1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211_output.c 330688 2018-03-09 11:33:56Z avos $"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 129 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 130 (m->m_flags & M_PWR_SAV) == 0) { 131 /* 132 * Station in power save mode; pass the frame 133 * to the 802.11 layer and continue. We'll get 134 * the frame back when the time is right. 135 * XXX lose WDS vap linkage? 136 */ 137 if (ieee80211_pwrsave(ni, m) != 0) 138 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 139 ieee80211_free_node(ni); 140 141 /* 142 * We queued it fine, so tell the upper layer 143 * that we consumed it. 144 */ 145 return (0); 146 } 147 /* calculate priority so drivers can find the tx queue */ 148 if (ieee80211_classify(ni, m)) { 149 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 150 ni->ni_macaddr, NULL, 151 "%s", "classification failure"); 152 vap->iv_stats.is_tx_classify++; 153 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 154 m_freem(m); 155 ieee80211_free_node(ni); 156 157 /* XXX better status? */ 158 return (0); 159 } 160 /* 161 * Stash the node pointer. Note that we do this after 162 * any call to ieee80211_dwds_mcast because that code 163 * uses any existing value for rcvif to identify the 164 * interface it (might have been) received on. 165 */ 166 m->m_pkthdr.rcvif = (void *)ni; 167 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 168 169 BPF_MTAP(ifp, m); /* 802.3 tx */ 170 171 /* 172 * Check if A-MPDU tx aggregation is setup or if we 173 * should try to enable it. The sta must be associated 174 * with HT and A-MPDU enabled for use. When the policy 175 * routine decides we should enable A-MPDU we issue an 176 * ADDBA request and wait for a reply. The frame being 177 * encapsulated will go out w/o using A-MPDU, or possibly 178 * it might be collected by the driver and held/retransmit. 179 * The default ic_ampdu_enable routine handles staggering 180 * ADDBA requests in case the receiver NAK's us or we are 181 * otherwise unable to establish a BA stream. 182 * 183 * Don't treat group-addressed frames as candidates for aggregation; 184 * net80211 doesn't support 802.11aa-2012 and so group addressed 185 * frames will always have sequence numbers allocated from the NON_QOS 186 * TID. 187 */ 188 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 189 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 190 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 191 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 192 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 193 194 ieee80211_txampdu_count_packet(tap); 195 if (IEEE80211_AMPDU_RUNNING(tap)) { 196 /* 197 * Operational, mark frame for aggregation. 198 * 199 * XXX do tx aggregation here 200 */ 201 m->m_flags |= M_AMPDU_MPDU; 202 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 203 ic->ic_ampdu_enable(ni, tap)) { 204 /* 205 * Not negotiated yet, request service. 206 */ 207 ieee80211_ampdu_request(ni, tap); 208 /* XXX hold frame for reply? */ 209 } 210 } 211 } 212 213 #ifdef IEEE80211_SUPPORT_SUPERG 214 /* 215 * Check for AMSDU/FF; queue for aggregation 216 * 217 * Note: we don't bother trying to do fast frames or 218 * A-MSDU encapsulation for 802.3 drivers. Now, we 219 * likely could do it for FF (because it's a magic 220 * atheros tunnel LLC type) but I don't think we're going 221 * to really need to. For A-MSDU we'd have to set the 222 * A-MSDU QoS bit in the wifi header, so we just plain 223 * can't do it. 224 * 225 * Strictly speaking, we could actually /do/ A-MSDU / FF 226 * with A-MPDU together which for certain circumstances 227 * is beneficial (eg A-MSDU of TCK ACKs.) However, 228 * I'll ignore that for now so existing behaviour is maintained. 229 * Later on it would be good to make "amsdu + ampdu" configurable. 230 */ 231 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 232 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 233 m = ieee80211_amsdu_check(ni, m); 234 if (m == NULL) { 235 /* NB: any ni ref held on stageq */ 236 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 237 "%s: amsdu_check queued frame\n", 238 __func__); 239 return (0); 240 } 241 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 242 IEEE80211_NODE_FF)) { 243 m = ieee80211_ff_check(ni, m); 244 if (m == NULL) { 245 /* NB: any ni ref held on stageq */ 246 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 247 "%s: ff_check queued frame\n", 248 __func__); 249 return (0); 250 } 251 } 252 } 253 #endif /* IEEE80211_SUPPORT_SUPERG */ 254 255 /* 256 * Grab the TX lock - serialise the TX process from this 257 * point (where TX state is being checked/modified) 258 * through to driver queue. 259 */ 260 IEEE80211_TX_LOCK(ic); 261 262 /* 263 * XXX make the encap and transmit code a separate function 264 * so things like the FF (and later A-MSDU) path can just call 265 * it for flushed frames. 266 */ 267 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 268 /* 269 * Encapsulate the packet in prep for transmission. 270 */ 271 m = ieee80211_encap(vap, ni, m); 272 if (m == NULL) { 273 /* NB: stat+msg handled in ieee80211_encap */ 274 IEEE80211_TX_UNLOCK(ic); 275 ieee80211_free_node(ni); 276 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 277 return (ENOBUFS); 278 } 279 } 280 (void) ieee80211_parent_xmitpkt(ic, m); 281 282 /* 283 * Unlock at this point - no need to hold it across 284 * ieee80211_free_node() (ie, the comlock) 285 */ 286 IEEE80211_TX_UNLOCK(ic); 287 ic->ic_lastdata = ticks; 288 289 return (0); 290 } 291 292 293 294 /* 295 * Send the given mbuf through the given vap. 296 * 297 * This consumes the mbuf regardless of whether the transmit 298 * was successful or not. 299 * 300 * This does none of the initial checks that ieee80211_start() 301 * does (eg CAC timeout, interface wakeup) - the caller must 302 * do this first. 303 */ 304 static int 305 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 306 { 307 #define IS_DWDS(vap) \ 308 (vap->iv_opmode == IEEE80211_M_WDS && \ 309 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 310 struct ieee80211com *ic = vap->iv_ic; 311 struct ifnet *ifp = vap->iv_ifp; 312 struct ieee80211_node *ni; 313 struct ether_header *eh; 314 315 /* 316 * Cancel any background scan. 317 */ 318 if (ic->ic_flags & IEEE80211_F_SCAN) 319 ieee80211_cancel_anyscan(vap); 320 /* 321 * Find the node for the destination so we can do 322 * things like power save and fast frames aggregation. 323 * 324 * NB: past this point various code assumes the first 325 * mbuf has the 802.3 header present (and contiguous). 326 */ 327 ni = NULL; 328 if (m->m_len < sizeof(struct ether_header) && 329 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 330 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 331 "discard frame, %s\n", "m_pullup failed"); 332 vap->iv_stats.is_tx_nobuf++; /* XXX */ 333 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 334 return (ENOBUFS); 335 } 336 eh = mtod(m, struct ether_header *); 337 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 338 if (IS_DWDS(vap)) { 339 /* 340 * Only unicast frames from the above go out 341 * DWDS vaps; multicast frames are handled by 342 * dispatching the frame as it comes through 343 * the AP vap (see below). 344 */ 345 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 346 eh->ether_dhost, "mcast", "%s", "on DWDS"); 347 vap->iv_stats.is_dwds_mcast++; 348 m_freem(m); 349 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 350 /* XXX better status? */ 351 return (ENOBUFS); 352 } 353 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 354 /* 355 * Spam DWDS vap's w/ multicast traffic. 356 */ 357 /* XXX only if dwds in use? */ 358 ieee80211_dwds_mcast(vap, m); 359 } 360 } 361 #ifdef IEEE80211_SUPPORT_MESH 362 if (vap->iv_opmode != IEEE80211_M_MBSS) { 363 #endif 364 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 365 if (ni == NULL) { 366 /* NB: ieee80211_find_txnode does stat+msg */ 367 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 368 m_freem(m); 369 /* XXX better status? */ 370 return (ENOBUFS); 371 } 372 if (ni->ni_associd == 0 && 373 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 374 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 375 eh->ether_dhost, NULL, 376 "sta not associated (type 0x%04x)", 377 htons(eh->ether_type)); 378 vap->iv_stats.is_tx_notassoc++; 379 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 380 m_freem(m); 381 ieee80211_free_node(ni); 382 /* XXX better status? */ 383 return (ENOBUFS); 384 } 385 #ifdef IEEE80211_SUPPORT_MESH 386 } else { 387 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 388 /* 389 * Proxy station only if configured. 390 */ 391 if (!ieee80211_mesh_isproxyena(vap)) { 392 IEEE80211_DISCARD_MAC(vap, 393 IEEE80211_MSG_OUTPUT | 394 IEEE80211_MSG_MESH, 395 eh->ether_dhost, NULL, 396 "%s", "proxy not enabled"); 397 vap->iv_stats.is_mesh_notproxy++; 398 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 399 m_freem(m); 400 /* XXX better status? */ 401 return (ENOBUFS); 402 } 403 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 404 "forward frame from DS SA(%6D), DA(%6D)\n", 405 eh->ether_shost, ":", 406 eh->ether_dhost, ":"); 407 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 408 } 409 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 410 if (ni == NULL) { 411 /* 412 * NB: ieee80211_mesh_discover holds/disposes 413 * frame (e.g. queueing on path discovery). 414 */ 415 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 416 /* XXX better status? */ 417 return (ENOBUFS); 418 } 419 } 420 #endif 421 422 /* 423 * We've resolved the sender, so attempt to transmit it. 424 */ 425 426 if (vap->iv_state == IEEE80211_S_SLEEP) { 427 /* 428 * In power save; queue frame and then wakeup device 429 * for transmit. 430 */ 431 ic->ic_lastdata = ticks; 432 if (ieee80211_pwrsave(ni, m) != 0) 433 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 434 ieee80211_free_node(ni); 435 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 436 return (0); 437 } 438 439 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 440 return (ENOBUFS); 441 return (0); 442 #undef IS_DWDS 443 } 444 445 /* 446 * Start method for vap's. All packets from the stack come 447 * through here. We handle common processing of the packets 448 * before dispatching them to the underlying device. 449 * 450 * if_transmit() requires that the mbuf be consumed by this call 451 * regardless of the return condition. 452 */ 453 int 454 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 455 { 456 struct ieee80211vap *vap = ifp->if_softc; 457 struct ieee80211com *ic = vap->iv_ic; 458 459 /* 460 * No data frames go out unless we're running. 461 * Note in particular this covers CAC and CSA 462 * states (though maybe we should check muting 463 * for CSA). 464 */ 465 if (vap->iv_state != IEEE80211_S_RUN && 466 vap->iv_state != IEEE80211_S_SLEEP) { 467 IEEE80211_LOCK(ic); 468 /* re-check under the com lock to avoid races */ 469 if (vap->iv_state != IEEE80211_S_RUN && 470 vap->iv_state != IEEE80211_S_SLEEP) { 471 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 472 "%s: ignore queue, in %s state\n", 473 __func__, ieee80211_state_name[vap->iv_state]); 474 vap->iv_stats.is_tx_badstate++; 475 IEEE80211_UNLOCK(ic); 476 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 477 m_freem(m); 478 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 479 return (ENETDOWN); 480 } 481 IEEE80211_UNLOCK(ic); 482 } 483 484 /* 485 * Sanitize mbuf flags for net80211 use. We cannot 486 * clear M_PWR_SAV or M_MORE_DATA because these may 487 * be set for frames that are re-submitted from the 488 * power save queue. 489 * 490 * NB: This must be done before ieee80211_classify as 491 * it marks EAPOL in frames with M_EAPOL. 492 */ 493 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 494 495 /* 496 * Bump to the packet transmission path. 497 * The mbuf will be consumed here. 498 */ 499 return (ieee80211_start_pkt(vap, m)); 500 } 501 502 void 503 ieee80211_vap_qflush(struct ifnet *ifp) 504 { 505 506 /* Empty for now */ 507 } 508 509 /* 510 * 802.11 raw output routine. 511 * 512 * XXX TODO: this (and other send routines) should correctly 513 * XXX keep the pwr mgmt bit set if it decides to call into the 514 * XXX driver to send a frame whilst the state is SLEEP. 515 * 516 * Otherwise the peer may decide that we're awake and flood us 517 * with traffic we are still too asleep to receive! 518 */ 519 int 520 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 521 struct mbuf *m, const struct ieee80211_bpf_params *params) 522 { 523 struct ieee80211com *ic = vap->iv_ic; 524 int error; 525 526 /* 527 * Set node - the caller has taken a reference, so ensure 528 * that the mbuf has the same node value that 529 * it would if it were going via the normal path. 530 */ 531 m->m_pkthdr.rcvif = (void *)ni; 532 533 /* 534 * Attempt to add bpf transmit parameters. 535 * 536 * For now it's ok to fail; the raw_xmit api still takes 537 * them as an option. 538 * 539 * Later on when ic_raw_xmit() has params removed, 540 * they'll have to be added - so fail the transmit if 541 * they can't be. 542 */ 543 if (params) 544 (void) ieee80211_add_xmit_params(m, params); 545 546 error = ic->ic_raw_xmit(ni, m, params); 547 if (error) { 548 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 549 ieee80211_free_node(ni); 550 } 551 return (error); 552 } 553 554 static int 555 ieee80211_validate_frame(struct mbuf *m, 556 const struct ieee80211_bpf_params *params) 557 { 558 struct ieee80211_frame *wh; 559 int type; 560 561 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 562 return (EINVAL); 563 564 wh = mtod(m, struct ieee80211_frame *); 565 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 566 IEEE80211_FC0_VERSION_0) 567 return (EINVAL); 568 569 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 570 if (type != IEEE80211_FC0_TYPE_DATA) { 571 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 572 IEEE80211_FC1_DIR_NODS) 573 return (EINVAL); 574 575 if (type != IEEE80211_FC0_TYPE_MGT && 576 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 577 return (EINVAL); 578 579 /* XXX skip other field checks? */ 580 } 581 582 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 583 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 584 int subtype; 585 586 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 587 588 /* 589 * See IEEE Std 802.11-2012, 590 * 8.2.4.1.9 'Protected Frame field' 591 */ 592 /* XXX no support for robust management frames yet. */ 593 if (!(type == IEEE80211_FC0_TYPE_DATA || 594 (type == IEEE80211_FC0_TYPE_MGT && 595 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 596 return (EINVAL); 597 598 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 599 } 600 601 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 602 return (EINVAL); 603 604 return (0); 605 } 606 607 /* 608 * 802.11 output routine. This is (currently) used only to 609 * connect bpf write calls to the 802.11 layer for injecting 610 * raw 802.11 frames. 611 */ 612 int 613 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 614 const struct sockaddr *dst, struct route *ro) 615 { 616 #define senderr(e) do { error = (e); goto bad;} while (0) 617 const struct ieee80211_bpf_params *params = NULL; 618 struct ieee80211_node *ni = NULL; 619 struct ieee80211vap *vap; 620 struct ieee80211_frame *wh; 621 struct ieee80211com *ic = NULL; 622 int error; 623 int ret; 624 625 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 626 /* 627 * Short-circuit requests if the vap is marked OACTIVE 628 * as this can happen because a packet came down through 629 * ieee80211_start before the vap entered RUN state in 630 * which case it's ok to just drop the frame. This 631 * should not be necessary but callers of if_output don't 632 * check OACTIVE. 