xref: /haiku/src/libs/compat/freebsd_wlan/net80211/ieee80211_output.c (revision 83b1a68c52ba3e0e8796282759f694b7fdddf06d)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/if.h>
45 #include <net/if_llc.h>
46 #include <net/if_media.h>
47 #include <net/if_vlan_var.h>
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_regdomain.h>
51 #ifdef IEEE80211_SUPPORT_SUPERG
52 #include <net80211/ieee80211_superg.h>
53 #endif
54 #ifdef IEEE80211_SUPPORT_TDMA
55 #include <net80211/ieee80211_tdma.h>
56 #endif
57 #include <net80211/ieee80211_wds.h>
58 #include <net80211/ieee80211_mesh.h>
59 
60 #if defined(INET) || defined(INET6)
61 #include <netinet/in.h>
62 #endif
63 
64 #ifdef INET
65 #include <netinet/if_ether.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #endif
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #endif
72 
73 #include <security/mac/mac_framework.h>
74 
75 #define	ETHER_HEADER_COPY(dst, src) \
76 	memcpy(dst, src, sizeof(struct ether_header))
77 
78 /* unalligned little endian access */
79 #define LE_WRITE_2(p, v) do {				\
80 	((uint8_t *)(p))[0] = (v) & 0xff;		\
81 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
82 } while (0)
83 #define LE_WRITE_4(p, v) do {				\
84 	((uint8_t *)(p))[0] = (v) & 0xff;		\
85 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
86 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
87 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
88 } while (0)
89 
90 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
91 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
92 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
93 
94 #ifdef IEEE80211_DEBUG
95 /*
96  * Decide if an outbound management frame should be
97  * printed when debugging is enabled.  This filters some
98  * of the less interesting frames that come frequently
99  * (e.g. beacons).
100  */
101 static __inline int
102 doprint(struct ieee80211vap *vap, int subtype)
103 {
104 	switch (subtype) {
105 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
106 		return (vap->iv_opmode == IEEE80211_M_IBSS);
107 	}
108 	return 1;
109 }
110 #endif
111 
112 /*
113  * Start method for vap's.  All packets from the stack come
114  * through here.  We handle common processing of the packets
115  * before dispatching them to the underlying device.
116  */
117 void
118 ieee80211_start(struct ifnet *ifp)
119 {
120 #define	IS_DWDS(vap) \
121 	(vap->iv_opmode == IEEE80211_M_WDS && \
122 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
123 	struct ieee80211vap *vap = ifp->if_softc;
124 	struct ieee80211com *ic = vap->iv_ic;
125 	struct ifnet *parent = ic->ic_ifp;
126 	struct ieee80211_node *ni;
127 	struct mbuf *m;
128 	struct ether_header *eh;
129 	int error;
130 
131 	/* NB: parent must be up and running */
132 	if (!IFNET_IS_UP_RUNNING(parent)) {
133 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
134 		    "%s: ignore queue, parent %s not up+running\n",
135 		    __func__, parent->if_xname);
136 		/* XXX stat */
137 		return;
138 	}
139 	if (vap->iv_state == IEEE80211_S_SLEEP) {
140 		/*
141 		 * In power save, wakeup device for transmit.
142 		 */
143 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
144 		return;
145 	}
146 	/*
147 	 * No data frames go out unless we're running.
148 	 * Note in particular this covers CAC and CSA
149 	 * states (though maybe we should check muting
150 	 * for CSA).
151 	 */
152 	if (vap->iv_state != IEEE80211_S_RUN) {
153 		IEEE80211_LOCK(ic);
154 		/* re-check under the com lock to avoid races */
155 		if (vap->iv_state != IEEE80211_S_RUN) {
156 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
157 			    "%s: ignore queue, in %s state\n",
158 			    __func__, ieee80211_state_name[vap->iv_state]);
159 			vap->iv_stats.is_tx_badstate++;
160 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
161 			IEEE80211_UNLOCK(ic);
162 			return;
163 		}
164 		IEEE80211_UNLOCK(ic);
165 	}
166 	for (;;) {
167 		IFQ_DEQUEUE(&ifp->if_snd, m);
168 		if (m == NULL)
169 			break;
170 		/*
171 		 * Sanitize mbuf flags for net80211 use.  We cannot
172 		 * clear M_PWR_SAV or M_MORE_DATA because these may
173 		 * be set for frames that are re-submitted from the
174 		 * power save queue.
175 		 *
176 		 * NB: This must be done before ieee80211_classify as
177 		 *     it marks EAPOL in frames with M_EAPOL.
178 		 */
179 		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
180 		/*
181 		 * Cancel any background scan.
182 		 */
183 		if (ic->ic_flags & IEEE80211_F_SCAN)
184 			ieee80211_cancel_anyscan(vap);
185 		/*
186 		 * Find the node for the destination so we can do
187 		 * things like power save and fast frames aggregation.
188 		 *
189 		 * NB: past this point various code assumes the first
190 		 *     mbuf has the 802.3 header present (and contiguous).
191 		 */
192 		ni = NULL;
193 		if (m->m_len < sizeof(struct ether_header) &&
194 		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
195 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
196 			    "discard frame, %s\n", "m_pullup failed");
197 			vap->iv_stats.is_tx_nobuf++;	/* XXX */
198 			ifp->if_oerrors++;
199 			continue;
200 		}
201 		eh = mtod(m, struct ether_header *);
202 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
203 			if (IS_DWDS(vap)) {
204 				/*
205 				 * Only unicast frames from the above go out
206 				 * DWDS vaps; multicast frames are handled by
207 				 * dispatching the frame as it comes through
208 				 * the AP vap (see below).
209 				 */
210 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
211 				    eh->ether_dhost, "mcast", "%s", "on DWDS");
212 				vap->iv_stats.is_dwds_mcast++;
213 				m_freem(m);
214 				continue;
215 			}
216 			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
217 				/*
218 				 * Spam DWDS vap's w/ multicast traffic.
219 				 */
220 				/* XXX only if dwds in use? */
221 				ieee80211_dwds_mcast(vap, m);
222 			}
223 		}
224 #ifdef IEEE80211_SUPPORT_MESH
225 		if (vap->iv_opmode != IEEE80211_M_MBSS) {
226 #endif
227 			ni = ieee80211_find_txnode(vap, eh->ether_dhost);
228 			if (ni == NULL) {
229 				/* NB: ieee80211_find_txnode does stat+msg */
230 				ifp->if_oerrors++;
231 				m_freem(m);
232 				continue;
233 			}
234 			if (ni->ni_associd == 0 &&
235 			    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
236 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
237 				    eh->ether_dhost, NULL,
238 				    "sta not associated (type 0x%04x)",
239 				    htons(eh->ether_type));
240 				vap->iv_stats.is_tx_notassoc++;
241 				ifp->if_oerrors++;
242 				m_freem(m);
243 				ieee80211_free_node(ni);
244 				continue;
245 			}
246 #ifdef IEEE80211_SUPPORT_MESH
247 		} else {
248 			if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
249 				/*
250 				 * Proxy station only if configured.
251 				 */
252 				if (!ieee80211_mesh_isproxyena(vap)) {
253 					IEEE80211_DISCARD_MAC(vap,
254 					    IEEE80211_MSG_OUTPUT |
255 						IEEE80211_MSG_MESH,
256 					    eh->ether_dhost, NULL,
257 					    "%s", "proxy not enabled");
258 					vap->iv_stats.is_mesh_notproxy++;
259 					ifp->if_oerrors++;
260 					m_freem(m);
261 					continue;
262 				}
263 				ieee80211_mesh_proxy_check(vap, eh->ether_shost);
264 			}
265 			ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
266 			if (ni == NULL) {
267 				/*
268 				 * NB: ieee80211_mesh_discover holds/disposes
269 				 * frame (e.g. queueing on path discovery).
270 				 */
271 				ifp->if_oerrors++;
272 				continue;
273 			}
274 		}
275 #endif
276 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
277 		    (m->m_flags & M_PWR_SAV) == 0) {
278 			/*
279 			 * Station in power save mode; pass the frame
280 			 * to the 802.11 layer and continue.  We'll get
281 			 * the frame back when the time is right.
282 			 * XXX lose WDS vap linkage?
283 			 */
284 			(void) ieee80211_pwrsave(ni, m);
285 			ieee80211_free_node(ni);
286 			continue;
287 		}
288 		/* calculate priority so drivers can find the tx queue */
289 		if (ieee80211_classify(ni, m)) {
290 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
291 			    eh->ether_dhost, NULL,
292 			    "%s", "classification failure");
293 			vap->iv_stats.is_tx_classify++;
294 			ifp->if_oerrors++;
295 			m_freem(m);
296 			ieee80211_free_node(ni);
297 			continue;
298 		}
299 		/*
300 		 * Stash the node pointer.  Note that we do this after
301 		 * any call to ieee80211_dwds_mcast because that code
302 		 * uses any existing value for rcvif to identify the
303 		 * interface it (might have been) received on.
304 		 */
305 		m->m_pkthdr.rcvif = (void *)ni;
306 
307 		BPF_MTAP(ifp, m);		/* 802.3 tx */
308 
309 		/*
310 		 * Check if A-MPDU tx aggregation is setup or if we
311 		 * should try to enable it.  The sta must be associated
312 		 * with HT and A-MPDU enabled for use.  When the policy
313 		 * routine decides we should enable A-MPDU we issue an
314 		 * ADDBA request and wait for a reply.  The frame being
315 		 * encapsulated will go out w/o using A-MPDU, or possibly
316 		 * it might be collected by the driver and held/retransmit.
317 		 * The default ic_ampdu_enable routine handles staggering
318 		 * ADDBA requests in case the receiver NAK's us or we are
319 		 * otherwise unable to establish a BA stream.
320 		 */
321 		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
322 		    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
323 		    (m->m_flags & M_EAPOL) == 0) {
324 			const int ac = M_WME_GETAC(m);
325 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
326 
327 			ieee80211_txampdu_count_packet(tap);
328 			if (IEEE80211_AMPDU_RUNNING(tap)) {
329 				/*
330 				 * Operational, mark frame for aggregation.
331 				 *
332 				 * XXX do tx aggregation here
333 				 */
334 				m->m_flags |= M_AMPDU_MPDU;
335 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
336 			    ic->ic_ampdu_enable(ni, tap)) {
337 				/*
338 				 * Not negotiated yet, request service.
339 				 */
340 				ieee80211_ampdu_request(ni, tap);
341 				/* XXX hold frame for reply? */
342 			}
343 		}
344 #ifdef IEEE80211_SUPPORT_SUPERG
345 		else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
346 			m = ieee80211_ff_check(ni, m);
347 			if (m == NULL) {
348 				/* NB: any ni ref held on stageq */
349 				continue;
350 			}
351 		}
352 #endif /* IEEE80211_SUPPORT_SUPERG */
353 		if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
354 			/*
355 			 * Encapsulate the packet in prep for transmission.
356 			 */
357 			m = ieee80211_encap(vap, ni, m);
358 			if (m == NULL) {
359 				/* NB: stat+msg handled in ieee80211_encap */
360 				ieee80211_free_node(ni);
361 				continue;
362 			}
363 		}
364 
365 		error = parent->if_transmit(parent, m);
366 		if (error != 0) {
367 			/* NB: IFQ_HANDOFF reclaims mbuf */
368 			ieee80211_free_node(ni);
369 		} else {
370 			ifp->if_opackets++;
371 		}
372 		ic->ic_lastdata = ticks;
373 	}
374 #undef IS_DWDS
375 }
376 
377 /*
378  * 802.11 output routine. This is (currently) used only to
379  * connect bpf write calls to the 802.11 layer for injecting
380  * raw 802.11 frames.
381  */
382 int
383 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
384 	struct sockaddr *dst, struct route *ro)
385 {
386 #define senderr(e) do { error = (e); goto bad;} while (0)
387 	struct ieee80211_node *ni = NULL;
388 	struct ieee80211vap *vap;
389 	struct ieee80211_frame *wh;
390 	int error;
391 
392 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
393 		/*
394 		 * Short-circuit requests if the vap is marked OACTIVE
395 		 * as this can happen because a packet came down through
396 		 * ieee80211_start before the vap entered RUN state in
397 		 * which case it's ok to just drop the frame.  This
398 		 * should not be necessary but callers of if_output don't
399 		 * check OACTIVE.
400 		 */
401 		senderr(ENETDOWN);
402 	}
403 	vap = ifp->if_softc;
404 
405 #ifdef __HAIKU__
406 	return vap->iv_output(ifp, m, dst, ro);
407 #else
408 	/*
409 	 * Hand to the 802.3 code if not tagged as
410 	 * a raw 802.11 frame.
