info = 0, 2031 }; 2032 memcpy(frm, &info, sizeof(info)); 2033 return frm + sizeof(info); 2034 } 2035 2036 /* 2037 * Add a WME parameters element to a frame. 2038 */ 2039 static uint8_t * 2040 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 2041 { 2042 #define SM(_v, _f) (((_v) << _f##_S) & _f) 2043 #define ADDSHORT(frm, v) do { \ 2044 le16enc(frm, v); \ 2045 frm += 2; \ 2046 } while (0) 2047 /* NB: this works 'cuz a param has an info at the front */ 2048 static const struct ieee80211_wme_info param = { 2049 .wme_id = IEEE80211_ELEMID_VENDOR, 2050 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2051 .wme_oui = { WME_OUI_BYTES }, 2052 .wme_type = WME_OUI_TYPE, 2053 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2054 .wme_version = WME_VERSION, 2055 }; 2056 int i; 2057 2058 memcpy(frm, ¶m, sizeof(param)); 2059 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2060 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 2061 *frm++ = 0; /* reserved field */ 2062 for (i = 0; i < WME_NUM_AC; i++) { 2063 const struct wmeParams *ac = 2064 &wme->wme_bssChanParams.cap_wmeParams[i]; 2065 *frm++ = SM(i, WME_PARAM_ACI) 2066 | SM(ac->wmep_acm, WME_PARAM_ACM) 2067 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 2068 ; 2069 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 2070 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 2071 ; 2072 ADDSHORT(frm, ac->wmep_txopLimit); 2073 } 2074 return frm; 2075 #undef SM 2076 #undef ADDSHORT 2077 } 2078 #undef WME_OUI_BYTES 2079 2080 /* 2081 * Add an 11h Power Constraint element to a frame. 2082 */ 2083 static uint8_t * 2084 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2085 { 2086 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2087 /* XXX per-vap tx power limit? */ 2088 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2089 2090 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2091 frm[1] = 1; 2092 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2093 return frm + 3; 2094 } 2095 2096 /* 2097 * Add an 11h Power Capability element to a frame. 2098 */ 2099 static uint8_t * 2100 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2101 { 2102 frm[0] = IEEE80211_ELEMID_PWRCAP; 2103 frm[1] = 2; 2104 frm[2] = c->ic_minpower; 2105 frm[3] = c->ic_maxpower; 2106 return frm + 4; 2107 } 2108 2109 /* 2110 * Add an 11h Supported Channels element to a frame. 2111 */ 2112 static uint8_t * 2113 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2114 { 2115 static const int ielen = 26; 2116 2117 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2118 frm[1] = ielen; 2119 /* XXX not correct */ 2120 memcpy(frm+2, ic->ic_chan_avail, ielen); 2121 return frm + 2 + ielen; 2122 } 2123 2124 /* 2125 * Add an 11h Quiet time element to a frame. 2126 */ 2127 static uint8_t * 2128 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2129 { 2130 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2131 2132 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2133 quiet->len = 6; 2134 2135 /* 2136 * Only update every beacon interval - otherwise probe responses 2137 * would update the quiet count value. 2138 */ 2139 if (update) { 2140 if (vap->iv_quiet_count_value == 1) 2141 vap->iv_quiet_count_value = vap->iv_quiet_count; 2142 else if (vap->iv_quiet_count_value > 1) 2143 vap->iv_quiet_count_value--; 2144 } 2145 2146 if (vap->iv_quiet_count_value == 0) { 2147 /* value 0 is reserved as per 802.11h standerd */ 2148 vap->iv_quiet_count_value = 1; 2149 } 2150 2151 quiet->tbttcount = vap->iv_quiet_count_value; 2152 quiet->period = vap->iv_quiet_period; 2153 quiet->duration = htole16(vap->iv_quiet_duration); 2154 quiet->offset = htole16(vap->iv_quiet_offset); 2155 return frm + sizeof(*quiet); 2156 } 2157 2158 /* 2159 * Add an 11h Channel Switch Announcement element to a frame. 2160 * Note that we use the per-vap CSA count to adjust the global 2161 * counter so we can use this routine to form probe response 2162 * frames and get the current count. 2163 */ 2164 static uint8_t * 2165 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2166 { 2167 struct ieee80211com *ic = vap->iv_ic; 2168 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2169 2170 csa->csa_ie = IEEE80211_ELEMID_CSA; 2171 csa->csa_len = 3; 2172 csa->csa_mode = 1; /* XXX force quiet on channel */ 2173 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2174 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2175 return frm + sizeof(*csa); 2176 } 2177 2178 /* 2179 * Add an 11h country information element to a frame. 2180 */ 2181 static uint8_t * 2182 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2183 { 2184 2185 if (ic->ic_countryie == NULL || 2186 ic->ic_countryie_chan != ic->ic_bsschan) { 2187 /* 2188 * Handle lazy construction of ie. This is done on 2189 * first use and after a channel change that requires 2190 * re-calculation. 2191 */ 2192 if (ic->ic_countryie != NULL) 2193 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2194 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2195 if (ic->ic_countryie == NULL) 2196 return frm; 2197 ic->ic_countryie_chan = ic->ic_bsschan; 2198 } 2199 return add_appie(frm, ic->ic_countryie); 2200 } 2201 2202 uint8_t * 2203 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2204 { 2205 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2206 return (add_ie(frm, vap->iv_wpa_ie)); 2207 else { 2208 /* XXX else complain? */ 2209 return (frm); 2210 } 2211 } 2212 2213 uint8_t * 2214 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2215 { 2216 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2217 return (add_ie(frm, vap->iv_rsn_ie)); 2218 else { 2219 /* XXX else complain? */ 2220 return (frm); 2221 } 2222 } 2223 2224 uint8_t * 2225 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2226 { 2227 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2228 *frm++ = IEEE80211_ELEMID_QOS; 2229 *frm++ = 1; 2230 *frm++ = 0; 2231 } 2232 2233 return (frm); 2234 } 2235 2236 /* 2237 * Send a probe request frame with the specified ssid 2238 * and any optional information element data. 2239 */ 2240 int 2241 ieee80211_send_probereq(struct ieee80211_node *ni, 2242 const uint8_t sa[IEEE80211_ADDR_LEN], 2243 const uint8_t da[IEEE80211_ADDR_LEN], 2244 const uint8_t bssid[IEEE80211_ADDR_LEN], 2245 const uint8_t *ssid, size_t ssidlen) 2246 { 2247 struct ieee80211vap *vap = ni->ni_vap; 2248 struct ieee80211com *ic = ni->ni_ic; 2249 struct ieee80211_node *bss; 2250 const struct ieee80211_txparam *tp; 2251 struct ieee80211_bpf_params params; 2252 const struct ieee80211_rateset *rs; 2253 struct mbuf *m; 2254 uint8_t *frm; 2255 int ret; 2256 2257 bss = ieee80211_ref_node(vap->iv_bss); 2258 2259 if (vap->iv_state == IEEE80211_S_CAC) { 2260 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2261 "block %s frame in CAC state", "probe request"); 2262 vap->iv_stats.is_tx_badstate++; 2263 ieee80211_free_node(bss); 2264 return EIO; /* XXX */ 2265 } 2266 2267 /* 2268 * Hold a reference on the node so it doesn't go away until after 2269 * the xmit is complete all the way in the driver. On error we 2270 * will remove our reference. 2271 */ 2272 #ifndef __HAIKU__ 2273 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2274 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2275 __func__, __LINE__, 2276 ni, ether_sprintf(ni->ni_macaddr), 2277 ieee80211_node_refcnt(ni)+1); 2278 #endif 2279 ieee80211_ref_node(ni); 2280 2281 /* 2282 * prreq frame format 2283 * [tlv] ssid 2284 * [tlv] supported rates 2285 * [tlv] RSN (optional) 2286 * [tlv] extended supported rates 2287 * [tlv] HT cap (optional) 2288 * [tlv] VHT cap (optional) 2289 * [tlv] WPA (optional) 2290 * [tlv] user-specified ie's 2291 */ 2292 m = ieee80211_getmgtframe(&frm, 2293 ic->ic_headroom + sizeof(struct ieee80211_frame), 2294 2 + IEEE80211_NWID_LEN 2295 + 2 + IEEE80211_RATE_SIZE 2296 + sizeof(struct ieee80211_ie_htcap) 2297 + sizeof(struct ieee80211_ie_vhtcap) 2298 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2299 + sizeof(struct ieee80211_ie_wpa) 2300 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2301 + sizeof(struct ieee80211_ie_wpa) 2302 + (vap->iv_appie_probereq != NULL ? 