633 */ 634 senderr(ENETDOWN); 635 } 636 vap = ifp->if_softc; 637 ic = vap->iv_ic; 638 /* 639 * Hand to the 802.3 code if not tagged as 640 * a raw 802.11 frame. 641 */ 642 #ifdef __HAIKU__ 643 if (!dst || dst->sa_family != AF_IEEE80211) 644 return ieee80211_vap_xmitpkt(vap, m); 645 #else 646 if (dst->sa_family != AF_IEEE80211) 647 return vap->iv_output(ifp, m, dst, ro); 648 #endif 649 #ifdef MAC 650 error = mac_ifnet_check_transmit(ifp, m); 651 if (error) 652 senderr(error); 653 #endif 654 if (ifp->if_flags & IFF_MONITOR) 655 senderr(ENETDOWN); 656 if (!IFNET_IS_UP_RUNNING(ifp)) 657 senderr(ENETDOWN); 658 if (vap->iv_state == IEEE80211_S_CAC) { 659 IEEE80211_DPRINTF(vap, 660 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 661 "block %s frame in CAC state\n", "raw data"); 662 vap->iv_stats.is_tx_badstate++; 663 senderr(EIO); /* XXX */ 664 } else if (vap->iv_state == IEEE80211_S_SCAN) 665 senderr(EIO); 666 /* XXX bypass bridge, pfil, carp, etc. */ 667 668 /* 669 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 670 * present by setting the sa_len field of the sockaddr (yes, 671 * this is a hack). 672 * NB: we assume sa_data is suitably aligned to cast. 673 */ 674 if (dst->sa_len != 0) 675 params = (const struct ieee80211_bpf_params *)dst->sa_data; 676 677 error = ieee80211_validate_frame(m, params); 678 if (error != 0) 679 senderr(error); 680 681 wh = mtod(m, struct ieee80211_frame *); 682 683 /* locate destination node */ 684 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 685 case IEEE80211_FC1_DIR_NODS: 686 case IEEE80211_FC1_DIR_FROMDS: 687 ni = ieee80211_find_txnode(vap, wh->i_addr1); 688 break; 689 case IEEE80211_FC1_DIR_TODS: 690 case IEEE80211_FC1_DIR_DSTODS: 691 ni = ieee80211_find_txnode(vap, wh->i_addr3); 692 break; 693 default: 694 senderr(EDOOFUS); 695 } 696 if (ni == NULL) { 697 /* 698 * Permit packets w/ bpf params through regardless 699 * (see below about sa_len). 700 */ 701 if (dst->sa_len == 0) 702 senderr(EHOSTUNREACH); 703 ni = ieee80211_ref_node(vap->iv_bss); 704 } 705 706 /* 707 * Sanitize mbuf for net80211 flags leaked from above. 708 * 709 * NB: This must be done before ieee80211_classify as 710 * it marks EAPOL in frames with M_EAPOL. 711 */ 712 m->m_flags &= ~M_80211_TX; 713 m->m_flags |= M_ENCAP; /* mark encapsulated */ 714 715 if (IEEE80211_IS_DATA(wh)) { 716 /* calculate priority so drivers can find the tx queue */ 717 if (ieee80211_classify(ni, m)) 718 senderr(EIO); /* XXX */ 719 720 /* NB: ieee80211_encap does not include 802.11 header */ 721 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 722 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 723 } else 724 M_WME_SETAC(m, WME_AC_BE); 725 726 IEEE80211_NODE_STAT(ni, tx_data); 727 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 728 IEEE80211_NODE_STAT(ni, tx_mcast); 729 m->m_flags |= M_MCAST; 730 } else 731 IEEE80211_NODE_STAT(ni, tx_ucast); 732 733 IEEE80211_TX_LOCK(ic); 734 ret = ieee80211_raw_output(vap, ni, m, params); 735 IEEE80211_TX_UNLOCK(ic); 736 return (ret); 737 bad: 738 if (m != NULL) 739 m_freem(m); 740 if (ni != NULL) 741 ieee80211_free_node(ni); 742 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 743 return error; 744 #undef senderr 745 } 746 747 /* 748 * Set the direction field and address fields of an outgoing 749 * frame. Note this should be called early on in constructing 750 * a frame as it sets i_fc[1]; other bits can then be or'd in. 751 */ 752 void 753 ieee80211_send_setup( 754 struct ieee80211_node *ni, 755 struct mbuf *m, 756 int type, int tid, 757 const uint8_t sa[IEEE80211_ADDR_LEN], 758 const uint8_t da[IEEE80211_ADDR_LEN], 759 const uint8_t bssid[IEEE80211_ADDR_LEN]) 760 { 761 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 762 struct ieee80211vap *vap = ni->ni_vap; 763 struct ieee80211_tx_ampdu *tap; 764 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 765 ieee80211_seq seqno; 766 767 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 768 769 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 770 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 771 switch (vap->iv_opmode) { 772 case IEEE80211_M_STA: 773 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 774 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 775 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 776 IEEE80211_ADDR_COPY(wh->i_addr3, da); 777 break; 778 case IEEE80211_M_IBSS: 779 case IEEE80211_M_AHDEMO: 780 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 781 IEEE80211_ADDR_COPY(wh->i_addr1, da); 782 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 783 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 784 break; 785 case IEEE80211_M_HOSTAP: 786 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 787 IEEE80211_ADDR_COPY(wh->i_addr1, da); 788 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 789 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 790 break; 791 case IEEE80211_M_WDS: 792 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 793 IEEE80211_ADDR_COPY(wh->i_addr1, da); 794 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 795 IEEE80211_ADDR_COPY(wh->i_addr3, da); 796 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 797 break; 798 case IEEE80211_M_MBSS: 799 #ifdef IEEE80211_SUPPORT_MESH 800 if (IEEE80211_IS_MULTICAST(da)) { 801 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 802 /* XXX next hop */ 803 IEEE80211_ADDR_COPY(wh->i_addr1, da); 804 IEEE80211_ADDR_COPY(wh->i_addr2, 805 vap->iv_myaddr); 806 } else { 807 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 808 IEEE80211_ADDR_COPY(wh->i_addr1, da); 809 IEEE80211_ADDR_COPY(wh->i_addr2, 810 vap->iv_myaddr); 811 IEEE80211_ADDR_COPY(wh->i_addr3, da); 812 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 813 } 814 #endif 815 break; 816 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 817 break; 818 } 819 } else { 820 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 821 IEEE80211_ADDR_COPY(wh->i_addr1, da); 822 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 823 #ifdef IEEE80211_SUPPORT_MESH 824 if (vap->iv_opmode == IEEE80211_M_MBSS) 825 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 826 else 827 #endif 828 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 829 } 830 *(uint16_t *)&wh->i_dur[0] = 0; 831 832 /* 833 * XXX TODO: this is what the TX lock is for. 834 * Here we're incrementing sequence numbers, and they 835 * need to be in lock-step with what the driver is doing 836 * both in TX ordering and crypto encap (IV increment.) 837 * 838 * If the driver does seqno itself, then we can skip 839 * assigning sequence numbers here, and we can avoid 840 * requiring the TX lock. 841 */ 842 tap = &ni->ni_tx_ampdu[tid]; 843 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 844 m->m_flags |= M_AMPDU_MPDU; 845 846 /* NB: zero out i_seq field (for s/w encryption etc) */ 847 *(uint16_t *)&wh->i_seq[0] = 0; 848 } else { 849 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 850 type & IEEE80211_FC0_SUBTYPE_MASK)) 851 /* 852 * 802.11-2012 9.3.2.10 - QoS multicast frames 853 * come out of a different seqno space. 854 */ 855 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 856 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 857 } else { 858 seqno = ni->ni_txseqs[tid]++; 859 } 860 else 861 seqno = 0; 862 863 *(uint16_t *)&wh->i_seq[0] = 864 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 865 M_SEQNO_SET(m, seqno); 866 } 867 868 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 869 m->m_flags |= M_MCAST; 870 #undef WH4 871 } 872 873 /* 874 * Send a management frame to the specified node. The node pointer 875 * must have a reference as the pointer will be passed to the driver 876 * and potentially held for a long time. If the frame is successfully 877 * dispatched to the driver, then it is responsible for freeing the 878 * reference (and potentially free'ing up any associated storage); 879 * otherwise deal with reclaiming any reference (on error). 880 */ 881 int 882 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 883 struct ieee80211_bpf_params *params) 884 { 885 struct ieee80211vap *vap = ni->ni_vap; 886 struct ieee80211com *ic = ni->ni_ic; 887 struct ieee80211_frame *wh; 888 int ret; 889 890 KASSERT(ni != NULL, ("null node")); 891 892 if (vap->iv_state == IEEE80211_S_CAC) { 893 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 894 ni, "block %s frame in CAC state", 895 ieee80211_mgt_subtype_name(type)); 896 vap->iv_stats.is_tx_badstate++; 897 ieee80211_free_node(ni); 898 m_freem(m); 899 return EIO; /* XXX */ 900 } 901 902 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 903 if (m == NULL) { 904 ieee80211_free_node(ni); 905 return ENOMEM; 906 } 907 908 IEEE80211_TX_LOCK(ic); 909 910 wh = mtod(m, struct ieee80211_frame *); 911 ieee80211_send_setup(ni, m, 912 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 913 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 914 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 915 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 916 "encrypting frame (%s)", __func__); 917 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 918 } 919 m->m_flags |= M_ENCAP; /* mark encapsulated */ 920 921 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 922 M_WME_SETAC(m, params->ibp_pri); 923 924 #ifdef IEEE80211_DEBUG 925 /* avoid printing too many frames */ 926 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 927 ieee80211_msg_dumppkts(vap)) { 928 printf("[%s] send %s on channel %u\n", 929 ether_sprintf(wh->i_addr1), 930 ieee80211_mgt_subtype_name(type), 931 ieee80211_chan2ieee(ic, ic->ic_curchan)); 932 } 933 #endif 934 IEEE80211_NODE_STAT(ni, tx_mgmt); 935 936 ret = ieee80211_raw_output(vap, ni, m, params); 937 IEEE80211_TX_UNLOCK(ic); 938 return (ret); 939 } 940 941 static void 942 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 943 int status) 944 { 945 struct ieee80211vap *vap = ni->ni_vap; 946 947 wakeup(vap); 948 } 949 950 /* 951 * Send a null data frame to the specified node. If the station 952 * is setup for QoS then a QoS Null Data frame is constructed. 953 * If this is a WDS station then a 4-address frame is constructed. 954 * 955 * NB: the caller is assumed to have setup a node reference 956 * for use; this is necessary to deal with a race condition 957 * when probing for inactive stations. Like ieee80211_mgmt_output 958 * we must cleanup any node reference on error; however we 959 * can safely just unref it as we know it will never be the 960 * last reference to the node. 961 */ 962 int 963 ieee80211_send_nulldata(struct ieee80211_node *ni) 964 { 965 struct ieee80211vap *vap = ni->ni_vap; 966 struct ieee80211com *ic = ni->ni_ic; 967 struct mbuf *m; 968 struct ieee80211_frame *wh; 969 int hdrlen; 970 uint8_t *frm; 971 int ret; 972 973 if (vap->iv_state == IEEE80211_S_CAC) { 974 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 975 ni, "block %s frame in CAC state", "null data"); 976 ieee80211_unref_node(&ni); 977 vap->iv_stats.is_tx_badstate++; 978 return EIO; /* XXX */ 979 } 980 981 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 982 hdrlen = sizeof(struct ieee80211_qosframe); 983 else 984 hdrlen = sizeof(struct ieee80211_frame); 985 /* NB: only WDS vap's get 4-address frames */ 986 if (vap->iv_opmode == IEEE80211_M_WDS) 987 hdrlen += IEEE80211_ADDR_LEN; 988 if (ic->ic_flags & IEEE80211_F_DATAPAD) 989 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 990 991 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 992 if (m == NULL) { 993 /* XXX debug msg */ 994 ieee80211_unref_node(&ni); 995 vap->iv_stats.is_tx_nobuf++; 996 return ENOMEM; 997 } 998 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 999 ("leading space %zd", M_LEADINGSPACE(m))); 1000 M_PREPEND(m, hdrlen, M_NOWAIT); 1001 if (m == NULL) { 1002 /* NB: cannot happen */ 1003 ieee80211_free_node(ni); 1004 return ENOMEM; 1005 } 1006 1007 IEEE80211_TX_LOCK(ic); 1008 1009 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1010 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1011 const int tid = WME_AC_TO_TID(WME_AC_BE); 1012 uint8_t *qos; 1013 1014 ieee80211_send_setup(ni, m, 1015 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1016 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1017 1018 if (vap->iv_opmode == IEEE80211_M_WDS) 1019 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1020 else 1021 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1022 qos[0] = tid & IEEE80211_QOS_TID; 1023 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1024 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1025 qos[1] = 0; 1026 } else { 1027 ieee80211_send_setup(ni, m, 1028 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1029 IEEE80211_NONQOS_TID, 1030 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1031 } 1032 if (vap->iv_opmode != IEEE80211_M_WDS) { 1033 /* NB: power management bit is never sent by an AP */ 1034 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1035 vap->iv_opmode != IEEE80211_M_HOSTAP) 1036 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1037 } 1038 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1039 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1040 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1041 NULL); 1042 } 1043 m->m_len = m->m_pkthdr.len = hdrlen; 1044 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1045 1046 M_WME_SETAC(m, WME_AC_BE); 1047 1048 IEEE80211_NODE_STAT(ni, tx_data); 1049 1050 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1051 "send %snull data frame on channel %u, pwr mgt %s", 1052 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1053 ieee80211_chan2ieee(ic, ic->ic_curchan), 1054 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1055 1056 ret = ieee80211_raw_output(vap, ni, m, NULL); 1057 IEEE80211_TX_UNLOCK(ic); 1058 return (ret); 1059 } 1060 1061 /* 1062 * Assign priority to a frame based on any vlan tag assigned 1063 * to the station and/or any Diffserv setting in an IP header. 1064 * Finally, if an ACM policy is setup (in station mode) it's 1065 * applied. 1066 */ 1067 int 1068 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1069 { 1070 const struct ether_header *eh = NULL; 1071 uint16_t ether_type; 1072 int v_wme_ac, d_wme_ac, ac; 1073 1074 if (__predict_false(m->m_flags & M_ENCAP)) { 1075 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1076 struct llc *llc; 1077 int hdrlen, subtype; 1078 1079 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1080 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1081 ac = WME_AC_BE; 1082 goto done; 1083 } 1084 1085 hdrlen = ieee80211_hdrsize(wh); 1086 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1087 return 1; 1088 1089 llc = (struct llc *)mtodo(m, hdrlen); 1090 if (llc->llc_dsap != LLC_SNAP_LSAP || 1091 llc->llc_ssap != LLC_SNAP_LSAP || 1092 llc->llc_control != LLC_UI || 1093 llc->llc_snap.org_code[0] != 0 || 1094 llc->llc_snap.org_code[1] != 0 || 1095 llc->llc_snap.org_code[2] != 0) 1096 return 1; 1097 1098 ether_type = llc->llc_snap.ether_type; 1099 } else { 1100 eh = mtod(m, struct ether_header *); 1101 ether_type = eh->ether_type; 1102 } 1103 1104 /* 1105 * Always promote PAE/EAPOL frames to high priority. 