411 	 */
412 	if (dst->sa_family != AF_IEEE80211)
413 		return vap->iv_output(ifp, m, dst, ro);
414 #ifdef MAC
415 	error = mac_ifnet_check_transmit(ifp, m);
416 	if (error)
417 		senderr(error);
418 #endif
419 	if (ifp->if_flags & IFF_MONITOR)
420 		senderr(ENETDOWN);
421 	if (!IFNET_IS_UP_RUNNING(ifp))
422 		senderr(ENETDOWN);
423 	if (vap->iv_state == IEEE80211_S_CAC) {
424 		IEEE80211_DPRINTF(vap,
425 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
426 		    "block %s frame in CAC state\n", "raw data");
427 		vap->iv_stats.is_tx_badstate++;
428 		senderr(EIO);		/* XXX */
429 	} else if (vap->iv_state == IEEE80211_S_SCAN)
430 		senderr(EIO);
431 	/* XXX bypass bridge, pfil, carp, etc. */
432 
433 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
434 		senderr(EIO);	/* XXX */
435 	wh = mtod(m, struct ieee80211_frame *);
436 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
437 	    IEEE80211_FC0_VERSION_0)
438 		senderr(EIO);	/* XXX */
439 
440 	/* locate destination node */
441 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
442 	case IEEE80211_FC1_DIR_NODS:
443 	case IEEE80211_FC1_DIR_FROMDS:
444 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
445 		break;
446 	case IEEE80211_FC1_DIR_TODS:
447 	case IEEE80211_FC1_DIR_DSTODS:
448 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
449 			senderr(EIO);	/* XXX */
450 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
451 		break;
452 	default:
453 		senderr(EIO);	/* XXX */
454 	}
455 	if (ni == NULL) {
456 		/*
457 		 * Permit packets w/ bpf params through regardless
458 		 * (see below about sa_len).
459 		 */
460 		if (dst->sa_len == 0)
461 			senderr(EHOSTUNREACH);
462 		ni = ieee80211_ref_node(vap->iv_bss);
463 	}
464 
465 	/*
466 	 * Sanitize mbuf for net80211 flags leaked from above.
467 	 *
468 	 * NB: This must be done before ieee80211_classify as
469 	 *     it marks EAPOL in frames with M_EAPOL.
470 	 */
471 	m->m_flags &= ~M_80211_TX;
472 
473 	/* calculate priority so drivers can find the tx queue */
474 	/* XXX assumes an 802.3 frame */
475 	if (ieee80211_classify(ni, m))
476 		senderr(EIO);		/* XXX */
477 
478 	ifp->if_opackets++;
479 	IEEE80211_NODE_STAT(ni, tx_data);
480 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
481 		IEEE80211_NODE_STAT(ni, tx_mcast);
482 		m->m_flags |= M_MCAST;
483 	} else
484 		IEEE80211_NODE_STAT(ni, tx_ucast);
485 	/* NB: ieee80211_encap does not include 802.11 header */
486 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
487 
488 	/*
489 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
490 	 * present by setting the sa_len field of the sockaddr (yes,
491 	 * this is a hack).
492 	 * NB: we assume sa_data is suitably aligned to cast.
493 	 */
494 	return vap->iv_ic->ic_raw_xmit(ni, m,
495 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
496 		dst->sa_data : NULL));
497 #endif
498 bad:
499 	if (m != NULL)
500 		m_freem(m);
501 	if (ni != NULL)
502 		ieee80211_free_node(ni);
503 	ifp->if_oerrors++;
504 	return error;
505 #undef senderr
506 }
507 
508 /*
509  * Set the direction field and address fields of an outgoing
510  * frame.  Note this should be called early on in constructing
511  * a frame as it sets i_fc[1]; other bits can then be or'd in.
512  */
513 void
514 ieee80211_send_setup(
515 	struct ieee80211_node *ni,
516 	struct mbuf *m,
517 	int type, int tid,
518 	const uint8_t sa[IEEE80211_ADDR_LEN],
519 	const uint8_t da[IEEE80211_ADDR_LEN],
520 	const uint8_t bssid[IEEE80211_ADDR_LEN])
521 {
522 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
523 	struct ieee80211vap *vap = ni->ni_vap;
524 	struct ieee80211_tx_ampdu *tap;
525 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
526 	ieee80211_seq seqno;
527 
528 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
529 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
530 		switch (vap->iv_opmode) {
531 		case IEEE80211_M_STA:
532 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
533 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
534 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
535 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
536 			break;
537 		case IEEE80211_M_IBSS:
538 		case IEEE80211_M_AHDEMO:
539 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
540 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
541 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
542 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
543 			break;
544 		case IEEE80211_M_HOSTAP:
545 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
546 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
547 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
548 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
549 			break;
550 		case IEEE80211_M_WDS:
551 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
552 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
553 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
554 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
555 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
556 			break;
557 		case IEEE80211_M_MBSS:
558 #ifdef IEEE80211_SUPPORT_MESH
559 			/* XXX add support for proxied addresses */
560 			if (IEEE80211_IS_MULTICAST(da)) {
561 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
562 				/* XXX next hop */
563 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
564 				IEEE80211_ADDR_COPY(wh->i_addr2,
565 				    vap->iv_myaddr);
566 			} else {
567 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
568 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
569 				IEEE80211_ADDR_COPY(wh->i_addr2,
570 				    vap->iv_myaddr);
571 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
572 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
573 			}
574 #endif
575 			break;
576 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
577 			break;
578 		}
579 	} else {
580 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
581 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
582 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
583 #ifdef IEEE80211_SUPPORT_MESH
584 		if (vap->iv_opmode == IEEE80211_M_MBSS)
585 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
586 		else
587 #endif
588 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
589 	}
590 	*(uint16_t *)&wh->i_dur[0] = 0;
591 
592 	tap = &ni->ni_tx_ampdu[TID_TO_WME_AC(tid)];
593 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
594 		m->m_flags |= M_AMPDU_MPDU;
595 	else {
596 		seqno = ni->ni_txseqs[tid]++;
597 		*(uint16_t *)&wh->i_seq[0] =
598 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
599 		M_SEQNO_SET(m, seqno);
600 	}
601 
602 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
603 		m->m_flags |= M_MCAST;
604 #undef WH4
605 }
606 
607 /*
608  * Send a management frame to the specified node.  The node pointer
609  * must have a reference as the pointer will be passed to the driver
610  * and potentially held for a long time.  If the frame is successfully
611  * dispatched to the driver, then it is responsible for freeing the
612  * reference (and potentially free'ing up any associated storage);
613  * otherwise deal with reclaiming any reference (on error).
614  */
615 int
616 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
617 	struct ieee80211_bpf_params *params)
618 {
619 	struct ieee80211vap *vap = ni->ni_vap;
620 	struct ieee80211com *ic = ni->ni_ic;
621 	struct ieee80211_frame *wh;
622 
623 	KASSERT(ni != NULL, ("null node"));
624 
625 	if (vap->iv_state == IEEE80211_S_CAC) {
626 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
627 		    ni, "block %s frame in CAC state",
628 			ieee80211_mgt_subtype_name[
629 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
630 				IEEE80211_FC0_SUBTYPE_SHIFT]);
631 		vap->iv_stats.is_tx_badstate++;
632 		ieee80211_free_node(ni);
633 		m_freem(m);
634 		return EIO;		/* XXX */
635 	}
636 
637 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
638 	if (m == NULL) {
639 		ieee80211_free_node(ni);
640 		return ENOMEM;
641 	}
642 
643 	wh = mtod(m, struct ieee80211_frame *);
644 	ieee80211_send_setup(ni, m,
645 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
646 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
647 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
648 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
649 		    "encrypting frame (%s)", __func__);
650 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
651 	}
652 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
653 
654 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
655 	M_WME_SETAC(m, params->ibp_pri);
656 
657 #ifdef IEEE80211_DEBUG
658 	/* avoid printing too many frames */
659 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
660 	    ieee80211_msg_dumppkts(vap)) {
661 		printf("[%s] send %s on channel %u\n",
662 		    ether_sprintf(wh->i_addr1),
663 		    ieee80211_mgt_subtype_name[
664 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
665 				IEEE80211_FC0_SUBTYPE_SHIFT],
666 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
667 	}
668 #endif
669 	IEEE80211_NODE_STAT(ni, tx_mgmt);
670 
671 	return ic->ic_raw_xmit(ni, m, params);
672 }
673 
674 /*
675  * Send a null data frame to the specified node.  If the station
676  * is setup for QoS then a QoS Null Data frame is constructed.
677  * If this is a WDS station then a 4-address frame is constructed.
678  *
679  * NB: the caller is assumed to have setup a node reference
680  *     for use; this is necessary to deal with a race condition
681  *     when probing for inactive stations.  Like ieee80211_mgmt_output
682  *     we must cleanup any node reference on error;  however we
683  *     can safely just unref it as we know it will never be the
684  *     last reference to the node.
685  */
686 int
687 ieee80211_send_nulldata(struct ieee80211_node *ni)
688 {
689 	struct ieee80211vap *vap = ni->ni_vap;
690 	struct ieee80211com *ic = ni->ni_ic;
691 	struct mbuf *m;
692 	struct ieee80211_frame *wh;
693 	int hdrlen;
694 	uint8_t *frm;
695 
696 	if (vap->iv_state == IEEE80211_S_CAC) {
697 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
698 		    ni, "block %s frame in CAC state", "null data");
699 		ieee80211_unref_node(&ni);
700 		vap->iv_stats.is_tx_badstate++;
701 		return EIO;		/* XXX */
702 	}
703 
704 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
705 		hdrlen = sizeof(struct ieee80211_qosframe);
706 	else
707 		hdrlen = sizeof(struct ieee80211_frame);
708 	/* NB: only WDS vap's get 4-address frames */
709 	if (vap->iv_opmode == IEEE80211_M_WDS)
710 		hdrlen += IEEE80211_ADDR_LEN;
711 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
712 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
713 
714 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
715 	if (m == NULL) {
716 		/* XXX debug msg */
717 		ieee80211_unref_node(&ni);
718 		vap->iv_stats.is_tx_nobuf++;
719 		return ENOMEM;
720 	}
721 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
722 	    ("leading space %zd", M_LEADINGSPACE(m)));
723 	M_PREPEND(m, hdrlen, M_DONTWAIT);
724 	if (m == NULL) {
725 		/* NB: cannot happen */
726 		ieee80211_free_node(ni);
727 		return ENOMEM;
728 	}
729 
730 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
731 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
732 		const int tid = WME_AC_TO_TID(WME_AC_BE);
733 		uint8_t *qos;
734 
735 		ieee80211_send_setup(ni, m,
736 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
737 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
738 
739 		if (vap->iv_opmode == IEEE80211_M_WDS)
740 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
741 		else
742 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
743 		qos[0] = tid & IEEE80211_QOS_TID;
744 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
745 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
746 		qos[1] = 0;
747 	} else {
748 		ieee80211_send_setup(ni, m,
749 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
750 		    IEEE80211_NONQOS_TID,
751 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
752 	}
753 	if (vap->iv_opmode != IEEE80211_M_WDS) {
754 		/* NB: power management bit is never sent by an AP */
755 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
756 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
757 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
758 	}
759 	m->m_len = m->m_pkthdr.len = hdrlen;
760 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
761 
762 	M_WME_SETAC(m, WME_AC_BE);
763 
764 	IEEE80211_NODE_STAT(ni, tx_data);
765 
766 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
767 	    "send %snull data frame on channel %u, pwr mgt %s",
768 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
769 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
770 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
771 
772 	return ic->ic_raw_xmit(ni, m, NULL);
773 }
774 
775 /*
776  * Assign priority to a frame based on any vlan tag assigned
777  * to the station and/or any Diffserv setting in an IP header.
778  * Finally, if an ACM policy is setup (in station mode) it's
779  * applied.
780  */
781 int
782 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
783 {
784 	const struct ether_header *eh = mtod(m, struct ether_header *);
785 	int v_wme_ac, d_wme_ac, ac;
786 
787 	/*
788 	 * Always promote PAE/EAPOL frames to high priority.
789 	 */
790 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
791 		/* NB: mark so others don't need to check header */
792 		m->m_flags |= M_EAPOL;
793 		ac = WME_AC_VO;
794 		goto done;
795 	}
796 	/*
797 	 * Non-qos traffic goes to BE.
798 	 */
799 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
800 		ac = WME_AC_BE;
801 		goto done;
802 	}
803 
804 	/*
805 	 * If node has a vlan tag then all traffic
806 	 * to it must have a matching tag.