2303 vap->iv_appie_probereq->ie_len : 0) 2304 ); 2305 if (m == NULL) { 2306 vap->iv_stats.is_tx_nobuf++; 2307 ieee80211_free_node(ni); 2308 ieee80211_free_node(bss); 2309 return ENOMEM; 2310 } 2311 2312 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2313 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2314 frm = ieee80211_add_rates(frm, rs); 2315 frm = ieee80211_add_rsn(frm, vap); 2316 frm = ieee80211_add_xrates(frm, rs); 2317 2318 /* 2319 * Note: we can't use bss; we don't have one yet. 2320 * 2321 * So, we should announce our capabilities 2322 * in this channel mode (2g/5g), not the 2323 * channel details itself. 2324 */ 2325 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2326 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2327 struct ieee80211_channel *c; 2328 2329 /* 2330 * Get the HT channel that we should try upgrading to. 2331 * If we can do 40MHz then this'll upgrade it appropriately. 2332 */ 2333 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2334 vap->iv_flags_ht); 2335 frm = ieee80211_add_htcap_ch(frm, vap, c); 2336 } 2337 2338 /* 2339 * XXX TODO: need to figure out what/how to update the 2340 * VHT channel. 2341 */ 2342 #if 0 2343 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2344 struct ieee80211_channel *c; 2345 2346 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2347 vap->iv_flags_ht); 2348 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2349 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2350 } 2351 #endif 2352 2353 frm = ieee80211_add_wpa(frm, vap); 2354 if (vap->iv_appie_probereq != NULL) 2355 frm = add_appie(frm, vap->iv_appie_probereq); 2356 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2357 2358 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2359 ("leading space %zd", M_LEADINGSPACE(m))); 2360 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2361 if (m == NULL) { 2362 /* NB: cannot happen */ 2363 ieee80211_free_node(ni); 2364 ieee80211_free_node(bss); 2365 return ENOMEM; 2366 } 2367 2368 IEEE80211_TX_LOCK(ic); 2369 ieee80211_send_setup(ni, m, 2370 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2371 IEEE80211_NONQOS_TID, sa, da, bssid); 2372 /* XXX power management? */ 2373 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2374 2375 M_WME_SETAC(m, WME_AC_BE); 2376 2377 IEEE80211_NODE_STAT(ni, tx_probereq); 2378 IEEE80211_NODE_STAT(ni, tx_mgmt); 2379 2380 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2381 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2382 ieee80211_chan2ieee(ic, ic->ic_curchan), 2383 ether_sprintf(bssid), 2384 sa, ":", 2385 da, ":", 2386 ssidlen, ssid); 2387 2388 memset(¶ms, 0, sizeof(params)); 2389 params.ibp_pri = M_WME_GETAC(m); 2390 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2391 params.ibp_rate0 = tp->mgmtrate; 2392 if (IEEE80211_IS_MULTICAST(da)) { 2393 params.ibp_flags |= IEEE80211_BPF_NOACK; 2394 params.ibp_try0 = 1; 2395 } else 2396 params.ibp_try0 = tp->maxretry; 2397 params.ibp_power = ni->ni_txpower; 2398 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2399 IEEE80211_TX_UNLOCK(ic); 2400 ieee80211_free_node(bss); 2401 return (ret); 2402 } 2403 2404 /* 2405 * Calculate capability information for mgt frames. 2406 */ 2407 uint16_t 2408 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2409 { 2410 struct ieee80211com *ic = vap->iv_ic; 2411 uint16_t capinfo; 2412 2413 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2414 2415 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2416 capinfo = IEEE80211_CAPINFO_ESS; 2417 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2418 capinfo = IEEE80211_CAPINFO_IBSS; 2419 else 2420 capinfo = 0; 2421 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2422 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2423 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2424 IEEE80211_IS_CHAN_2GHZ(chan)) 2425 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2426 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2427 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2428 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2429 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2430 return capinfo; 2431 } 2432 2433 /* 2434 * Send a management frame. The node is for the destination (or ic_bss 2435 * when in station mode). Nodes other than ic_bss have their reference 2436 * count bumped to reflect our use for an indeterminant time. 2437 */ 2438 int 2439 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2440 { 2441 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2442 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2443 struct ieee80211vap *vap = ni->ni_vap; 2444 struct ieee80211com *ic = ni->ni_ic; 2445 struct ieee80211_node *bss = vap->iv_bss; 2446 struct ieee80211_bpf_params params; 2447 struct mbuf *m; 2448 uint8_t *frm; 2449 uint16_t capinfo; 2450 int has_challenge, is_shared_key, ret, status; 2451 2452 KASSERT(ni != NULL, ("null node")); 2453 2454 /* 2455 * Hold a reference on the node so it doesn't go away until after 2456 * the xmit is complete all the way in the driver. On error we 2457 * will remove our reference. 2458 */ 2459 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2460 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2461 __func__, __LINE__, 2462 ni, ether_sprintf(ni->ni_macaddr), 2463 ieee80211_node_refcnt(ni)+1); 2464 ieee80211_ref_node(ni); 2465 2466 memset(¶ms, 0, sizeof(params)); 2467 switch (type) { 2468 2469 case IEEE80211_FC0_SUBTYPE_AUTH: 2470 status = arg >> 16; 2471 arg &= 0xffff; 2472 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2473 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2474 ni->ni_challenge != NULL); 2475 2476 /* 2477 * Deduce whether we're doing open authentication or 2478 * shared key authentication. We do the latter if 2479 * we're in the middle of a shared key authentication 2480 * handshake or if we're initiating an authentication 2481 * request and configured to use shared key. 2482 */ 2483 is_shared_key = has_challenge || 2484 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2485 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2486 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2487 2488 m = ieee80211_getmgtframe(&frm, 2489 ic->ic_headroom + sizeof(struct ieee80211_frame), 2490 3 * sizeof(uint16_t) 2491 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2492 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2493 ); 2494 if (m == NULL) 2495 senderr(ENOMEM, is_tx_nobuf); 2496 2497 ((uint16_t *)frm)[0] = 2498 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2499 : htole16(IEEE80211_AUTH_ALG_OPEN); 2500 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2501 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2502 2503 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2504 ((uint16_t *)frm)[3] = 2505 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2506 IEEE80211_ELEMID_CHALLENGE); 2507 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2508 IEEE80211_CHALLENGE_LEN); 2509 m->m_pkthdr.len = m->m_len = 2510 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2511 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2512 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2513 "request encrypt frame (%s)", __func__); 2514 /* mark frame for encryption */ 2515 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2516 } 2517 } else 2518 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2519 2520 /* XXX not right for shared key */ 2521 if (status == IEEE80211_STATUS_SUCCESS) 2522 IEEE80211_NODE_STAT(ni, tx_auth); 2523 else 2524 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2525 2526 if (vap->iv_opmode == IEEE80211_M_STA) 2527 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2528 (void *) vap->iv_state); 2529 break; 2530 2531 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2532 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2533 "send station deauthenticate (reason: %d (%s))", arg, 2534 ieee80211_reason_to_string(arg)); 2535 m = ieee80211_getmgtframe(&frm, 2536 ic->ic_headroom + sizeof(struct ieee80211_frame), 2537 sizeof(uint16_t)); 2538 if (m == NULL) 2539 senderr(ENOMEM, is_tx_nobuf); 2540 *(uint16_t *)frm = htole16(arg); /* reason */ 2541 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2542 2543 IEEE80211_NODE_STAT(ni, tx_deauth); 2544 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2545 2546 ieee80211_node_unauthorize(ni); /* port closed */ 2547 break; 2548 2549 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2550 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2551 /* 2552 * asreq frame format 2553 * [2] capability information 2554 * [2] listen interval 2555 * [6*] current AP address (reassoc only) 2556 * [tlv] ssid 2557 * [tlv] supported rates 2558 * [tlv] extended supported rates 2559 * [4] power capability (optional) 2560 * [28] supported channels (optional) 2561 * [tlv] HT capabilities 2562 * [tlv] VHT capabilities 2563 * [tlv] WME (optional) 2564 * [tlv] Vendor OUI HT capabilities (optional) 2565 * [tlv] Atheros capabilities (if negotiated) 2566 * [tlv] AppIE's (optional) 2567 */ 2568 m = ieee80211_getmgtframe(&frm, 2569 ic->ic_headroom + sizeof(struct ieee80211_frame), 2570 sizeof(uint16_t) 2571 + sizeof(uint16_t) 2572 + IEEE80211_ADDR_LEN 2573 + 2 + IEEE80211_NWID_LEN 2574 + 2 + IEEE80211_RATE_SIZE 2575 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2576 + 4 2577 + 2 + 26 2578 + sizeof(struct ieee80211_wme_info) 2579 + sizeof(struct ieee80211_ie_htcap) 2580 + sizeof(struct ieee80211_ie_vhtcap) 2581 + 4 + sizeof(struct ieee80211_ie_htcap) 2582 #ifdef IEEE80211_SUPPORT_SUPERG 2583 + sizeof(struct ieee80211_ath_ie) 2584 #endif 2585 + (vap->iv_appie_wpa != NULL ? 2586 vap->iv_appie_wpa->ie_len : 0) 2587 + (vap->iv_appie_assocreq != NULL ? 2588 vap->iv_appie_assocreq->ie_len : 0) 2589 ); 2590 if (m == NULL) 2591 senderr(ENOMEM, is_tx_nobuf); 2592 2593 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2594 ("wrong mode %u", vap->iv_opmode)); 2595 capinfo = IEEE80211_CAPINFO_ESS; 2596 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2597 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2598 /* 2599 * NB: Some 11a AP's reject the request when 2600 * short preamble is set. 2601 */ 2602 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2603 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2604 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2605 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2606 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2607 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2608 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2609 (vap->iv_flags & IEEE80211_F_DOTH)) 2610 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2611 *(uint16_t *)frm = htole16(capinfo); 2612 frm += 2; 2613 2614 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2615 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2616 bss->ni_intval)); 2617 frm += 2; 2618 2619 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2620 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2621 frm += IEEE80211_ADDR_LEN; 2622 } 2623 2624 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2625 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2626 frm = ieee80211_add_rsn(frm, vap); 2627 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2628 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2629 frm = ieee80211_add_powercapability(frm, 2630 ic->ic_curchan); 2631 frm = ieee80211_add_supportedchannels(frm, ic); 2632 } 2633 2634 /* 2635 * Check the channel - we may be using an 11n NIC with an 2636 * 11n capable station, but we're configured to be an 11b 2637 * channel. 2638 */ 2639 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2640 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2641 ni->ni_ies.htcap_ie != NULL && 2642 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2643 frm = ieee80211_add_htcap(frm, ni); 2644 } 2645 2646 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2647 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2648 ni->ni_ies.vhtcap_ie != NULL && 2649 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2650 frm = ieee80211_add_vhtcap(frm, ni); 2651 } 2652 2653 frm = ieee80211_add_wpa(frm, vap); 2654 if ((ic->ic_flags & IEEE80211_F_WME) && 2655 ni->ni_ies.wme_ie != NULL) 2656 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2657 2658 /* 2659 * Same deal - only send HT info if we're on an 11n 2660 * capable channel. 2661 */ 2662 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2663 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2664 ni->ni_ies.htcap_ie != NULL && 2665 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2666 frm = ieee80211_add_htcap_vendor(frm, ni); 2667 } 2668 #ifdef IEEE80211_SUPPORT_SUPERG 2669 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2670 frm = ieee80211_add_ath(frm, 2671 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2672 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2673 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2674 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2675 } 2676 #endif /* IEEE80211_SUPPORT_SUPERG */ 2677 if (vap->iv_appie_assocreq != NULL) 2678 frm = add_appie(frm, vap->iv_appie_assocreq); 2679 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2680 2681 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2682 (void *) vap->iv_state); 2683 break; 2684 2685 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2686 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2687 /* 2688 * asresp frame format 2689 * [2] capability information 2690 * [2] status 2691 * [2] association ID 2692 * [tlv] supported rates 2693 * [tlv] extended supported rates 2694 * [tlv] HT capabilities (standard, if STA enabled) 2695 * [tlv] HT information (standard, if STA enabled) 2696 * [tlv] VHT capabilities (standard, if STA enabled) 2697 * [tlv] VHT information (standard, if STA enabled) 2698 * [tlv] WME (if configured and STA enabled) 2699 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2700 * [tlv] HT information (vendor OUI, if STA enabled) 2701 * [tlv] Atheros capabilities (if STA enabled) 2702 * [tlv] AppIE's (optional) 2703 */ 2704 m = ieee80211_getmgtframe(&frm, 2705 ic->ic_headroom + sizeof(struct ieee80211_frame), 2706 sizeof(uint16_t) 2707 + sizeof(uint16_t) 2708 + sizeof(uint16_t) 2709 + 2 + IEEE80211_RATE_SIZE 2710 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2711 + sizeof(struct ieee80211_ie_htcap) + 4 2712 + sizeof(struct ieee80211_ie_htinfo) + 4 2713 + sizeof(struct ieee80211_ie_vhtcap) 2714 + sizeof(struct ieee80211_ie_vht_operation) 2715 + sizeof(struct ieee80211_wme_param) 2716 #ifdef IEEE80211_SUPPORT_SUPERG 2717 + sizeof(struct ieee80211_ath_ie) 2718 #endif 2719 + (vap->iv_appie_assocresp != NULL ? 