1106 */ 1107 if (ether_type == htons(ETHERTYPE_PAE)) { 1108 /* NB: mark so others don't need to check header */ 1109 m->m_flags |= M_EAPOL; 1110 ac = WME_AC_VO; 1111 goto done; 1112 } 1113 /* 1114 * Non-qos traffic goes to BE. 1115 */ 1116 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1117 ac = WME_AC_BE; 1118 goto done; 1119 } 1120 1121 /* 1122 * If node has a vlan tag then all traffic 1123 * to it must have a matching tag. 1124 */ 1125 v_wme_ac = 0; 1126 if (ni->ni_vlan != 0) { 1127 if ((m->m_flags & M_VLANTAG) == 0) { 1128 IEEE80211_NODE_STAT(ni, tx_novlantag); 1129 return 1; 1130 } 1131 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1132 EVL_VLANOFTAG(ni->ni_vlan)) { 1133 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1134 return 1; 1135 } 1136 /* map vlan priority to AC */ 1137 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1138 } 1139 1140 /* XXX m_copydata may be too slow for fast path */ 1141 #ifdef INET 1142 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1143 uint8_t tos; 1144 /* 1145 * IP frame, map the DSCP bits from the TOS field. 1146 */ 1147 /* NB: ip header may not be in first mbuf */ 1148 m_copydata(m, sizeof(struct ether_header) + 1149 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1150 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1151 d_wme_ac = TID_TO_WME_AC(tos); 1152 } else { 1153 #endif /* INET */ 1154 #ifdef INET6 1155 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1156 uint32_t flow; 1157 uint8_t tos; 1158 /* 1159 * IPv6 frame, map the DSCP bits from the traffic class field. 1160 */ 1161 m_copydata(m, sizeof(struct ether_header) + 1162 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1163 (caddr_t) &flow); 1164 tos = (uint8_t)(ntohl(flow) >> 20); 1165 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1166 d_wme_ac = TID_TO_WME_AC(tos); 1167 } else { 1168 #endif /* INET6 */ 1169 d_wme_ac = WME_AC_BE; 1170 #ifdef INET6 1171 } 1172 #endif 1173 #ifdef INET 1174 } 1175 #endif 1176 /* 1177 * Use highest priority AC. 1178 */ 1179 if (v_wme_ac > d_wme_ac) 1180 ac = v_wme_ac; 1181 else 1182 ac = d_wme_ac; 1183 1184 /* 1185 * Apply ACM policy. 1186 */ 1187 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1188 static const int acmap[4] = { 1189 WME_AC_BK, /* WME_AC_BE */ 1190 WME_AC_BK, /* WME_AC_BK */ 1191 WME_AC_BE, /* WME_AC_VI */ 1192 WME_AC_VI, /* WME_AC_VO */ 1193 }; 1194 struct ieee80211com *ic = ni->ni_ic; 1195 1196 while (ac != WME_AC_BK && 1197 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1198 ac = acmap[ac]; 1199 } 1200 done: 1201 M_WME_SETAC(m, ac); 1202 return 0; 1203 } 1204 1205 /* 1206 * Insure there is sufficient contiguous space to encapsulate the 1207 * 802.11 data frame. If room isn't already there, arrange for it. 1208 * Drivers and cipher modules assume we have done the necessary work 1209 * and fail rudely if they don't find the space they need. 1210 */ 1211 struct mbuf * 1212 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1213 struct ieee80211_key *key, struct mbuf *m) 1214 { 1215 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1216 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1217 1218 if (key != NULL) { 1219 /* XXX belongs in crypto code? */ 1220 needed_space += key->wk_cipher->ic_header; 1221 /* XXX frags */ 1222 /* 1223 * When crypto is being done in the host we must insure 1224 * the data are writable for the cipher routines; clone 1225 * a writable mbuf chain. 1226 * XXX handle SWMIC specially 1227 */ 1228 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1229 m = m_unshare(m, M_NOWAIT); 1230 if (m == NULL) { 1231 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1232 "%s: cannot get writable mbuf\n", __func__); 1233 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1234 return NULL; 1235 } 1236 } 1237 } 1238 /* 1239 * We know we are called just before stripping an Ethernet 1240 * header and prepending an LLC header. This means we know 1241 * there will be 1242 * sizeof(struct ether_header) - sizeof(struct llc) 1243 * bytes recovered to which we need additional space for the 1244 * 802.11 header and any crypto header. 1245 */ 1246 /* XXX check trailing space and copy instead? */ 1247 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1248 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1249 if (n == NULL) { 1250 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1251 "%s: cannot expand storage\n", __func__); 1252 vap->iv_stats.is_tx_nobuf++; 1253 m_freem(m); 1254 return NULL; 1255 } 1256 KASSERT(needed_space <= MHLEN, 1257 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1258 /* 1259 * Setup new mbuf to have leading space to prepend the 1260 * 802.11 header and any crypto header bits that are 1261 * required (the latter are added when the driver calls 1262 * back to ieee80211_crypto_encap to do crypto encapsulation). 1263 */ 1264 /* NB: must be first 'cuz it clobbers m_data */ 1265 m_move_pkthdr(n, m); 1266 n->m_len = 0; /* NB: m_gethdr does not set */ 1267 n->m_data += needed_space; 1268 /* 1269 * Pull up Ethernet header to create the expected layout. 1270 * We could use m_pullup but that's overkill (i.e. we don't 1271 * need the actual data) and it cannot fail so do it inline 1272 * for speed. 1273 */ 1274 /* NB: struct ether_header is known to be contiguous */ 1275 n->m_len += sizeof(struct ether_header); 1276 m->m_len -= sizeof(struct ether_header); 1277 m->m_data += sizeof(struct ether_header); 1278 /* 1279 * Replace the head of the chain. 1280 */ 1281 n->m_next = m; 1282 m = n; 1283 } 1284 return m; 1285 #undef TO_BE_RECLAIMED 1286 } 1287 1288 /* 1289 * Return the transmit key to use in sending a unicast frame. 1290 * If a unicast key is set we use that. When no unicast key is set 1291 * we fall back to the default transmit key. 1292 */ 1293 static __inline struct ieee80211_key * 1294 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1295 struct ieee80211_node *ni) 1296 { 1297 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1298 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1299 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1300 return NULL; 1301 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1302 } else { 1303 return &ni->ni_ucastkey; 1304 } 1305 } 1306 1307 /* 1308 * Return the transmit key to use in sending a multicast frame. 1309 * Multicast traffic always uses the group key which is installed as 1310 * the default tx key. 1311 */ 1312 static __inline struct ieee80211_key * 1313 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1314 struct ieee80211_node *ni) 1315 { 1316 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1317 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1318 return NULL; 1319 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1320 } 1321 1322 /* 1323 * Encapsulate an outbound data frame. The mbuf chain is updated. 1324 * If an error is encountered NULL is returned. The caller is required 1325 * to provide a node reference and pullup the ethernet header in the 1326 * first mbuf. 1327 * 1328 * NB: Packet is assumed to be processed by ieee80211_classify which 1329 * marked EAPOL frames w/ M_EAPOL. 1330 */ 1331 struct mbuf * 1332 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1333 struct mbuf *m) 1334 { 1335 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1336 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1337 struct ieee80211com *ic = ni->ni_ic; 1338 #ifdef IEEE80211_SUPPORT_MESH 1339 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1340 struct ieee80211_meshcntl_ae10 *mc; 1341 struct ieee80211_mesh_route *rt = NULL; 1342 int dir = -1; 1343 #endif 1344 struct ether_header eh; 1345 struct ieee80211_frame *wh; 1346 struct ieee80211_key *key; 1347 struct llc *llc; 1348 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1349 ieee80211_seq seqno; 1350 int meshhdrsize, meshae; 1351 uint8_t *qos; 1352 int is_amsdu = 0; 1353 1354 IEEE80211_TX_LOCK_ASSERT(ic); 1355 1356 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1357 1358 /* 1359 * Copy existing Ethernet header to a safe place. The 1360 * rest of the code assumes it's ok to strip it when 1361 * reorganizing state for the final encapsulation. 1362 */ 1363 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1364 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1365 1366 /* 1367 * Insure space for additional headers. First identify 1368 * transmit key to use in calculating any buffer adjustments 1369 * required. This is also used below to do privacy 1370 * encapsulation work. Then calculate the 802.11 header 1371 * size and any padding required by the driver. 1372 * 1373 * Note key may be NULL if we fall back to the default 1374 * transmit key and that is not set. In that case the 1375 * buffer may not be expanded as needed by the cipher 1376 * routines, but they will/should discard it. 1377 */ 1378 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1379 if (vap->iv_opmode == IEEE80211_M_STA || 1380 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1381 (vap->iv_opmode == IEEE80211_M_WDS && 1382 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1383 key = ieee80211_crypto_getucastkey(vap, ni); 1384 else 1385 key = ieee80211_crypto_getmcastkey(vap, ni); 1386 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1387 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1388 eh.ether_dhost, 1389 "no default transmit key (%s) deftxkey %u", 1390 __func__, vap->iv_def_txkey); 1391 vap->iv_stats.is_tx_nodefkey++; 1392 goto bad; 1393 } 1394 } else 1395 key = NULL; 1396 /* 1397 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1398 * frames so suppress use. This may be an issue if other 1399 * ap's require all data frames to be QoS-encapsulated 1400 * once negotiated in which case we'll need to make this 1401 * configurable. 1402 * 1403 * Don't send multicast QoS frames. 1404 * Technically multicast frames can be QoS if all stations in the 1405 * BSS are also QoS. 1406 * 1407 * NB: mesh data frames are QoS, including multicast frames. 1408 */ 1409 addqos = 1410 (((is_mcast == 0) && (ni->ni_flags & 1411 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1412 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1413 (m->m_flags & M_EAPOL) == 0; 1414 1415 if (addqos) 1416 hdrsize = sizeof(struct ieee80211_qosframe); 1417 else 1418 hdrsize = sizeof(struct ieee80211_frame); 1419 #ifdef IEEE80211_SUPPORT_MESH 1420 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1421 /* 1422 * Mesh data frames are encapsulated according to the 1423 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1424 * o Group Addressed data (aka multicast) originating 1425 * at the local sta are sent w/ 3-address format and 1426 * address extension mode 00 1427 * o Individually Addressed data (aka unicast) originating 1428 * at the local sta are sent w/ 4-address format and 1429 * address extension mode 00 1430 * o Group Addressed data forwarded from a non-mesh sta are 1431 * sent w/ 3-address format and address extension mode 01 1432 * o Individually Address data from another sta are sent 1433 * w/ 4-address format and address extension mode 10 1434 */ 1435 is4addr = 0; /* NB: don't use, disable */ 1436 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1437 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1438 KASSERT(rt != NULL, ("route is NULL")); 1439 dir = IEEE80211_FC1_DIR_DSTODS; 1440 hdrsize += IEEE80211_ADDR_LEN; 1441 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1442 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1443 vap->iv_myaddr)) { 1444 IEEE80211_NOTE_MAC(vap, 1445 IEEE80211_MSG_MESH, 1446 eh.ether_dhost, 1447 "%s", "trying to send to ourself"); 1448 goto bad; 1449 } 1450 meshae = IEEE80211_MESH_AE_10; 1451 meshhdrsize = 1452 sizeof(struct ieee80211_meshcntl_ae10); 1453 } else { 1454 meshae = IEEE80211_MESH_AE_00; 1455 meshhdrsize = 1456 sizeof(struct ieee80211_meshcntl); 1457 } 1458 } else { 1459 dir = IEEE80211_FC1_DIR_FROMDS; 1460 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1461 /* proxy group */ 1462 meshae = IEEE80211_MESH_AE_01; 1463 meshhdrsize = 1464 sizeof(struct ieee80211_meshcntl_ae01); 1465 } else { 1466 /* group */ 1467 meshae = IEEE80211_MESH_AE_00; 1468 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1469 } 1470 } 1471 } else { 1472 #endif 1473 /* 1474 * 4-address frames need to be generated for: 1475 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1476 * o packets sent through a vap marked for relaying 1477 * (e.g. a station operating with dynamic WDS) 1478 */ 1479 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1480 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1481 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1482 if (is4addr) 1483 hdrsize += IEEE80211_ADDR_LEN; 1484 meshhdrsize = meshae = 0; 1485 #ifdef IEEE80211_SUPPORT_MESH 1486 } 1487 #endif 1488 /* 1489 * Honor driver DATAPAD requirement. 1490 */ 1491 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1492 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1493 else 1494 hdrspace = hdrsize; 1495 1496 if (__predict_true((m->m_flags & M_FF) == 0)) { 1497 /* 1498 * Normal frame. 1499 */ 1500 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1501 if (m == NULL) { 1502 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1503 goto bad; 1504 } 1505 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1506 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1507 llc = mtod(m, struct llc *); 1508 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1509 llc->llc_control = LLC_UI; 1510 llc->llc_snap.org_code[0] = 0; 1511 llc->llc_snap.org_code[1] = 0; 1512 llc->llc_snap.org_code[2] = 0; 1513 llc->llc_snap.ether_type = eh.ether_type; 1514 } else { 1515 #ifdef IEEE80211_SUPPORT_SUPERG 1516 /* 1517 * Aggregated frame. Check if it's for AMSDU or FF. 1518 * 1519 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1520 * anywhere for some reason. But, since 11n requires 1521 * AMSDU RX, we can just assume "11n" == "AMSDU". 