807 	 */
808 	v_wme_ac = 0;
809 	if (ni->ni_vlan != 0) {
810 		 if ((m->m_flags & M_VLANTAG) == 0) {
811 			IEEE80211_NODE_STAT(ni, tx_novlantag);
812 			return 1;
813 		}
814 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
815 		    EVL_VLANOFTAG(ni->ni_vlan)) {
816 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
817 			return 1;
818 		}
819 		/* map vlan priority to AC */
820 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
821 	}
822 
823 	/* XXX m_copydata may be too slow for fast path */
824 #ifdef INET
825 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
826 		uint8_t tos;
827 		/*
828 		 * IP frame, map the DSCP bits from the TOS field.
829 		 */
830 		/* NB: ip header may not be in first mbuf */
831 		m_copydata(m, sizeof(struct ether_header) +
832 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
833 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
834 		d_wme_ac = TID_TO_WME_AC(tos);
835 	} else {
836 #endif /* INET */
837 #ifdef INET6
838 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
839 		uint32_t flow;
840 		uint8_t tos;
841 		/*
842 		 * IPv6 frame, map the DSCP bits from the TOS field.
843 		 */
844 		m_copydata(m, sizeof(struct ether_header) +
845 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
846 		    (caddr_t) &flow);
847 		tos = (uint8_t)(ntohl(flow) >> 20);
848 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
849 		d_wme_ac = TID_TO_WME_AC(tos);
850 	} else {
851 #endif /* INET6 */
852 		d_wme_ac = WME_AC_BE;
853 #ifdef INET6
854 	}
855 #endif
856 #ifdef INET
857 	}
858 #endif
859 	/*
860 	 * Use highest priority AC.
861 	 */
862 	if (v_wme_ac > d_wme_ac)
863 		ac = v_wme_ac;
864 	else
865 		ac = d_wme_ac;
866 
867 	/*
868 	 * Apply ACM policy.
869 	 */
870 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
871 		static const int acmap[4] = {
872 			WME_AC_BK,	/* WME_AC_BE */
873 			WME_AC_BK,	/* WME_AC_BK */
874 			WME_AC_BE,	/* WME_AC_VI */
875 			WME_AC_VI,	/* WME_AC_VO */
876 		};
877 		struct ieee80211com *ic = ni->ni_ic;
878 
879 		while (ac != WME_AC_BK &&
880 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
881 			ac = acmap[ac];
882 	}
883 done:
884 	M_WME_SETAC(m, ac);
885 	return 0;
886 }
887 
888 /*
889  * Insure there is sufficient contiguous space to encapsulate the
890  * 802.11 data frame.  If room isn't already there, arrange for it.
891  * Drivers and cipher modules assume we have done the necessary work
892  * and fail rudely if they don't find the space they need.
893  */
894 struct mbuf *
895 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
896 	struct ieee80211_key *key, struct mbuf *m)
897 {
898 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
899 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
900 
901 	if (key != NULL) {
902 		/* XXX belongs in crypto code? */
903 		needed_space += key->wk_cipher->ic_header;
904 		/* XXX frags */
905 		/*
906 		 * When crypto is being done in the host we must insure
907 		 * the data are writable for the cipher routines; clone
908 		 * a writable mbuf chain.
909 		 * XXX handle SWMIC specially
910 		 */
911 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
912 			m = m_unshare(m, M_NOWAIT);
913 			if (m == NULL) {
914 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
915 				    "%s: cannot get writable mbuf\n", __func__);
916 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
917 				return NULL;
918 			}
919 		}
920 	}
921 	/*
922 	 * We know we are called just before stripping an Ethernet
923 	 * header and prepending an LLC header.  This means we know
924 	 * there will be
925 	 *	sizeof(struct ether_header) - sizeof(struct llc)
926 	 * bytes recovered to which we need additional space for the
927 	 * 802.11 header and any crypto header.
928 	 */
929 	/* XXX check trailing space and copy instead? */
930 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
931 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
932 		if (n == NULL) {
933 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
934 			    "%s: cannot expand storage\n", __func__);
935 			vap->iv_stats.is_tx_nobuf++;
936 			m_freem(m);
937 			return NULL;
938 		}
939 		KASSERT(needed_space <= MHLEN,
940 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
941 		/*
942 		 * Setup new mbuf to have leading space to prepend the
943 		 * 802.11 header and any crypto header bits that are
944 		 * required (the latter are added when the driver calls
945 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
946 		 */
947 		/* NB: must be first 'cuz it clobbers m_data */
948 		m_move_pkthdr(n, m);
949 		n->m_len = 0;			/* NB: m_gethdr does not set */
950 		n->m_data += needed_space;
951 		/*
952 		 * Pull up Ethernet header to create the expected layout.
953 		 * We could use m_pullup but that's overkill (i.e. we don't
954 		 * need the actual data) and it cannot fail so do it inline
955 		 * for speed.
956 		 */
957 		/* NB: struct ether_header is known to be contiguous */
958 		n->m_len += sizeof(struct ether_header);
959 		m->m_len -= sizeof(struct ether_header);
960 		m->m_data += sizeof(struct ether_header);
961 		/*
962 		 * Replace the head of the chain.
963 		 */
964 		n->m_next = m;
965 		m = n;
966 	}
967 	return m;
968 #undef TO_BE_RECLAIMED
969 }
970 
971 /*
972  * Return the transmit key to use in sending a unicast frame.
973  * If a unicast key is set we use that.  When no unicast key is set
974  * we fall back to the default transmit key.
975  */
976 static __inline struct ieee80211_key *
977 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
978 	struct ieee80211_node *ni)
979 {
980 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
981 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
982 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
983 			return NULL;
984 		return &vap->iv_nw_keys[vap->iv_def_txkey];
985 	} else {
986 		return &ni->ni_ucastkey;
987 	}
988 }
989 
990 /*
991  * Return the transmit key to use in sending a multicast frame.
992  * Multicast traffic always uses the group key which is installed as
993  * the default tx key.
994  */
995 static __inline struct ieee80211_key *
996 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
997 	struct ieee80211_node *ni)
998 {
999 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1000 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1001 		return NULL;
1002 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1003 }
1004 
1005 /*
1006  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1007  * If an error is encountered NULL is returned.  The caller is required
1008  * to provide a node reference and pullup the ethernet header in the
1009  * first mbuf.
1010  *
1011  * NB: Packet is assumed to be processed by ieee80211_classify which
1012  *     marked EAPOL frames w/ M_EAPOL.
1013  */
1014 struct mbuf *
1015 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1016     struct mbuf *m)
1017 {
1018 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1019 	struct ieee80211com *ic = ni->ni_ic;
1020 #ifdef IEEE80211_SUPPORT_MESH
1021 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1022 	struct ieee80211_meshcntl_ae10 *mc;
1023 #endif
1024 	struct ether_header eh;
1025 	struct ieee80211_frame *wh;
1026 	struct ieee80211_key *key;
1027 	struct llc *llc;
1028 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1029 	ieee80211_seq seqno;
1030 	int meshhdrsize, meshae;
1031 	uint8_t *qos;
1032 
1033 	/*
1034 	 * Copy existing Ethernet header to a safe place.  The
1035 	 * rest of the code assumes it's ok to strip it when
1036 	 * reorganizing state for the final encapsulation.
1037 	 */
1038 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1039 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1040 
1041 	/*
1042 	 * Insure space for additional headers.  First identify
1043 	 * transmit key to use in calculating any buffer adjustments
1044 	 * required.  This is also used below to do privacy
1045 	 * encapsulation work.  Then calculate the 802.11 header
1046 	 * size and any padding required by the driver.
1047 	 *
1048 	 * Note key may be NULL if we fall back to the default
1049 	 * transmit key and that is not set.  In that case the
1050 	 * buffer may not be expanded as needed by the cipher
1051 	 * routines, but they will/should discard it.
1052 	 */
1053 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1054 		if (vap->iv_opmode == IEEE80211_M_STA ||
1055 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1056 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1057 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1058 			key = ieee80211_crypto_getucastkey(vap, ni);
1059 		else
1060 			key = ieee80211_crypto_getmcastkey(vap, ni);
1061 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1062 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1063 			    eh.ether_dhost,
1064 			    "no default transmit key (%s) deftxkey %u",
1065 			    __func__, vap->iv_def_txkey);
1066 			vap->iv_stats.is_tx_nodefkey++;
1067 			goto bad;
1068 		}
1069 	} else
1070 		key = NULL;
1071 	/*
1072 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1073 	 * frames so suppress use.  This may be an issue if other
1074 	 * ap's require all data frames to be QoS-encapsulated
1075 	 * once negotiated in which case we'll need to make this
1076 	 * configurable.
1077 	 */
1078 	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
1079 		 (m->m_flags & M_EAPOL) == 0;
1080 	if (addqos)
1081 		hdrsize = sizeof(struct ieee80211_qosframe);
1082 	else
1083 		hdrsize = sizeof(struct ieee80211_frame);
1084 #ifdef IEEE80211_SUPPORT_MESH
1085 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1086 		/*
1087 		 * Mesh data frames are encapsulated according to the
1088 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1089 		 * o Group Addressed data (aka multicast) originating
1090 		 *   at the local sta are sent w/ 3-address format and
1091 		 *   address extension mode 00
1092 		 * o Individually Addressed data (aka unicast) originating
1093 		 *   at the local sta are sent w/ 4-address format and
1094 		 *   address extension mode 00
1095 		 * o Group Addressed data forwarded from a non-mesh sta are
1096 		 *   sent w/ 3-address format and address extension mode 01
1097 		 * o Individually Address data from another sta are sent
1098 		 *   w/ 4-address format and address extension mode 10
1099 		 */
1100 		is4addr = 0;		/* NB: don't use, disable */
1101 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1102 			hdrsize += IEEE80211_ADDR_LEN;	/* unicast are 4-addr */
1103 		meshhdrsize = sizeof(struct ieee80211_meshcntl);
1104 		/* XXX defines for AE modes */
1105 		if (IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1106 			if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1107 				meshae = 0;
1108 			else
1109 				meshae = 4;		/* NB: pseudo */
1110 		} else if (IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1111 			meshae = 1;
1112 			meshhdrsize += 1*IEEE80211_ADDR_LEN;
1113 		} else {
1114 			meshae = 2;
1115 			meshhdrsize += 2*IEEE80211_ADDR_LEN;
1116 		}
1117 	} else {
1118 #endif
1119 		/*
1120 		 * 4-address frames need to be generated for:
1121 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1122 		 * o packets sent through a vap marked for relaying
1123 		 *   (e.g. a station operating with dynamic WDS)
1124 		 */
1125 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1126 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1127 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1128 		if (is4addr)
1129 			hdrsize += IEEE80211_ADDR_LEN;
1130 		meshhdrsize = meshae = 0;
1131 #ifdef IEEE80211_SUPPORT_MESH
1132 	}
1133 #endif
1134 	/*
1135 	 * Honor driver DATAPAD requirement.
1136 	 */
1137 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1138 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1139 	else
1140 		hdrspace = hdrsize;
1141 
1142 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1143 		/*
1144 		 * Normal frame.
1145 		 */
1146 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1147 		if (m == NULL) {
1148 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1149 			goto bad;
1150 		}
1151 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1152 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1153 		llc = mtod(m, struct llc *);
1154 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1155 		llc->llc_control = LLC_UI;
1156 		llc->llc_snap.org_code[0] = 0;
1157 		llc->llc_snap.org_code[1] = 0;
1158 		llc->llc_snap.org_code[2] = 0;
1159 		llc->llc_snap.ether_type = eh.ether_type;
1160 	} else {
1161 #ifdef IEEE80211_SUPPORT_SUPERG
1162 		/*
1163 		 * Aggregated frame.