2720 vap->iv_appie_assocresp->ie_len : 0) 2721 ); 2722 if (m == NULL) 2723 senderr(ENOMEM, is_tx_nobuf); 2724 2725 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2726 *(uint16_t *)frm = htole16(capinfo); 2727 frm += 2; 2728 2729 *(uint16_t *)frm = htole16(arg); /* status */ 2730 frm += 2; 2731 2732 if (arg == IEEE80211_STATUS_SUCCESS) { 2733 *(uint16_t *)frm = htole16(ni->ni_associd); 2734 IEEE80211_NODE_STAT(ni, tx_assoc); 2735 } else 2736 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2737 frm += 2; 2738 2739 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2740 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2741 /* NB: respond according to what we received */ 2742 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2743 frm = ieee80211_add_htcap(frm, ni); 2744 frm = ieee80211_add_htinfo(frm, ni); 2745 } 2746 if ((vap->iv_flags & IEEE80211_F_WME) && 2747 ni->ni_ies.wme_ie != NULL) 2748 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2749 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2750 frm = ieee80211_add_htcap_vendor(frm, ni); 2751 frm = ieee80211_add_htinfo_vendor(frm, ni); 2752 } 2753 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2754 frm = ieee80211_add_vhtcap(frm, ni); 2755 frm = ieee80211_add_vhtinfo(frm, ni); 2756 } 2757 #ifdef IEEE80211_SUPPORT_SUPERG 2758 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2759 frm = ieee80211_add_ath(frm, 2760 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2761 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2762 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2763 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2764 #endif /* IEEE80211_SUPPORT_SUPERG */ 2765 if (vap->iv_appie_assocresp != NULL) 2766 frm = add_appie(frm, vap->iv_appie_assocresp); 2767 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2768 break; 2769 2770 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2771 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2772 "send station disassociate (reason: %d (%s))", arg, 2773 ieee80211_reason_to_string(arg)); 2774 m = ieee80211_getmgtframe(&frm, 2775 ic->ic_headroom + sizeof(struct ieee80211_frame), 2776 sizeof(uint16_t)); 2777 if (m == NULL) 2778 senderr(ENOMEM, is_tx_nobuf); 2779 *(uint16_t *)frm = htole16(arg); /* reason */ 2780 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2781 2782 IEEE80211_NODE_STAT(ni, tx_disassoc); 2783 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2784 break; 2785 2786 default: 2787 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2788 "invalid mgmt frame type %u", type); 2789 senderr(EINVAL, is_tx_unknownmgt); 2790 /* NOTREACHED */ 2791 } 2792 2793 /* NB: force non-ProbeResp frames to the highest queue */ 2794 params.ibp_pri = WME_AC_VO; 2795 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2796 /* NB: we know all frames are unicast */ 2797 params.ibp_try0 = bss->ni_txparms->maxretry; 2798 params.ibp_power = bss->ni_txpower; 2799 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2800 bad: 2801 ieee80211_free_node(ni); 2802 return ret; 2803 #undef senderr 2804 #undef HTFLAGS 2805 } 2806 2807 /* 2808 * Return an mbuf with a probe response frame in it. 2809 * Space is left to prepend and 802.11 header at the 2810 * front but it's left to the caller to fill in. 2811 */ 2812 struct mbuf * 2813 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2814 { 2815 struct ieee80211vap *vap = bss->ni_vap; 2816 struct ieee80211com *ic = bss->ni_ic; 2817 const struct ieee80211_rateset *rs; 2818 struct mbuf *m; 2819 uint16_t capinfo; 2820 uint8_t *frm; 2821 2822 /* 2823 * probe response frame format 2824 * [8] time stamp 2825 * [2] beacon interval 2826 * [2] cabability information 2827 * [tlv] ssid 2828 * [tlv] supported rates 2829 * [tlv] parameter set (FH/DS) 2830 * [tlv] parameter set (IBSS) 2831 * [tlv] country (optional) 2832 * [3] power control (optional) 2833 * [5] channel switch announcement (CSA) (optional) 2834 * [tlv] extended rate phy (ERP) 2835 * [tlv] extended supported rates 2836 * [tlv] RSN (optional) 2837 * [tlv] HT capabilities 2838 * [tlv] HT information 2839 * [tlv] VHT capabilities 2840 * [tlv] VHT information 2841 * [tlv] WPA (optional) 2842 * [tlv] WME (optional) 2843 * [tlv] Vendor OUI HT capabilities (optional) 2844 * [tlv] Vendor OUI HT information (optional) 2845 * [tlv] Atheros capabilities 2846 * [tlv] AppIE's (optional) 2847 * [tlv] Mesh ID (MBSS) 2848 * [tlv] Mesh Conf (MBSS) 2849 */ 2850 m = ieee80211_getmgtframe(&frm, 2851 ic->ic_headroom + sizeof(struct ieee80211_frame), 2852 8 2853 + sizeof(uint16_t) 2854 + sizeof(uint16_t) 2855 + 2 + IEEE80211_NWID_LEN 2856 + 2 + IEEE80211_RATE_SIZE 2857 + 7 /* max(7,3) */ 2858 + IEEE80211_COUNTRY_MAX_SIZE 2859 + 3 2860 + sizeof(struct ieee80211_csa_ie) 2861 + sizeof(struct ieee80211_quiet_ie) 2862 + 3 2863 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2864 + sizeof(struct ieee80211_ie_wpa) 2865 + sizeof(struct ieee80211_ie_htcap) 2866 + sizeof(struct ieee80211_ie_htinfo) 2867 + sizeof(struct ieee80211_ie_wpa) 2868 + sizeof(struct ieee80211_wme_param) 2869 + 4 + sizeof(struct ieee80211_ie_htcap) 2870 + 4 + sizeof(struct ieee80211_ie_htinfo) 2871 + sizeof(struct ieee80211_ie_vhtcap) 2872 + sizeof(struct ieee80211_ie_vht_operation) 2873 #ifdef IEEE80211_SUPPORT_SUPERG 2874 + sizeof(struct ieee80211_ath_ie) 2875 #endif 2876 #ifdef IEEE80211_SUPPORT_MESH 2877 + 2 + IEEE80211_MESHID_LEN 2878 + sizeof(struct ieee80211_meshconf_ie) 2879 #endif 2880 + (vap->iv_appie_proberesp != NULL ? 2881 vap->iv_appie_proberesp->ie_len : 0) 2882 ); 2883 if (m == NULL) { 2884 vap->iv_stats.is_tx_nobuf++; 2885 return NULL; 2886 } 2887 2888 memset(frm, 0, 8); /* timestamp should be filled later */ 2889 frm += 8; 2890 *(uint16_t *)frm = htole16(bss->ni_intval); 2891 frm += 2; 2892 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2893 *(uint16_t *)frm = htole16(capinfo); 2894 frm += 2; 2895 2896 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2897 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2898 frm = ieee80211_add_rates(frm, rs); 2899 2900 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2901 *frm++ = IEEE80211_ELEMID_FHPARMS; 2902 *frm++ = 5; 2903 *frm++ = bss->ni_fhdwell & 0x00ff; 2904 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2905 *frm++ = IEEE80211_FH_CHANSET( 2906 ieee80211_chan2ieee(ic, bss->ni_chan)); 2907 *frm++ = IEEE80211_FH_CHANPAT( 2908 ieee80211_chan2ieee(ic, bss->ni_chan)); 2909 *frm++ = bss->ni_fhindex; 2910 } else { 2911 *frm++ = IEEE80211_ELEMID_DSPARMS; 2912 *frm++ = 1; 2913 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2914 } 2915 2916 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2917 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2918 *frm++ = 2; 2919 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2920 } 2921 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2922 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2923 frm = ieee80211_add_countryie(frm, ic); 2924 if (vap->iv_flags & IEEE80211_F_DOTH) { 2925 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2926 frm = ieee80211_add_powerconstraint(frm, vap); 2927 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2928 frm = ieee80211_add_csa(frm, vap); 2929 } 2930 if (vap->iv_flags & IEEE80211_F_DOTH) { 2931 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2932 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2933 if (vap->iv_quiet) 2934 frm = ieee80211_add_quiet(frm, vap, 0); 2935 } 2936 } 2937 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2938 frm = ieee80211_add_erp(frm, ic); 2939 frm = ieee80211_add_xrates(frm, rs); 2940 frm = ieee80211_add_rsn(frm, vap); 2941 /* 2942 * NB: legacy 11b clients do not get certain ie's. 2943 * The caller identifies such clients by passing 2944 * a token in legacy to us. Could expand this to be 2945 * any legacy client for stuff like HT ie's. 2946 */ 2947 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2948 legacy != IEEE80211_SEND_LEGACY_11B) { 2949 frm = ieee80211_add_htcap(frm, bss); 2950 frm = ieee80211_add_htinfo(frm, bss); 2951 } 2952 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 2953 legacy != IEEE80211_SEND_LEGACY_11B) { 2954 frm = ieee80211_add_vhtcap(frm, bss); 2955 frm = ieee80211_add_vhtinfo(frm, bss); 2956 } 2957 frm = ieee80211_add_wpa(frm, vap); 2958 if (vap->iv_flags & IEEE80211_F_WME) 2959 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2960 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2961 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2962 legacy != IEEE80211_SEND_LEGACY_11B) { 2963 frm = ieee80211_add_htcap_vendor(frm, bss); 2964 frm = ieee80211_add_htinfo_vendor(frm, bss); 2965 } 2966 #ifdef IEEE80211_SUPPORT_SUPERG 2967 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2968 legacy != IEEE80211_SEND_LEGACY_11B) 2969 frm = ieee80211_add_athcaps(frm, bss); 2970 #endif 2971 if (vap->iv_appie_proberesp != NULL) 2972 frm = add_appie(frm, vap->iv_appie_proberesp); 2973 #ifdef IEEE80211_SUPPORT_MESH 2974 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2975 frm = ieee80211_add_meshid(frm, vap); 2976 frm = ieee80211_add_meshconf(frm, vap); 2977 } 2978 #endif 2979 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2980 2981 return m; 2982 } 2983 2984 /* 2985 * Send a probe response frame to the specified mac address. 