1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211_output.c 330688 2018-03-09 11:33:56Z avos $"); 31 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_wlan.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/endian.h> 42 43 #include <sys/socket.h> 44 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_regdomain.h> 55 #ifdef IEEE80211_SUPPORT_SUPERG 56 #include <net80211/ieee80211_superg.h> 57 #endif 58 #ifdef IEEE80211_SUPPORT_TDMA 59 #include <net80211/ieee80211_tdma.h> 60 #endif 61 #include <net80211/ieee80211_wds.h> 62 #include <net80211/ieee80211_mesh.h> 63 #include <net80211/ieee80211_vht.h> 64 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #endif 68 69 #ifdef INET 70 #include <netinet/if_ether.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #endif 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #endif 77 78 #include <security/mac/mac_framework.h> 79 80 #define ETHER_HEADER_COPY(dst, src) \ 81 memcpy(dst, src, sizeof(struct ether_header)) 82 83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 84 u_int hdrsize, u_int ciphdrsize, u_int mtu); 85 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 86 87 #ifdef IEEE80211_DEBUG 88 /* 89 * Decide if an outbound management frame should be 90 * printed when debugging is enabled. This filters some 91 * of the less interesting frames that come frequently 92 * (e.g. beacons). 93 */ 94 static __inline int 95 doprint(struct ieee80211vap *vap, int subtype) 96 { 97 switch (subtype) { 98 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 99 return (vap->iv_opmode == IEEE80211_M_IBSS); 100 } 101 return 1; 102 } 103 #endif 104 105 /* 106 * Transmit a frame to the given destination on the given VAP. 107 * 108 * It's up to the caller to figure out the details of who this 109 * is going to and resolving the node. 110 * 111 * This routine takes care of queuing it for power save, 112 * A-MPDU state stuff, fast-frames state stuff, encapsulation 113 * if required, then passing it up to the driver layer. 114 * 115 * This routine (for now) consumes the mbuf and frees the node 116 * reference; it ideally will return a TX status which reflects 117 * whether the mbuf was consumed or not, so the caller can 118 * free the mbuf (if appropriate) and the node reference (again, 119 * if appropriate.) 120 */ 121 int 122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 123 struct ieee80211_node *ni) 124 { 125 struct ieee80211com *ic = vap->iv_ic; 126 struct ifnet *ifp = vap->iv_ifp; 127 int mcast; 128 int do_ampdu = 0; 129 int do_amsdu = 0; 130 int do_ampdu_amsdu = 0; 131 int no_ampdu = 1; /* Will be set to 0 if ampdu is active */ 132 int do_ff = 0; 133 134 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 135 (m->m_flags & M_PWR_SAV) == 0) { 136 /* 137 * Station in power save mode; pass the frame 138 * to the 802.11 layer and continue. We'll get 139 * the frame back when the time is right. 140 * XXX lose WDS vap linkage? 141 */ 142 if (ieee80211_pwrsave(ni, m) != 0) 143 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 144 ieee80211_free_node(ni); 145 146 /* 147 * We queued it fine, so tell the upper layer 148 * that we consumed it. 149 */ 150 return (0); 151 } 152 /* calculate priority so drivers can find the tx queue */ 153 if (ieee80211_classify(ni, m)) { 154 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 155 ni->ni_macaddr, NULL, 156 "%s", "classification failure"); 157 vap->iv_stats.is_tx_classify++; 158 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 159 m_freem(m); 160 ieee80211_free_node(ni); 161 162 /* XXX better status? */ 163 return (0); 164 } 165 /* 166 * Stash the node pointer. Note that we do this after 167 * any call to ieee80211_dwds_mcast because that code 168 * uses any existing value for rcvif to identify the 169 * interface it (might have been) received on. 170 */ 171 m->m_pkthdr.rcvif = (void *)ni; 172 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 173 174 BPF_MTAP(ifp, m); /* 802.3 tx */ 175 176 177 /* 178 * Figure out if we can do A-MPDU, A-MSDU or FF. 179 * 180 * A-MPDU depends upon vap/node config. 181 * A-MSDU depends upon vap/node config. 182 * FF depends upon vap config, IE and whether 183 * it's 11abg (and not 11n/11ac/etc.) 184 * 185 * Note that these flags indiciate whether we can do 186 * it at all, rather than the situation (eg traffic type.) 187 */ 188 do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 189 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)); 190 do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && 191 (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX)); 192 do_ff = 193 ((ni->ni_flags & IEEE80211_NODE_HT) == 0) && 194 ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) && 195 (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)); 196 197 /* 198 * Check if A-MPDU tx aggregation is setup or if we 199 * should try to enable it. The sta must be associated 200 * with HT and A-MPDU enabled for use. When the policy 201 * routine decides we should enable A-MPDU we issue an 202 * ADDBA request and wait for a reply. The frame being 203 * encapsulated will go out w/o using A-MPDU, or possibly 204 * it might be collected by the driver and held/retransmit. 205 * The default ic_ampdu_enable routine handles staggering 206 * ADDBA requests in case the receiver NAK's us or we are 207 * otherwise unable to establish a BA stream. 208 * 209 * Don't treat group-addressed frames as candidates for aggregation; 210 * net80211 doesn't support 802.11aa-2012 and so group addressed 211 * frames will always have sequence numbers allocated from the NON_QOS 212 * TID. 213 */ 214 if (do_ampdu) { 215 if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { 216 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 217 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 218 219 ieee80211_txampdu_count_packet(tap); 220 if (IEEE80211_AMPDU_RUNNING(tap)) { 221 /* 222 * Operational, mark frame for aggregation. 223 * 224 * XXX do tx aggregation here 225 */ 226 m->m_flags |= M_AMPDU_MPDU; 227 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 228 ic->ic_ampdu_enable(ni, tap)) { 229 /* 230 * Not negotiated yet, request service. 231 */ 232 ieee80211_ampdu_request(ni, tap); 233 /* XXX hold frame for reply? */ 234 } 235 /* 236 * Now update the no-ampdu flag. A-MPDU may have been 237 * started or administratively disabled above; so now we 238 * know whether we're running yet or not. 239 * 240 * This will let us know whether we should be doing A-MSDU 241 * at this point. We only do A-MSDU if we're either not 242 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU 243 * is available. 244 * 245 * Whilst here, update the amsdu-ampdu flag. The above may 246 * have also set or cleared the amsdu-in-ampdu txa_flags 247 * combination so we can correctly do A-MPDU + A-MSDU. 248 */ 249 no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap) 250 || (IEEE80211_AMPDU_NACKED(tap))); 251 do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap); 252 } 253 } 254 255 #ifdef IEEE80211_SUPPORT_SUPERG 256 /* 257 * Check for AMSDU/FF; queue for aggregation 258 * 259 * Note: we don't bother trying to do fast frames or 260 * A-MSDU encapsulation for 802.3 drivers. Now, we 261 * likely could do it for FF (because it's a magic 262 * atheros tunnel LLC type) but I don't think we're going 263 * to really need to. For A-MSDU we'd have to set the 264 * A-MSDU QoS bit in the wifi header, so we just plain 265 * can't do it. 266 */ 267 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 268 if ((! mcast) && 269 (do_ampdu_amsdu || (no_ampdu && do_amsdu)) && 270 ieee80211_amsdu_tx_ok(ni)) { 271 m = ieee80211_amsdu_check(ni, m); 272 if (m == NULL) { 273 /* NB: any ni ref held on stageq */ 274 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 275 "%s: amsdu_check queued frame\n", 276 __func__); 277 return (0); 278 } 279 } else if ((! mcast) && do_ff) { 280 m = ieee80211_ff_check(ni, m); 281 if (m == NULL) { 282 /* NB: any ni ref held on stageq */ 283 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 284 "%s: ff_check queued frame\n", 285 __func__); 286 return (0); 287 } 288 } 289 } 290 #endif /* IEEE80211_SUPPORT_SUPERG */ 291 292 /* 293 * Grab the TX lock - serialise the TX process from this 294 * point (where TX state is being checked/modified) 295 * through to driver queue. 296 */ 297 IEEE80211_TX_LOCK(ic); 298 299 /* 300 * XXX make the encap and transmit code a separate function 301 * so things like the FF (and later A-MSDU) path can just call 302 * it for flushed frames. 