1522 */ 1523 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1524 if (ieee80211_amsdu_tx_ok(ni)) { 1525 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1526 is_amsdu = 1; 1527 } else { 1528 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1529 } 1530 if (m == NULL) 1531 #endif 1532 goto bad; 1533 } 1534 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1535 1536 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1537 if (m == NULL) { 1538 vap->iv_stats.is_tx_nobuf++; 1539 goto bad; 1540 } 1541 wh = mtod(m, struct ieee80211_frame *); 1542 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1543 *(uint16_t *)wh->i_dur = 0; 1544 qos = NULL; /* NB: quiet compiler */ 1545 if (is4addr) { 1546 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1547 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1548 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1549 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1550 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1551 } else switch (vap->iv_opmode) { 1552 case IEEE80211_M_STA: 1553 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1554 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1555 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1556 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1557 break; 1558 case IEEE80211_M_IBSS: 1559 case IEEE80211_M_AHDEMO: 1560 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1561 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1562 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1563 /* 1564 * NB: always use the bssid from iv_bss as the 1565 * neighbor's may be stale after an ibss merge 1566 */ 1567 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1568 break; 1569 case IEEE80211_M_HOSTAP: 1570 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1571 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1572 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1573 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1574 break; 1575 #ifdef IEEE80211_SUPPORT_MESH 1576 case IEEE80211_M_MBSS: 1577 /* NB: offset by hdrspace to deal with DATAPAD */ 1578 mc = (struct ieee80211_meshcntl_ae10 *) 1579 (mtod(m, uint8_t *) + hdrspace); 1580 wh->i_fc[1] = dir; 1581 switch (meshae) { 1582 case IEEE80211_MESH_AE_00: /* no proxy */ 1583 mc->mc_flags = 0; 1584 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1585 IEEE80211_ADDR_COPY(wh->i_addr1, 1586 ni->ni_macaddr); 1587 IEEE80211_ADDR_COPY(wh->i_addr2, 1588 vap->iv_myaddr); 1589 IEEE80211_ADDR_COPY(wh->i_addr3, 1590 eh.ether_dhost); 1591 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1592 eh.ether_shost); 1593 qos =((struct ieee80211_qosframe_addr4 *) 1594 wh)->i_qos; 1595 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1596 /* mcast */ 1597 IEEE80211_ADDR_COPY(wh->i_addr1, 1598 eh.ether_dhost); 1599 IEEE80211_ADDR_COPY(wh->i_addr2, 1600 vap->iv_myaddr); 1601 IEEE80211_ADDR_COPY(wh->i_addr3, 1602 eh.ether_shost); 1603 qos = ((struct ieee80211_qosframe *) 1604 wh)->i_qos; 1605 } 1606 break; 1607 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1608 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1609 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1610 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1611 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1612 mc->mc_flags = 1; 1613 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1614 eh.ether_shost); 1615 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1616 break; 1617 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1618 KASSERT(rt != NULL, ("route is NULL")); 1619 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1620 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1621 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1622 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1623 mc->mc_flags = IEEE80211_MESH_AE_10; 1624 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1625 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1626 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1627 break; 1628 default: 1629 KASSERT(0, ("meshae %d", meshae)); 1630 break; 1631 } 1632 mc->mc_ttl = ms->ms_ttl; 1633 ms->ms_seq++; 1634 le32enc(mc->mc_seq, ms->ms_seq); 1635 break; 1636 #endif 1637 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1638 default: 1639 goto bad; 1640 } 1641 if (m->m_flags & M_MORE_DATA) 1642 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1643 if (addqos) { 1644 int ac, tid; 1645 1646 if (is4addr) { 1647 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1648 /* NB: mesh case handled earlier */ 1649 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1650 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1651 ac = M_WME_GETAC(m); 1652 /* map from access class/queue to 11e header priorty value */ 1653 tid = WME_AC_TO_TID(ac); 1654 qos[0] = tid & IEEE80211_QOS_TID; 1655 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1656 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1657 #ifdef IEEE80211_SUPPORT_MESH 1658 if (vap->iv_opmode == IEEE80211_M_MBSS) 1659 qos[1] = IEEE80211_QOS_MC; 1660 else 1661 #endif 1662 qos[1] = 0; 1663 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1664 1665 /* 1666 * If this is an A-MSDU then ensure we set the 1667 * relevant field. 1668 */ 1669 if (is_amsdu) 1670 qos[0] |= IEEE80211_QOS_AMSDU; 1671 1672 /* 1673 * XXX TODO TX lock is needed for atomic updates of sequence 1674 * numbers. If the driver does it, then don't do it here; 1675 * and we don't need the TX lock held. 1676 */ 1677 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1678 /* 1679 * 802.11-2012 9.3.2.10 - 1680 * 1681 * If this is a multicast frame then we need 1682 * to ensure that the sequence number comes from 1683 * a separate seqno space and not the TID space. 1684 * 1685 * Otherwise multicast frames may actually cause 1686 * holes in the TX blockack window space and 1687 * upset various things. 1688 */ 1689 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1690 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1691 else 1692 seqno = ni->ni_txseqs[tid]++; 1693 1694 /* 1695 * NB: don't assign a sequence # to potential 1696 * aggregates; we expect this happens at the 1697 * point the frame comes off any aggregation q 1698 * as otherwise we may introduce holes in the 1699 * BA sequence space and/or make window accouting 1700 * more difficult. 1701 * 1702 * XXX may want to control this with a driver 1703 * capability; this may also change when we pull 1704 * aggregation up into net80211 1705 */ 1706 seqno = ni->ni_txseqs[tid]++; 1707 *(uint16_t *)wh->i_seq = 1708 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1709 M_SEQNO_SET(m, seqno); 1710 } else { 1711 /* NB: zero out i_seq field (for s/w encryption etc) */ 1712 *(uint16_t *)wh->i_seq = 0; 1713 } 1714 } else { 1715 /* 1716 * XXX TODO TX lock is needed for atomic updates of sequence 1717 * numbers. If the driver does it, then don't do it here; 1718 * and we don't need the TX lock held. 1719 */ 1720 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1721 *(uint16_t *)wh->i_seq = 1722 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1723 M_SEQNO_SET(m, seqno); 1724 1725 /* 1726 * XXX TODO: we shouldn't allow EAPOL, etc that would 1727 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1728 */ 1729 if (is_amsdu) 1730 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1731 __func__); 1732 } 1733 1734 /* 1735 * Check if xmit fragmentation is required. 1736 * 1737 * If the hardware does fragmentation offload, then don't bother 1738 * doing it here. 1739 */ 1740 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1741 txfrag = 0; 1742 else 1743 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1744 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1745 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1746 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1747 1748 if (key != NULL) { 1749 /* 1750 * IEEE 802.1X: send EAPOL frames always in the clear. 1751 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1752 */ 1753 if ((m->m_flags & M_EAPOL) == 0 || 1754 ((vap->iv_flags & IEEE80211_F_WPA) && 1755 (vap->iv_opmode == IEEE80211_M_STA ? 1756 !IEEE80211_KEY_UNDEFINED(key) : 1757 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1758 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1759 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1760 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1761 eh.ether_dhost, 1762 "%s", "enmic failed, discard frame"); 1763 vap->iv_stats.is_crypto_enmicfail++; 1764 goto bad; 1765 } 1766 } 1767 } 1768 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1769 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1770 goto bad; 1771 1772 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1773 1774 IEEE80211_NODE_STAT(ni, tx_data); 1775 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1776 IEEE80211_NODE_STAT(ni, tx_mcast); 1777 m->m_flags |= M_MCAST; 1778 } else 1779 IEEE80211_NODE_STAT(ni, tx_ucast); 1780 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1781 1782 return m; 1783 bad: 1784 if (m != NULL) 1785 m_freem(m); 1786 return NULL; 1787 #undef WH4 1788 #undef MC01 1789 } 1790 1791 void 1792 ieee80211_free_mbuf(struct mbuf *m) 1793 { 1794 struct mbuf *next; 1795 1796 if (m == NULL) 1797 return; 1798 1799 do { 1800 next = m->m_nextpkt; 1801 m->m_nextpkt = NULL; 1802 m_freem(m); 1803 } while ((m = next) != NULL); 1804 } 1805 1806 /* 1807 * Fragment the frame according to the specified mtu. 1808 * The size of the 802.11 header (w/o padding) is provided 1809 * so we don't need to recalculate it. We create a new 1810 * mbuf for each fragment and chain it through m_nextpkt; 1811 * we might be able to optimize this by reusing the original 1812 * packet's mbufs but that is significantly more complicated. 1813 */ 1814 static int 1815 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1816 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1817 { 1818 struct ieee80211com *ic = vap->iv_ic; 1819 struct ieee80211_frame *wh, *whf; 1820 struct mbuf *m, *prev; 1821 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1822 u_int hdrspace; 1823 1824 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1825 KASSERT(m0->m_pkthdr.len > mtu, 1826 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1827 1828 /* 1829 * Honor driver DATAPAD requirement. 1830 */ 1831 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1832 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1833 else 1834 hdrspace = hdrsize; 1835 1836 wh = mtod(m0, struct ieee80211_frame *); 1837 /* NB: mark the first frag; it will be propagated below */ 1838 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1839 totalhdrsize = hdrspace + ciphdrsize; 1840 fragno = 1; 1841 off = mtu - ciphdrsize; 1842 remainder = m0->m_pkthdr.len - off; 1843 prev = m0; 1844 do { 1845 fragsize = MIN(totalhdrsize + remainder, mtu); 1846 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1847 if (m == NULL) 1848 goto bad; 1849 /* leave room to prepend any cipher header */ 1850 m_align(m, fragsize - ciphdrsize); 1851 1852 /* 1853 * Form the header in the fragment. Note that since 1854 * we mark the first fragment with the MORE_FRAG bit 1855 * it automatically is propagated to each fragment; we 1856 * need only clear it on the last fragment (done below). 1857 * NB: frag 1+ dont have Mesh Control field present. 1858 */ 1859 whf = mtod(m, struct ieee80211_frame *); 1860 memcpy(whf, wh, hdrsize); 1861 #ifdef IEEE80211_SUPPORT_MESH 1862 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1863 if (IEEE80211_IS_DSTODS(wh)) 1864 ((struct ieee80211_qosframe_addr4 *) 1865 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1866 else 1867 ((struct ieee80211_qosframe *) 1868 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1869 } 1870 #endif 1871 *(uint16_t *)&whf->i_seq[0] |= htole16( 1872 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1873 IEEE80211_SEQ_FRAG_SHIFT); 1874 fragno++; 1875 1876 payload = fragsize - totalhdrsize; 1877 /* NB: destination is known to be contiguous */ 1878 1879 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1880 m->m_len = hdrspace + payload; 1881 m->m_pkthdr.len = hdrspace + payload; 1882 m->m_flags |= M_FRAG; 1883 1884 /* chain up the fragment */ 1885 prev->m_nextpkt = m; 1886 prev = m; 1887 1888 /* deduct fragment just formed */ 1889 remainder -= payload; 1890 off += payload; 1891 } while (remainder != 0); 1892 1893 /* set the last fragment */ 1894 m->m_flags |= M_LASTFRAG; 1895 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1896 1897 /* strip first mbuf now that everything has been copied */ 1898 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1899 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1900 1901 vap->iv_stats.is_tx_fragframes++; 1902 vap->iv_stats.is_tx_frags += fragno-1; 1903 1904 return 1; 1905 bad: 1906 /* reclaim fragments but leave original frame for caller to free */ 1907 ieee80211_free_mbuf(m0->m_nextpkt); 1908 m0->m_nextpkt = NULL; 1909 return 0; 1910 } 1911 1912 /* 1913 * Add a supported rates element id to a frame. 1914 */ 1915 uint8_t * 1916 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1917 { 1918 int nrates; 1919 1920 *frm++ = IEEE80211_ELEMID_RATES; 1921 nrates = rs->rs_nrates; 1922 if (nrates > IEEE80211_RATE_SIZE) 1923 nrates = IEEE80211_RATE_SIZE; 1924 *frm++ = nrates; 1925 memcpy(frm, rs->rs_rates, nrates); 1926 return frm + nrates; 1927 } 1928 1929 /* 1930 * Add an extended supported rates element id to a frame. 1931 */ 1932 uint8_t * 1933 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1934 { 1935 /* 1936 * Add an extended supported rates element if operating in 11g mode. 1937 */ 1938 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1939 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1940 *frm++ = IEEE80211_ELEMID_XRATES; 1941 *frm++ = nrates; 1942 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1943 frm += nrates; 1944 } 1945 return frm; 1946 } 1947 1948 /* 1949 * Add an ssid element to a frame. 1950 */ 1951 uint8_t * 1952 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1953 { 1954 *frm++ = IEEE80211_ELEMID_SSID; 1955 *frm++ = len; 1956 memcpy(frm, ssid, len); 1957 return frm + len; 1958 } 1959 1960 /* 1961 * Add an erp element to a frame. 1962 */ 1963 static uint8_t * 1964 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1965 { 1966 uint8_t erp; 1967 1968 *frm++ = IEEE80211_ELEMID_ERP; 1969 *frm++ = 1; 1970 erp = 0; 1971 if (ic->ic_nonerpsta != 0) 1972 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1973 if (ic->ic_flags & IEEE80211_F_USEPROT) 1974 erp |= IEEE80211_ERP_USE_PROTECTION; 1975 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1976 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1977 *frm++ = erp; 1978 return frm; 1979 } 1980 1981 /* 1982 * Add a CFParams element to a frame. 1983 */ 1984 static uint8_t * 1985 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1986 { 1987 #define ADDSHORT(frm, v) do { \ 1988 le16enc(frm, v); \ 1989 frm += 2; \ 1990 } while (0) 1991 *frm++ = IEEE80211_ELEMID_CFPARMS; 1992 *frm++ = 6; 1993 *frm++ = 0; /* CFP count */ 1994 *frm++ = 2; /* CFP period */ 1995 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1996 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1997 return frm; 1998 #undef ADDSHORT 1999 } 2000 2001 static __inline uint8_t * 2002 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 2003 { 2004 memcpy(frm, ie->ie_data, ie->ie_len); 2005 return frm + ie->ie_len; 2006 } 2007 2008 static __inline uint8_t * 2009 add_ie(uint8_t *frm, const uint8_t *ie) 2010 { 2011 memcpy(frm, ie, 2 + ie[1]); 2012 return frm + 2 + ie[1]; 2013 } 2014 2015 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2016 /* 2017 * Add a WME information element to a frame. 2018 */ 2019 uint8_t * 2020 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 2021 { 2022 static const struct ieee80211_wme_info info = { 2023 .wme_id = IEEE80211_ELEMID_VENDOR, 2024 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 2025 .wme_oui = { WME_OUI_BYTES }, 2026 .wme_type = WME_OUI_TYPE, 2027 .wme_subtype = WME_INFO_OUI_SUBTYPE, 2028 .wme_version = WME_VERSION, 2029 .wme_info = 0, 2030 }; 2031 memcpy(frm, &info, sizeof(info)); 2032 return frm + sizeof(info); 2033 } 2034 2035 /* 2036 * Add a WME parameters element to a frame. 2037 */ 2038 static uint8_t * 2039 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 2040 { 2041 #define SM(_v, _f) (((_v) << _f##_S) & _f) 2042 #define ADDSHORT(frm, v) do { \ 2043 le16enc(frm, v); \ 2044 frm += 2; \ 2045 } while (0) 2046 /* NB: this works 'cuz a param has an info at the front */ 2047 static const struct ieee80211_wme_info param = { 2048 .wme_id = IEEE80211_ELEMID_VENDOR, 2049 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2050 .wme_oui = { WME_OUI_BYTES }, 2051 .wme_type = WME_OUI_TYPE, 2052 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2053 .wme_version = WME_VERSION, 2054 }; 2055 int i; 2056 2057 memcpy(frm, ¶m, sizeof(param)); 2058 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2059 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 2060 *frm++ = 0; /* reserved field */ 2061 for (i = 0; i < WME_NUM_AC; i++) { 2062 const struct wmeParams *ac = 2063 &wme->wme_bssChanParams.cap_wmeParams[i]; 2064 *frm++ = SM(i, WME_PARAM_ACI) 2065 | SM(ac->wmep_acm, WME_PARAM_ACM) 2066 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 2067 ; 2068 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 2069 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 2070 ; 2071 ADDSHORT(frm, ac->wmep_txopLimit); 2072 } 2073 return frm; 2074 #undef SM 2075 #undef ADDSHORT 2076 } 2077 #undef WME_OUI_BYTES 2078 2079 /* 2080 * Add an 11h Power Constraint element to a frame. 