2986 * This does not go through the normal mgt frame api so we 2987 * can specify the destination address and re-use the bss node 2988 * for the sta reference. 2989 */ 2990 int 2991 ieee80211_send_proberesp(struct ieee80211vap *vap, 2992 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2993 { 2994 struct ieee80211_node *bss = vap->iv_bss; 2995 struct ieee80211com *ic = vap->iv_ic; 2996 struct mbuf *m; 2997 int ret; 2998 2999 if (vap->iv_state == IEEE80211_S_CAC) { 3000 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 3001 "block %s frame in CAC state", "probe response"); 3002 vap->iv_stats.is_tx_badstate++; 3003 return EIO; /* XXX */ 3004 } 3005 3006 /* 3007 * Hold a reference on the node so it doesn't go away until after 3008 * the xmit is complete all the way in the driver. On error we 3009 * will remove our reference. 3010 */ 3011 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3012 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3013 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3014 ieee80211_node_refcnt(bss)+1); 3015 ieee80211_ref_node(bss); 3016 3017 m = ieee80211_alloc_proberesp(bss, legacy); 3018 if (m == NULL) { 3019 ieee80211_free_node(bss); 3020 return ENOMEM; 3021 } 3022 3023 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3024 KASSERT(m != NULL, ("no room for header")); 3025 3026 IEEE80211_TX_LOCK(ic); 3027 ieee80211_send_setup(bss, m, 3028 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3029 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3030 /* XXX power management? */ 3031 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3032 3033 M_WME_SETAC(m, WME_AC_BE); 3034 3035 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3036 "send probe resp on channel %u to %s%s\n", 3037 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3038 legacy ? " <legacy>" : ""); 3039 IEEE80211_NODE_STAT(bss, tx_mgmt); 3040 3041 ret = ieee80211_raw_output(vap, bss, m, NULL); 3042 IEEE80211_TX_UNLOCK(ic); 3043 return (ret); 3044 } 3045 3046 /* 3047 * Allocate and build a RTS (Request To Send) control frame. 3048 */ 3049 struct mbuf * 3050 ieee80211_alloc_rts(struct ieee80211com *ic, 3051 const uint8_t ra[IEEE80211_ADDR_LEN], 3052 const uint8_t ta[IEEE80211_ADDR_LEN], 3053 uint16_t dur) 3054 { 3055 struct ieee80211_frame_rts *rts; 3056 struct mbuf *m; 3057 3058 /* XXX honor ic_headroom */ 3059 m = m_gethdr(M_NOWAIT, MT_DATA); 3060 if (m != NULL) { 3061 rts = mtod(m, struct ieee80211_frame_rts *); 3062 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3063 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3064 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3065 *(u_int16_t *)rts->i_dur = htole16(dur); 3066 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3067 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3068 3069 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3070 } 3071 return m; 3072 } 3073 3074 /* 3075 * Allocate and build a CTS (Clear To Send) control frame. 3076 */ 3077 struct mbuf * 3078 ieee80211_alloc_cts(struct ieee80211com *ic, 3079 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3080 { 3081 struct ieee80211_frame_cts *cts; 3082 struct mbuf *m; 3083 3084 /* XXX honor ic_headroom */ 3085 m = m_gethdr(M_NOWAIT, MT_DATA); 3086 if (m != NULL) { 3087 cts = mtod(m, struct ieee80211_frame_cts *); 3088 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3089 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3090 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3091 *(u_int16_t *)cts->i_dur = htole16(dur); 3092 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3093 3094 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3095 } 3096 return m; 3097 } 3098 3099 /* 3100 * Wrapper for CTS/RTS frame allocation. 3101 */ 3102 struct mbuf * 3103 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3104 uint8_t rate, int prot) 3105 { 3106 struct ieee80211com *ic = ni->ni_ic; 3107 const struct ieee80211_frame *wh; 3108 struct mbuf *mprot; 3109 uint16_t dur; 3110 int pktlen, isshort; 3111 3112 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3113 prot == IEEE80211_PROT_CTSONLY, 3114 ("wrong protection type %d", prot)); 3115 3116 wh = mtod(m, const struct ieee80211_frame *); 3117 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3118 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 3119 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3120 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3121 3122 if (prot == IEEE80211_PROT_RTSCTS) { 3123 /* NB: CTS is the same size as an ACK */ 3124 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3125 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3126 } else 3127 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 3128 3129 return (mprot); 3130 } 3131 3132 static void 3133 ieee80211_tx_mgt_timeout(void *arg) 3134 { 3135 struct ieee80211vap *vap = arg; 3136 3137 IEEE80211_LOCK(vap->iv_ic); 3138 if (vap->iv_state != IEEE80211_S_INIT && 3139 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3140 /* 3141 * NB: it's safe to specify a timeout as the reason here; 3142 * it'll only be used in the right state. 3143 */ 3144 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3145 IEEE80211_SCAN_FAIL_TIMEOUT); 3146 } 3147 IEEE80211_UNLOCK(vap->iv_ic); 3148 } 3149 3150 /* 3151 * This is the callback set on net80211-sourced transmitted 3152 * authentication request frames. 3153 * 3154 * This does a couple of things: 3155 * 3156 * + If the frame transmitted was a success, it schedules a future 3157 * event which will transition the interface to scan. 3158 * If a state transition _then_ occurs before that event occurs, 3159 * said state transition will cancel this callout. 3160 * 3161 * + If the frame transmit was a failure, it immediately schedules 3162 * the transition back to scan. 3163 */ 3164 static void 3165 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3166 { 3167 struct ieee80211vap *vap = ni->ni_vap; 3168 enum ieee80211_state ostate = (enum ieee80211_state) arg; 3169 3170 /* 3171 * Frame transmit completed; arrange timer callback. If 3172 * transmit was successfully we wait for response. Otherwise 3173 * we arrange an immediate callback instead of doing the 3174 * callback directly since we don't know what state the driver 3175 * is in (e.g. what locks it is holding). This work should 3176 * not be too time-critical and not happen too often so the 3177 * added overhead is acceptable. 3178 * 3179 * XXX what happens if !acked but response shows up before callback? 3180 */ 3181 if (vap->iv_state == ostate) { 3182 callout_reset(&vap->iv_mgtsend, 3183 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3184 ieee80211_tx_mgt_timeout, vap); 3185 } 3186 } 3187 3188 static void 3189 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3190 struct ieee80211_node *ni) 3191 { 3192 struct ieee80211vap *vap = ni->ni_vap; 3193 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3194 struct ieee80211com *ic = ni->ni_ic; 3195 struct ieee80211_rateset *rs = &ni->ni_rates; 3196 uint16_t capinfo; 3197 3198 /* 3199 * beacon frame format 3200 * 3201 * TODO: update to 802.11-2012; a lot of stuff has changed; 3202 * vendor extensions should be at the end, etc. 3203 * 3204 * [8] time stamp 3205 * [2] beacon interval 3206 * [2] cabability information 3207 * [tlv] ssid 3208 * [tlv] supported rates 3209 * [3] parameter set (DS) 3210 * [8] CF parameter set (optional) 3211 * [tlv] parameter set (IBSS/TIM) 3212 * [tlv] country (optional) 3213 * [3] power control (optional) 3214 * [5] channel switch announcement (CSA) (optional) 3215 * XXX TODO: Quiet 3216 * XXX TODO: IBSS DFS 3217 * XXX TODO: TPC report 3218 * [tlv] extended rate phy (ERP) 3219 * [tlv] extended supported rates 3220 * [tlv] RSN parameters 3221 * XXX TODO: BSSLOAD 3222 * (XXX EDCA parameter set, QoS capability?) 