303 */ 304 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 305 /* 306 * Encapsulate the packet in prep for transmission. 307 */ 308 m = ieee80211_encap(vap, ni, m); 309 if (m == NULL) { 310 /* NB: stat+msg handled in ieee80211_encap */ 311 IEEE80211_TX_UNLOCK(ic); 312 ieee80211_free_node(ni); 313 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 314 return (ENOBUFS); 315 } 316 } 317 (void) ieee80211_parent_xmitpkt(ic, m); 318 319 /* 320 * Unlock at this point - no need to hold it across 321 * ieee80211_free_node() (ie, the comlock) 322 */ 323 IEEE80211_TX_UNLOCK(ic); 324 ic->ic_lastdata = ticks; 325 326 return (0); 327 } 328 329 330 331 /* 332 * Send the given mbuf through the given vap. 333 * 334 * This consumes the mbuf regardless of whether the transmit 335 * was successful or not. 336 * 337 * This does none of the initial checks that ieee80211_start() 338 * does (eg CAC timeout, interface wakeup) - the caller must 339 * do this first. 340 */ 341 static int 342 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 343 { 344 #define IS_DWDS(vap) \ 345 (vap->iv_opmode == IEEE80211_M_WDS && \ 346 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 347 struct ieee80211com *ic = vap->iv_ic; 348 struct ifnet *ifp = vap->iv_ifp; 349 struct ieee80211_node *ni; 350 struct ether_header *eh; 351 352 /* 353 * Cancel any background scan. 354 */ 355 if (ic->ic_flags & IEEE80211_F_SCAN) 356 ieee80211_cancel_anyscan(vap); 357 /* 358 * Find the node for the destination so we can do 359 * things like power save and fast frames aggregation. 360 * 361 * NB: past this point various code assumes the first 362 * mbuf has the 802.3 header present (and contiguous). 363 */ 364 ni = NULL; 365 if (m->m_len < sizeof(struct ether_header) && 366 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 367 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 368 "discard frame, %s\n", "m_pullup failed"); 369 vap->iv_stats.is_tx_nobuf++; /* XXX */ 370 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 371 return (ENOBUFS); 372 } 373 eh = mtod(m, struct ether_header *); 374 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 375 if (IS_DWDS(vap)) { 376 /* 377 * Only unicast frames from the above go out 378 * DWDS vaps; multicast frames are handled by 379 * dispatching the frame as it comes through 380 * the AP vap (see below). 381 */ 382 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 383 eh->ether_dhost, "mcast", "%s", "on DWDS"); 384 vap->iv_stats.is_dwds_mcast++; 385 m_freem(m); 386 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 387 /* XXX better status? */ 388 return (ENOBUFS); 389 } 390 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 391 /* 392 * Spam DWDS vap's w/ multicast traffic. 393 */ 394 /* XXX only if dwds in use? */ 395 ieee80211_dwds_mcast(vap, m); 396 } 397 } 398 #ifdef IEEE80211_SUPPORT_MESH 399 if (vap->iv_opmode != IEEE80211_M_MBSS) { 400 #endif 401 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 402 if (ni == NULL) { 403 /* NB: ieee80211_find_txnode does stat+msg */ 404 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 405 m_freem(m); 406 /* XXX better status? */ 407 return (ENOBUFS); 408 } 409 if (ni->ni_associd == 0 && 410 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 411 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 412 eh->ether_dhost, NULL, 413 "sta not associated (type 0x%04x)", 414 htons(eh->ether_type)); 415 vap->iv_stats.is_tx_notassoc++; 416 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 417 m_freem(m); 418 ieee80211_free_node(ni); 419 /* XXX better status? */ 420 return (ENOBUFS); 421 } 422 #ifdef IEEE80211_SUPPORT_MESH 423 } else { 424 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 425 /* 426 * Proxy station only if configured. 427 */ 428 if (!ieee80211_mesh_isproxyena(vap)) { 429 IEEE80211_DISCARD_MAC(vap, 430 IEEE80211_MSG_OUTPUT | 431 IEEE80211_MSG_MESH, 432 eh->ether_dhost, NULL, 433 "%s", "proxy not enabled"); 434 vap->iv_stats.is_mesh_notproxy++; 435 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 436 m_freem(m); 437 /* XXX better status? */ 438 return (ENOBUFS); 439 } 440 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 441 "forward frame from DS SA(%6D), DA(%6D)\n", 442 eh->ether_shost, ":", 443 eh->ether_dhost, ":"); 444 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 445 } 446 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 447 if (ni == NULL) { 448 /* 449 * NB: ieee80211_mesh_discover holds/disposes 450 * frame (e.g. queueing on path discovery). 451 */ 452 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 453 /* XXX better status? */ 454 return (ENOBUFS); 455 } 456 } 457 #endif 458 459 /* 460 * We've resolved the sender, so attempt to transmit it. 461 */ 462 463 if (vap->iv_state == IEEE80211_S_SLEEP) { 464 /* 465 * In power save; queue frame and then wakeup device 466 * for transmit. 467 */ 468 ic->ic_lastdata = ticks; 469 if (ieee80211_pwrsave(ni, m) != 0) 470 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 471 ieee80211_free_node(ni); 472 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 473 return (0); 474 } 475 476 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 477 return (ENOBUFS); 478 return (0); 479 #undef IS_DWDS 480 } 481 482 /* 483 * Start method for vap's. All packets from the stack come 484 * through here. We handle common processing of the packets 485 * before dispatching them to the underlying device. 486 * 487 * if_transmit() requires that the mbuf be consumed by this call 488 * regardless of the return condition. 489 */ 490 int 491 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 492 { 493 struct ieee80211vap *vap = ifp->if_softc; 494 struct ieee80211com *ic = vap->iv_ic; 495 496 /* 497 * No data frames go out unless we're running. 498 * Note in particular this covers CAC and CSA 499 * states (though maybe we should check muting 500 * for CSA). 501 */ 502 if (vap->iv_state != IEEE80211_S_RUN && 503 vap->iv_state != IEEE80211_S_SLEEP) { 504 IEEE80211_LOCK(ic); 505 /* re-check under the com lock to avoid races */ 506 if (vap->iv_state != IEEE80211_S_RUN && 507 vap->iv_state != IEEE80211_S_SLEEP) { 508 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 509 "%s: ignore queue, in %s state\n", 510 __func__, ieee80211_state_name[vap->iv_state]); 511 vap->iv_stats.is_tx_badstate++; 512 IEEE80211_UNLOCK(ic); 513 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 514 m_freem(m); 515 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 516 return (ENETDOWN); 517 } 518 IEEE80211_UNLOCK(ic); 519 } 520 521 /* 522 * Sanitize mbuf flags for net80211 use. We cannot 523 * clear M_PWR_SAV or M_MORE_DATA because these may 524 * be set for frames that are re-submitted from the 525 * power save queue. 526 * 527 * NB: This must be done before ieee80211_classify as 528 * it marks EAPOL in frames with M_EAPOL. 529 */ 530 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 531 532 /* 533 * Bump to the packet transmission path. 534 * The mbuf will be consumed here. 535 */ 536 return (ieee80211_start_pkt(vap, m)); 537 } 538 539 void 540 ieee80211_vap_qflush(struct ifnet *ifp) 541 { 542 543 /* Empty for now */ 544 } 545 546 /* 547 * 802.11 raw output routine. 548 * 549 * XXX TODO: this (and other send routines) should correctly 550 * XXX keep the pwr mgmt bit set if it decides to call into the 551 * XXX driver to send a frame whilst the state is SLEEP. 552 * 553 * Otherwise the peer may decide that we're awake and flood us 554 * with traffic we are still too asleep to receive! 555 */ 556 int 557 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 558 struct mbuf *m, const struct ieee80211_bpf_params *params) 559 { 560 struct ieee80211com *ic = vap->iv_ic; 561 int error; 562 563 /* 564 * Set node - the caller has taken a reference, so ensure 565 * that the mbuf has the same node value that 566 * it would if it were going via the normal path. 567 */ 568 m->m_pkthdr.rcvif = (void *)ni; 569 570 /* 571 * Attempt to add bpf transmit parameters. 572 * 573 * For now it's ok to fail; the raw_xmit api still takes 574 * them as an option. 