2081 */ 2082 static uint8_t * 2083 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2084 { 2085 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2086 /* XXX per-vap tx power limit? */ 2087 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2088 2089 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2090 frm[1] = 1; 2091 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2092 return frm + 3; 2093 } 2094 2095 /* 2096 * Add an 11h Power Capability element to a frame. 2097 */ 2098 static uint8_t * 2099 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2100 { 2101 frm[0] = IEEE80211_ELEMID_PWRCAP; 2102 frm[1] = 2; 2103 frm[2] = c->ic_minpower; 2104 frm[3] = c->ic_maxpower; 2105 return frm + 4; 2106 } 2107 2108 /* 2109 * Add an 11h Supported Channels element to a frame. 2110 */ 2111 static uint8_t * 2112 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2113 { 2114 static const int ielen = 26; 2115 2116 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2117 frm[1] = ielen; 2118 /* XXX not correct */ 2119 memcpy(frm+2, ic->ic_chan_avail, ielen); 2120 return frm + 2 + ielen; 2121 } 2122 2123 /* 2124 * Add an 11h Quiet time element to a frame. 2125 */ 2126 static uint8_t * 2127 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2128 { 2129 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2130 2131 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2132 quiet->len = 6; 2133 2134 /* 2135 * Only update every beacon interval - otherwise probe responses 2136 * would update the quiet count value. 2137 */ 2138 if (update) { 2139 if (vap->iv_quiet_count_value == 1) 2140 vap->iv_quiet_count_value = vap->iv_quiet_count; 2141 else if (vap->iv_quiet_count_value > 1) 2142 vap->iv_quiet_count_value--; 2143 } 2144 2145 if (vap->iv_quiet_count_value == 0) { 2146 /* value 0 is reserved as per 802.11h standerd */ 2147 vap->iv_quiet_count_value = 1; 2148 } 2149 2150 quiet->tbttcount = vap->iv_quiet_count_value; 2151 quiet->period = vap->iv_quiet_period; 2152 quiet->duration = htole16(vap->iv_quiet_duration); 2153 quiet->offset = htole16(vap->iv_quiet_offset); 2154 return frm + sizeof(*quiet); 2155 } 2156 2157 /* 2158 * Add an 11h Channel Switch Announcement element to a frame. 2159 * Note that we use the per-vap CSA count to adjust the global 2160 * counter so we can use this routine to form probe response 2161 * frames and get the current count. 2162 */ 2163 static uint8_t * 2164 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2165 { 2166 struct ieee80211com *ic = vap->iv_ic; 2167 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2168 2169 csa->csa_ie = IEEE80211_ELEMID_CSA; 2170 csa->csa_len = 3; 2171 csa->csa_mode = 1; /* XXX force quiet on channel */ 2172 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2173 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2174 return frm + sizeof(*csa); 2175 } 2176 2177 /* 2178 * Add an 11h country information element to a frame. 2179 */ 2180 static uint8_t * 2181 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2182 { 2183 2184 if (ic->ic_countryie == NULL || 2185 ic->ic_countryie_chan != ic->ic_bsschan) { 2186 /* 2187 * Handle lazy construction of ie. This is done on 2188 * first use and after a channel change that requires 2189 * re-calculation. 2190 */ 2191 if (ic->ic_countryie != NULL) 2192 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2193 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2194 if (ic->ic_countryie == NULL) 2195 return frm; 2196 ic->ic_countryie_chan = ic->ic_bsschan; 2197 } 2198 return add_appie(frm, ic->ic_countryie); 2199 } 2200 2201 uint8_t * 2202 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2203 { 2204 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2205 return (add_ie(frm, vap->iv_wpa_ie)); 2206 else { 2207 /* XXX else complain? */ 2208 return (frm); 2209 } 2210 } 2211 2212 uint8_t * 2213 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2214 { 2215 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2216 return (add_ie(frm, vap->iv_rsn_ie)); 2217 else { 2218 /* XXX else complain? */ 2219 return (frm); 2220 } 2221 } 2222 2223 uint8_t * 2224 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2225 { 2226 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2227 *frm++ = IEEE80211_ELEMID_QOS; 2228 *frm++ = 1; 2229 *frm++ = 0; 2230 } 2231 2232 return (frm); 2233 } 2234 2235 /* 2236 * Send a probe request frame with the specified ssid 2237 * and any optional information element data. 2238 */ 2239 int 2240 ieee80211_send_probereq(struct ieee80211_node *ni, 2241 const uint8_t sa[IEEE80211_ADDR_LEN], 2242 const uint8_t da[IEEE80211_ADDR_LEN], 2243 const uint8_t bssid[IEEE80211_ADDR_LEN], 2244 const uint8_t *ssid, size_t ssidlen) 2245 { 2246 struct ieee80211vap *vap = ni->ni_vap; 2247 struct ieee80211com *ic = ni->ni_ic; 2248 struct ieee80211_node *bss; 2249 const struct ieee80211_txparam *tp; 2250 struct ieee80211_bpf_params params; 2251 const struct ieee80211_rateset *rs; 2252 struct mbuf *m; 2253 uint8_t *frm; 2254 int ret; 2255 2256 bss = ieee80211_ref_node(vap->iv_bss); 2257 2258 if (vap->iv_state == IEEE80211_S_CAC) { 2259 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2260 "block %s frame in CAC state", "probe request"); 2261 vap->iv_stats.is_tx_badstate++; 2262 ieee80211_free_node(bss); 2263 return EIO; /* XXX */ 2264 } 2265 2266 /* 2267 * Hold a reference on the node so it doesn't go away until after 2268 * the xmit is complete all the way in the driver. On error we 2269 * will remove our reference. 2270 */ 2271 #ifndef __HAIKU__ 2272 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2273 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2274 __func__, __LINE__, 2275 ni, ether_sprintf(ni->ni_macaddr), 2276 ieee80211_node_refcnt(ni)+1); 2277 #endif 2278 ieee80211_ref_node(ni); 2279 2280 /* 2281 * prreq frame format 2282 * [tlv] ssid 2283 * [tlv] supported rates 2284 * [tlv] RSN (optional) 2285 * [tlv] extended supported rates 2286 * [tlv] HT cap (optional) 2287 * [tlv] VHT cap (optional) 2288 * [tlv] WPA (optional) 2289 * [tlv] user-specified ie's 2290 */ 2291 m = ieee80211_getmgtframe(&frm, 2292 ic->ic_headroom + sizeof(struct ieee80211_frame), 2293 2 + IEEE80211_NWID_LEN 2294 + 2 + IEEE80211_RATE_SIZE 2295 + sizeof(struct ieee80211_ie_htcap) 2296 + sizeof(struct ieee80211_ie_vhtcap) 2297 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2298 + sizeof(struct ieee80211_ie_wpa) 2299 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2300 + sizeof(struct ieee80211_ie_wpa) 2301 + (vap->iv_appie_probereq != NULL ? 2302 vap->iv_appie_probereq->ie_len : 0) 2303 ); 2304 if (m == NULL) { 2305 vap->iv_stats.is_tx_nobuf++; 2306 ieee80211_free_node(ni); 2307 ieee80211_free_node(bss); 2308 return ENOMEM; 2309 } 2310 2311 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2312 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2313 frm = ieee80211_add_rates(frm, rs); 2314 frm = ieee80211_add_rsn(frm, vap); 2315 frm = ieee80211_add_xrates(frm, rs); 2316 2317 /* 2318 * Note: we can't use bss; we don't have one yet. 2319 * 2320 * So, we should announce our capabilities 2321 * in this channel mode (2g/5g), not the 2322 * channel details itself. 2323 */ 2324 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2325 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2326 struct ieee80211_channel *c; 2327 2328 /* 2329 * Get the HT channel that we should try upgrading to. 2330 * If we can do 40MHz then this'll upgrade it appropriately. 2331 */ 2332 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2333 vap->iv_flags_ht); 2334 frm = ieee80211_add_htcap_ch(frm, vap, c); 2335 } 2336 2337 /* 2338 * XXX TODO: need to figure out what/how to update the 2339 * VHT channel. 2340 */ 2341 #if 0 2342 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2343 struct ieee80211_channel *c; 2344 2345 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2346 vap->iv_flags_ht); 2347 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2348 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2349 } 2350 #endif 2351 2352 frm = ieee80211_add_wpa(frm, vap); 2353 if (vap->iv_appie_probereq != NULL) 2354 frm = add_appie(frm, vap->iv_appie_probereq); 2355 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2356 2357 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2358 ("leading space %zd", M_LEADINGSPACE(m))); 2359 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2360 if (m == NULL) { 2361 /* NB: cannot happen */ 2362 ieee80211_free_node(ni); 2363 ieee80211_free_node(bss); 2364 return ENOMEM; 2365 } 2366 2367 IEEE80211_TX_LOCK(ic); 2368 ieee80211_send_setup(ni, m, 2369 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2370 IEEE80211_NONQOS_TID, sa, da, bssid); 2371 /* XXX power management? */ 2372 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2373 2374 M_WME_SETAC(m, WME_AC_BE); 2375 2376 IEEE80211_NODE_STAT(ni, tx_probereq); 2377 IEEE80211_NODE_STAT(ni, tx_mgmt); 2378 2379 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2380 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2381 ieee80211_chan2ieee(ic, ic->ic_curchan), 2382 ether_sprintf(bssid), 2383 sa, ":", 2384 da, ":", 2385 ssidlen, ssid); 2386 2387 memset(¶ms, 0, sizeof(params)); 2388 params.ibp_pri = M_WME_GETAC(m); 2389 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2390 params.ibp_rate0 = tp->mgmtrate; 2391 if (IEEE80211_IS_MULTICAST(da)) { 2392 params.ibp_flags |= IEEE80211_BPF_NOACK; 2393 params.ibp_try0 = 1; 2394 } else 2395 params.ibp_try0 = tp->maxretry; 2396 params.ibp_power = ni->ni_txpower; 2397 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2398 IEEE80211_TX_UNLOCK(ic); 2399 ieee80211_free_node(bss); 2400 return (ret); 2401 } 2402 2403 /* 2404 * Calculate capability information for mgt frames. 2405 */ 2406 uint16_t 2407 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2408 { 2409 struct ieee80211com *ic = vap->iv_ic; 2410 uint16_t capinfo; 2411 2412 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2413 2414 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2415 capinfo = IEEE80211_CAPINFO_ESS; 2416 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2417 capinfo = IEEE80211_CAPINFO_IBSS; 2418 else 2419 capinfo = 0; 2420 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2421 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2422 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2423 IEEE80211_IS_CHAN_2GHZ(chan)) 2424 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2425 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2426 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2427 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2428 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2429 return capinfo; 2430 } 2431 2432 /* 2433 * Send a management frame. The node is for the destination (or ic_bss 2434 * when in station mode). Nodes other than ic_bss have their reference 2435 * count bumped to reflect our use for an indeterminant time. 2436 */ 2437 int 2438 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2439 { 2440 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2441 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2442 struct ieee80211vap *vap = ni->ni_vap; 2443 struct ieee80211com *ic = ni->ni_ic; 2444 struct ieee80211_node *bss = vap->iv_bss; 2445 struct ieee80211_bpf_params params; 2446 struct mbuf *m; 2447 uint8_t *frm; 2448 uint16_t capinfo; 2449 int has_challenge, is_shared_key, ret, status; 2450 2451 KASSERT(ni != NULL, ("null node")); 2452 2453 /* 2454 * Hold a reference on the node so it doesn't go away until after 2455 * the xmit is complete all the way in the driver. On error we 2456 * will remove our reference. 2457 */ 2458 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2459 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2460 __func__, __LINE__, 2461 ni, ether_sprintf(ni->ni_macaddr), 2462 ieee80211_node_refcnt(ni)+1); 2463 ieee80211_ref_node(ni); 2464 2465 memset(¶ms, 0, sizeof(params)); 2466 switch (type) { 2467 2468 case IEEE80211_FC0_SUBTYPE_AUTH: 2469 status = arg >> 16; 2470 arg &= 0xffff; 2471 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2472 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2473 ni->ni_challenge != NULL); 2474 2475 /* 2476 * Deduce whether we're doing open authentication or 2477 * shared key authentication. We do the latter if 2478 * we're in the middle of a shared key authentication 2479 * handshake or if we're initiating an authentication 2480 * request and configured to use shared key. 2481 */ 2482 is_shared_key = has_challenge || 2483 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2484 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2485 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2486 2487 m = ieee80211_getmgtframe(&frm, 2488 ic->ic_headroom + sizeof(struct ieee80211_frame), 2489 3 * sizeof(uint16_t) 2490 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2491 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2492 ); 2493 if (m == NULL) 2494 senderr(ENOMEM, is_tx_nobuf); 2495 2496 ((uint16_t *)frm)[0] = 2497 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2498 : htole16(IEEE80211_AUTH_ALG_OPEN); 2499 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2500 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2501 2502 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2503 ((uint16_t *)frm)[3] = 2504 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2505 IEEE80211_ELEMID_CHALLENGE); 2506 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2507 IEEE80211_CHALLENGE_LEN); 2508 m->m_pkthdr.len = m->m_len = 2509 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2510 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2511 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2512 "request encrypt frame (%s)", __func__); 2513 /* mark frame for encryption */ 2514 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2515 } 2516 } else 2517 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2518 2519 /* XXX not right for shared key */ 2520 if (status == IEEE80211_STATUS_SUCCESS) 2521 IEEE80211_NODE_STAT(ni, tx_auth); 2522 else 2523 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2524 2525 if (vap->iv_opmode == IEEE80211_M_STA) 2526 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2527 (void *) vap->iv_state); 2528 break; 2529 2530 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2531 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2532 "send station deauthenticate (reason: %d (%s))", arg, 2533 ieee80211_reason_to_string(arg)); 2534 m = ieee80211_getmgtframe(&frm, 2535 ic->ic_headroom + sizeof(struct ieee80211_frame), 2536 sizeof(uint16_t)); 2537 if (m == NULL) 2538 senderr(ENOMEM, is_tx_nobuf); 2539 *(uint16_t *)frm = htole16(arg); /* reason */ 2540 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2541 2542 IEEE80211_NODE_STAT(ni, tx_deauth); 2543 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2544 2545 ieee80211_node_unauthorize(ni); /* port closed */ 2546 break; 2547 2548 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2549 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2550 /* 2551 * asreq frame format 2552 * [2] capability information 2553 * [2] listen interval 2554 * [6*] current AP address (reassoc only) 2555 * [tlv] ssid 2556 * [tlv] supported rates 2557 * [tlv] extended supported rates 2558 * [4] power capability (optional) 2559 * [28] supported channels (optional) 2560 * [tlv] HT capabilities 2561 * [tlv] VHT capabilities 2562 * [tlv] WME (optional) 2563 * [tlv] Vendor OUI HT capabilities (optional) 2564 * [tlv] Atheros capabilities (if negotiated) 2565 * [tlv] AppIE's (optional) 2566 */ 2567 m = ieee80211_getmgtframe(&frm, 2568 ic->ic_headroom + sizeof(struct ieee80211_frame), 2569 sizeof(uint16_t) 2570 + sizeof(uint16_t) 2571 + IEEE80211_ADDR_LEN 2572 + 2 + IEEE80211_NWID_LEN 2573 + 2 + IEEE80211_RATE_SIZE 2574 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2575 + 4 2576 + 2 + 26 2577 + sizeof(struct ieee80211_wme_info) 2578 + sizeof(struct ieee80211_ie_htcap) 2579 + sizeof(struct ieee80211_ie_vhtcap) 2580 + 4 + sizeof(struct ieee80211_ie_htcap) 2581 #ifdef IEEE80211_SUPPORT_SUPERG 2582 + sizeof(struct ieee80211_ath_ie) 2583 #endif 2584 + (vap->iv_appie_wpa != NULL ? 