3223 * XXX TODO: AP channel report 3224 * 3225 * [tlv] HT capabilities 3226 * [tlv] HT information 3227 * XXX TODO: 20/40 BSS coexistence 3228 * Mesh: 3229 * XXX TODO: Meshid 3230 * XXX TODO: mesh config 3231 * XXX TODO: mesh awake window 3232 * XXX TODO: beacon timing (mesh, etc) 3233 * XXX TODO: MCCAOP Advertisement Overview 3234 * XXX TODO: MCCAOP Advertisement 3235 * XXX TODO: Mesh channel switch parameters 3236 * VHT: 3237 * XXX TODO: VHT capabilities 3238 * XXX TODO: VHT operation 3239 * XXX TODO: VHT transmit power envelope 3240 * XXX TODO: channel switch wrapper element 3241 * XXX TODO: extended BSS load element 3242 * 3243 * XXX Vendor-specific OIDs (e.g. Atheros) 3244 * [tlv] WPA parameters 3245 * [tlv] WME parameters 3246 * [tlv] Vendor OUI HT capabilities (optional) 3247 * [tlv] Vendor OUI HT information (optional) 3248 * [tlv] Atheros capabilities (optional) 3249 * [tlv] TDMA parameters (optional) 3250 * [tlv] Mesh ID (MBSS) 3251 * [tlv] Mesh Conf (MBSS) 3252 * [tlv] application data (optional) 3253 */ 3254 3255 memset(bo, 0, sizeof(*bo)); 3256 3257 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3258 frm += 8; 3259 *(uint16_t *)frm = htole16(ni->ni_intval); 3260 frm += 2; 3261 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3262 bo->bo_caps = (uint16_t *)frm; 3263 *(uint16_t *)frm = htole16(capinfo); 3264 frm += 2; 3265 *frm++ = IEEE80211_ELEMID_SSID; 3266 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3267 *frm++ = ni->ni_esslen; 3268 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3269 frm += ni->ni_esslen; 3270 } else 3271 *frm++ = 0; 3272 frm = ieee80211_add_rates(frm, rs); 3273 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3274 *frm++ = IEEE80211_ELEMID_DSPARMS; 3275 *frm++ = 1; 3276 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3277 } 3278 if (ic->ic_flags & IEEE80211_F_PCF) { 3279 bo->bo_cfp = frm; 3280 frm = ieee80211_add_cfparms(frm, ic); 3281 } 3282 bo->bo_tim = frm; 3283 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3284 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3285 *frm++ = 2; 3286 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3287 bo->bo_tim_len = 0; 3288 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3289 vap->iv_opmode == IEEE80211_M_MBSS) { 3290 /* TIM IE is the same for Mesh and Hostap */ 3291 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3292 3293 tie->tim_ie = IEEE80211_ELEMID_TIM; 3294 tie->tim_len = 4; /* length */ 3295 tie->tim_count = 0; /* DTIM count */ 3296 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3297 tie->tim_bitctl = 0; /* bitmap control */ 3298 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3299 frm += sizeof(struct ieee80211_tim_ie); 3300 bo->bo_tim_len = 1; 3301 } 3302 bo->bo_tim_trailer = frm; 3303 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3304 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3305 frm = ieee80211_add_countryie(frm, ic); 3306 if (vap->iv_flags & IEEE80211_F_DOTH) { 3307 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3308 frm = ieee80211_add_powerconstraint(frm, vap); 3309 bo->bo_csa = frm; 3310 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3311 frm = ieee80211_add_csa(frm, vap); 3312 } else 3313 bo->bo_csa = frm; 3314 3315 bo->bo_quiet = NULL; 3316 if (vap->iv_flags & IEEE80211_F_DOTH) { 3317 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3318 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3319 (vap->iv_quiet == 1)) { 3320 /* 3321 * We only insert the quiet IE offset if 3322 * the quiet IE is enabled. Otherwise don't 3323 * put it here or we'll just overwrite 3324 * some other beacon contents. 3325 */ 3326 if (vap->iv_quiet) { 3327 bo->bo_quiet = frm; 3328 frm = ieee80211_add_quiet(frm,vap, 0); 3329 } 3330 } 3331 } 3332 3333 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3334 bo->bo_erp = frm; 3335 frm = ieee80211_add_erp(frm, ic); 3336 } 3337 frm = ieee80211_add_xrates(frm, rs); 3338 frm = ieee80211_add_rsn(frm, vap); 3339 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3340 frm = ieee80211_add_htcap(frm, ni); 3341 bo->bo_htinfo = frm; 3342 frm = ieee80211_add_htinfo(frm, ni); 3343 } 3344 3345 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3346 frm = ieee80211_add_vhtcap(frm, ni); 3347 bo->bo_vhtinfo = frm; 3348 frm = ieee80211_add_vhtinfo(frm, ni); 3349 /* Transmit power envelope */ 3350 /* Channel switch wrapper element */ 3351 /* Extended bss load element */ 3352 } 3353 3354 frm = ieee80211_add_wpa(frm, vap); 3355 if (vap->iv_flags & IEEE80211_F_WME) { 3356 bo->bo_wme = frm; 3357 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3358 } 3359 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3360 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3361 frm = ieee80211_add_htcap_vendor(frm, ni); 3362 frm = ieee80211_add_htinfo_vendor(frm, ni); 3363 } 3364 3365 #ifdef IEEE80211_SUPPORT_SUPERG 3366 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3367 bo->bo_ath = frm; 3368 frm = ieee80211_add_athcaps(frm, ni); 3369 } 3370 #endif 3371 #ifdef IEEE80211_SUPPORT_TDMA 3372 if (vap->iv_caps & IEEE80211_C_TDMA) { 3373 bo->bo_tdma = frm; 3374 frm = ieee80211_add_tdma(frm, vap); 3375 } 3376 #endif 3377 if (vap->iv_appie_beacon != NULL) { 3378 bo->bo_appie = frm; 3379 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3380 frm = add_appie(frm, vap->iv_appie_beacon); 3381 } 3382 3383 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3384 #ifdef IEEE80211_SUPPORT_MESH 3385 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3386 frm = ieee80211_add_meshid(frm, vap); 3387 bo->bo_meshconf = frm; 3388 frm = ieee80211_add_meshconf(frm, vap); 3389 } 3390 #endif 3391 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3392 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3393 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3394 } 3395 3396 /* 3397 * Allocate a beacon frame and fillin the appropriate bits. 3398 */ 3399 struct mbuf * 3400 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3401 { 3402 struct ieee80211vap *vap = ni->ni_vap; 3403 struct ieee80211com *ic = ni->ni_ic; 3404 struct ifnet *ifp = vap->iv_ifp; 3405 struct ieee80211_frame *wh; 3406 struct mbuf *m; 3407 int pktlen; 3408 uint8_t *frm; 3409 3410 /* 3411 * Update the "We're putting the quiet IE in the beacon" state. 3412 */ 3413 if (vap->iv_quiet == 1) 3414 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3415 else if (vap->iv_quiet == 0) 3416 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3417 3418 /* 3419 * beacon frame format 3420 * 3421 * Note: This needs updating for 802.11-2012. 3422 * 3423 * [8] time stamp 3424 * [2] beacon interval 3425 * [2] cabability information 3426 * [tlv] ssid 3427 * [tlv] supported rates 3428 * [3] parameter set (DS) 3429 * [8] CF parameter set (optional) 3430 * [tlv] parameter set (IBSS/TIM) 3431 * [tlv] country (optional) 3432 * [3] power control (optional) 3433 * [5] channel switch announcement (CSA) (optional) 3434 * [tlv] extended rate phy (ERP) 3435 * [tlv] extended supported rates 3436 * [tlv] RSN parameters 3437 * [tlv] HT capabilities 3438 * [tlv] HT information 3439 * [tlv] VHT capabilities 3440 * [tlv] VHT operation 3441 * [tlv] Vendor OUI HT capabilities (optional) 3442 * [tlv] Vendor OUI HT information (optional) 3443 * XXX Vendor-specific OIDs (e.g. Atheros) 3444 * [tlv] WPA parameters 3445 * [tlv] WME parameters 3446 * [tlv] TDMA parameters (optional) 3447 * [tlv] Mesh ID (MBSS) 3448 * [tlv] Mesh Conf (MBSS) 3449 * [tlv] application data (optional) 3450 * NB: we allocate the max space required for the TIM bitmap. 