575 * 576 * Later on when ic_raw_xmit() has params removed, 577 * they'll have to be added - so fail the transmit if 578 * they can't be. 579 */ 580 if (params) 581 (void) ieee80211_add_xmit_params(m, params); 582 583 error = ic->ic_raw_xmit(ni, m, params); 584 if (error) { 585 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 586 ieee80211_free_node(ni); 587 } 588 return (error); 589 } 590 591 static int 592 ieee80211_validate_frame(struct mbuf *m, 593 const struct ieee80211_bpf_params *params) 594 { 595 struct ieee80211_frame *wh; 596 int type; 597 598 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 599 return (EINVAL); 600 601 wh = mtod(m, struct ieee80211_frame *); 602 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 603 IEEE80211_FC0_VERSION_0) 604 return (EINVAL); 605 606 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 607 if (type != IEEE80211_FC0_TYPE_DATA) { 608 if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != 609 IEEE80211_FC1_DIR_NODS) 610 return (EINVAL); 611 612 if (type != IEEE80211_FC0_TYPE_MGT && 613 (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) 614 return (EINVAL); 615 616 /* XXX skip other field checks? */ 617 } 618 619 if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || 620 (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) { 621 int subtype; 622 623 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 624 625 /* 626 * See IEEE Std 802.11-2012, 627 * 8.2.4.1.9 'Protected Frame field' 628 */ 629 /* XXX no support for robust management frames yet. */ 630 if (!(type == IEEE80211_FC0_TYPE_DATA || 631 (type == IEEE80211_FC0_TYPE_MGT && 632 subtype == IEEE80211_FC0_SUBTYPE_AUTH))) 633 return (EINVAL); 634 635 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 636 } 637 638 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 639 return (EINVAL); 640 641 return (0); 642 } 643 644 static int 645 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate) 646 { 647 struct ieee80211com *ic = ni->ni_ic; 648 649 if (IEEE80211_IS_HT_RATE(rate)) { 650 if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0) 651 return (EINVAL); 652 653 rate = IEEE80211_RV(rate); 654 if (rate <= 31) { 655 if (rate > ic->ic_txstream * 8 - 1) 656 return (EINVAL); 657 658 return (0); 659 } 660 661 if (rate == 32) { 662 if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) 663 return (EINVAL); 664 665 return (0); 666 } 667 668 if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0) 669 return (EINVAL); 670 671 switch (ic->ic_txstream) { 672 case 0: 673 case 1: 674 return (EINVAL); 675 case 2: 676 if (rate > 38) 677 return (EINVAL); 678 679 return (0); 680 case 3: 681 if (rate > 52) 682 return (EINVAL); 683 684 return (0); 685 case 4: 686 default: 687 if (rate > 76) 688 return (EINVAL); 689 690 return (0); 691 } 692 } 693 694 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 695 return (EINVAL); 696 697 return (0); 698 } 699 700 static int 701 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m, 702 const struct ieee80211_bpf_params *params) 703 { 704 int error; 705 706 if (!params) 707 return (0); /* nothing to do */ 708 709 /* NB: most drivers assume that ibp_rate0 is set (!= 0). */ 710 if (params->ibp_rate0 != 0) { 711 error = ieee80211_validate_rate(ni, params->ibp_rate0); 712 if (error != 0) 713 return (error); 714 } else { 715 /* XXX pre-setup some default (e.g., mgmt / mcast) rate */ 716 /* XXX __DECONST? */ 717 (void) m; 718 } 719 720 if (params->ibp_rate1 != 0 && 721 (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0) 722 return (error); 723 724 if (params->ibp_rate2 != 0 && 725 (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0) 726 return (error); 727 728 if (params->ibp_rate3 != 0 && 729 (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0) 730 return (error); 731 732 return (0); 733 } 734 735 /* 736 * 802.11 output routine. This is (currently) used only to 737 * connect bpf write calls to the 802.11 layer for injecting 738 * raw 802.11 frames. 739 */ 740 int 741 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 742 const struct sockaddr *dst, struct route *ro) 743 { 744 #define senderr(e) do { error = (e); goto bad;} while (0) 745 const struct ieee80211_bpf_params *params = NULL; 746 struct ieee80211_node *ni = NULL; 747 struct ieee80211vap *vap; 748 struct ieee80211_frame *wh; 749 struct ieee80211com *ic = NULL; 750 int error; 751 int ret; 752 753 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 754 /* 755 * Short-circuit requests if the vap is marked OACTIVE 756 * as this can happen because a packet came down through 757 * ieee80211_start before the vap entered RUN state in 758 * which case it's ok to just drop the frame. This 759 * should not be necessary but callers of if_output don't 760 * check OACTIVE. 761 */ 762 senderr(ENETDOWN); 763 } 764 vap = ifp->if_softc; 765 ic = vap->iv_ic; 766 /* 767 * Hand to the 802.3 code if not tagged as 768 * a raw 802.11 frame. 769 */ 770 #ifdef __HAIKU__ 771 // FIXME why is this different on Haiku? 772 if (!dst || dst->sa_family != AF_IEEE80211) 773 return ieee80211_vap_xmitpkt(vap, m); 774 #else 775 if (dst->sa_family != AF_IEEE80211) 776 return vap->iv_output(ifp, m, dst, ro); 777 #endif 778 #ifdef MAC 779 error = mac_ifnet_check_transmit(ifp, m); 780 if (error) 781 senderr(error); 782 #endif 783 if (ifp->if_flags & IFF_MONITOR) 784 senderr(ENETDOWN); 785 if (!IFNET_IS_UP_RUNNING(ifp)) 786 senderr(ENETDOWN); 787 if (vap->iv_state == IEEE80211_S_CAC) { 788 IEEE80211_DPRINTF(vap, 789 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 790 "block %s frame in CAC state\n", "raw data"); 791 vap->iv_stats.is_tx_badstate++; 792 senderr(EIO); /* XXX */ 793 } else if (vap->iv_state == IEEE80211_S_SCAN) 794 senderr(EIO); 795 /* XXX bypass bridge, pfil, carp, etc. */ 796 797 /* 798 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 799 * present by setting the sa_len field of the sockaddr (yes, 800 * this is a hack). 801 * NB: we assume sa_data is suitably aligned to cast. 802 */ 803 if (dst->sa_len != 0) 804 params = (const struct ieee80211_bpf_params *)dst->sa_data; 805 806 error = ieee80211_validate_frame(m, params); 807 if (error != 0) 808 senderr(error); 809 810 wh = mtod(m, struct ieee80211_frame *); 811 812 /* locate destination node */ 813 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 814 case IEEE80211_FC1_DIR_NODS: 815 case IEEE80211_FC1_DIR_FROMDS: 816 ni = ieee80211_find_txnode(vap, wh->i_addr1); 817 break; 818 case IEEE80211_FC1_DIR_TODS: 819 case IEEE80211_FC1_DIR_DSTODS: 820 ni = ieee80211_find_txnode(vap, wh->i_addr3); 821 break; 822 default: 823 senderr(EDOOFUS); 824 } 825 if (ni == NULL) { 826 /* 827 * Permit packets w/ bpf params through regardless 828 * (see below about sa_len). 829 */ 830 if (dst->sa_len == 0) 831 senderr(EHOSTUNREACH); 832 ni = ieee80211_ref_node(vap->iv_bss); 833 } 834 835 /* 836 * Sanitize mbuf for net80211 flags leaked from above. 837 * 838 * NB: This must be done before ieee80211_classify as 839 * it marks EAPOL in frames with M_EAPOL. 840 */ 841 m->m_flags &= ~M_80211_TX; 842 m->m_flags |= M_ENCAP; /* mark encapsulated */ 843 844 if (IEEE80211_IS_DATA(wh)) { 845 /* calculate priority so drivers can find the tx queue */ 846 if (ieee80211_classify(ni, m)) 847 senderr(EIO); /* XXX */ 848 849 /* NB: ieee80211_encap does not include 802.11 header */ 850 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, 851 m->m_pkthdr.len - ieee80211_hdrsize(wh)); 852 } else 853 M_WME_SETAC(m, WME_AC_BE); 854 855 error = ieee80211_sanitize_rates(ni, m, params); 856 if (error != 0) 857 senderr(error); 858 859 IEEE80211_NODE_STAT(ni, tx_data); 860 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 861 IEEE80211_NODE_STAT(ni, tx_mcast); 862 m->m_flags |= M_MCAST; 863 } else 864 IEEE80211_NODE_STAT(ni, tx_ucast); 865 866 IEEE80211_TX_LOCK(ic); 867 ret = ieee80211_raw_output(vap, ni, m, params); 868 IEEE80211_TX_UNLOCK(ic); 869 return (ret); 870 bad: 871 if (m != NULL) 872 m_freem(m); 873 if (ni != NULL) 874 ieee80211_free_node(ni); 875 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 876 return error; 877 #undef senderr 878 } 879 880 /* 881 * Set the direction field and address fields of an outgoing 882 * frame. Note this should be called early on in constructing 883 * a frame as it sets i_fc[1]; other bits can then be or'd in. 884 */ 885 void 886 ieee80211_send_setup( 887 struct ieee80211_node *ni, 888 struct mbuf *m, 889 int type, int tid, 890 const uint8_t sa[IEEE80211_ADDR_LEN], 891 const uint8_t da[IEEE80211_ADDR_LEN], 892 const uint8_t bssid[IEEE80211_ADDR_LEN]) 893 { 894 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 895 struct ieee80211vap *vap = ni->ni_vap; 896 struct ieee80211_tx_ampdu *tap; 897 