2585 vap->iv_appie_wpa->ie_len : 0) 2586 + (vap->iv_appie_assocreq != NULL ? 2587 vap->iv_appie_assocreq->ie_len : 0) 2588 ); 2589 if (m == NULL) 2590 senderr(ENOMEM, is_tx_nobuf); 2591 2592 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2593 ("wrong mode %u", vap->iv_opmode)); 2594 capinfo = IEEE80211_CAPINFO_ESS; 2595 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2596 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2597 /* 2598 * NB: Some 11a AP's reject the request when 2599 * short preamble is set. 2600 */ 2601 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2602 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2603 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2604 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2605 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2606 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2607 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2608 (vap->iv_flags & IEEE80211_F_DOTH)) 2609 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2610 *(uint16_t *)frm = htole16(capinfo); 2611 frm += 2; 2612 2613 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2614 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2615 bss->ni_intval)); 2616 frm += 2; 2617 2618 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2619 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2620 frm += IEEE80211_ADDR_LEN; 2621 } 2622 2623 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2624 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2625 frm = ieee80211_add_rsn(frm, vap); 2626 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2627 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2628 frm = ieee80211_add_powercapability(frm, 2629 ic->ic_curchan); 2630 frm = ieee80211_add_supportedchannels(frm, ic); 2631 } 2632 2633 /* 2634 * Check the channel - we may be using an 11n NIC with an 2635 * 11n capable station, but we're configured to be an 11b 2636 * channel. 2637 */ 2638 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2639 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2640 ni->ni_ies.htcap_ie != NULL && 2641 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2642 frm = ieee80211_add_htcap(frm, ni); 2643 } 2644 2645 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2646 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2647 ni->ni_ies.vhtcap_ie != NULL && 2648 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2649 frm = ieee80211_add_vhtcap(frm, ni); 2650 } 2651 2652 frm = ieee80211_add_wpa(frm, vap); 2653 if ((ic->ic_flags & IEEE80211_F_WME) && 2654 ni->ni_ies.wme_ie != NULL) 2655 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2656 2657 /* 2658 * Same deal - only send HT info if we're on an 11n 2659 * capable channel. 2660 */ 2661 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2662 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2663 ni->ni_ies.htcap_ie != NULL && 2664 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2665 frm = ieee80211_add_htcap_vendor(frm, ni); 2666 } 2667 #ifdef IEEE80211_SUPPORT_SUPERG 2668 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2669 frm = ieee80211_add_ath(frm, 2670 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2671 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2672 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2673 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2674 } 2675 #endif /* IEEE80211_SUPPORT_SUPERG */ 2676 if (vap->iv_appie_assocreq != NULL) 2677 frm = add_appie(frm, vap->iv_appie_assocreq); 2678 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2679 2680 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2681 (void *) vap->iv_state); 2682 break; 2683 2684 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2685 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2686 /* 2687 * asresp frame format 2688 * [2] capability information 2689 * [2] status 2690 * [2] association ID 2691 * [tlv] supported rates 2692 * [tlv] extended supported rates 2693 * [tlv] HT capabilities (standard, if STA enabled) 2694 * [tlv] HT information (standard, if STA enabled) 2695 * [tlv] VHT capabilities (standard, if STA enabled) 2696 * [tlv] VHT information (standard, if STA enabled) 2697 * [tlv] WME (if configured and STA enabled) 2698 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2699 * [tlv] HT information (vendor OUI, if STA enabled) 2700 * [tlv] Atheros capabilities (if STA enabled) 2701 * [tlv] AppIE's (optional) 2702 */ 2703 m = ieee80211_getmgtframe(&frm, 2704 ic->ic_headroom + sizeof(struct ieee80211_frame), 2705 sizeof(uint16_t) 2706 + sizeof(uint16_t) 2707 + sizeof(uint16_t) 2708 + 2 + IEEE80211_RATE_SIZE 2709 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2710 + sizeof(struct ieee80211_ie_htcap) + 4 2711 + sizeof(struct ieee80211_ie_htinfo) + 4 2712 + sizeof(struct ieee80211_ie_vhtcap) 2713 + sizeof(struct ieee80211_ie_vht_operation) 2714 + sizeof(struct ieee80211_wme_param) 2715 #ifdef IEEE80211_SUPPORT_SUPERG 2716 + sizeof(struct ieee80211_ath_ie) 2717 #endif 2718 + (vap->iv_appie_assocresp != NULL ? 2719 vap->iv_appie_assocresp->ie_len : 0) 2720 ); 2721 if (m == NULL) 2722 senderr(ENOMEM, is_tx_nobuf); 2723 2724 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2725 *(uint16_t *)frm = htole16(capinfo); 2726 frm += 2; 2727 2728 *(uint16_t *)frm = htole16(arg); /* status */ 2729 frm += 2; 2730 2731 if (arg == IEEE80211_STATUS_SUCCESS) { 2732 *(uint16_t *)frm = htole16(ni->ni_associd); 2733 IEEE80211_NODE_STAT(ni, tx_assoc); 2734 } else 2735 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2736 frm += 2; 2737 2738 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2739 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2740 /* NB: respond according to what we received */ 2741 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2742 frm = ieee80211_add_htcap(frm, ni); 2743 frm = ieee80211_add_htinfo(frm, ni); 2744 } 2745 if ((vap->iv_flags & IEEE80211_F_WME) && 2746 ni->ni_ies.wme_ie != NULL) 2747 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2748 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2749 frm = ieee80211_add_htcap_vendor(frm, ni); 2750 frm = ieee80211_add_htinfo_vendor(frm, ni); 2751 } 2752 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2753 frm = ieee80211_add_vhtcap(frm, ni); 2754 frm = ieee80211_add_vhtinfo(frm, ni); 2755 } 2756 #ifdef IEEE80211_SUPPORT_SUPERG 2757 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2758 frm = ieee80211_add_ath(frm, 2759 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2760 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2761 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2762 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2763 #endif /* IEEE80211_SUPPORT_SUPERG */ 2764 if (vap->iv_appie_assocresp != NULL) 2765 frm = add_appie(frm, vap->iv_appie_assocresp); 2766 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2767 break; 2768 2769 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2770 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2771 "send station disassociate (reason: %d (%s))", arg, 2772 ieee80211_reason_to_string(arg)); 2773 m = ieee80211_getmgtframe(&frm, 2774 ic->ic_headroom + sizeof(struct ieee80211_frame), 2775 sizeof(uint16_t)); 2776 if (m == NULL) 2777 senderr(ENOMEM, is_tx_nobuf); 2778 *(uint16_t *)frm = htole16(arg); /* reason */ 2779 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2780 2781 IEEE80211_NODE_STAT(ni, tx_disassoc); 2782 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2783 break; 2784 2785 default: 2786 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2787 "invalid mgmt frame type %u", type); 2788 senderr(EINVAL, is_tx_unknownmgt); 2789 /* NOTREACHED */ 2790 } 2791 2792 /* NB: force non-ProbeResp frames to the highest queue */ 2793 params.ibp_pri = WME_AC_VO; 2794 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2795 /* NB: we know all frames are unicast */ 2796 params.ibp_try0 = bss->ni_txparms->maxretry; 2797 params.ibp_power = bss->ni_txpower; 2798 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2799 bad: 2800 ieee80211_free_node(ni); 2801 return ret; 2802 #undef senderr 2803 #undef HTFLAGS 2804 } 2805 2806 /* 2807 * Return an mbuf with a probe response frame in it. 2808 * Space is left to prepend and 802.11 header at the 2809 * front but it's left to the caller to fill in. 2810 */ 2811 struct mbuf * 2812 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2813 { 2814 struct ieee80211vap *vap = bss->ni_vap; 2815 struct ieee80211com *ic = bss->ni_ic; 2816 const struct ieee80211_rateset *rs; 2817 struct mbuf *m; 2818 uint16_t capinfo; 2819 uint8_t *frm; 2820 2821 /* 2822 * probe response frame format 2823 * [8] time stamp 2824 * [2] beacon interval 2825 * [2] cabability information 2826 * [tlv] ssid 2827 * [tlv] supported rates 2828 * [tlv] parameter set (FH/DS) 2829 * [tlv] parameter set (IBSS) 2830 * [tlv] country (optional) 2831 * [3] power control (optional) 2832 * [5] channel switch announcement (CSA) (optional) 2833 * [tlv] extended rate phy (ERP) 2834 * [tlv] extended supported rates 2835 * [tlv] RSN (optional) 2836 * [tlv] HT capabilities 2837 * [tlv] HT information 2838 * [tlv] VHT capabilities 2839 * [tlv] VHT information 2840 * [tlv] WPA (optional) 2841 * [tlv] WME (optional) 2842 * [tlv] Vendor OUI HT capabilities (optional) 2843 * [tlv] Vendor OUI HT information (optional) 2844 * [tlv] Atheros capabilities 2845 * [tlv] AppIE's (optional) 2846 * [tlv] Mesh ID (MBSS) 2847 * [tlv] Mesh Conf (MBSS) 2848 */ 2849 m = ieee80211_getmgtframe(&frm, 2850 ic->ic_headroom + sizeof(struct ieee80211_frame), 2851 8 2852 + sizeof(uint16_t) 2853 + sizeof(uint16_t) 2854 + 2 + IEEE80211_NWID_LEN 2855 + 2 + IEEE80211_RATE_SIZE 2856 + 7 /* max(7,3) */ 2857 + IEEE80211_COUNTRY_MAX_SIZE 2858 + 3 2859 + sizeof(struct ieee80211_csa_ie) 2860 + sizeof(struct ieee80211_quiet_ie) 2861 + 3 2862 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2863 + sizeof(struct ieee80211_ie_wpa) 2864 + sizeof(struct ieee80211_ie_htcap) 2865 + sizeof(struct ieee80211_ie_htinfo) 2866 + sizeof(struct ieee80211_ie_wpa) 2867 + sizeof(struct ieee80211_wme_param) 2868 + 4 + sizeof(struct ieee80211_ie_htcap) 2869 + 4 + sizeof(struct ieee80211_ie_htinfo) 2870 + sizeof(struct ieee80211_ie_vhtcap) 2871 + sizeof(struct ieee80211_ie_vht_operation) 2872 #ifdef IEEE80211_SUPPORT_SUPERG 2873 + sizeof(struct ieee80211_ath_ie) 2874 #endif 2875 #ifdef IEEE80211_SUPPORT_MESH 2876 + 2 + IEEE80211_MESHID_LEN 2877 + sizeof(struct ieee80211_meshconf_ie) 2878 #endif 2879 + (vap->iv_appie_proberesp != NULL ? 2880 vap->iv_appie_proberesp->ie_len : 0) 2881 ); 2882 if (m == NULL) { 2883 vap->iv_stats.is_tx_nobuf++; 2884 return NULL; 2885 } 2886 2887 memset(frm, 0, 8); /* timestamp should be filled later */ 2888 frm += 8; 2889 *(uint16_t *)frm = htole16(bss->ni_intval); 2890 frm += 2; 2891 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2892 *(uint16_t *)frm = htole16(capinfo); 2893 frm += 2; 2894 2895 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2896 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2897 frm = ieee80211_add_rates(frm, rs); 2898 2899 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2900 *frm++ = IEEE80211_ELEMID_FHPARMS; 2901 *frm++ = 5; 2902 *frm++ = bss->ni_fhdwell & 0x00ff; 2903 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2904 *frm++ = IEEE80211_FH_CHANSET( 2905 ieee80211_chan2ieee(ic, bss->ni_chan)); 2906 *frm++ = IEEE80211_FH_CHANPAT( 2907 ieee80211_chan2ieee(ic, bss->ni_chan)); 2908 *frm++ = bss->ni_fhindex; 2909 } else { 2910 *frm++ = IEEE80211_ELEMID_DSPARMS; 2911 *frm++ = 1; 2912 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2913 } 2914 2915 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2916 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2917 *frm++ = 2; 2918 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2919 } 2920 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2921 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2922 frm = ieee80211_add_countryie(frm, ic); 2923 if (vap->iv_flags & IEEE80211_F_DOTH) { 2924 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2925 frm = ieee80211_add_powerconstraint(frm, vap); 2926 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2927 frm = ieee80211_add_csa(frm, vap); 2928 } 2929 if (vap->iv_flags & IEEE80211_F_DOTH) { 2930 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2931 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2932 if (vap->iv_quiet) 2933 frm = ieee80211_add_quiet(frm, vap, 0); 2934 } 2935 } 2936 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2937 frm = ieee80211_add_erp(frm, ic); 2938 frm = ieee80211_add_xrates(frm, rs); 2939 frm = ieee80211_add_rsn(frm, vap); 2940 /* 2941 * NB: legacy 11b clients do not get certain ie's. 2942 * The caller identifies such clients by passing 2943 * a token in legacy to us. Could expand this to be 2944 * any legacy client for stuff like HT ie's. 2945 */ 2946 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2947 legacy != IEEE80211_SEND_LEGACY_11B) { 2948 frm = ieee80211_add_htcap(frm, bss); 2949 frm = ieee80211_add_htinfo(frm, bss); 2950 } 2951 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 2952 legacy != IEEE80211_SEND_LEGACY_11B) { 2953 frm = ieee80211_add_vhtcap(frm, bss); 2954 frm = ieee80211_add_vhtinfo(frm, bss); 2955 } 2956 frm = ieee80211_add_wpa(frm, vap); 2957 if (vap->iv_flags & IEEE80211_F_WME) 2958 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2959 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2960 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2961 legacy != IEEE80211_SEND_LEGACY_11B) { 2962 frm = ieee80211_add_htcap_vendor(frm, bss); 2963 frm = ieee80211_add_htinfo_vendor(frm, bss); 2964 } 2965 #ifdef IEEE80211_SUPPORT_SUPERG 2966 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2967 legacy != IEEE80211_SEND_LEGACY_11B) 2968 frm = ieee80211_add_athcaps(frm, bss); 2969 #endif 2970 if (vap->iv_appie_proberesp != NULL) 2971 frm = add_appie(frm, vap->iv_appie_proberesp); 2972 #ifdef IEEE80211_SUPPORT_MESH 2973 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2974 frm = ieee80211_add_meshid(frm, vap); 2975 frm = ieee80211_add_meshconf(frm, vap); 2976 } 2977 #endif 2978 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2979 2980 return m; 2981 } 2982 2983 /* 2984 * Send a probe response frame to the specified mac address. 2985 * This does not go through the normal mgt frame api so we 2986 * can specify the destination address and re-use the bss node 2987 * for the sta reference. 2988 */ 2989 int 2990 ieee80211_send_proberesp(struct ieee80211vap *vap, 2991 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2992 { 2993 struct ieee80211_node *bss = vap->iv_bss; 2994 struct ieee80211com *ic = vap->iv_ic; 2995 struct mbuf *m; 2996 int ret; 2997 2998 if (vap->iv_state == IEEE80211_S_CAC) { 2999 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 3000 "block %s frame in CAC state", "probe response"); 3001 vap->iv_stats.is_tx_badstate++; 3002 return EIO; /* XXX */ 3003 } 3004 3005 /* 3006 * Hold a reference on the node so it doesn't go away until after 3007 * the xmit is complete all the way in the driver. On error we 3008 * will remove our reference. 