3451 * XXX how big is this? 3452 */ 3453 pktlen = 8 /* time stamp */ 3454 + sizeof(uint16_t) /* beacon interval */ 3455 + sizeof(uint16_t) /* capabilities */ 3456 + 2 + ni->ni_esslen /* ssid */ 3457 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3458 + 2 + 1 /* DS parameters */ 3459 + 2 + 6 /* CF parameters */ 3460 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3461 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3462 + 2 + 1 /* power control */ 3463 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3464 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3465 + 2 + 1 /* ERP */ 3466 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3467 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3468 2*sizeof(struct ieee80211_ie_wpa) : 0) 3469 /* XXX conditional? */ 3470 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3471 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3472 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3473 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3474 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3475 sizeof(struct ieee80211_wme_param) : 0) 3476 #ifdef IEEE80211_SUPPORT_SUPERG 3477 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3478 #endif 3479 #ifdef IEEE80211_SUPPORT_TDMA 3480 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3481 sizeof(struct ieee80211_tdma_param) : 0) 3482 #endif 3483 #ifdef IEEE80211_SUPPORT_MESH 3484 + 2 + ni->ni_meshidlen 3485 + sizeof(struct ieee80211_meshconf_ie) 3486 #endif 3487 + IEEE80211_MAX_APPIE 3488 ; 3489 m = ieee80211_getmgtframe(&frm, 3490 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3491 if (m == NULL) { 3492 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3493 "%s: cannot get buf; size %u\n", __func__, pktlen); 3494 vap->iv_stats.is_tx_nobuf++; 3495 return NULL; 3496 } 3497 ieee80211_beacon_construct(m, frm, ni); 3498 3499 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3500 KASSERT(m != NULL, ("no space for 802.11 header?")); 3501 wh = mtod(m, struct ieee80211_frame *); 3502 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3503 IEEE80211_FC0_SUBTYPE_BEACON; 3504 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3505 *(uint16_t *)wh->i_dur = 0; 3506 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3507 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3508 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3509 *(uint16_t *)wh->i_seq = 0; 3510 3511 return m; 3512 } 3513 3514 /* 3515 * Update the dynamic parts of a beacon frame based on the current state. 3516 */ 3517 int 3518 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3519 { 3520 struct ieee80211vap *vap = ni->ni_vap; 3521 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3522 struct ieee80211com *ic = ni->ni_ic; 3523 int len_changed = 0; 3524 uint16_t capinfo; 3525 struct ieee80211_frame *wh; 3526 ieee80211_seq seqno; 3527 3528 IEEE80211_LOCK(ic); 3529 /* 3530 * Handle 11h channel change when we've reached the count. 3531 * We must recalculate the beacon frame contents to account 3532 * for the new channel. Note we do this only for the first 3533 * vap that reaches this point; subsequent vaps just update 3534 * their beacon state to reflect the recalculated channel. 3535 */ 3536 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3537 vap->iv_csa_count == ic->ic_csa_count) { 3538 vap->iv_csa_count = 0; 3539 /* 3540 * Effect channel change before reconstructing the beacon 3541 * frame contents as many places reference ni_chan. 3542 */ 3543 if (ic->ic_csa_newchan != NULL) 3544 ieee80211_csa_completeswitch(ic); 3545 /* 3546 * NB: ieee80211_beacon_construct clears all pending 3547 * updates in bo_flags so we don't need to explicitly 3548 * clear IEEE80211_BEACON_CSA. 3549 */ 3550 ieee80211_beacon_construct(m, 3551 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3552 3553 /* XXX do WME aggressive mode processing? */ 3554 IEEE80211_UNLOCK(ic); 3555 return 1; /* just assume length changed */ 3556 } 3557 3558 /* 3559 * Handle the quiet time element being added and removed. 3560 * Again, for now we just cheat and reconstruct the whole 3561 * beacon - that way the gap is provided as appropriate. 3562 * 3563 * So, track whether we have already added the IE versus 3564 * whether we want to be adding the IE. 3565 */ 3566 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3567 (vap->iv_quiet == 0)) { 3568 /* 3569 * Quiet time beacon IE enabled, but it's disabled; 3570 * recalc 3571 */ 3572 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3573 ieee80211_beacon_construct(m, 3574 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3575 /* XXX do WME aggressive mode processing? */ 3576 IEEE80211_UNLOCK(ic); 3577 return 1; /* just assume length changed */ 3578 } 3579 3580 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3581 (vap->iv_quiet == 1)) { 3582 /* 3583 * Quiet time beacon IE disabled, but it's now enabled; 3584 * recalc 3585 */ 3586 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3587 ieee80211_beacon_construct(m, 3588 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3589 /* XXX do WME aggressive mode processing? */ 3590 IEEE80211_UNLOCK(ic); 3591 return 1; /* just assume length changed */ 3592 } 3593 3594 wh = mtod(m, struct ieee80211_frame *); 3595 3596 /* 3597 * XXX TODO Strictly speaking this should be incremented with the TX 3598 * lock held so as to serialise access to the non-qos TID sequence 3599 * number space. 3600 * 3601 * If the driver identifies it does its own TX seqno management then 3602 * we can skip this (and still not do the TX seqno.) 3603 */ 3604 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3605 *(uint16_t *)&wh->i_seq[0] = 3606 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3607 M_SEQNO_SET(m, seqno); 3608 3609 /* XXX faster to recalculate entirely or just changes? */ 3610 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3611 *bo->bo_caps = htole16(capinfo); 3612 3613 if (vap->iv_flags & IEEE80211_F_WME) { 3614 struct ieee80211_wme_state *wme = &ic->ic_wme; 3615 3616 /* 3617 * Check for aggressive mode change. When there is 3618 * significant high priority traffic in the BSS 3619 * throttle back BE traffic by using conservative 3620 * parameters. Otherwise BE uses aggressive params 3621 * to optimize performance of legacy/non-QoS traffic. 3622 */ 3623 if (wme->wme_flags & WME_F_AGGRMODE) { 3624 if (wme->wme_hipri_traffic > 3625 wme->wme_hipri_switch_thresh) { 3626 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3627 "%s: traffic %u, disable aggressive mode\n", 3628 __func__, wme->wme_hipri_traffic); 3629 wme->wme_flags &= ~WME_F_AGGRMODE; 3630 ieee80211_wme_updateparams_locked(vap); 3631 wme->wme_hipri_traffic = 3632 wme->wme_hipri_switch_hysteresis; 3633 } else 3634 wme->wme_hipri_traffic = 0; 3635 } else { 3636 if (wme->wme_hipri_traffic <= 3637 wme->wme_hipri_switch_thresh) { 3638 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3639 "%s: traffic %u, enable aggressive mode\n", 3640 __func__, wme->wme_hipri_traffic); 3641 wme->wme_flags |= WME_F_AGGRMODE; 3642 ieee80211_wme_updateparams_locked(vap); 3643 wme->wme_hipri_traffic = 0; 3644 } else 3645 wme->wme_hipri_traffic = 3646 wme->wme_hipri_switch_hysteresis; 3647 } 3648 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3649 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3650 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3651 } 3652 } 3653 3654 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3655 ieee80211_ht_update_beacon(vap, bo); 3656 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3657 } 3658 #ifdef IEEE80211_SUPPORT_TDMA 3659 if (vap->iv_caps & IEEE80211_C_TDMA) { 3660 /* 3661 * NB: the beacon is potentially updated every TBTT. 3662 */ 3663 ieee80211_tdma_update_beacon(vap, bo); 3664 } 3665 #endif 3666 #ifdef IEEE80211_SUPPORT_MESH 3667 if (vap->iv_opmode == IEEE80211_M_MBSS) 3668 ieee80211_mesh_update_beacon(vap, bo); 3669 #endif 3670 3671 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3672 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3673 struct ieee80211_tim_ie *tie = 3674 (struct ieee80211_tim_ie *) bo->bo_tim; 3675 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3676 u_int timlen, timoff, i; 3677 /* 3678 * ATIM/DTIM needs updating. If it fits in the 3679 * current space allocated then just copy in the 3680 * new bits. Otherwise we need to move any trailing 3681 * data to make room. Note that we know there is 3682 * contiguous space because ieee80211_beacon_allocate 3683 * insures there is space in the mbuf to write a 3684 * maximal-size virtual bitmap (based on iv_max_aid). 