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 898 ieee80211_seq seqno; 899 900 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 901 902 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 903 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 904 switch (vap->iv_opmode) { 905 case IEEE80211_M_STA: 906 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 907 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 908 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 909 IEEE80211_ADDR_COPY(wh->i_addr3, da); 910 break; 911 case IEEE80211_M_IBSS: 912 case IEEE80211_M_AHDEMO: 913 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 914 IEEE80211_ADDR_COPY(wh->i_addr1, da); 915 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 916 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 917 break; 918 case IEEE80211_M_HOSTAP: 919 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 920 IEEE80211_ADDR_COPY(wh->i_addr1, da); 921 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 922 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 923 break; 924 case IEEE80211_M_WDS: 925 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 926 IEEE80211_ADDR_COPY(wh->i_addr1, da); 927 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 928 IEEE80211_ADDR_COPY(wh->i_addr3, da); 929 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 930 break; 931 case IEEE80211_M_MBSS: 932 #ifdef IEEE80211_SUPPORT_MESH 933 if (IEEE80211_IS_MULTICAST(da)) { 934 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 935 /* XXX next hop */ 936 IEEE80211_ADDR_COPY(wh->i_addr1, da); 937 IEEE80211_ADDR_COPY(wh->i_addr2, 938 vap->iv_myaddr); 939 } else { 940 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 941 IEEE80211_ADDR_COPY(wh->i_addr1, da); 942 IEEE80211_ADDR_COPY(wh->i_addr2, 943 vap->iv_myaddr); 944 IEEE80211_ADDR_COPY(wh->i_addr3, da); 945 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 946 } 947 #endif 948 break; 949 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 950 break; 951 } 952 } else { 953 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 954 IEEE80211_ADDR_COPY(wh->i_addr1, da); 955 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 956 #ifdef IEEE80211_SUPPORT_MESH 957 if (vap->iv_opmode == IEEE80211_M_MBSS) 958 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 959 else 960 #endif 961 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 962 } 963 *(uint16_t *)&wh->i_dur[0] = 0; 964 965 /* 966 * XXX TODO: this is what the TX lock is for. 967 * Here we're incrementing sequence numbers, and they 968 * need to be in lock-step with what the driver is doing 969 * both in TX ordering and crypto encap (IV increment.) 970 * 971 * If the driver does seqno itself, then we can skip 972 * assigning sequence numbers here, and we can avoid 973 * requiring the TX lock. 974 */ 975 tap = &ni->ni_tx_ampdu[tid]; 976 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { 977 m->m_flags |= M_AMPDU_MPDU; 978 979 /* NB: zero out i_seq field (for s/w encryption etc) */ 980 *(uint16_t *)&wh->i_seq[0] = 0; 981 } else { 982 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 983 type & IEEE80211_FC0_SUBTYPE_MASK)) 984 /* 985 * 802.11-2012 9.3.2.10 - QoS multicast frames 986 * come out of a different seqno space. 987 */ 988 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 989 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 990 } else { 991 seqno = ni->ni_txseqs[tid]++; 992 } 993 else 994 seqno = 0; 995 996 *(uint16_t *)&wh->i_seq[0] = 997 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 998 M_SEQNO_SET(m, seqno); 999 } 1000 1001 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1002 m->m_flags |= M_MCAST; 1003 #undef WH4 1004 } 1005 1006 /* 1007 * Send a management frame to the specified node. The node pointer 1008 * must have a reference as the pointer will be passed to the driver 1009 * and potentially held for a long time. If the frame is successfully 1010 * dispatched to the driver, then it is responsible for freeing the 1011 * reference (and potentially free'ing up any associated storage); 1012 * otherwise deal with reclaiming any reference (on error). 1013 */ 1014 int 1015 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 1016 struct ieee80211_bpf_params *params) 1017 { 1018 struct ieee80211vap *vap = ni->ni_vap; 1019 struct ieee80211com *ic = ni->ni_ic; 1020 struct ieee80211_frame *wh; 1021 int ret; 1022 1023 KASSERT(ni != NULL, ("null node")); 1024 1025 if (vap->iv_state == IEEE80211_S_CAC) { 1026 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1027 ni, "block %s frame in CAC state", 1028 ieee80211_mgt_subtype_name(type)); 1029 vap->iv_stats.is_tx_badstate++; 1030 ieee80211_free_node(ni); 1031 m_freem(m); 1032 return EIO; /* XXX */ 1033 } 1034 1035 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 1036 if (m == NULL) { 1037 ieee80211_free_node(ni); 1038 return ENOMEM; 1039 } 1040 1041 IEEE80211_TX_LOCK(ic); 1042 1043 wh = mtod(m, struct ieee80211_frame *); 1044 ieee80211_send_setup(ni, m, 1045 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 1046 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1047 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 1048 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 1049 "encrypting frame (%s)", __func__); 1050 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1051 } 1052 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1053 1054 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 1055 M_WME_SETAC(m, params->ibp_pri); 1056 1057 #ifdef IEEE80211_DEBUG 1058 /* avoid printing too many frames */ 1059 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 1060 ieee80211_msg_dumppkts(vap)) { 1061 printf("[%s] send %s on channel %u\n", 1062 ether_sprintf(wh->i_addr1), 1063 ieee80211_mgt_subtype_name(type), 1064 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1065 } 1066 #endif 1067 IEEE80211_NODE_STAT(ni, tx_mgmt); 1068 1069 ret = ieee80211_raw_output(vap, ni, m, params); 1070 IEEE80211_TX_UNLOCK(ic); 1071 return (ret); 1072 } 1073 1074 static void 1075 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 1076 int status) 1077 { 1078 struct ieee80211vap *vap = ni->ni_vap; 1079 1080 wakeup(vap); 1081 } 1082 1083 /* 1084 * Send a null data frame to the specified node. If the station 1085 * is setup for QoS then a QoS Null Data frame is constructed. 1086 * If this is a WDS station then a 4-address frame is constructed. 1087 * 1088 * NB: the caller is assumed to have setup a node reference 1089 * for use; this is necessary to deal with a race condition 1090 * when probing for inactive stations. Like ieee80211_mgmt_output 1091 * we must cleanup any node reference on error; however we 1092 * can safely just unref it as we know it will never be the 1093 * last reference to the node. 1094 */ 1095 int 1096 ieee80211_send_nulldata(struct ieee80211_node *ni) 1097 { 1098 struct ieee80211vap *vap = ni->ni_vap; 1099 struct ieee80211com *ic = ni->ni_ic; 1100 struct mbuf *m; 1101 struct ieee80211_frame *wh; 1102 int hdrlen; 1103 uint8_t *frm; 1104 int ret; 1105 1106 if (vap->iv_state == IEEE80211_S_CAC) { 1107 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 1108 ni, "block %s frame in CAC state", "null data"); 1109 ieee80211_unref_node(&ni); 1110 vap->iv_stats.is_tx_badstate++; 1111 return EIO; /* XXX */ 1112 } 1113 1114 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 1115 hdrlen = sizeof(struct ieee80211_qosframe); 1116 else 1117 hdrlen = sizeof(struct ieee80211_frame); 1118 /* NB: only WDS vap's get 4-address frames */ 1119 if (vap->iv_opmode == IEEE80211_M_WDS) 1120 hdrlen += IEEE80211_ADDR_LEN; 1121 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1122 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 1123 1124 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 1125 if (m == NULL) { 1126 /* XXX debug msg */ 1127 ieee80211_unref_node(&ni); 1128 vap->iv_stats.is_tx_nobuf++; 1129 return ENOMEM; 1130 } 1131 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 1132 ("leading space %zd", M_LEADINGSPACE(m))); 1133 M_PREPEND(m, hdrlen, M_NOWAIT); 1134 if (m == NULL) { 1135 /* NB: cannot happen */ 1136 ieee80211_free_node(ni); 1137 return ENOMEM; 1138 } 1139 1140 IEEE80211_TX_LOCK(ic); 1141 1142 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 1143 if (ni->ni_flags & IEEE80211_NODE_QOS) { 1144 const int tid = WME_AC_TO_TID(WME_AC_BE); 1145 uint8_t *qos; 1146 1147 ieee80211_send_setup(ni, m, 1148 