3009 */ 3010 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3011 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3012 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3013 ieee80211_node_refcnt(bss)+1); 3014 ieee80211_ref_node(bss); 3015 3016 m = ieee80211_alloc_proberesp(bss, legacy); 3017 if (m == NULL) { 3018 ieee80211_free_node(bss); 3019 return ENOMEM; 3020 } 3021 3022 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3023 KASSERT(m != NULL, ("no room for header")); 3024 3025 IEEE80211_TX_LOCK(ic); 3026 ieee80211_send_setup(bss, m, 3027 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3028 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3029 /* XXX power management? */ 3030 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3031 3032 M_WME_SETAC(m, WME_AC_BE); 3033 3034 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3035 "send probe resp on channel %u to %s%s\n", 3036 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3037 legacy ? " <legacy>" : ""); 3038 IEEE80211_NODE_STAT(bss, tx_mgmt); 3039 3040 ret = ieee80211_raw_output(vap, bss, m, NULL); 3041 IEEE80211_TX_UNLOCK(ic); 3042 return (ret); 3043 } 3044 3045 /* 3046 * Allocate and build a RTS (Request To Send) control frame. 3047 */ 3048 struct mbuf * 3049 ieee80211_alloc_rts(struct ieee80211com *ic, 3050 const uint8_t ra[IEEE80211_ADDR_LEN], 3051 const uint8_t ta[IEEE80211_ADDR_LEN], 3052 uint16_t dur) 3053 { 3054 struct ieee80211_frame_rts *rts; 3055 struct mbuf *m; 3056 3057 /* XXX honor ic_headroom */ 3058 m = m_gethdr(M_NOWAIT, MT_DATA); 3059 if (m != NULL) { 3060 rts = mtod(m, struct ieee80211_frame_rts *); 3061 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3062 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3063 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3064 *(u_int16_t *)rts->i_dur = htole16(dur); 3065 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3066 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3067 3068 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3069 } 3070 return m; 3071 } 3072 3073 /* 3074 * Allocate and build a CTS (Clear To Send) control frame. 3075 */ 3076 struct mbuf * 3077 ieee80211_alloc_cts(struct ieee80211com *ic, 3078 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3079 { 3080 struct ieee80211_frame_cts *cts; 3081 struct mbuf *m; 3082 3083 /* XXX honor ic_headroom */ 3084 m = m_gethdr(M_NOWAIT, MT_DATA); 3085 if (m != NULL) { 3086 cts = mtod(m, struct ieee80211_frame_cts *); 3087 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3088 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3089 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3090 *(u_int16_t *)cts->i_dur = htole16(dur); 3091 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3092 3093 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3094 } 3095 return m; 3096 } 3097 3098 /* 3099 * Wrapper for CTS/RTS frame allocation. 3100 */ 3101 struct mbuf * 3102 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3103 uint8_t rate, int prot) 3104 { 3105 struct ieee80211com *ic = ni->ni_ic; 3106 const struct ieee80211_frame *wh; 3107 struct mbuf *mprot; 3108 uint16_t dur; 3109 int pktlen, isshort; 3110 3111 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3112 prot == IEEE80211_PROT_CTSONLY, 3113 ("wrong protection type %d", prot)); 3114 3115 wh = mtod(m, const struct ieee80211_frame *); 3116 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3117 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 3118 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3119 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3120 3121 if (prot == IEEE80211_PROT_RTSCTS) { 3122 /* NB: CTS is the same size as an ACK */ 3123 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3124 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3125 } else 3126 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 3127 3128 return (mprot); 3129 } 3130 3131 static void 3132 ieee80211_tx_mgt_timeout(void *arg) 3133 { 3134 struct ieee80211vap *vap = arg; 3135 3136 IEEE80211_LOCK(vap->iv_ic); 3137 if (vap->iv_state != IEEE80211_S_INIT && 3138 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3139 /* 3140 * NB: it's safe to specify a timeout as the reason here; 3141 * it'll only be used in the right state. 3142 */ 3143 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3144 IEEE80211_SCAN_FAIL_TIMEOUT); 3145 } 3146 IEEE80211_UNLOCK(vap->iv_ic); 3147 } 3148 3149 /* 3150 * This is the callback set on net80211-sourced transmitted 3151 * authentication request frames. 3152 * 3153 * This does a couple of things: 3154 * 3155 * + If the frame transmitted was a success, it schedules a future 3156 * event which will transition the interface to scan. 3157 * If a state transition _then_ occurs before that event occurs, 3158 * said state transition will cancel this callout. 3159 * 3160 * + If the frame transmit was a failure, it immediately schedules 3161 * the transition back to scan. 3162 */ 3163 static void 3164 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3165 { 3166 struct ieee80211vap *vap = ni->ni_vap; 3167 enum ieee80211_state ostate = (enum ieee80211_state) arg; 3168 3169 /* 3170 * Frame transmit completed; arrange timer callback. If 3171 * transmit was successfully we wait for response. Otherwise 3172 * we arrange an immediate callback instead of doing the 3173 * callback directly since we don't know what state the driver 3174 * is in (e.g. what locks it is holding). This work should 3175 * not be too time-critical and not happen too often so the 3176 * added overhead is acceptable. 3177 * 3178 * XXX what happens if !acked but response shows up before callback? 3179 */ 3180 if (vap->iv_state == ostate) { 3181 callout_reset(&vap->iv_mgtsend, 3182 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3183 ieee80211_tx_mgt_timeout, vap); 3184 } 3185 } 3186 3187 static void 3188 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3189 struct ieee80211_node *ni) 3190 { 3191 struct ieee80211vap *vap = ni->ni_vap; 3192 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3193 struct ieee80211com *ic = ni->ni_ic; 3194 struct ieee80211_rateset *rs = &ni->ni_rates; 3195 uint16_t capinfo; 3196 3197 /* 3198 * beacon frame format 3199 * 3200 * TODO: update to 802.11-2012; a lot of stuff has changed; 3201 * vendor extensions should be at the end, etc. 3202 * 3203 * [8] time stamp 3204 * [2] beacon interval 3205 * [2] cabability information 3206 * [tlv] ssid 3207 * [tlv] supported rates 3208 * [3] parameter set (DS) 3209 * [8] CF parameter set (optional) 3210 * [tlv] parameter set (IBSS/TIM) 3211 * [tlv] country (optional) 3212 * [3] power control (optional) 3213 * [5] channel switch announcement (CSA) (optional) 3214 * XXX TODO: Quiet 3215 * XXX TODO: IBSS DFS 3216 * XXX TODO: TPC report 3217 * [tlv] extended rate phy (ERP) 3218 * [tlv] extended supported rates 3219 * [tlv] RSN parameters 3220 * XXX TODO: BSSLOAD 3221 * (XXX EDCA parameter set, QoS capability?) 3222 * XXX TODO: AP channel report 3223 * 3224 * [tlv] HT capabilities 3225 * [tlv] HT information 3226 * XXX TODO: 20/40 BSS coexistence 3227 * Mesh: 3228 * XXX TODO: Meshid 3229 * XXX TODO: mesh config 3230 * XXX TODO: mesh awake window 3231 * XXX TODO: beacon timing (mesh, etc) 3232 * XXX TODO: MCCAOP Advertisement Overview 3233 * XXX TODO: MCCAOP Advertisement 3234 * XXX TODO: Mesh channel switch parameters 3235 * VHT: 3236 * XXX TODO: VHT capabilities 3237 * XXX TODO: VHT operation 3238 * XXX TODO: VHT transmit power envelope 3239 * XXX TODO: channel switch wrapper element 3240 * XXX TODO: extended BSS load element 3241 * 3242 * XXX Vendor-specific OIDs (e.g. Atheros) 3243 * [tlv] WPA parameters 3244 * [tlv] WME parameters 3245 * [tlv] Vendor OUI HT capabilities (optional) 3246 * [tlv] Vendor OUI HT information (optional) 3247 * [tlv] Atheros capabilities (optional) 3248 * [tlv] TDMA parameters (optional) 3249 * [tlv] Mesh ID (MBSS) 3250 * [tlv] Mesh Conf (MBSS) 3251 * [tlv] application data (optional) 3252 */ 3253 3254 memset(bo, 0, sizeof(*bo)); 3255 3256 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3257 frm += 8; 3258 *(uint16_t *)frm = htole16(ni->ni_intval); 3259 frm += 2; 3260 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3261 bo->bo_caps = (uint16_t *)frm; 3262 *(uint16_t *)frm = htole16(capinfo); 3263 frm += 2; 3264 *frm++ = IEEE80211_ELEMID_SSID; 3265 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3266 *frm++ = ni->ni_esslen; 3267 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3268 frm += ni->ni_esslen; 3269 } else 3270 *frm++ = 0; 3271 frm = ieee80211_add_rates(frm, rs); 3272 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3273 *frm++ = IEEE80211_ELEMID_DSPARMS; 3274 *frm++ = 1; 3275 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3276 } 3277 if (ic->ic_flags & IEEE80211_F_PCF) { 3278 bo->bo_cfp = frm; 3279 frm = ieee80211_add_cfparms(frm, ic); 3280 } 3281 bo->bo_tim = frm; 3282 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3283 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3284 *frm++ = 2; 3285 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3286 bo->bo_tim_len = 0; 3287 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3288 vap->iv_opmode == IEEE80211_M_MBSS) { 3289 /* TIM IE is the same for Mesh and Hostap */ 3290 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3291 3292 tie->tim_ie = IEEE80211_ELEMID_TIM; 3293 tie->tim_len = 4; /* length */ 3294 tie->tim_count = 0; /* DTIM count */ 3295 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3296 tie->tim_bitctl = 0; /* bitmap control */ 3297 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3298 frm += sizeof(struct ieee80211_tim_ie); 3299 bo->bo_tim_len = 1; 3300 } 3301 bo->bo_tim_trailer = frm; 3302 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3303 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3304 frm = ieee80211_add_countryie(frm, ic); 3305 if (vap->iv_flags & IEEE80211_F_DOTH) { 3306 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3307 frm = ieee80211_add_powerconstraint(frm, vap); 3308 bo->bo_csa = frm; 3309 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3310 frm = ieee80211_add_csa(frm, vap); 3311 } else 3312 bo->bo_csa = frm; 3313 3314 bo->bo_quiet = NULL; 3315 if (vap->iv_flags & IEEE80211_F_DOTH) { 3316 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3317 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3318 (vap->iv_quiet == 1)) { 3319 /* 3320 * We only insert the quiet IE offset if 3321 * the quiet IE is enabled. Otherwise don't 3322 * put it here or we'll just overwrite 3323 * some other beacon contents. 3324 */ 3325 if (vap->iv_quiet) { 3326 bo->bo_quiet = frm; 3327 frm = ieee80211_add_quiet(frm,vap, 0); 3328 } 3329 } 3330 } 3331 3332 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3333 bo->bo_erp = frm; 3334 frm = ieee80211_add_erp(frm, ic); 3335 } 3336 frm = ieee80211_add_xrates(frm, rs); 3337 frm = ieee80211_add_rsn(frm, vap); 3338 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3339 frm = ieee80211_add_htcap(frm, ni); 3340 bo->bo_htinfo = frm; 3341 frm = ieee80211_add_htinfo(frm, ni); 3342 } 3343 3344 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3345 frm = ieee80211_add_vhtcap(frm, ni); 3346 bo->bo_vhtinfo = frm; 3347 frm = ieee80211_add_vhtinfo(frm, ni); 3348 /* Transmit power envelope */ 3349 /* Channel switch wrapper element */ 3350 /* Extended bss load element */ 3351 } 3352 3353 frm = ieee80211_add_wpa(frm, vap); 3354 if (vap->iv_flags & IEEE80211_F_WME) { 3355 bo->bo_wme = frm; 3356 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3357 } 3358 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3359 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3360 frm = ieee80211_add_htcap_vendor(frm, ni); 3361 frm = ieee80211_add_htinfo_vendor(frm, ni); 3362 } 3363 3364 #ifdef IEEE80211_SUPPORT_SUPERG 3365 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3366 bo->bo_ath = frm; 3367 frm = ieee80211_add_athcaps(frm, ni); 3368 } 3369 #endif 3370 #ifdef IEEE80211_SUPPORT_TDMA 3371 if (vap->iv_caps & IEEE80211_C_TDMA) { 3372 bo->bo_tdma = frm; 3373 frm = ieee80211_add_tdma(frm, vap); 3374 } 3375 #endif 3376 if (vap->iv_appie_beacon != NULL) { 3377 bo->bo_appie = frm; 3378 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3379 frm = add_appie(frm, vap->iv_appie_beacon); 3380 } 3381 3382 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3383 #ifdef IEEE80211_SUPPORT_MESH 3384 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3385 frm = ieee80211_add_meshid(frm, vap); 3386 bo->bo_meshconf = frm; 3387 frm = ieee80211_add_meshconf(frm, vap); 3388 } 3389 #endif 3390 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3391 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3392 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3393 } 3394 3395 /* 3396 * Allocate a beacon frame and fillin the appropriate bits. 3397 */ 3398 struct mbuf * 3399 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3400 { 3401 struct ieee80211vap *vap = ni->ni_vap; 3402 struct ieee80211com *ic = ni->ni_ic; 3403 struct ifnet *ifp = vap->iv_ifp; 3404 struct ieee80211_frame *wh; 3405 struct mbuf *m; 3406 int pktlen; 3407 uint8_t *frm; 3408 3409 /* 3410 * Update the "We're putting the quiet IE in the beacon" state. 3411 */ 3412 if (vap->iv_quiet == 1) 3413 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3414 else if (vap->iv_quiet == 0) 3415 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3416 3417 /* 3418 * beacon frame format 3419 * 3420 * Note: This needs updating for 802.11-2012. 3421 * 3422 * [8] time stamp 3423 * [2] beacon interval 3424 * [2] cabability information 3425 * [tlv] ssid 3426 * [tlv] supported rates 3427 * [3] parameter set (DS) 3428 * [8] CF parameter set (optional) 3429 * [tlv] parameter set (IBSS/TIM) 3430 * [tlv] country (optional) 3431 * [3] power control (optional) 3432 * [5] channel switch announcement (CSA) (optional) 3433 * [tlv] extended rate phy (ERP) 3434 * [tlv] extended supported rates 3435 * [tlv] RSN parameters 3436 * [tlv] HT capabilities 3437 * [tlv] HT information 3438 * [tlv] VHT capabilities 3439 * [tlv] VHT operation 3440 * [tlv] Vendor OUI HT capabilities (optional) 3441 * [tlv] Vendor OUI HT information (optional) 3442 * XXX Vendor-specific OIDs (e.g. Atheros) 3443 * [tlv] WPA parameters 3444 * [tlv] WME parameters 3445 * [tlv] TDMA parameters (optional) 3446 * [tlv] Mesh ID (MBSS) 3447 * [tlv] Mesh Conf (MBSS) 3448 * [tlv] application data (optional) 3449 * NB: we allocate the max space required for the TIM bitmap. 