3685 */ 3686 /* 3687 * Calculate the bitmap size and offset, copy any 3688 * trailer out of the way, and then copy in the 3689 * new bitmap and update the information element. 3690 * Note that the tim bitmap must contain at least 3691 * one byte and any offset must be even. 3692 */ 3693 if (vap->iv_ps_pending != 0) { 3694 timoff = 128; /* impossibly large */ 3695 for (i = 0; i < vap->iv_tim_len; i++) 3696 if (vap->iv_tim_bitmap[i]) { 3697 timoff = i &~ 1; 3698 break; 3699 } 3700 KASSERT(timoff != 128, ("tim bitmap empty!")); 3701 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3702 if (vap->iv_tim_bitmap[i]) 3703 break; 3704 timlen = 1 + (i - timoff); 3705 } else { 3706 timoff = 0; 3707 timlen = 1; 3708 } 3709 3710 /* 3711 * TODO: validate this! 3712 */ 3713 if (timlen != bo->bo_tim_len) { 3714 /* copy up/down trailer */ 3715 int adjust = tie->tim_bitmap+timlen 3716 - bo->bo_tim_trailer; 3717 ovbcopy(bo->bo_tim_trailer, 3718 bo->bo_tim_trailer+adjust, 3719 bo->bo_tim_trailer_len); 3720 bo->bo_tim_trailer += adjust; 3721 bo->bo_erp += adjust; 3722 bo->bo_htinfo += adjust; 3723 bo->bo_vhtinfo += adjust; 3724 #ifdef IEEE80211_SUPPORT_SUPERG 3725 bo->bo_ath += adjust; 3726 #endif 3727 #ifdef IEEE80211_SUPPORT_TDMA 3728 bo->bo_tdma += adjust; 3729 #endif 3730 #ifdef IEEE80211_SUPPORT_MESH 3731 bo->bo_meshconf += adjust; 3732 #endif 3733 bo->bo_appie += adjust; 3734 bo->bo_wme += adjust; 3735 bo->bo_csa += adjust; 3736 bo->bo_quiet += adjust; 3737 bo->bo_tim_len = timlen; 3738 3739 /* update information element */ 3740 tie->tim_len = 3 + timlen; 3741 tie->tim_bitctl = timoff; 3742 len_changed = 1; 3743 } 3744 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3745 bo->bo_tim_len); 3746 3747 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3748 3749 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3750 "%s: TIM updated, pending %u, off %u, len %u\n", 3751 __func__, vap->iv_ps_pending, timoff, timlen); 3752 } 3753 /* count down DTIM period */ 3754 if (tie->tim_count == 0) 3755 tie->tim_count = tie->tim_period - 1; 3756 else 3757 tie->tim_count--; 3758 /* update state for buffered multicast frames on DTIM */ 3759 if (mcast && tie->tim_count == 0) 3760 tie->tim_bitctl |= 1; 3761 else 3762 tie->tim_bitctl &= ~1; 3763 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3764 struct ieee80211_csa_ie *csa = 3765 (struct ieee80211_csa_ie *) bo->bo_csa; 3766 3767 /* 3768 * Insert or update CSA ie. If we're just starting 3769 * to count down to the channel switch then we need 3770 * to insert the CSA ie. Otherwise we just need to 3771 * drop the count. The actual change happens above 3772 * when the vap's count reaches the target count. 3773 */ 3774 if (vap->iv_csa_count == 0) { 3775 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3776 bo->bo_erp += sizeof(*csa); 3777 bo->bo_htinfo += sizeof(*csa); 3778 bo->bo_vhtinfo += sizeof(*csa); 3779 bo->bo_wme += sizeof(*csa); 3780 #ifdef IEEE80211_SUPPORT_SUPERG 3781 bo->bo_ath += sizeof(*csa); 3782 #endif 3783 #ifdef IEEE80211_SUPPORT_TDMA 3784 bo->bo_tdma += sizeof(*csa); 3785 #endif 3786 #ifdef IEEE80211_SUPPORT_MESH 3787 bo->bo_meshconf += sizeof(*csa); 3788 #endif 3789 bo->bo_appie += sizeof(*csa); 3790 bo->bo_csa_trailer_len += sizeof(*csa); 3791 bo->bo_quiet += sizeof(*csa); 3792 bo->bo_tim_trailer_len += sizeof(*csa); 3793 m->m_len += sizeof(*csa); 3794 m->m_pkthdr.len += sizeof(*csa); 3795 3796 ieee80211_add_csa(bo->bo_csa, vap); 3797 } else 3798 csa->csa_count--; 3799 vap->iv_csa_count++; 3800 /* NB: don't clear IEEE80211_BEACON_CSA */ 3801 } 3802 3803 /* 3804 * Only add the quiet time IE if we've enabled it 3805 * as appropriate. 3806 */ 3807 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3808 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3809 if (vap->iv_quiet && 3810 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 3811 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 3812 } 3813 } 3814 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3815 /* 3816 * ERP element needs updating. 3817 */ 3818 (void) ieee80211_add_erp(bo->bo_erp, ic); 3819 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3820 } 3821 #ifdef IEEE80211_SUPPORT_SUPERG 3822 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3823 ieee80211_add_athcaps(bo->bo_ath, ni); 3824 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3825 } 3826 #endif 3827 } 3828 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3829 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3830 int aielen; 3831 uint8_t *frm; 3832 3833 aielen = 0; 3834 if (aie != NULL) 3835 aielen += aie->ie_len; 3836 if (aielen != bo->bo_appie_len) { 3837 /* copy up/down trailer */ 3838 int adjust = aielen - bo->bo_appie_len; 3839 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3840 bo->bo_tim_trailer_len); 3841 bo->bo_tim_trailer += adjust; 3842 bo->bo_appie += adjust; 3843 bo->bo_appie_len = aielen; 3844 3845 len_changed = 1; 3846 } 3847 frm = bo->bo_appie; 3848 if (aie != NULL) 3849 frm = add_appie(frm, aie); 3850 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3851 } 3852 IEEE80211_UNLOCK(ic); 3853 3854 return len_changed; 3855 } 3856 3857 /* 3858 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3859 * tunnel encapsulation. The frame is assumed to have an Ethernet 3860 * header at the front that must be stripped before prepending the 3861 * LLC followed by the Ethernet header passed in (with an Ethernet 3862 * type that specifies the payload size). 3863 */ 3864 struct mbuf * 3865 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3866 const struct ether_header *eh) 3867 { 3868 struct llc *llc; 3869 uint16_t payload; 3870 3871 /* XXX optimize by combining m_adj+M_PREPEND */ 3872 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3873 llc = mtod(m, struct llc *); 3874 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3875 llc->llc_control = LLC_UI; 3876 llc->llc_snap.org_code[0] = 0; 3877 llc->llc_snap.org_code[1] = 0; 3878 llc->llc_snap.org_code[2] = 0; 3879 llc->llc_snap.ether_type = eh->ether_type; 3880 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3881 3882 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3883 if (m == NULL) { /* XXX cannot happen */ 3884 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3885 "%s: no space for ether_header\n", __func__); 3886 vap->iv_stats.is_tx_nobuf++; 3887 return NULL; 3888 } 3889 ETHER_HEADER_COPY(mtod(m, void *), eh); 3890 mtod(m, struct ether_header *)->ether_type = htons(payload); 3891 return m; 3892 } 3893 3894 /* 3895 * Complete an mbuf transmission. 3896 * 3897 * For now, this simply processes a completed frame after the 3898 * driver has completed it's transmission and/or retransmission. 3899 * It assumes the frame is an 802.11 encapsulated frame. 3900 * 3901 * Later on it will grow to become the exit path for a given frame 3902 * from the driver and, depending upon how it's been encapsulated 3903 * and already transmitted, it may end up doing A-MPDU retransmission, 3904 * power save requeuing, etc. 3905 * 3906 * In order for the above to work, the driver entry point to this 3907 * must not hold any driver locks. Thus, the driver needs to delay 3908 * any actual mbuf completion until it can release said locks. 3909 * 3910 * This frees the mbuf and if the mbuf has a node reference, 3911 * the node reference will be freed. 3912 */ 3913 void 3914 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3915 { 3916 3917 if (ni != NULL) { 3918 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3919 3920 if (status == 0) { 3921 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3922 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3923 if (m->m_flags & M_MCAST) 3924 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3925 } else 3926 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3927 if (m->m_flags & M_TXCB) 3928 ieee80211_process_callback(ni, m, status); 3929 ieee80211_free_node(ni); 3930 } 3931 m_freem(m); 3932 } 3933