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 1149 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1150 1151 if (vap->iv_opmode == IEEE80211_M_WDS) 1152 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1153 else 1154 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1155 qos[0] = tid & IEEE80211_QOS_TID; 1156 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 1157 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1158 qos[1] = 0; 1159 } else { 1160 ieee80211_send_setup(ni, m, 1161 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 1162 IEEE80211_NONQOS_TID, 1163 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 1164 } 1165 if (vap->iv_opmode != IEEE80211_M_WDS) { 1166 /* NB: power management bit is never sent by an AP */ 1167 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1168 vap->iv_opmode != IEEE80211_M_HOSTAP) 1169 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 1170 } 1171 if ((ic->ic_flags & IEEE80211_F_SCAN) && 1172 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 1173 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 1174 NULL); 1175 } 1176 m->m_len = m->m_pkthdr.len = hdrlen; 1177 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1178 1179 M_WME_SETAC(m, WME_AC_BE); 1180 1181 IEEE80211_NODE_STAT(ni, tx_data); 1182 1183 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 1184 "send %snull data frame on channel %u, pwr mgt %s", 1185 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 1186 ieee80211_chan2ieee(ic, ic->ic_curchan), 1187 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 1188 1189 ret = ieee80211_raw_output(vap, ni, m, NULL); 1190 IEEE80211_TX_UNLOCK(ic); 1191 return (ret); 1192 } 1193 1194 /* 1195 * Assign priority to a frame based on any vlan tag assigned 1196 * to the station and/or any Diffserv setting in an IP header. 1197 * Finally, if an ACM policy is setup (in station mode) it's 1198 * applied. 1199 */ 1200 int 1201 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 1202 { 1203 const struct ether_header *eh = NULL; 1204 uint16_t ether_type; 1205 int v_wme_ac, d_wme_ac, ac; 1206 1207 if (__predict_false(m->m_flags & M_ENCAP)) { 1208 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 1209 struct llc *llc; 1210 int hdrlen, subtype; 1211 1212 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 1213 if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { 1214 ac = WME_AC_BE; 1215 goto done; 1216 } 1217 1218 hdrlen = ieee80211_hdrsize(wh); 1219 if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) 1220 return 1; 1221 1222 llc = (struct llc *)mtodo(m, hdrlen); 1223 if (llc->llc_dsap != LLC_SNAP_LSAP || 1224 llc->llc_ssap != LLC_SNAP_LSAP || 1225 llc->llc_control != LLC_UI || 1226 llc->llc_snap.org_code[0] != 0 || 1227 llc->llc_snap.org_code[1] != 0 || 1228 llc->llc_snap.org_code[2] != 0) 1229 return 1; 1230 1231 ether_type = llc->llc_snap.ether_type; 1232 } else { 1233 eh = mtod(m, struct ether_header *); 1234 ether_type = eh->ether_type; 1235 } 1236 1237 /* 1238 * Always promote PAE/EAPOL frames to high priority. 1239 */ 1240 if (ether_type == htons(ETHERTYPE_PAE)) { 1241 /* NB: mark so others don't need to check header */ 1242 m->m_flags |= M_EAPOL; 1243 ac = WME_AC_VO; 1244 goto done; 1245 } 1246 /* 1247 * Non-qos traffic goes to BE. 1248 */ 1249 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1250 ac = WME_AC_BE; 1251 goto done; 1252 } 1253 1254 /* 1255 * If node has a vlan tag then all traffic 1256 * to it must have a matching tag. 1257 */ 1258 v_wme_ac = 0; 1259 if (ni->ni_vlan != 0) { 1260 if ((m->m_flags & M_VLANTAG) == 0) { 1261 IEEE80211_NODE_STAT(ni, tx_novlantag); 1262 return 1; 1263 } 1264 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1265 EVL_VLANOFTAG(ni->ni_vlan)) { 1266 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1267 return 1; 1268 } 1269 /* map vlan priority to AC */ 1270 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1271 } 1272 1273 /* XXX m_copydata may be too slow for fast path */ 1274 #ifdef INET 1275 if (eh && eh->ether_type == htons(ETHERTYPE_IP)) { 1276 uint8_t tos; 1277 /* 1278 * IP frame, map the DSCP bits from the TOS field. 1279 */ 1280 /* NB: ip header may not be in first mbuf */ 1281 m_copydata(m, sizeof(struct ether_header) + 1282 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1283 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1284 d_wme_ac = TID_TO_WME_AC(tos); 1285 } else { 1286 #endif /* INET */ 1287 #ifdef INET6 1288 if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) { 1289 uint32_t flow; 1290 uint8_t tos; 1291 /* 1292 * IPv6 frame, map the DSCP bits from the traffic class field. 1293 */ 1294 m_copydata(m, sizeof(struct ether_header) + 1295 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1296 (caddr_t) &flow); 1297 tos = (uint8_t)(ntohl(flow) >> 20); 1298 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1299 d_wme_ac = TID_TO_WME_AC(tos); 1300 } else { 1301 #endif /* INET6 */ 1302 d_wme_ac = WME_AC_BE; 1303 #ifdef INET6 1304 } 1305 #endif 1306 #ifdef INET 1307 } 1308 #endif 1309 /* 1310 * Use highest priority AC. 1311 */ 1312 if (v_wme_ac > d_wme_ac) 1313 ac = v_wme_ac; 1314 else 1315 ac = d_wme_ac; 1316 1317 /* 1318 * Apply ACM policy. 1319 */ 1320 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1321 static const int acmap[4] = { 1322 WME_AC_BK, /* WME_AC_BE */ 1323 WME_AC_BK, /* WME_AC_BK */ 1324 WME_AC_BE, /* WME_AC_VI */ 1325 WME_AC_VI, /* WME_AC_VO */ 1326 }; 1327 struct ieee80211com *ic = ni->ni_ic; 1328 1329 while (ac != WME_AC_BK && 1330 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1331 ac = acmap[ac]; 1332 } 1333 done: 1334 M_WME_SETAC(m, ac); 1335 return 0; 1336 } 1337 1338 /* 1339 * Insure there is sufficient contiguous space to encapsulate the 1340 * 802.11 data frame. If room isn't already there, arrange for it. 1341 * Drivers and cipher modules assume we have done the necessary work 1342 * and fail rudely if they don't find the space they need. 1343 */ 1344 struct mbuf * 1345 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1346 struct ieee80211_key *key, struct mbuf *m) 1347 { 1348 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1349 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1350 1351 if (key != NULL) { 1352 /* XXX belongs in crypto code? */ 1353 needed_space += key->wk_cipher->ic_header; 1354 /* XXX frags */ 1355 /* 1356 * When crypto is being done in the host we must insure 1357 * the data are writable for the cipher routines; clone 1358 * a writable mbuf chain. 1359 * XXX handle SWMIC specially 1360 */ 1361 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1362 m = m_unshare(m, M_NOWAIT); 1363 if (m == NULL) { 1364 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1365 "%s: cannot get writable mbuf\n", __func__); 1366 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1367 return NULL; 1368 } 1369 } 1370 } 1371 /* 1372 * We know we are called just before stripping an Ethernet 1373 * header and prepending an LLC header. This means we know 1374 * there will be 1375 * sizeof(struct ether_header) - sizeof(struct llc) 1376 * bytes recovered to which we need additional space for the 1377 * 802.11 header and any crypto header. 1378 */ 1379 /* XXX check trailing space and copy instead? */ 1380 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1381 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1382 if (n == NULL) { 1383 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1384 "%s: cannot expand storage\n", __func__); 1385 vap->iv_stats.is_tx_nobuf++; 1386 m_freem(m); 1387 return NULL; 1388 } 1389 KASSERT(needed_space <= MHLEN, 1390 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1391 /* 1392 * Setup new mbuf to have leading space to prepend the 1393 * 802.11 header and any crypto header bits that are 1394 * required (the latter are added when the driver calls 1395 * back to ieee80211_crypto_encap to do crypto encapsulation). 1396 */ 1397 /* NB: must be first 'cuz it clobbers m_data */ 1398 m_move_pkthdr(n, m); 1399 n->m_len = 0; /* NB: m_gethdr does not set */ 1400 n->m_data += needed_space; 1401 /* 1402 * Pull up Ethernet header to create the expected layout. 1403 * We could use m_pullup but that's overkill (i.e. we don't 1404 * need the actual data) and it cannot fail so do it inline 1405 * for speed. 1406 */ 1407 /* NB: struct ether_header is known to be contiguous */ 1408 n->m_len += sizeof(struct ether_header); 1409 m->m_len -= sizeof(struct ether_header); 1410 m->m_data += sizeof(struct ether_header); 1411 /* 1412 * Replace the head of the chain. 