1164 		 */
1165 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1166 		if (m == NULL)
1167 #endif
1168 			goto bad;
1169 	}
1170 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1171 
1172 	M_PREPEND(m, hdrspace + meshhdrsize, M_DONTWAIT);
1173 	if (m == NULL) {
1174 		vap->iv_stats.is_tx_nobuf++;
1175 		goto bad;
1176 	}
1177 	wh = mtod(m, struct ieee80211_frame *);
1178 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1179 	*(uint16_t *)wh->i_dur = 0;
1180 	qos = NULL;	/* NB: quiet compiler */
1181 	if (is4addr) {
1182 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1183 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1184 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1185 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1186 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1187 	} else switch (vap->iv_opmode) {
1188 	case IEEE80211_M_STA:
1189 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1190 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1191 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1192 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1193 		break;
1194 	case IEEE80211_M_IBSS:
1195 	case IEEE80211_M_AHDEMO:
1196 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1197 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1198 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1199 		/*
1200 		 * NB: always use the bssid from iv_bss as the
1201 		 *     neighbor's may be stale after an ibss merge
1202 		 */
1203 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1204 		break;
1205 	case IEEE80211_M_HOSTAP:
1206 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1207 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1208 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1209 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1210 		break;
1211 #ifdef IEEE80211_SUPPORT_MESH
1212 	case IEEE80211_M_MBSS:
1213 		/* NB: offset by hdrspace to deal with DATAPAD */
1214 		mc = (struct ieee80211_meshcntl_ae10 *)
1215 		     (mtod(m, uint8_t *) + hdrspace);
1216 		switch (meshae) {
1217 		case 0:			/* ucast, no proxy */
1218 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1219 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1220 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1221 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1222 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1223 			mc->mc_flags = 0;
1224 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1225 			break;
1226 		case 4:			/* mcast, no proxy */
1227 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1228 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1229 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1230 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1231 			mc->mc_flags = 0;		/* NB: AE is really 0 */
1232 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1233 			break;
1234 		case 1:			/* mcast, proxy */
1235 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1236 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1237 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1238 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1239 			mc->mc_flags = 1;
1240 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_shost);
1241 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1242 			break;
1243 		case 2:			/* ucast, proxy */
1244 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1245 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1246 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1247 			/* XXX not right, need MeshDA */
1248 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1249 			/* XXX assume are MeshSA */
1250 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1251 			mc->mc_flags = 2;
1252 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_dhost);
1253 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_shost);
1254 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1255 			break;
1256 		default:
1257 			KASSERT(0, ("meshae %d", meshae));
1258 			break;
1259 		}
1260 		mc->mc_ttl = ms->ms_ttl;
1261 		ms->ms_seq++;
1262 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1263 		break;
1264 #endif
1265 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1266 	default:
1267 		goto bad;
1268 	}
1269 	if (m->m_flags & M_MORE_DATA)
1270 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1271 	if (addqos) {
1272 		int ac, tid;
1273 
1274 		if (is4addr) {
1275 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1276 		/* NB: mesh case handled earlier */
1277 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1278 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1279 		ac = M_WME_GETAC(m);
1280 		/* map from access class/queue to 11e header priorty value */
1281 		tid = WME_AC_TO_TID(ac);
1282 		qos[0] = tid & IEEE80211_QOS_TID;
1283 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1284 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1285 		qos[1] = 0;
1286 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1287 
1288 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1289 			/*
1290 			 * NB: don't assign a sequence # to potential
1291 			 * aggregates; we expect this happens at the
1292 			 * point the frame comes off any aggregation q
1293 			 * as otherwise we may introduce holes in the
1294 			 * BA sequence space and/or make window accouting
1295 			 * more difficult.
1296 			 *
1297 			 * XXX may want to control this with a driver
1298 			 * capability; this may also change when we pull
1299 			 * aggregation up into net80211
1300 			 */
1301 			seqno = ni->ni_txseqs[tid]++;
1302 			*(uint16_t *)wh->i_seq =
1303 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1304 			M_SEQNO_SET(m, seqno);
1305 		}
1306 	} else {
1307 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1308 		*(uint16_t *)wh->i_seq =
1309 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1310 		M_SEQNO_SET(m, seqno);
1311 	}
1312 
1313 
1314 	/* check if xmit fragmentation is required */
1315 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1316 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1317 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1318 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1319 	if (key != NULL) {
1320 		/*
1321 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1322 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1323 		 */
1324 		if ((m->m_flags & M_EAPOL) == 0 ||
1325 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1326 		     (vap->iv_opmode == IEEE80211_M_STA ?
1327 		      !IEEE80211_KEY_UNDEFINED(key) :
1328 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1329 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1330 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1331 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1332 				    eh.ether_dhost,
1333 				    "%s", "enmic failed, discard frame");
1334 				vap->iv_stats.is_crypto_enmicfail++;
1335 				goto bad;
1336 			}
1337 		}
1338 	}
1339 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1340 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1341 		goto bad;
1342 
1343 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1344 
1345 	IEEE80211_NODE_STAT(ni, tx_data);
1346 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1347 		IEEE80211_NODE_STAT(ni, tx_mcast);
1348 		m->m_flags |= M_MCAST;
1349 	} else
1350 		IEEE80211_NODE_STAT(ni, tx_ucast);
1351 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1352 
1353 	return m;
1354 bad:
1355 	if (m != NULL)
1356 		m_freem(m);
1357 	return NULL;
1358 #undef WH4
1359 }
1360 
1361 /*
1362  * Fragment the frame according to the specified mtu.
1363  * The size of the 802.11 header (w/o padding) is provided
1364  * so we don't need to recalculate it.  We create a new
1365  * mbuf for each fragment and chain it through m_nextpkt;
1366  * we might be able to optimize this by reusing the original
1367  * packet's mbufs but that is significantly more complicated.
1368  */
1369 static int
1370 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1371 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1372 {
1373 	struct ieee80211_frame *wh, *whf;
1374 	struct mbuf *m, *prev, *next;
1375 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1376 
1377 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1378 	KASSERT(m0->m_pkthdr.len > mtu,
1379 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1380 
1381 	wh = mtod(m0, struct ieee80211_frame *);
1382 	/* NB: mark the first frag; it will be propagated below */
1383 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1384 	totalhdrsize = hdrsize + ciphdrsize;
1385 	fragno = 1;
1386 	off = mtu - ciphdrsize;
1387 	remainder = m0->m_pkthdr.len - off;
1388 	prev = m0;
1389 	do {
1390 		fragsize = totalhdrsize + remainder;
1391 		if (fragsize > mtu)
1392 			fragsize = mtu;
1393 		/* XXX fragsize can be >2048! */
1394 		KASSERT(fragsize < MCLBYTES,
1395 			("fragment size %u too big!", fragsize));
1396 		if (fragsize > MHLEN)
1397 			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1398 		else
1399 			m = m_gethdr(M_DONTWAIT, MT_DATA);
1400 		if (m == NULL)
1401 			goto bad;
1402 		/* leave room to prepend any cipher header */
1403 		m_align(m, fragsize - ciphdrsize);
1404 
1405 		/*
1406 		 * Form the header in the fragment.  Note that since
1407 		 * we mark the first fragment with the MORE_FRAG bit
1408 		 * it automatically is propagated to each fragment; we
1409 		 * need only clear it on the last fragment (done below).
1410 		 */
1411 		whf = mtod(m, struct ieee80211_frame *);
1412 		memcpy(whf, wh, hdrsize);
1413 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1414 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1415 				IEEE80211_SEQ_FRAG_SHIFT);
1416 		fragno++;
1417 
1418 		payload = fragsize - totalhdrsize;
1419 		/* NB: destination is known to be contiguous */
1420 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1421 		m->m_len = hdrsize + payload;
1422 		m->m_pkthdr.len = hdrsize + payload;
1423 		m->m_flags |= M_FRAG;
1424 
1425 		/* chain up the fragment */
1426 		prev->m_nextpkt = m;
1427 		prev = m;
1428 
1429 		/* deduct fragment just formed */
1430 		remainder -= payload;
1431 		off += payload;
1432 	} while (remainder != 0);
1433 
1434 	/* set the last fragment */
1435 	m->m_flags |= M_LASTFRAG;
1436 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1437 
1438 	/* strip first mbuf now that everything has been copied */
1439 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1440 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1441 
1442 	vap->iv_stats.is_tx_fragframes++;
1443 	vap->iv_stats.is_tx_frags += fragno-1;
1444 
1445 	return 1;
1446 bad:
1447 	/* reclaim fragments but leave original frame for caller to free */
1448 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1449 		next = m->m_nextpkt;
1450 		m->m_nextpkt = NULL;		/* XXX paranoid */
1451 		m_freem(m);
1452 	}
1453 	m0->m_nextpkt = NULL;
1454 	return 0;
1455 }
1456 
1457 /*
1458  * Add a supported rates element id to a frame.
1459  */
1460 uint8_t *
1461 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1462 {
1463 	int nrates;
1464 
1465 	*frm++ = IEEE80211_ELEMID_RATES;
1466 	nrates = rs->rs_nrates;
1467 	if (nrates > IEEE80211_RATE_SIZE)
1468 		nrates = IEEE80211_RATE_SIZE;
1469 	*frm++ = nrates;
1470 	memcpy(frm, rs->rs_rates, nrates);
1471 	return frm + nrates;
1472 }
1473 
1474 /*
1475  * Add an extended supported rates element id to a frame.
1476  */
1477 uint8_t *
1478 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1479 {
1480 	/*
1481 	 * Add an extended supported rates element if operating in 11g mode.
1482 	 */
1483 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1484 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1485 		*frm++ = IEEE80211_ELEMID_XRATES;
1486 		*frm++ = nrates;
1487 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1488 		frm += nrates;
1489 	}
1490 	return frm;
1491 }
1492 
1493 /*
1494  * Add an ssid element to a frame.
1495  */
1496 static uint8_t *
1497 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1498 {
1499 	*frm++ = IEEE80211_ELEMID_SSID;
1500 	*frm++ = len;
1501 	memcpy(frm, ssid, len);
1502 	return frm + len;
1503 }
1504 
1505 /*
1506  * Add an erp element to a frame.
1507  */
1508 static uint8_t *
1509 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1510 {
1511 	uint8_t erp;
1512 
1513 	*frm++ = IEEE80211_ELEMID_ERP;
1514 	*frm++ = 1;
1515 	erp = 0;
1516 	if (ic->ic_nonerpsta != 0)
1517 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1518 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1519 		erp |= IEEE80211_ERP_USE_PROTECTION;
1520 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1521 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1522 	*frm++ = erp;
1523 	return frm;
1524 }
1525 
1526 /*
1527  * Add a CFParams element to a frame.
1528  */
1529 static uint8_t *
1530 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1531 {
1532 #define	ADDSHORT(frm, v) do {	\
1533 	LE_WRITE_2(frm, v);	\
1534 	frm += 2;		\
1535 } while (0)
1536 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1537 	*frm++ = 6;
1538 	*frm++ = 0;		/* CFP count */
1539 	*frm++ = 2;		/* CFP period */
1540 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1541 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1542 	return frm;
1543 #undef ADDSHORT
1544 }
1545 
1546 static __inline uint8_t *
1547 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1548 {
1549 	memcpy(frm, ie->ie_data, ie->ie_len);
1550 	return frm + ie->ie_len;
1551 }
1552 
1553 static __inline uint8_t *
1554 add_ie(uint8_t *frm, const uint8_t *ie)
1555 {
1556 	memcpy(frm, ie, 2 + ie[1]);
1557 	return frm + 2 + ie[1];
1558 }
1559 
1560 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1561 /*
1562  * Add a WME information element to a frame.
1563  */
1564 static uint8_t *
1565 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1566 {
1567 	static const struct ieee80211_wme_info info = {
1568 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1569 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1570 		.wme_oui	= { WME_OUI_BYTES },
1571 		.wme_type	= WME_OUI_TYPE,
1572 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1573 		.wme_version	= WME_VERSION,
1574 		.wme_info	= 0,
1575 	};
1576 	memcpy(frm, &info, sizeof(info));
1577 	return frm + sizeof(info);
1578 }
1579 
1580 /*
1581  * Add a WME parameters element to a frame.
1582  */
1583 static uint8_t *
1584 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1585 {
1586 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1587 #define	ADDSHORT(frm, v) do {	\
1588 	LE_WRITE_2(frm, v);	\
1589 	frm += 2;		\
1590 } while (0)
1591 	/* NB: this works 'cuz a param has an info at the front */
1592 	static const struct ieee80211_wme_info param = {
1593 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1594 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1595 		.wme_oui	= { WME_OUI_BYTES },
1596 		.wme_type	= WME_OUI_TYPE,
1597 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1598 		.wme_version	= WME_VERSION,
1599 	};
1600 	int i;
1601 
1602 	memcpy(frm, &param, sizeof(param));
1603 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1604 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1605 	*frm++ = 0;					/* reserved field */
1606 	for (i = 0; i < WME_NUM_AC; i++) {
1607 		const struct wmeParams *ac =
1608 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1609 		*frm++ = SM(i, WME_PARAM_ACI)
1610 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1611 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1612 		       ;
1613 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1614 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1615 		       ;
1616 		ADDSHORT(frm, ac->wmep_txopLimit);
1617 	}
1618 	return frm;
1619 #undef SM
1620 #undef ADDSHORT
1621 }
1622 #undef WME_OUI_BYTES
1623 
1624 /*
1625  * Add an 11h Power Constraint element to a frame.
1626  */
1627 static uint8_t *
1628 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1629 {
1630 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1631 	/* XXX per-vap tx power limit? */
1632 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1633 
1634 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1635 	frm[1] = 1;
1636 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1637 	return frm + 3;
1638 }
1639 
1640 /*
1641  * Add an 11h Power Capability element to a frame.