3450 * XXX how big is this? 3451 */ 3452 pktlen = 8 /* time stamp */ 3453 + sizeof(uint16_t) /* beacon interval */ 3454 + sizeof(uint16_t) /* capabilities */ 3455 + 2 + ni->ni_esslen /* ssid */ 3456 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3457 + 2 + 1 /* DS parameters */ 3458 + 2 + 6 /* CF parameters */ 3459 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3460 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3461 + 2 + 1 /* power control */ 3462 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3463 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3464 + 2 + 1 /* ERP */ 3465 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3466 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3467 2*sizeof(struct ieee80211_ie_wpa) : 0) 3468 /* XXX conditional? */ 3469 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3470 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3471 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3472 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3473 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3474 sizeof(struct ieee80211_wme_param) : 0) 3475 #ifdef IEEE80211_SUPPORT_SUPERG 3476 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3477 #endif 3478 #ifdef IEEE80211_SUPPORT_TDMA 3479 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3480 sizeof(struct ieee80211_tdma_param) : 0) 3481 #endif 3482 #ifdef IEEE80211_SUPPORT_MESH 3483 + 2 + ni->ni_meshidlen 3484 + sizeof(struct ieee80211_meshconf_ie) 3485 #endif 3486 + IEEE80211_MAX_APPIE 3487 ; 3488 m = ieee80211_getmgtframe(&frm, 3489 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3490 if (m == NULL) { 3491 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3492 "%s: cannot get buf; size %u\n", __func__, pktlen); 3493 vap->iv_stats.is_tx_nobuf++; 3494 return NULL; 3495 } 3496 ieee80211_beacon_construct(m, frm, ni); 3497 3498 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3499 KASSERT(m != NULL, ("no space for 802.11 header?")); 3500 wh = mtod(m, struct ieee80211_frame *); 3501 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3502 IEEE80211_FC0_SUBTYPE_BEACON; 3503 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3504 *(uint16_t *)wh->i_dur = 0; 3505 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3506 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3507 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3508 *(uint16_t *)wh->i_seq = 0; 3509 3510 return m; 3511 } 3512 3513 /* 3514 * Update the dynamic parts of a beacon frame based on the current state. 3515 */ 3516 int 3517 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3518 { 3519 struct ieee80211vap *vap = ni->ni_vap; 3520 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3521 struct ieee80211com *ic = ni->ni_ic; 3522 int len_changed = 0; 3523 uint16_t capinfo; 3524 struct ieee80211_frame *wh; 3525 ieee80211_seq seqno; 3526 3527 IEEE80211_LOCK(ic); 3528 /* 3529 * Handle 11h channel change when we've reached the count. 3530 * We must recalculate the beacon frame contents to account 3531 * for the new channel. Note we do this only for the first 3532 * vap that reaches this point; subsequent vaps just update 3533 * their beacon state to reflect the recalculated channel. 3534 */ 3535 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3536 vap->iv_csa_count == ic->ic_csa_count) { 3537 vap->iv_csa_count = 0; 3538 /* 3539 * Effect channel change before reconstructing the beacon 3540 * frame contents as many places reference ni_chan. 3541 */ 3542 if (ic->ic_csa_newchan != NULL) 3543 ieee80211_csa_completeswitch(ic); 3544 /* 3545 * NB: ieee80211_beacon_construct clears all pending 3546 * updates in bo_flags so we don't need to explicitly 3547 * clear IEEE80211_BEACON_CSA. 3548 */ 3549 ieee80211_beacon_construct(m, 3550 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3551 3552 /* XXX do WME aggressive mode processing? */ 3553 IEEE80211_UNLOCK(ic); 3554 return 1; /* just assume length changed */ 3555 } 3556 3557 /* 3558 * Handle the quiet time element being added and removed. 3559 * Again, for now we just cheat and reconstruct the whole 3560 * beacon - that way the gap is provided as appropriate. 3561 * 3562 * So, track whether we have already added the IE versus 3563 * whether we want to be adding the IE. 3564 */ 3565 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3566 (vap->iv_quiet == 0)) { 3567 /* 3568 * Quiet time beacon IE enabled, but it's disabled; 3569 * recalc 3570 */ 3571 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3572 ieee80211_beacon_construct(m, 3573 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3574 /* XXX do WME aggressive mode processing? */ 3575 IEEE80211_UNLOCK(ic); 3576 return 1; /* just assume length changed */ 3577 } 3578 3579 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3580 (vap->iv_quiet == 1)) { 3581 /* 3582 * Quiet time beacon IE disabled, but it's now enabled; 3583 * recalc 3584 */ 3585 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3586 ieee80211_beacon_construct(m, 3587 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3588 /* XXX do WME aggressive mode processing? */ 3589 IEEE80211_UNLOCK(ic); 3590 return 1; /* just assume length changed */ 3591 } 3592 3593 wh = mtod(m, struct ieee80211_frame *); 3594 3595 /* 3596 * XXX TODO Strictly speaking this should be incremented with the TX 3597 * lock held so as to serialise access to the non-qos TID sequence 3598 * number space. 3599 * 3600 * If the driver identifies it does its own TX seqno management then 3601 * we can skip this (and still not do the TX seqno.) 3602 */ 3603 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3604 *(uint16_t *)&wh->i_seq[0] = 3605 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3606 M_SEQNO_SET(m, seqno); 3607 3608 /* XXX faster to recalculate entirely or just changes? */ 3609 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3610 *bo->bo_caps = htole16(capinfo); 3611 3612 if (vap->iv_flags & IEEE80211_F_WME) { 3613 struct ieee80211_wme_state *wme = &ic->ic_wme; 3614 3615 /* 3616 * Check for aggressive mode change. When there is 3617 * significant high priority traffic in the BSS 3618 * throttle back BE traffic by using conservative 3619 * parameters. Otherwise BE uses aggressive params 3620 * to optimize performance of legacy/non-QoS traffic. 3621 */ 3622 if (wme->wme_flags & WME_F_AGGRMODE) { 3623 if (wme->wme_hipri_traffic > 3624 wme->wme_hipri_switch_thresh) { 3625 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3626 "%s: traffic %u, disable aggressive mode\n", 3627 __func__, wme->wme_hipri_traffic); 3628 wme->wme_flags &= ~WME_F_AGGRMODE; 3629 ieee80211_wme_updateparams_locked(vap); 3630 wme->wme_hipri_traffic = 3631 wme->wme_hipri_switch_hysteresis; 3632 } else 3633 wme->wme_hipri_traffic = 0; 3634 } else { 3635 if (wme->wme_hipri_traffic <= 3636 wme->wme_hipri_switch_thresh) { 3637 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3638 "%s: traffic %u, enable aggressive mode\n", 3639 __func__, wme->wme_hipri_traffic); 3640 wme->wme_flags |= WME_F_AGGRMODE; 3641 ieee80211_wme_updateparams_locked(vap); 3642 wme->wme_hipri_traffic = 0; 3643 } else 3644 wme->wme_hipri_traffic = 3645 wme->wme_hipri_switch_hysteresis; 3646 } 3647 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3648 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3649 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3650 } 3651 } 3652 3653 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3654 ieee80211_ht_update_beacon(vap, bo); 3655 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3656 } 3657 #ifdef IEEE80211_SUPPORT_TDMA 3658 if (vap->iv_caps & IEEE80211_C_TDMA) { 3659 /* 3660 * NB: the beacon is potentially updated every TBTT. 3661 */ 3662 ieee80211_tdma_update_beacon(vap, bo); 3663 } 3664 #endif 3665 #ifdef IEEE80211_SUPPORT_MESH 3666 if (vap->iv_opmode == IEEE80211_M_MBSS) 3667 ieee80211_mesh_update_beacon(vap, bo); 3668 #endif 3669 3670 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3671 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3672 struct ieee80211_tim_ie *tie = 3673 (struct ieee80211_tim_ie *) bo->bo_tim; 3674 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3675 u_int timlen, timoff, i; 3676 /* 3677 * ATIM/DTIM needs updating. If it fits in the 3678 * current space allocated then just copy in the 3679 * new bits. Otherwise we need to move any trailing 3680 * data to make room. Note that we know there is 3681 * contiguous space because ieee80211_beacon_allocate 3682 * insures there is space in the mbuf to write a 3683 * maximal-size virtual bitmap (based on iv_max_aid). 3684 */ 3685 /* 3686 * Calculate the bitmap size and offset, copy any 3687 * trailer out of the way, and then copy in the 3688 * new bitmap and update the information element. 3689 * Note that the tim bitmap must contain at least 3690 * one byte and any offset must be even. 3691 */ 3692 if (vap->iv_ps_pending != 0) { 3693 timoff = 128; /* impossibly large */ 3694 for (i = 0; i < vap->iv_tim_len; i++) 3695 if (vap->iv_tim_bitmap[i]) { 3696 timoff = i &~ 1; 3697 break; 3698 } 3699 KASSERT(timoff != 128, ("tim bitmap empty!")); 3700 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3701 if (vap->iv_tim_bitmap[i]) 3702 break; 3703 timlen = 1 + (i - timoff); 3704 } else { 3705 timoff = 0; 3706 timlen = 1; 3707 } 3708 3709 /* 3710 * TODO: validate this! 3711 */ 3712 if (timlen != bo->bo_tim_len) { 3713 /* copy up/down trailer */ 3714 int adjust = tie->tim_bitmap+timlen 3715 - bo->bo_tim_trailer; 3716 ovbcopy(bo->bo_tim_trailer, 3717 bo->bo_tim_trailer+adjust, 3718 bo->bo_tim_trailer_len); 3719 bo->bo_tim_trailer += adjust; 3720 bo->bo_erp += adjust; 3721 bo->bo_htinfo += adjust; 3722 bo->bo_vhtinfo += adjust; 3723 #ifdef IEEE80211_SUPPORT_SUPERG 3724 bo->bo_ath += adjust; 3725 #endif 3726 #ifdef IEEE80211_SUPPORT_TDMA 3727 bo->bo_tdma += adjust; 3728 #endif 3729 #ifdef IEEE80211_SUPPORT_MESH 3730 bo->bo_meshconf += adjust; 3731 #endif 3732 bo->bo_appie += adjust; 3733 bo->bo_wme += adjust; 3734 bo->bo_csa += adjust; 3735 bo->bo_quiet += adjust; 3736 bo->bo_tim_len = timlen; 3737 3738 /* update information element */ 3739 tie->tim_len = 3 + timlen; 3740 tie->tim_bitctl = timoff; 3741 len_changed = 1; 3742 } 3743 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3744 bo->bo_tim_len); 3745 3746 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3747 3748 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3749 "%s: TIM updated, pending %u, off %u, len %u\n", 3750 __func__, vap->iv_ps_pending, timoff, timlen); 3751 } 3752 /* count down DTIM period */ 3753 if (tie->tim_count == 0) 3754 tie->tim_count = tie->tim_period - 1; 3755 else 3756 tie->tim_count--; 3757 /* update state for buffered multicast frames on DTIM */ 3758 if (mcast && tie->tim_count == 0) 3759 tie->tim_bitctl |= 1; 3760 else 3761 tie->tim_bitctl &= ~1; 3762 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3763 struct ieee80211_csa_ie *csa = 3764 (struct ieee80211_csa_ie *) bo->bo_csa; 3765 3766 /* 3767 * Insert or update CSA ie. If we're just starting 3768 * to count down to the channel switch then we need 3769 * to insert the CSA ie. Otherwise we just need to 3770 * drop the count. The actual change happens above 3771 * when the vap's count reaches the target count. 3772 */ 3773 if (vap->iv_csa_count == 0) { 3774 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3775 bo->bo_erp += sizeof(*csa); 3776 bo->bo_htinfo += sizeof(*csa); 3777 bo->bo_vhtinfo += sizeof(*csa); 3778 bo->bo_wme += sizeof(*csa); 3779 #ifdef IEEE80211_SUPPORT_SUPERG 3780 bo->bo_ath += sizeof(*csa); 3781 #endif 3782 #ifdef IEEE80211_SUPPORT_TDMA 3783 bo->bo_tdma += sizeof(*csa); 3784 #endif 3785 #ifdef IEEE80211_SUPPORT_MESH 3786 bo->bo_meshconf += sizeof(*csa); 3787 #endif 3788 bo->bo_appie += sizeof(*csa); 3789 bo->bo_csa_trailer_len += sizeof(*csa); 3790 bo->bo_quiet += sizeof(*csa); 3791 bo->bo_tim_trailer_len += sizeof(*csa); 3792 m->m_len += sizeof(*csa); 3793 m->m_pkthdr.len += sizeof(*csa); 3794 3795 ieee80211_add_csa(bo->bo_csa, vap); 3796 } else 3797 csa->csa_count--; 3798 vap->iv_csa_count++; 3799 /* NB: don't clear IEEE80211_BEACON_CSA */ 3800 } 3801 3802 /* 3803 * Only add the quiet time IE if we've enabled it 3804 * as appropriate. 3805 */ 3806 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3807 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3808 if (vap->iv_quiet && 3809 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 3810 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 3811 } 3812 } 3813 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3814 /* 3815 * ERP element needs updating. 3816 */ 3817 (void) ieee80211_add_erp(bo->bo_erp, ic); 3818 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3819 } 3820 #ifdef IEEE80211_SUPPORT_SUPERG 3821 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3822 ieee80211_add_athcaps(bo->bo_ath, ni); 3823 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3824 } 3825 #endif 3826 } 3827 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3828 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3829 int aielen; 3830 uint8_t *frm; 3831 3832 aielen = 0; 3833 if (aie != NULL) 3834 aielen += aie->ie_len; 3835 if (aielen != bo->bo_appie_len) { 3836 /* copy up/down trailer */ 3837 int adjust = aielen - bo->bo_appie_len; 3838 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3839 bo->bo_tim_trailer_len); 3840 bo->bo_tim_trailer += adjust; 3841 bo->bo_appie += adjust; 3842 bo->bo_appie_len = aielen; 3843 3844 len_changed = 1; 3845 } 3846 frm = bo->bo_appie; 3847 if (aie != NULL) 3848 frm = add_appie(frm, aie); 3849 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3850 } 3851 IEEE80211_UNLOCK(ic); 3852 3853 return len_changed; 3854 } 3855 3856 /* 3857 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3858 * tunnel encapsulation. The frame is assumed to have an Ethernet 3859 * header at the front that must be stripped before prepending the 3860 * LLC followed by the Ethernet header passed in (with an Ethernet 3861 * type that specifies the payload size). 3862 */ 3863 struct mbuf * 3864 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3865 const struct ether_header *eh) 3866 { 3867 struct llc *llc; 3868 uint16_t payload; 3869 3870 /* XXX optimize by combining m_adj+M_PREPEND */ 3871 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3872 llc = mtod(m, struct llc *); 3873 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3874 llc->llc_control = LLC_UI; 3875 llc->llc_snap.org_code[0] = 0; 3876 llc->llc_snap.org_code[1] = 0; 3877 llc->llc_snap.org_code[2] = 0; 3878 llc->llc_snap.ether_type = eh->ether_type; 3879 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3880 3881 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3882 if (m == NULL) { /* XXX cannot happen */ 3883 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3884 "%s: no space for ether_header\n", __func__); 3885 vap->iv_stats.is_tx_nobuf++; 3886 return NULL; 3887 } 3888 ETHER_HEADER_COPY(mtod(m, void *), eh); 3889 mtod(m, struct ether_header *)->ether_type = htons(payload); 3890 return m; 3891 } 3892 3893 /* 3894 * Complete an mbuf transmission. 3895 * 3896 * For now, this simply processes a completed frame after the 3897 * driver has completed it's transmission and/or retransmission. 3898 * It assumes the frame is an 802.11 encapsulated frame. 3899 * 3900 * Later on it will grow to become the exit path for a given frame 3901 * from the driver and, depending upon how it's been encapsulated 3902 * and already transmitted, it may end up doing A-MPDU retransmission, 3903 * power save requeuing, etc. 3904 * 3905 * In order for the above to work, the driver entry point to this 3906 * must not hold any driver locks. Thus, the driver needs to delay 3907 * any actual mbuf completion until it can release said locks. 3908 * 3909 * This frees the mbuf and if the mbuf has a node reference, 3910 * the node reference will be freed. 3911 */ 3912 void 3913 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3914 { 3915 3916 if (ni != NULL) { 3917 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3918 3919 if (status == 0) { 3920 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3921 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3922 if (m->m_flags & M_MCAST) 3923 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3924 } else 3925 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3926 if (m->m_flags & M_TXCB) 3927 ieee80211_process_callback(ni, m, status); 3928 ieee80211_free_node(ni); 3929 } 3930 m_freem(m); 3931 } 3932