1413 */ 1414 n->m_next = m; 1415 m = n; 1416 } 1417 return m; 1418 #undef TO_BE_RECLAIMED 1419 } 1420 1421 /* 1422 * Return the transmit key to use in sending a unicast frame. 1423 * If a unicast key is set we use that. When no unicast key is set 1424 * we fall back to the default transmit key. 1425 */ 1426 static __inline struct ieee80211_key * 1427 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1428 struct ieee80211_node *ni) 1429 { 1430 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1431 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1432 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1433 return NULL; 1434 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1435 } else { 1436 return &ni->ni_ucastkey; 1437 } 1438 } 1439 1440 /* 1441 * Return the transmit key to use in sending a multicast frame. 1442 * Multicast traffic always uses the group key which is installed as 1443 * the default tx key. 1444 */ 1445 static __inline struct ieee80211_key * 1446 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1447 struct ieee80211_node *ni) 1448 { 1449 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1450 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1451 return NULL; 1452 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1453 } 1454 1455 /* 1456 * Encapsulate an outbound data frame. The mbuf chain is updated. 1457 * If an error is encountered NULL is returned. The caller is required 1458 * to provide a node reference and pullup the ethernet header in the 1459 * first mbuf. 1460 * 1461 * NB: Packet is assumed to be processed by ieee80211_classify which 1462 * marked EAPOL frames w/ M_EAPOL. 1463 */ 1464 struct mbuf * 1465 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1466 struct mbuf *m) 1467 { 1468 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1469 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1470 struct ieee80211com *ic = ni->ni_ic; 1471 #ifdef IEEE80211_SUPPORT_MESH 1472 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1473 struct ieee80211_meshcntl_ae10 *mc; 1474 struct ieee80211_mesh_route *rt = NULL; 1475 int dir = -1; 1476 #endif 1477 struct ether_header eh; 1478 struct ieee80211_frame *wh; 1479 struct ieee80211_key *key; 1480 struct llc *llc; 1481 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; 1482 ieee80211_seq seqno; 1483 int meshhdrsize, meshae; 1484 uint8_t *qos; 1485 int is_amsdu = 0; 1486 1487 IEEE80211_TX_LOCK_ASSERT(ic); 1488 1489 is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); 1490 1491 /* 1492 * Copy existing Ethernet header to a safe place. The 1493 * rest of the code assumes it's ok to strip it when 1494 * reorganizing state for the final encapsulation. 1495 */ 1496 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1497 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1498 1499 /* 1500 * Insure space for additional headers. First identify 1501 * transmit key to use in calculating any buffer adjustments 1502 * required. This is also used below to do privacy 1503 * encapsulation work. Then calculate the 802.11 header 1504 * size and any padding required by the driver. 1505 * 1506 * Note key may be NULL if we fall back to the default 1507 * transmit key and that is not set. In that case the 1508 * buffer may not be expanded as needed by the cipher 1509 * routines, but they will/should discard it. 1510 */ 1511 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1512 if (vap->iv_opmode == IEEE80211_M_STA || 1513 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1514 (vap->iv_opmode == IEEE80211_M_WDS && 1515 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { 1516 key = ieee80211_crypto_getucastkey(vap, ni); 1517 } else if ((vap->iv_opmode == IEEE80211_M_WDS) && 1518 (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { 1519 /* 1520 * Use ucastkey for DWDS transmit nodes, multicast 1521 * or otherwise. 1522 * 1523 * This is required to ensure that multicast frames 1524 * from a DWDS AP to a DWDS STA is encrypted with 1525 * a key that can actually work. 1526 * 1527 * There's no default key for multicast traffic 1528 * on a DWDS WDS VAP node (note NOT the DWDS enabled 1529 * AP VAP, the dynamically created per-STA WDS node) 1530 * so encap fails and transmit fails. 1531 */ 1532 key = ieee80211_crypto_getucastkey(vap, ni); 1533 } else { 1534 key = ieee80211_crypto_getmcastkey(vap, ni); 1535 } 1536 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1537 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1538 eh.ether_dhost, 1539 "no default transmit key (%s) deftxkey %u", 1540 __func__, vap->iv_def_txkey); 1541 vap->iv_stats.is_tx_nodefkey++; 1542 goto bad; 1543 } 1544 } else 1545 key = NULL; 1546 /* 1547 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1548 * frames so suppress use. This may be an issue if other 1549 * ap's require all data frames to be QoS-encapsulated 1550 * once negotiated in which case we'll need to make this 1551 * configurable. 1552 * 1553 * Don't send multicast QoS frames. 1554 * Technically multicast frames can be QoS if all stations in the 1555 * BSS are also QoS. 1556 * 1557 * NB: mesh data frames are QoS, including multicast frames. 1558 */ 1559 addqos = 1560 (((is_mcast == 0) && (ni->ni_flags & 1561 (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || 1562 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1563 (m->m_flags & M_EAPOL) == 0; 1564 1565 if (addqos) 1566 hdrsize = sizeof(struct ieee80211_qosframe); 1567 else 1568 hdrsize = sizeof(struct ieee80211_frame); 1569 #ifdef IEEE80211_SUPPORT_MESH 1570 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1571 /* 1572 * Mesh data frames are encapsulated according to the 1573 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1574 * o Group Addressed data (aka multicast) originating 1575 * at the local sta are sent w/ 3-address format and 1576 * address extension mode 00 1577 * o Individually Addressed data (aka unicast) originating 1578 * at the local sta are sent w/ 4-address format and 1579 * address extension mode 00 1580 * o Group Addressed data forwarded from a non-mesh sta are 1581 * sent w/ 3-address format and address extension mode 01 1582 * o Individually Address data from another sta are sent 1583 * w/ 4-address format and address extension mode 10 1584 */ 1585 is4addr = 0; /* NB: don't use, disable */ 1586 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1587 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1588 KASSERT(rt != NULL, ("route is NULL")); 1589 dir = IEEE80211_FC1_DIR_DSTODS; 1590 hdrsize += IEEE80211_ADDR_LEN; 1591 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1592 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1593 vap->iv_myaddr)) { 1594 IEEE80211_NOTE_MAC(vap, 1595 IEEE80211_MSG_MESH, 1596 eh.ether_dhost, 1597 "%s", "trying to send to ourself"); 1598 goto bad; 1599 } 1600 meshae = IEEE80211_MESH_AE_10; 1601 meshhdrsize = 1602 sizeof(struct ieee80211_meshcntl_ae10); 1603 } else { 1604 meshae = IEEE80211_MESH_AE_00; 1605 meshhdrsize = 1606 sizeof(struct ieee80211_meshcntl); 1607 } 1608 } else { 1609 dir = IEEE80211_FC1_DIR_FROMDS; 1610 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1611 /* proxy group */ 1612 meshae = IEEE80211_MESH_AE_01; 1613 meshhdrsize = 1614 sizeof(struct ieee80211_meshcntl_ae01); 1615 } else { 1616 /* group */ 1617 meshae = IEEE80211_MESH_AE_00; 1618 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1619 } 1620 } 1621 } else { 1622 #endif 1623 /* 1624 * 4-address frames need to be generated for: 1625 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1626 * o packets sent through a vap marked for relaying 1627 * (e.g. a station operating with dynamic WDS) 1628 */ 1629 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1630 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1631 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1632 if (is4addr) 1633 hdrsize += IEEE80211_ADDR_LEN; 1634 meshhdrsize = meshae = 0; 1635 #ifdef IEEE80211_SUPPORT_MESH 1636 } 1637 #endif 1638 /* 1639 * Honor driver DATAPAD requirement. 1640 */ 1641 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1642 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1643 else 1644 hdrspace = hdrsize; 1645 1646 if (__predict_true((m->m_flags & M_FF) == 0)) { 1647 /* 1648 * Normal frame. 