1642  */
1643 static uint8_t *
1644 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1645 {
1646 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1647 	frm[1] = 2;
1648 	frm[2] = c->ic_minpower;
1649 	frm[3] = c->ic_maxpower;
1650 	return frm + 4;
1651 }
1652 
1653 /*
1654  * Add an 11h Supported Channels element to a frame.
1655  */
1656 static uint8_t *
1657 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1658 {
1659 	static const int ielen = 26;
1660 
1661 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1662 	frm[1] = ielen;
1663 	/* XXX not correct */
1664 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1665 	return frm + 2 + ielen;
1666 }
1667 
1668 /*
1669  * Add an 11h Channel Switch Announcement element to a frame.
1670  * Note that we use the per-vap CSA count to adjust the global
1671  * counter so we can use this routine to form probe response
1672  * frames and get the current count.
1673  */
1674 static uint8_t *
1675 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1676 {
1677 	struct ieee80211com *ic = vap->iv_ic;
1678 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1679 
1680 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1681 	csa->csa_len = 3;
1682 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1683 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1684 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1685 	return frm + sizeof(*csa);
1686 }
1687 
1688 /*
1689  * Add an 11h country information element to a frame.
1690  */
1691 static uint8_t *
1692 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1693 {
1694 
1695 	if (ic->ic_countryie == NULL ||
1696 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1697 		/*
1698 		 * Handle lazy construction of ie.  This is done on
1699 		 * first use and after a channel change that requires
1700 		 * re-calculation.
1701 		 */
1702 		if (ic->ic_countryie != NULL)
1703 			free(ic->ic_countryie, M_80211_NODE_IE);
1704 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1705 		if (ic->ic_countryie == NULL)
1706 			return frm;
1707 		ic->ic_countryie_chan = ic->ic_bsschan;
1708 	}
1709 	return add_appie(frm, ic->ic_countryie);
1710 }
1711 
1712 /*
1713  * Send a probe request frame with the specified ssid
1714  * and any optional information element data.
1715  */
1716 int
1717 ieee80211_send_probereq(struct ieee80211_node *ni,
1718 	const uint8_t sa[IEEE80211_ADDR_LEN],
1719 	const uint8_t da[IEEE80211_ADDR_LEN],
1720 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1721 	const uint8_t *ssid, size_t ssidlen)
1722 {
1723 	struct ieee80211vap *vap = ni->ni_vap;
1724 	struct ieee80211com *ic = ni->ni_ic;
1725 	const struct ieee80211_txparam *tp;
1726 	struct ieee80211_bpf_params params;
1727 	struct ieee80211_frame *wh;
1728 	const struct ieee80211_rateset *rs;
1729 	struct mbuf *m;
1730 	uint8_t *frm;
1731 
1732 	if (vap->iv_state == IEEE80211_S_CAC) {
1733 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1734 		    "block %s frame in CAC state", "probe request");
1735 		vap->iv_stats.is_tx_badstate++;
1736 		return EIO;		/* XXX */
1737 	}
1738 
1739 	/*
1740 	 * Hold a reference on the node so it doesn't go away until after
1741 	 * the xmit is complete all the way in the driver.  On error we
1742 	 * will remove our reference.
1743 	 */
1744 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1745 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1746 		__func__, __LINE__,
1747 		ni, ether_sprintf(ni->ni_macaddr),
1748 		ieee80211_node_refcnt(ni)+1);
1749 	ieee80211_ref_node(ni);
1750 
1751 	/*
1752 	 * prreq frame format
1753 	 *	[tlv] ssid
1754 	 *	[tlv] supported rates
1755 	 *	[tlv] RSN (optional)
1756 	 *	[tlv] extended supported rates
1757 	 *	[tlv] WPA (optional)
1758 	 *	[tlv] user-specified ie's
1759 	 */
1760 	m = ieee80211_getmgtframe(&frm,
1761 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1762 	       	 2 + IEEE80211_NWID_LEN
1763 	       + 2 + IEEE80211_RATE_SIZE
1764 	       + sizeof(struct ieee80211_ie_wpa)
1765 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1766 	       + sizeof(struct ieee80211_ie_wpa)
1767 	       + (vap->iv_appie_probereq != NULL ?
1768 		   vap->iv_appie_probereq->ie_len : 0)
1769 	);
1770 	if (m == NULL) {
1771 		vap->iv_stats.is_tx_nobuf++;
1772 		ieee80211_free_node(ni);
1773 		return ENOMEM;
1774 	}
1775 
1776 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1777 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1778 	frm = ieee80211_add_rates(frm, rs);
1779 	if (vap->iv_flags & IEEE80211_F_WPA2) {
1780 		if (vap->iv_rsn_ie != NULL)
1781 			frm = add_ie(frm, vap->iv_rsn_ie);
1782 		/* XXX else complain? */
1783 	}
1784 	frm = ieee80211_add_xrates(frm, rs);
1785 	if (vap->iv_flags & IEEE80211_F_WPA1) {
1786 		if (vap->iv_wpa_ie != NULL)
1787 			frm = add_ie(frm, vap->iv_wpa_ie);
1788 		/* XXX else complain? */
1789 	}
1790 	if (vap->iv_appie_probereq != NULL)
1791 		frm = add_appie(frm, vap->iv_appie_probereq);
1792 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1793 
1794 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1795 	    ("leading space %zd", M_LEADINGSPACE(m)));
1796 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1797 	if (m == NULL) {
1798 		/* NB: cannot happen */
1799 		ieee80211_free_node(ni);
1800 		return ENOMEM;
1801 	}
1802 
1803 	wh = mtod(m, struct ieee80211_frame *);
1804 	ieee80211_send_setup(ni, m,
1805 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1806 	     IEEE80211_NONQOS_TID, sa, da, bssid);
1807 	/* XXX power management? */
1808 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1809 
1810 	M_WME_SETAC(m, WME_AC_BE);
1811 
1812 	IEEE80211_NODE_STAT(ni, tx_probereq);
1813 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1814 
1815 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1816 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1817 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1818 	    ssidlen, ssid);
1819 
1820 	memset(&params, 0, sizeof(params));
1821 	params.ibp_pri = M_WME_GETAC(m);
1822 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1823 	params.ibp_rate0 = tp->mgmtrate;
1824 	if (IEEE80211_IS_MULTICAST(da)) {
1825 		params.ibp_flags |= IEEE80211_BPF_NOACK;
1826 		params.ibp_try0 = 1;
1827 	} else
1828 		params.ibp_try0 = tp->maxretry;
1829 	params.ibp_power = ni->ni_txpower;
1830 	return ic->ic_raw_xmit(ni, m, &params);
1831 }
1832 
1833 /*
1834  * Calculate capability information for mgt frames.
1835  */
1836 uint16_t
1837 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1838 {
1839 	struct ieee80211com *ic = vap->iv_ic;
1840 	uint16_t capinfo;
1841 
1842 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1843 
1844 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1845 		capinfo = IEEE80211_CAPINFO_ESS;
1846 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1847 		capinfo = IEEE80211_CAPINFO_IBSS;
1848 	else
1849 		capinfo = 0;
1850 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1851 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1852 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1853 	    IEEE80211_IS_CHAN_2GHZ(chan))
1854 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1855 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1856 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1857 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1858 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1859 	return capinfo;
1860 }
1861 
1862 /*
1863  * Send a management frame.  The node is for the destination (or ic_bss
1864  * when in station mode).  Nodes other than ic_bss have their reference
1865  * count bumped to reflect our use for an indeterminant time.
1866  */
1867 int
1868 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1869 {
1870 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1871 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1872 	struct ieee80211vap *vap = ni->ni_vap;
1873 	struct ieee80211com *ic = ni->ni_ic;
1874 	struct ieee80211_node *bss = vap->iv_bss;
1875 	struct ieee80211_bpf_params params;
1876 	struct mbuf *m;
1877 	uint8_t *frm;
1878 	uint16_t capinfo;
1879 	int has_challenge, is_shared_key, ret, status;
1880 
1881 	KASSERT(ni != NULL, ("null node"));
1882 
1883 	/*
1884 	 * Hold a reference on the node so it doesn't go away until after
1885 	 * the xmit is complete all the way in the driver.  On error we
1886 	 * will remove our reference.
1887 	 */
1888 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1889 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1890 		__func__, __LINE__,
1891 		ni, ether_sprintf(ni->ni_macaddr),
1892 		ieee80211_node_refcnt(ni)+1);
1893 	ieee80211_ref_node(ni);
1894 
1895 	memset(&params, 0, sizeof(params));
1896 	switch (type) {
1897 
1898 	case IEEE80211_FC0_SUBTYPE_AUTH:
1899 		status = arg >> 16;
1900 		arg &= 0xffff;
1901 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1902 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1903 		    ni->ni_challenge != NULL);
1904 
1905 		/*
1906 		 * Deduce whether we're doing open authentication or
1907 		 * shared key authentication.  We do the latter if
1908 		 * we're in the middle of a shared key authentication
1909 		 * handshake or if we're initiating an authentication
1910 		 * request and configured to use shared key.
1911 		 */
1912 		is_shared_key = has_challenge ||
1913 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1914 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1915 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1916 
1917 		m = ieee80211_getmgtframe(&frm,
1918 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1919 			  3 * sizeof(uint16_t)
1920 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1921 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1922 		);
1923 		if (m == NULL)
1924 			senderr(ENOMEM, is_tx_nobuf);
1925 
1926 		((uint16_t *)frm)[0] =
1927 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1928 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1929 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1930 		((uint16_t *)frm)[2] = htole16(status);/* status */
1931 
1932 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1933 			((uint16_t *)frm)[3] =
1934 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1935 			    IEEE80211_ELEMID_CHALLENGE);
1936 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1937 			    IEEE80211_CHALLENGE_LEN);
1938 			m->m_pkthdr.len = m->m_len =
1939 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1940 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1941 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1942 				    "request encrypt frame (%s)", __func__);
1943 				/* mark frame for encryption */
1944 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1945 			}
1946 		} else
1947 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1948 
1949 		/* XXX not right for shared key */
1950 		if (status == IEEE80211_STATUS_SUCCESS)
1951 			IEEE80211_NODE_STAT(ni, tx_auth);
1952 		else
1953 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1954 
1955 		if (vap->iv_opmode == IEEE80211_M_STA)
1956 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1957 				(void *) vap->iv_state);
1958 		break;
1959 
1960 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1961 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1962 		    "send station deauthenticate (reason %d)", arg);
1963 		m = ieee80211_getmgtframe(&frm,
1964 			ic->ic_headroom + sizeof(struct ieee80211_frame),
1965 			sizeof(uint16_t));
1966 		if (m == NULL)
1967 			senderr(ENOMEM, is_tx_nobuf);
1968 		*(uint16_t *)frm = htole16(arg);	/* reason */
1969 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1970 
1971 		IEEE80211_NODE_STAT(ni, tx_deauth);
1972 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1973 
1974 		ieee80211_node_unauthorize(ni);		/* port closed */
1975 		break;
1976 
1977 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1978 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1979 		/*
1980 		 * asreq frame format
1981 		 *	[2] capability information
1982 		 *	[2] listen interval
1983 		 *	[6*] current AP address (reassoc only)
1984 		 *	[tlv] ssid
1985 		 *	[tlv] supported rates
1986 		 *	[tlv] extended supported rates
1987 		 *	[4] power capability (optional)
1988 		 *	[28] supported channels (optional)
1989 		 *	[tlv] HT capabilities
1990 		 *	[tlv] WME (optional)
1991 		 *	[tlv] Vendor OUI HT capabilities (optional)
1992 		 *	[tlv] Atheros capabilities (if negotiated)
1993 		 *	[tlv] AppIE's (optional)
1994 		 */
1995 		m = ieee80211_getmgtframe(&frm,
1996 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1997 			 sizeof(uint16_t)
1998 		       + sizeof(uint16_t)
1999 		       + IEEE80211_ADDR_LEN
2000 		       + 2 + IEEE80211_NWID_LEN
2001 		       + 2 + IEEE80211_RATE_SIZE
2002 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2003 		       + 4
2004 		       + 2 + 26
2005 		       + sizeof(struct ieee80211_wme_info)
2006 		       + sizeof(struct ieee80211_ie_htcap)
2007 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2008 #ifdef IEEE80211_SUPPORT_SUPERG
2009 		       + sizeof(struct ieee80211_ath_ie)
2010 #endif
2011 		       + (vap->iv_appie_wpa != NULL ?
2012 				vap->iv_appie_wpa->ie_len : 0)
2013 		       + (vap->iv_appie_assocreq != NULL ?
2014 				vap->iv_appie_assocreq->ie_len : 0)
2015 		);
2016 		if (m == NULL)
2017 			senderr(ENOMEM, is_tx_nobuf);
2018 
2019 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2020 		    ("wrong mode %u", vap->iv_opmode));
2021 		capinfo = IEEE80211_CAPINFO_ESS;
2022 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2023 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2024 		/*
2025 		 * NB: Some 11a AP's reject the request when
2026 		 *     short premable is set.
2027 		 */
2028 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2029 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2030 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2031 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2032 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2033 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2034 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2035 		    (vap->iv_flags & IEEE80211_F_DOTH))
2036 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2037 		*(uint16_t *)frm = htole16(capinfo);
2038 		frm += 2;
2039 
2040 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2041 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2042 						    bss->ni_intval));
2043 		frm += 2;
2044 
2045 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2046 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2047 			frm += IEEE80211_ADDR_LEN;
2048 		}
2049 
2050 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2051 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2052 		if (vap->iv_flags & IEEE80211_F_WPA2) {
2053 			if (vap->iv_rsn_ie != NULL)
2054 				frm = add_ie(frm, vap->iv_rsn_ie);
2055 			/* XXX else complain? */
2056 		}
2057 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2058 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2059 			frm = ieee80211_add_powercapability(frm,
2060 			    ic->ic_curchan);
2061 			frm = ieee80211_add_supportedchannels(frm, ic);
2062 		}
2063 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2064 		    ni->ni_ies.htcap_ie != NULL &&
2065 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2066 			frm = ieee80211_add_htcap(frm, ni);
2067 		if (vap->iv_flags & IEEE80211_F_WPA1) {
2068 			if (vap->iv_wpa_ie != NULL)
2069 				frm = add_ie(frm, vap->iv_wpa_ie);
2070 			/* XXX else complain */
2071 		}
2072 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2073 		    ni->ni_ies.wme_ie != NULL)
2074 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2075 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2076 		    ni->ni_ies.htcap_ie != NULL &&
2077 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2078 			frm = ieee80211_add_htcap_vendor(frm, ni);
2079 #ifdef IEEE80211_SUPPORT_SUPERG
2080 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2081 			frm = ieee80211_add_ath(frm,
2082 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2083 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2084 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2085 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2086 		}
2087 #endif /* IEEE80211_SUPPORT_SUPERG */
2088 		if (vap->iv_appie_assocreq != NULL)
2089 			frm = add_appie(frm, vap->iv_appie_assocreq);
2090 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2091 
2092 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2093 			(void *) vap->iv_state);
2094 		break;
2095 
2096 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2097 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2098 		/*
2099 		 * asresp frame format
2100 		 *	[2] capability information
2101 		 *	[2] status
2102 		 *	[2] association ID
2103 		 *	[tlv] supported rates
2104 		 *	[tlv] extended supported rates
2105 		 *	[tlv] HT capabilities (standard, if STA enabled)
2106 		 *	[tlv] HT information (standard, if STA enabled)
2107 		 *	[tlv] WME (if configured and STA enabled)
2108 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2109 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2110 		 *	[tlv] Atheros capabilities (if STA enabled)
2111 		 *	[tlv] AppIE's (optional)
2112 		 */
2113 		m = ieee80211_getmgtframe(&frm,
2114 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2115 			 sizeof(uint16_t)
2116 		       + sizeof(uint16_t)
2117 		       + sizeof(uint16_t)
2118 		       + 2 + IEEE80211_RATE_SIZE
2119 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2120 		       + sizeof(struct ieee80211_ie_htcap) + 4
2121 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2122 		       + sizeof(struct ieee80211_wme_param)
2123 #ifdef IEEE80211_SUPPORT_SUPERG
2124 		       + sizeof(struct ieee80211_ath_ie)
2125 #endif
2126 		       + (vap->iv_appie_assocresp != NULL ?
2127 				vap->iv_appie_assocresp->ie_len : 0)
2128 		);
2129 		if (m == NULL)
2130 			senderr(ENOMEM, is_tx_nobuf);
2131 
2132 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2133 		*(uint16_t *)frm = htole16(capinfo);
2134 		frm += 2;
2135 
2136 		*(uint16_t *)frm = htole16(arg);	/* status */
2137 		frm += 2;
2138 
2139 		if (arg == IEEE80211_STATUS_SUCCESS) {
2140 			*(uint16_t *)frm = htole16(ni->ni_associd);
2141 			IEEE80211_NODE_STAT(ni, tx_assoc);
2142 		} else
2143 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2144 		frm += 2;
2145 
2146 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2147 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2148 		/* NB: respond according to what we received */
2149 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2150 			frm = ieee80211_add_htcap(frm, ni);
2151 			frm = ieee80211_add_htinfo(frm, ni);
2152 		}
2153 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2154 		    ni->ni_ies.wme_ie != NULL)
2155 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2156 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2157 			frm = ieee80211_add_htcap_vendor(frm, ni);
2158 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2159 		}
2160 #ifdef IEEE80211_SUPPORT_SUPERG
2161 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2162 			frm = ieee80211_add_ath(frm,
2163 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2164 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2165 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2166 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2167 #endif /* IEEE80211_SUPPORT_SUPERG */
2168 		if (vap->iv_appie_assocresp != NULL)
2169 			frm = add_appie(frm, vap->iv_appie_assocresp);
2170 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2171 		break;
2172 
2173 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2174 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2175 		    "send station disassociate (reason %d)", arg);
2176 		m = ieee80211_getmgtframe(&frm,
2177 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2178 			sizeof(uint16_t));
2179 		if (m == NULL)
2180 			senderr(ENOMEM, is_tx_nobuf);
2181 		*(uint16_t *)frm = htole16(arg);	/* reason */
2182 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2183 
2184 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2185 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2186 		break;
2187 
2188 	default:
2189 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2190 		    "invalid mgmt frame type %u", type);
2191 		senderr(EINVAL, is_tx_unknownmgt);
2192 		/* NOTREACHED */
2193 	}
2194 
2195 	/* NB: force non-ProbeResp frames to the highest queue */
2196 	params.ibp_pri = WME_AC_VO;
2197 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2198 	/* NB: we know all frames are unicast */
2199 	params.ibp_try0 = bss->ni_txparms->maxretry;
2200 	params.ibp_power = bss->ni_txpower;
2201 	return ieee80211_mgmt_output(ni, m, type, &params);
2202 bad:
2203 	ieee80211_free_node(ni);
2204 	return ret;
2205 #undef senderr
2206 #undef HTFLAGS
2207 }
2208 
2209 /*
2210  * Return an mbuf with a probe response frame in it.
2211  * Space is left to prepend and 802.11 header at the
2212  * front but it's left to the caller to fill in.
2213  */
2214 struct mbuf *
2215 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2216 {
2217 	struct ieee80211vap *vap = bss->ni_vap;
2218 	struct ieee80211com *ic = bss->ni_ic;
2219 	const struct ieee80211_rateset *rs;
2220 	struct mbuf *m;
2221 	uint16_t capinfo;
2222 	uint8_t *frm;
2223 
2224 	/*
2225 	 * probe response frame format
2226 	 *	[8] time stamp
2227 	 *	[2] beacon interval
2228 	 *	[2] cabability information
2229 	 *	[tlv] ssid
2230 	 *	[tlv] supported rates
2231 	 *	[tlv] parameter set (FH/DS)
2232 	 *	[tlv] parameter set (IBSS)
2233 	 *	[tlv] country (optional)
2234 	 *	[3] power control (optional)
2235 	 *	[5] channel switch announcement (CSA) (optional)
2236 	 *	[tlv] extended rate phy (ERP)
2237 	 *	[tlv] extended supported rates
2238 	 *	[tlv] RSN (optional)
2239 	 *	[tlv] HT capabilities
2240 	 *	[tlv] HT information
2241 	 *	[tlv] WPA (optional)
2242 	 *	[tlv] WME (optional)
2243 	 *	[tlv] Vendor OUI HT capabilities (optional)
2244 	 *	[tlv] Vendor OUI HT information (optional)
2245 	 *	[tlv] Atheros capabilities
2246 	 *	[tlv] AppIE's (optional)
2247 	 *	[tlv] Mesh ID (MBSS)
2248 	 *	[tlv] Mesh Conf (MBSS)
2249 	 */
2250 	m = ieee80211_getmgtframe(&frm,
2251 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2252 		 8
2253 	       + sizeof(uint16_t)
2254 	       + sizeof(uint16_t)
2255 	       + 2 + IEEE80211_NWID_LEN
2256 	       + 2 + IEEE80211_RATE_SIZE
2257 	       + 7	/* max(7,3) */
2258 	       + IEEE80211_COUNTRY_MAX_SIZE
2259 	       + 3
2260 	       + sizeof(struct ieee80211_csa_ie)
2261 	       + 3
2262 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2263 	       + sizeof(struct ieee80211_ie_wpa)
2264 	       + sizeof(struct ieee80211_ie_htcap)
2265 	       + sizeof(struct ieee80211_ie_htinfo)
2266 	       + sizeof(struct ieee80211_ie_wpa)
2267 	       + sizeof(struct ieee80211_wme_param)
2268 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2269 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2270 #ifdef IEEE80211_SUPPORT_SUPERG
2271 	       + sizeof(struct ieee80211_ath_ie)
2272 #endif
2273 #ifdef IEEE80211_SUPPORT_MESH
2274 	       + 2 + IEEE80211_MESHID_LEN
2275 	       + sizeof(struct ieee80211_meshconf_ie)
2276 #endif
2277 	       + (vap->iv_appie_proberesp != NULL ?
2278 			vap->iv_appie_proberesp->ie_len : 0)
2279 	);
2280 	if (m == NULL) {
2281 		vap->iv_stats.is_tx_nobuf++;
2282 		return NULL;
2283 	}
2284 
2285 	memset(frm, 0, 8);	/* timestamp should be filled later */
2286 	frm += 8;
2287 	*(uint16_t *)frm = htole16(bss->ni_intval);
2288 	frm += 2;
2289 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2290 	*(uint16_t *)frm = htole16(capinfo);
2291 	frm += 2;
2292 
2293 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2294 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2295 	frm = ieee80211_add_rates(frm, rs);
2296 
2297 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2298 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2299 		*frm++ = 5;
2300 		*frm++ = bss->ni_fhdwell & 0x00ff;
2301 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2302 		*frm++ = IEEE80211_FH_CHANSET(
2303 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2304 		*frm++ = IEEE80211_FH_CHANPAT(
2305 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2306 		*frm++ = bss->ni_fhindex;
2307 	} else {
2308 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2309 		*frm++ = 1;
2310 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2311 	}
2312 
2313 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2314 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2315 		*frm++ = 2;
2316 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2317 	}
2318 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2319 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2320 		frm = ieee80211_add_countryie(frm, ic);
2321 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2322 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2323 			frm = ieee80211_add_powerconstraint(frm, vap);
2324 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2325 			frm = ieee80211_add_csa(frm, vap);
2326 	}
2327 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2328 		frm = ieee80211_add_erp(frm, ic);
2329 	frm = ieee80211_add_xrates(frm, rs);
2330 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2331 		if (vap->iv_rsn_ie != NULL)
2332 			frm = add_ie(frm, vap->iv_rsn_ie);
2333 		/* XXX else complain? */
2334 	}
2335 	/*
2336 	 * NB: legacy 11b clients do not get certain ie's.
2337 	 *     The caller identifies such clients by passing
2338 	 *     a token in legacy to us.  Could expand this to be
2339 	 *     any legacy client for stuff like HT ie's.
2340 	 */
2341 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2342 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2343 		frm = ieee80211_add_htcap(frm, bss);
2344 		frm = ieee80211_add_htinfo(frm, bss);
2345 	}
2346 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2347 		if (vap->iv_wpa_ie != NULL)
2348 			frm = add_ie(frm, vap->iv_wpa_ie);
2349 		/* XXX else complain? */
2350 	}
2351 	if (vap->iv_flags & IEEE80211_F_WME)
2352 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2353 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2354 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2355 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2356 		frm = ieee80211_add_htcap_vendor(frm, bss);
2357 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2358 	}
2359 #ifdef IEEE80211_SUPPORT_SUPERG
2360 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2361 	    legacy != IEEE80211_SEND_LEGACY_11B)
2362 		frm = ieee80211_add_athcaps(frm, bss);
2363 #endif
2364 	if (vap->iv_appie_proberesp != NULL)
2365 		frm = add_appie(frm, vap->iv_appie_proberesp);
2366 #ifdef IEEE80211_SUPPORT_MESH
2367 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2368 		frm = ieee80211_add_meshid(frm, vap);
2369 		frm = ieee80211_add_meshconf(frm, vap);
2370 	}
2371 #endif
2372 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2373 
2374 	return m;
2375 }
2376 
2377 /*
2378  * Send a probe response frame to the specified mac address.