1649 */ 1650 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1651 if (m == NULL) { 1652 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1653 goto bad; 1654 } 1655 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1656 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1657 llc = mtod(m, struct llc *); 1658 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1659 llc->llc_control = LLC_UI; 1660 llc->llc_snap.org_code[0] = 0; 1661 llc->llc_snap.org_code[1] = 0; 1662 llc->llc_snap.org_code[2] = 0; 1663 llc->llc_snap.ether_type = eh.ether_type; 1664 } else { 1665 #ifdef IEEE80211_SUPPORT_SUPERG 1666 /* 1667 * Aggregated frame. Check if it's for AMSDU or FF. 1668 * 1669 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1670 * anywhere for some reason. But, since 11n requires 1671 * AMSDU RX, we can just assume "11n" == "AMSDU". 1672 */ 1673 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1674 if (ieee80211_amsdu_tx_ok(ni)) { 1675 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1676 is_amsdu = 1; 1677 } else { 1678 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1679 } 1680 if (m == NULL) 1681 #endif 1682 goto bad; 1683 } 1684 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1685 1686 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1687 if (m == NULL) { 1688 vap->iv_stats.is_tx_nobuf++; 1689 goto bad; 1690 } 1691 wh = mtod(m, struct ieee80211_frame *); 1692 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1693 *(uint16_t *)wh->i_dur = 0; 1694 qos = NULL; /* NB: quiet compiler */ 1695 if (is4addr) { 1696 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1697 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1698 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1699 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1700 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1701 } else switch (vap->iv_opmode) { 1702 case IEEE80211_M_STA: 1703 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1704 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1705 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1706 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1707 break; 1708 case IEEE80211_M_IBSS: 1709 case IEEE80211_M_AHDEMO: 1710 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1711 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1712 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1713 /* 1714 * NB: always use the bssid from iv_bss as the 1715 * neighbor's may be stale after an ibss merge 1716 */ 1717 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1718 break; 1719 case IEEE80211_M_HOSTAP: 1720 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1721 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1722 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1723 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1724 break; 1725 #ifdef IEEE80211_SUPPORT_MESH 1726 case IEEE80211_M_MBSS: 1727 /* NB: offset by hdrspace to deal with DATAPAD */ 1728 mc = (struct ieee80211_meshcntl_ae10 *) 1729 (mtod(m, uint8_t *) + hdrspace); 1730 wh->i_fc[1] = dir; 1731 switch (meshae) { 1732 case IEEE80211_MESH_AE_00: /* no proxy */ 1733 mc->mc_flags = 0; 1734 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1735 IEEE80211_ADDR_COPY(wh->i_addr1, 1736 ni->ni_macaddr); 1737 IEEE80211_ADDR_COPY(wh->i_addr2, 1738 vap->iv_myaddr); 1739 IEEE80211_ADDR_COPY(wh->i_addr3, 1740 eh.ether_dhost); 1741 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1742 eh.ether_shost); 1743 qos =((struct ieee80211_qosframe_addr4 *) 1744 wh)->i_qos; 1745 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1746 /* mcast */ 1747 IEEE80211_ADDR_COPY(wh->i_addr1, 1748 eh.ether_dhost); 1749 IEEE80211_ADDR_COPY(wh->i_addr2, 1750 vap->iv_myaddr); 1751 IEEE80211_ADDR_COPY(wh->i_addr3, 1752 eh.ether_shost); 1753 qos = ((struct ieee80211_qosframe *) 1754 wh)->i_qos; 1755 } 1756 break; 1757 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1758 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1759 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1760 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1761 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1762 mc->mc_flags = 1; 1763 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1764 eh.ether_shost); 1765 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1766 break; 1767 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1768 KASSERT(rt != NULL, ("route is NULL")); 1769 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1770 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1771 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1772 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1773 mc->mc_flags = IEEE80211_MESH_AE_10; 1774 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1775 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1776 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1777 break; 1778 default: 1779 KASSERT(0, ("meshae %d", meshae)); 1780 break; 1781 } 1782 mc->mc_ttl = ms->ms_ttl; 1783 ms->ms_seq++; 1784 le32enc(mc->mc_seq, ms->ms_seq); 1785 break; 1786 #endif 1787 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1788 default: 1789 goto bad; 1790 } 1791 if (m->m_flags & M_MORE_DATA) 1792 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1793 if (addqos) { 1794 int ac, tid; 1795 1796 if (is4addr) { 1797 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1798 /* NB: mesh case handled earlier */ 1799 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1800 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1801 ac = M_WME_GETAC(m); 1802 /* map from access class/queue to 11e header priorty value */ 1803 tid = WME_AC_TO_TID(ac); 1804 qos[0] = tid & IEEE80211_QOS_TID; 1805 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1806 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1807 #ifdef IEEE80211_SUPPORT_MESH 1808 if (vap->iv_opmode == IEEE80211_M_MBSS) 1809 qos[1] = IEEE80211_QOS_MC; 1810 else 1811 #endif 1812 qos[1] = 0; 1813 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1814 1815 /* 1816 * If this is an A-MSDU then ensure we set the 1817 * relevant field. 1818 */ 1819 if (is_amsdu) 1820 qos[0] |= IEEE80211_QOS_AMSDU; 1821 1822 /* 1823 * XXX TODO TX lock is needed for atomic updates of sequence 1824 * numbers. If the driver does it, then don't do it here; 1825 * and we don't need the TX lock held. 1826 */ 1827 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1828 /* 1829 * 802.11-2012 9.3.2.10 - 1830 * 1831 * If this is a multicast frame then we need 1832 * to ensure that the sequence number comes from 1833 * a separate seqno space and not the TID space. 1834 * 1835 * Otherwise multicast frames may actually cause 1836 * holes in the TX blockack window space and 1837 * upset various things. 1838 */ 1839 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1840 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1841 else 1842 seqno = ni->ni_txseqs[tid]++; 1843 1844 /* 1845 * NB: don't assign a sequence # to potential 1846 * aggregates; we expect this happens at the 1847 * point the frame comes off any aggregation q 1848 * as otherwise we may introduce holes in the 1849 * BA sequence space and/or make window accouting 1850 * more difficult. 1851 * 1852 * XXX may want to control this with a driver 1853 * capability; this may also change when we pull 1854 * aggregation up into net80211 1855 */ 1856 *(uint16_t *)wh->i_seq = 1857 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1858 M_SEQNO_SET(m, seqno); 1859 } else { 1860 /* NB: zero out i_seq field (for s/w encryption etc) */ 1861 *(uint16_t *)wh->i_seq = 0; 1862 } 1863 } else { 1864 /* 1865 * XXX TODO TX lock is needed for atomic updates of sequence 1866 * numbers. If the driver does it, then don't do it here; 1867 * and we don't need the TX lock held. 1868 */ 1869 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1870 *(uint16_t *)wh->i_seq = 1871 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1872 M_SEQNO_SET(m, seqno); 1873 1874 /* 1875 * XXX TODO: we shouldn't allow EAPOL, etc that would 1876 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1877 */ 1878 if (is_amsdu) 1879 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1880 __func__); 1881 } 1882 1883 /* 1884 * Check if xmit fragmentation is required. 