2379  * This does not go through the normal mgt frame api so we
2380  * can specify the destination address and re-use the bss node
2381  * for the sta reference.
2382  */
2383 int
2384 ieee80211_send_proberesp(struct ieee80211vap *vap,
2385 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2386 {
2387 	struct ieee80211_node *bss = vap->iv_bss;
2388 	struct ieee80211com *ic = vap->iv_ic;
2389 	struct ieee80211_frame *wh;
2390 	struct mbuf *m;
2391 
2392 	if (vap->iv_state == IEEE80211_S_CAC) {
2393 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2394 		    "block %s frame in CAC state", "probe response");
2395 		vap->iv_stats.is_tx_badstate++;
2396 		return EIO;		/* XXX */
2397 	}
2398 
2399 	/*
2400 	 * Hold a reference on the node so it doesn't go away until after
2401 	 * the xmit is complete all the way in the driver.  On error we
2402 	 * will remove our reference.
2403 	 */
2404 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2405 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2406 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2407 	    ieee80211_node_refcnt(bss)+1);
2408 	ieee80211_ref_node(bss);
2409 
2410 	m = ieee80211_alloc_proberesp(bss, legacy);
2411 	if (m == NULL) {
2412 		ieee80211_free_node(bss);
2413 		return ENOMEM;
2414 	}
2415 
2416 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2417 	KASSERT(m != NULL, ("no room for header"));
2418 
2419 	wh = mtod(m, struct ieee80211_frame *);
2420 	ieee80211_send_setup(bss, m,
2421 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2422 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2423 	/* XXX power management? */
2424 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2425 
2426 	M_WME_SETAC(m, WME_AC_BE);
2427 
2428 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2429 	    "send probe resp on channel %u to %s%s\n",
2430 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2431 	    legacy ? " <legacy>" : "");
2432 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2433 
2434 	return ic->ic_raw_xmit(bss, m, NULL);
2435 }
2436 
2437 /*
2438  * Allocate and build a RTS (Request To Send) control frame.
2439  */
2440 struct mbuf *
2441 ieee80211_alloc_rts(struct ieee80211com *ic,
2442 	const uint8_t ra[IEEE80211_ADDR_LEN],
2443 	const uint8_t ta[IEEE80211_ADDR_LEN],
2444 	uint16_t dur)
2445 {
2446 	struct ieee80211_frame_rts *rts;
2447 	struct mbuf *m;
2448 
2449 	/* XXX honor ic_headroom */
2450 	m = m_gethdr(M_DONTWAIT, MT_DATA);
2451 	if (m != NULL) {
2452 		rts = mtod(m, struct ieee80211_frame_rts *);
2453 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2454 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2455 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2456 		*(u_int16_t *)rts->i_dur = htole16(dur);
2457 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2458 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2459 
2460 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2461 	}
2462 	return m;
2463 }
2464 
2465 /*
2466  * Allocate and build a CTS (Clear To Send) control frame.
2467  */
2468 struct mbuf *
2469 ieee80211_alloc_cts(struct ieee80211com *ic,
2470 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2471 {
2472 	struct ieee80211_frame_cts *cts;
2473 	struct mbuf *m;
2474 
2475 	/* XXX honor ic_headroom */
2476 	m = m_gethdr(M_DONTWAIT, MT_DATA);
2477 	if (m != NULL) {
2478 		cts = mtod(m, struct ieee80211_frame_cts *);
2479 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2480 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2481 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2482 		*(u_int16_t *)cts->i_dur = htole16(dur);
2483 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2484 
2485 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2486 	}
2487 	return m;
2488 }
2489 
2490 static void
2491 ieee80211_tx_mgt_timeout(void *arg)
2492 {
2493 	struct ieee80211_node *ni = arg;
2494 	struct ieee80211vap *vap = ni->ni_vap;
2495 
2496 	if (vap->iv_state != IEEE80211_S_INIT &&
2497 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2498 		/*
2499 		 * NB: it's safe to specify a timeout as the reason here;
2500 		 *     it'll only be used in the right state.
2501 		 */
2502 		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2503 			IEEE80211_SCAN_FAIL_TIMEOUT);
2504 	}
2505 }
2506 
2507 static void
2508 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2509 {
2510 	struct ieee80211vap *vap = ni->ni_vap;
2511 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2512 
2513 	/*
2514 	 * Frame transmit completed; arrange timer callback.  If
2515 	 * transmit was successfuly we wait for response.  Otherwise
2516 	 * we arrange an immediate callback instead of doing the
2517 	 * callback directly since we don't know what state the driver
2518 	 * is in (e.g. what locks it is holding).  This work should
2519 	 * not be too time-critical and not happen too often so the
2520 	 * added overhead is acceptable.
2521 	 *
2522 	 * XXX what happens if !acked but response shows up before callback?
2523 	 */
2524 	if (vap->iv_state == ostate)
2525 		callout_reset(&vap->iv_mgtsend,
2526 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2527 			ieee80211_tx_mgt_timeout, ni);
2528 }
2529 
2530 static void
2531 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2532 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2533 {
2534 	struct ieee80211vap *vap = ni->ni_vap;
2535 	struct ieee80211com *ic = ni->ni_ic;
2536 	struct ieee80211_rateset *rs = &ni->ni_rates;
2537 	uint16_t capinfo;
2538 
2539 	/*
2540 	 * beacon frame format
2541 	 *	[8] time stamp
2542 	 *	[2] beacon interval
2543 	 *	[2] cabability information
2544 	 *	[tlv] ssid
2545 	 *	[tlv] supported rates
2546 	 *	[3] parameter set (DS)
2547 	 *	[8] CF parameter set (optional)
2548 	 *	[tlv] parameter set (IBSS/TIM)
2549 	 *	[tlv] country (optional)
2550 	 *	[3] power control (optional)
2551 	 *	[5] channel switch announcement (CSA) (optional)
2552 	 *	[tlv] extended rate phy (ERP)
2553 	 *	[tlv] extended supported rates
2554 	 *	[tlv] RSN parameters
2555 	 *	[tlv] HT capabilities
2556 	 *	[tlv] HT information
2557 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2558 	 *	[tlv] WPA parameters
2559 	 *	[tlv] WME parameters
2560 	 *	[tlv] Vendor OUI HT capabilities (optional)
2561 	 *	[tlv] Vendor OUI HT information (optional)
2562 	 *	[tlv] Atheros capabilities (optional)
2563 	 *	[tlv] TDMA parameters (optional)
2564 	 *	[tlv] Mesh ID (MBSS)
2565 	 *	[tlv] Mesh Conf (MBSS)
2566 	 *	[tlv] application data (optional)
2567 	 */
2568 
2569 	memset(bo, 0, sizeof(*bo));
2570 
2571 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2572 	frm += 8;
2573 	*(uint16_t *)frm = htole16(ni->ni_intval);
2574 	frm += 2;
2575 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2576 	bo->bo_caps = (uint16_t *)frm;
2577 	*(uint16_t *)frm = htole16(capinfo);
2578 	frm += 2;
2579 	*frm++ = IEEE80211_ELEMID_SSID;
2580 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2581 		*frm++ = ni->ni_esslen;
2582 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2583 		frm += ni->ni_esslen;
2584 	} else
2585 		*frm++ = 0;
2586 	frm = ieee80211_add_rates(frm, rs);
2587 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2588 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2589 		*frm++ = 1;
2590 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2591 	}
2592 	if (ic->ic_flags & IEEE80211_F_PCF) {
2593 		bo->bo_cfp = frm;
2594 		frm = ieee80211_add_cfparms(frm, ic);
2595 	}
2596 	bo->bo_tim = frm;
2597 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2598 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2599 		*frm++ = 2;
2600 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2601 		bo->bo_tim_len = 0;
2602 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2603 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2604 		/* TIM IE is the same for Mesh and Hostap */
2605 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2606 
2607 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2608 		tie->tim_len = 4;	/* length */
2609 		tie->tim_count = 0;	/* DTIM count */
2610 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2611 		tie->tim_bitctl = 0;	/* bitmap control */
2612 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2613 		frm += sizeof(struct ieee80211_tim_ie);
2614 		bo->bo_tim_len = 1;
2615 	}
2616 	bo->bo_tim_trailer = frm;
2617 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2618 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2619 		frm = ieee80211_add_countryie(frm, ic);
2620 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2621 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2622 			frm = ieee80211_add_powerconstraint(frm, vap);
2623 		bo->bo_csa = frm;
2624 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2625 			frm = ieee80211_add_csa(frm, vap);
2626 	} else
2627 		bo->bo_csa = frm;
2628 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2629 		bo->bo_erp = frm;
2630 		frm = ieee80211_add_erp(frm, ic);
2631 	}
2632 	frm = ieee80211_add_xrates(frm, rs);
2633 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2634 		if (vap->iv_rsn_ie != NULL)
2635 			frm = add_ie(frm, vap->iv_rsn_ie);
2636 		/* XXX else complain */
2637 	}
2638 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2639 		frm = ieee80211_add_htcap(frm, ni);
2640 		bo->bo_htinfo = frm;
2641 		frm = ieee80211_add_htinfo(frm, ni);
2642 	}
2643 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2644 		if (vap->iv_wpa_ie != NULL)
2645 			frm = add_ie(frm, vap->iv_wpa_ie);
2646 		/* XXX else complain */
2647 	}
2648 	if (vap->iv_flags & IEEE80211_F_WME) {
2649 		bo->bo_wme = frm;
2650 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2651 	}
2652 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2653 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2654 		frm = ieee80211_add_htcap_vendor(frm, ni);
2655 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2656 	}
2657 #ifdef IEEE80211_SUPPORT_SUPERG
2658 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2659 		bo->bo_ath = frm;
2660 		frm = ieee80211_add_athcaps(frm, ni);
2661 	}
2662 #endif
2663 #ifdef IEEE80211_SUPPORT_TDMA
2664 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2665 		bo->bo_tdma = frm;
2666 		frm = ieee80211_add_tdma(frm, vap);
2667 	}
2668 #endif
2669 	if (vap->iv_appie_beacon != NULL) {
2670 		bo->bo_appie = frm;
2671 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2672 		frm = add_appie(frm, vap->iv_appie_beacon);
2673 	}
2674 #ifdef IEEE80211_SUPPORT_MESH
2675 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2676 		frm = ieee80211_add_meshid(frm, vap);
2677 		bo->bo_meshconf = frm;
2678 		frm = ieee80211_add_meshconf(frm, vap);
2679 	}
2680 #endif
2681 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2682 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2683 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2684 }
2685 
2686 /*
2687  * Allocate a beacon frame and fillin the appropriate bits.
2688  */
2689 struct mbuf *
2690 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2691 	struct ieee80211_beacon_offsets *bo)
2692 {
2693 	struct ieee80211vap *vap = ni->ni_vap;
2694 	struct ieee80211com *ic = ni->ni_ic;
2695 	struct ifnet *ifp = vap->iv_ifp;
2696 	struct ieee80211_frame *wh;
2697 	struct mbuf *m;
2698 	int pktlen;
2699 	uint8_t *frm;
2700 
2701 	/*
2702 	 * beacon frame format
2703 	 *	[8] time stamp
2704 	 *	[2] beacon interval
2705 	 *	[2] cabability information
2706 	 *	[tlv] ssid
2707 	 *	[tlv] supported rates
2708 	 *	[3] parameter set (DS)
2709 	 *	[8] CF parameter set (optional)
2710 	 *	[tlv] parameter set (IBSS/TIM)
2711 	 *	[tlv] country (optional)
2712 	 *	[3] power control (optional)
2713 	 *	[5] channel switch announcement (CSA) (optional)
2714 	 *	[tlv] extended rate phy (ERP)
2715 	 *	[tlv] extended supported rates
2716 	 *	[tlv] RSN parameters
2717 	 *	[tlv] HT capabilities
2718 	 *	[tlv] HT information
2719 	 *	[tlv] Vendor OUI HT capabilities (optional)
2720 	 *	[tlv] Vendor OUI HT information (optional)
2721 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2722 	 *	[tlv] WPA parameters
2723 	 *	[tlv] WME parameters
2724 	 *	[tlv] TDMA parameters (optional)
2725 	 *	[tlv] Mesh ID (MBSS)
2726 	 *	[tlv] Mesh Conf (MBSS)
2727 	 *	[tlv] application data (optional)
2728 	 * NB: we allocate the max space required for the TIM bitmap.
2729 	 * XXX how big is this?
2730 	 */
2731 	pktlen =   8					/* time stamp */
2732 		 + sizeof(uint16_t)			/* beacon interval */
2733 		 + sizeof(uint16_t)			/* capabilities */
2734 		 + 2 + ni->ni_esslen			/* ssid */
2735 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2736 	         + 2 + 1				/* DS parameters */
2737 		 + 2 + 6				/* CF parameters */
2738 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2739 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2740 		 + 2 + 1				/* power control */
2741 	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2742 		 + 2 + 1				/* ERP */
2743 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2744 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2745 			2*sizeof(struct ieee80211_ie_wpa) : 0)
2746 		 /* XXX conditional? */
2747 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2748 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2749 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2750 			sizeof(struct ieee80211_wme_param) : 0)
2751 #ifdef IEEE80211_SUPPORT_SUPERG
2752 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2753 #endif
2754 #ifdef IEEE80211_SUPPORT_TDMA
2755 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2756 			sizeof(struct ieee80211_tdma_param) : 0)
2757 #endif
2758 #ifdef IEEE80211_SUPPORT_MESH
2759 		 + 2 + ni->ni_meshidlen
2760 		 + sizeof(struct ieee80211_meshconf_ie)
2761 #endif
2762 		 + IEEE80211_MAX_APPIE
2763 		 ;
2764 	m = ieee80211_getmgtframe(&frm,
2765 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2766 	if (m == NULL) {
2767 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2768 			"%s: cannot get buf; size %u\n", __func__, pktlen);
2769 		vap->iv_stats.is_tx_nobuf++;
2770 		return NULL;
2771 	}
2772 	ieee80211_beacon_construct(m, frm, bo, ni);
2773 
2774 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2775 	KASSERT(m != NULL, ("no space for 802.11 header?"));
2776 	wh = mtod(m, struct ieee80211_frame *);
2777 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2778 	    IEEE80211_FC0_SUBTYPE_BEACON;
2779 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2780 	*(uint16_t *)wh->i_dur = 0;
2781 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2782 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2783 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2784 	*(uint16_t *)wh->i_seq = 0;
2785 
2786 	return m;
2787 }
2788 
2789 /*
2790  * Update the dynamic parts of a beacon frame based on the current state.
2791  */
2792 int
2793 ieee80211_beacon_update(struct ieee80211_node *ni,
2794 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2795 {
2796 	struct ieee80211vap *vap = ni->ni_vap;
2797 	struct ieee80211com *ic = ni->ni_ic;
2798 	int len_changed = 0;
2799 	uint16_t capinfo;
2800 	struct ieee80211_frame *wh;
2801 	ieee80211_seq seqno;
2802 
2803 	IEEE80211_LOCK(ic);
2804 	/*
2805 	 * Handle 11h channel change when we've reached the count.
2806 	 * We must recalculate the beacon frame contents to account
2807 	 * for the new channel.  Note we do this only for the first
2808 	 * vap that reaches this point; subsequent vaps just update
2809 	 * their beacon state to reflect the recalculated channel.
2810 	 */
2811 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2812 	    vap->iv_csa_count == ic->ic_csa_count) {
2813 		vap->iv_csa_count = 0;
2814 		/*
2815 		 * Effect channel change before reconstructing the beacon
2816 		 * frame contents as many places reference ni_chan.
2817 		 */
2818 		if (ic->ic_csa_newchan != NULL)
2819 			ieee80211_csa_completeswitch(ic);
2820 		/*
2821 		 * NB: ieee80211_beacon_construct clears all pending
2822 		 * updates in bo_flags so we don't need to explicitly
2823 		 * clear IEEE80211_BEACON_CSA.
2824 		 */
2825 		ieee80211_beacon_construct(m,
2826 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2827 
2828 		/* XXX do WME aggressive mode processing? */
2829 		IEEE80211_UNLOCK(ic);
2830 		return 1;		/* just assume length changed */
2831 	}
2832 
2833 	wh = mtod(m, struct ieee80211_frame *);
2834 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
2835 	*(uint16_t *)&wh->i_seq[0] =
2836 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2837 	M_SEQNO_SET(m, seqno);
2838 
2839 	/* XXX faster to recalculate entirely or just changes? */
2840 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2841 	*bo->bo_caps = htole16(capinfo);
2842 
2843 	if (vap->iv_flags & IEEE80211_F_WME) {
2844 		struct ieee80211_wme_state *wme = &ic->ic_wme;
2845 
2846 		/*
2847 		 * Check for agressive mode change.  When there is
2848 		 * significant high priority traffic in the BSS
2849 		 * throttle back BE traffic by using conservative
2850 		 * parameters.  Otherwise BE uses agressive params
2851 		 * to optimize performance of legacy/non-QoS traffic.
2852 		 */
2853 		if (wme->wme_flags & WME_F_AGGRMODE) {
2854 			if (wme->wme_hipri_traffic >
2855 			    wme->wme_hipri_switch_thresh) {
2856 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2857 				    "%s: traffic %u, disable aggressive mode\n",
2858 				    __func__, wme->wme_hipri_traffic);
2859 				wme->wme_flags &= ~WME_F_AGGRMODE;
2860 				ieee80211_wme_updateparams_locked(vap);
2861 				wme->wme_hipri_traffic =
2862 					wme->wme_hipri_switch_hysteresis;
2863 			} else
2864 				wme->wme_hipri_traffic = 0;
2865 		} else {
2866 			if (wme->wme_hipri_traffic <=
2867 			    wme->wme_hipri_switch_thresh) {
2868 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2869 				    "%s: traffic %u, enable aggressive mode\n",
2870 				    __func__, wme->wme_hipri_traffic);
2871 				wme->wme_flags |= WME_F_AGGRMODE;
2872 				ieee80211_wme_updateparams_locked(vap);
2873 				wme->wme_hipri_traffic = 0;
2874 			} else
2875 				wme->wme_hipri_traffic =
2876 					wme->wme_hipri_switch_hysteresis;
2877 		}
2878 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2879 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2880 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2881 		}
2882 	}
2883 
2884 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2885 		ieee80211_ht_update_beacon(vap, bo);
2886 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2887 	}
2888 #ifdef IEEE80211_SUPPORT_TDMA
2889 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2890 		/*
2891 		 * NB: the beacon is potentially updated every TBTT.
2892 		 */
2893 		ieee80211_tdma_update_beacon(vap, bo);
2894 	}
2895 #endif
2896 #ifdef IEEE80211_SUPPORT_MESH
2897 	if (vap->iv_opmode == IEEE80211_M_MBSS)
2898 		ieee80211_mesh_update_beacon(vap, bo);
2899 #endif
2900 
2901 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2902 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
2903 		struct ieee80211_tim_ie *tie =
2904 			(struct ieee80211_tim_ie *) bo->bo_tim;
2905 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2906 			u_int timlen, timoff, i;
2907 			/*
2908 			 * ATIM/DTIM needs updating.  If it fits in the
2909 			 * current space allocated then just copy in the
2910 			 * new bits.  Otherwise we need to move any trailing
2911 			 * data to make room.  Note that we know there is
2912 			 * contiguous space because ieee80211_beacon_allocate
2913 			 * insures there is space in the mbuf to write a
2914 			 * maximal-size virtual bitmap (based on iv_max_aid).
2915 			 */
2916 			/*
2917 			 * Calculate the bitmap size and offset, copy any
2918 			 * trailer out of the way, and then copy in the
2919 			 * new bitmap and update the information element.
2920 			 * Note that the tim bitmap must contain at least
2921 			 * one byte and any offset must be even.
2922 			 */
2923 			if (vap->iv_ps_pending != 0) {
2924 				timoff = 128;		/* impossibly large */
2925 				for (i = 0; i < vap->iv_tim_len; i++)
2926 					if (vap->iv_tim_bitmap[i]) {
2927 						timoff = i &~ 1;
2928 						break;
2929 					}
2930 				KASSERT(timoff != 128, ("tim bitmap empty!"));
2931 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2932 					if (vap->iv_tim_bitmap[i])
2933 						break;
2934 				timlen = 1 + (i - timoff);
2935 			} else {
2936 				timoff = 0;
2937 				timlen = 1;
2938 			}
2939 			if (timlen != bo->bo_tim_len) {
2940 				/* copy up/down trailer */
2941 				int adjust = tie->tim_bitmap+timlen
2942 					   - bo->bo_tim_trailer;
2943 				ovbcopy(bo->bo_tim_trailer,
2944 				    bo->bo_tim_trailer+adjust,
2945 				    bo->bo_tim_trailer_len);
2946 				bo->bo_tim_trailer += adjust;
2947 				bo->bo_erp += adjust;
2948 				bo->bo_htinfo += adjust;
2949 #ifdef IEEE80211_SUPPORT_SUPERG
2950 				bo->bo_ath += adjust;
2951 #endif
2952 #ifdef IEEE80211_SUPPORT_TDMA
2953 				bo->bo_tdma += adjust;
2954 #endif
2955 #ifdef IEEE80211_SUPPORT_MESH
2956 				bo->bo_meshconf += adjust;
2957 #endif
2958 				bo->bo_appie += adjust;
2959 				bo->bo_wme += adjust;
2960 				bo->bo_csa += adjust;
2961 				bo->bo_tim_len = timlen;
2962 
2963 				/* update information element */
2964 				tie->tim_len = 3 + timlen;
2965 				tie->tim_bitctl = timoff;
2966 				len_changed = 1;
2967 			}
2968 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2969 				bo->bo_tim_len);
2970 
2971 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2972 
2973 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2974 				"%s: TIM updated, pending %u, off %u, len %u\n",
2975 				__func__, vap->iv_ps_pending, timoff, timlen);
2976 		}
2977 		/* count down DTIM period */
2978 		if (tie->tim_count == 0)
2979 			tie->tim_count = tie->tim_period - 1;
2980 		else
2981 			tie->tim_count--;
2982 		/* update state for buffered multicast frames on DTIM */
2983 		if (mcast && tie->tim_count == 0)
2984 			tie->tim_bitctl |= 1;
2985 		else
2986 			tie->tim_bitctl &= ~1;
2987 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2988 			struct ieee80211_csa_ie *csa =
2989 			    (struct ieee80211_csa_ie *) bo->bo_csa;
2990 
2991 			/*
2992 			 * Insert or update CSA ie.  If we're just starting
2993 			 * to count down to the channel switch then we need
2994 			 * to insert the CSA ie.  Otherwise we just need to
2995 			 * drop the count.  The actual change happens above
2996 			 * when the vap's count reaches the target count.
2997 			 */
2998 			if (vap->iv_csa_count == 0) {
2999 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3000 				bo->bo_erp += sizeof(*csa);
3001 				bo->bo_htinfo += sizeof(*csa);
3002 				bo->bo_wme += sizeof(*csa);
3003 #ifdef IEEE80211_SUPPORT_SUPERG
3004 				bo->bo_ath += sizeof(*csa);
3005 #endif
3006 #ifdef IEEE80211_SUPPORT_TDMA
3007 				bo->bo_tdma += sizeof(*csa);
3008 #endif
3009 #ifdef IEEE80211_SUPPORT_MESH
3010 				bo->bo_meshconf += sizeof(*csa);
3011 #endif
3012 				bo->bo_appie += sizeof(*csa);
3013 				bo->bo_csa_trailer_len += sizeof(*csa);
3014 				bo->bo_tim_trailer_len += sizeof(*csa);
3015 				m->m_len += sizeof(*csa);
3016 				m->m_pkthdr.len += sizeof(*csa);
3017 
3018 				ieee80211_add_csa(bo->bo_csa, vap);
3019 			} else
3020 				csa->csa_count--;
3021 			vap->iv_csa_count++;
3022 			/* NB: don't clear IEEE80211_BEACON_CSA */
3023 		}
3024 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3025 			/*
3026 			 * ERP element needs updating.
3027 			 */
3028 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3029 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3030 		}
3031 #ifdef IEEE80211_SUPPORT_SUPERG
3032 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3033 			ieee80211_add_athcaps(bo->bo_ath, ni);
3034 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3035 		}
3036 #endif
3037 	}
3038 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3039 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3040 		int aielen;
3041 		uint8_t *frm;
3042 
3043 		aielen = 0;
3044 		if (aie != NULL)
3045 			aielen += aie->ie_len;
3046 		if (aielen != bo->bo_appie_len) {
3047 			/* copy up/down trailer */
3048 			int adjust = aielen - bo->bo_appie_len;
3049 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3050 				bo->bo_tim_trailer_len);
3051 			bo->bo_tim_trailer += adjust;
3052 			bo->bo_appie += adjust;
3053 			bo->bo_appie_len = aielen;
3054 
3055 			len_changed = 1;
3056 		}
3057 		frm = bo->bo_appie;
3058 		if (aie != NULL)
3059 			frm  = add_appie(frm, aie);
3060 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3061 	}
3062 	IEEE80211_UNLOCK(ic);
3063 
3064 	return len_changed;
3065 }
3066