1885 * 1886 * If the hardware does fragmentation offload, then don't bother 1887 * doing it here. 1888 */ 1889 if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) 1890 txfrag = 0; 1891 else 1892 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1893 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1894 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1895 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1896 1897 if (key != NULL) { 1898 /* 1899 * IEEE 802.1X: send EAPOL frames always in the clear. 1900 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1901 */ 1902 if ((m->m_flags & M_EAPOL) == 0 || 1903 ((vap->iv_flags & IEEE80211_F_WPA) && 1904 (vap->iv_opmode == IEEE80211_M_STA ? 1905 !IEEE80211_KEY_UNDEFINED(key) : 1906 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1907 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1908 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1909 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1910 eh.ether_dhost, 1911 "%s", "enmic failed, discard frame"); 1912 vap->iv_stats.is_crypto_enmicfail++; 1913 goto bad; 1914 } 1915 } 1916 } 1917 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1918 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1919 goto bad; 1920 1921 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1922 1923 IEEE80211_NODE_STAT(ni, tx_data); 1924 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1925 IEEE80211_NODE_STAT(ni, tx_mcast); 1926 m->m_flags |= M_MCAST; 1927 } else 1928 IEEE80211_NODE_STAT(ni, tx_ucast); 1929 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1930 1931 return m; 1932 bad: 1933 if (m != NULL) 1934 m_freem(m); 1935 return NULL; 1936 #undef WH4 1937 #undef MC01 1938 } 1939 1940 void 1941 ieee80211_free_mbuf(struct mbuf *m) 1942 { 1943 struct mbuf *next; 1944 1945 if (m == NULL) 1946 return; 1947 1948 do { 1949 next = m->m_nextpkt; 1950 m->m_nextpkt = NULL; 1951 m_freem(m); 1952 } while ((m = next) != NULL); 1953 } 1954 1955 /* 1956 * Fragment the frame according to the specified mtu. 1957 * The size of the 802.11 header (w/o padding) is provided 1958 * so we don't need to recalculate it. We create a new 1959 * mbuf for each fragment and chain it through m_nextpkt; 1960 * we might be able to optimize this by reusing the original 1961 * packet's mbufs but that is significantly more complicated. 1962 */ 1963 static int 1964 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1965 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1966 { 1967 struct ieee80211com *ic = vap->iv_ic; 1968 struct ieee80211_frame *wh, *whf; 1969 struct mbuf *m, *prev; 1970 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1971 u_int hdrspace; 1972 1973 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1974 KASSERT(m0->m_pkthdr.len > mtu, 1975 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1976 1977 /* 1978 * Honor driver DATAPAD requirement. 1979 */ 1980 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1981 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1982 else 1983 hdrspace = hdrsize; 1984 1985 wh = mtod(m0, struct ieee80211_frame *); 1986 /* NB: mark the first frag; it will be propagated below */ 1987 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1988 totalhdrsize = hdrspace + ciphdrsize; 1989 fragno = 1; 1990 off = mtu - ciphdrsize; 1991 remainder = m0->m_pkthdr.len - off; 1992 prev = m0; 1993 do { 1994 fragsize = MIN(totalhdrsize + remainder, mtu); 1995 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1996 if (m == NULL) 1997 goto bad; 1998 /* leave room to prepend any cipher header */ 1999 m_align(m, fragsize - ciphdrsize); 2000 2001 /* 2002 * Form the header in the fragment. Note that since 2003 * we mark the first fragment with the MORE_FRAG bit 2004 * it automatically is propagated to each fragment; we 2005 * need only clear it on the last fragment (done below). 2006 * NB: frag 1+ dont have Mesh Control field present. 2007 */ 2008 whf = mtod(m, struct ieee80211_frame *); 2009 memcpy(whf, wh, hdrsize); 2010 #ifdef IEEE80211_SUPPORT_MESH 2011 if (vap->iv_opmode == IEEE80211_M_MBSS) 2012 ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC; 2013 #endif 2014 *(uint16_t *)&whf->i_seq[0] |= htole16( 2015 (fragno & IEEE80211_SEQ_FRAG_MASK) << 2016 IEEE80211_SEQ_FRAG_SHIFT); 2017 fragno++; 2018 2019 payload = fragsize - totalhdrsize; 2020 /* NB: destination is known to be contiguous */ 2021 2022 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 2023 m->m_len = hdrspace + payload; 2024 m->m_pkthdr.len = hdrspace + payload; 2025 m->m_flags |= M_FRAG; 2026 2027 /* chain up the fragment */ 2028 prev->m_nextpkt = m; 2029 prev = m; 2030 2031 /* deduct fragment just formed */ 2032 remainder -= payload; 2033 off += payload; 2034 } while (remainder != 0); 2035 2036 /* set the last fragment */ 2037 m->m_flags |= M_LASTFRAG; 2038 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 2039 2040 /* strip first mbuf now that everything has been copied */ 2041 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 2042 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 2043 2044 vap->iv_stats.is_tx_fragframes++; 2045 vap->iv_stats.is_tx_frags += fragno-1; 2046 2047 return 1; 2048 bad: 2049 /* reclaim fragments but leave original frame for caller to free */ 2050 ieee80211_free_mbuf(m0->m_nextpkt); 2051 m0->m_nextpkt = NULL; 2052 return 0; 2053 } 2054 2055 /* 2056 * Add a supported rates element id to a frame. 2057 */ 2058 uint8_t * 2059 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 2060 { 2061 int nrates; 2062 2063 *frm++ = IEEE80211_ELEMID_RATES; 2064 nrates = rs->rs_nrates; 2065 if (nrates > IEEE80211_RATE_SIZE) 2066 nrates = IEEE80211_RATE_SIZE; 2067 *frm++ = nrates; 2068 memcpy(frm, rs->rs_rates, nrates); 2069 return frm + nrates; 2070 } 2071 2072 /* 2073 * Add an extended supported rates element id to a frame. 2074 */ 2075 uint8_t * 2076 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 2077 { 2078 /* 2079 * Add an extended supported rates element if operating in 11g mode. 2080 */ 2081 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 2082 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 2083 *frm++ = IEEE80211_ELEMID_XRATES; 2084 *frm++ = nrates; 2085 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 2086 frm += nrates; 2087 } 2088 return frm; 2089 } 2090 2091 /* 2092 * Add an ssid element to a frame. 2093 */ 2094 uint8_t * 2095 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 2096 { 2097 *frm++ = IEEE80211_ELEMID_SSID; 2098 *frm++ = len; 2099 memcpy(frm, ssid, len); 2100 return frm + len; 2101 } 2102 2103 /* 2104 * Add an erp element to a frame. 2105 */ 2106 static uint8_t * 2107 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap) 2108 { 2109 struct ieee80211com *ic = vap->iv_ic; 2110 uint8_t erp; 2111 2112 *frm++ = IEEE80211_ELEMID_ERP; 2113 *frm++ = 1; 2114 erp = 0; 2115 2116 /* 2117 * TODO: This uses the global flags for now because 2118 * the per-VAP flags are fine for per-VAP, but don't 2119 * take into account which VAPs share the same channel 2120 * and which are on different channels. 2121 * 2122 * ERP and HT/VHT protection mode is a function of 2123 * how many stations are on a channel, not specifically 2124 * the VAP or global. But, until we grow that status, 2125 * the global flag will have to do. 2126 */ 2127 if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR) 2128 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 2129 2130 /* 2131 * TODO: same as above; these should be based not 2132 * on the vap or ic flags, but instead on a combination 2133 * of per-VAP and channels. 2134 */ 2135 if (ic->ic_flags & IEEE80211_F_USEPROT) 2136 erp |= IEEE80211_ERP_USE_PROTECTION; 2137 if (ic->ic_flags & IEEE80211_F_USEBARKER) 2138 erp |= IEEE80211_ERP_LONG_PREAMBLE; 2139 *frm++ = erp; 2140 return frm; 2141 } 2142 2143 /* 2144 * Add a CFParams element to a frame. 2145 */ 2146 static uint8_t * 2147 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 2148 { 2149 #define ADDSHORT(frm, v) do { \ 2150 le16enc(frm, v); \ 2151 frm += 2; \ 2152 } while (0) 2153 *frm++ = IEEE80211_ELEMID_CFPARMS; 2154 *frm++ = 6; 2155 *frm++ = 0; /* CFP count */ 2156 *frm++ = 2; /* CFP period */ 2157 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 2158 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 2159 return frm; 2160 #undef ADDSHORT 2161 } 2162 2163 static __inline uint8_t * 2164 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 2165 { 2166 memcpy(frm, ie->ie_data, ie->ie_len); 2167 return frm + ie->ie_len; 2168 } 2169 2170 static __inline uint8_t * 2171 add_ie(uint8_t *frm, const uint8_t *ie) 2172 { 2173 memcpy(frm, ie, 2 + ie[1]); 2174 return frm + 2 + ie[1]; 2175 } 2176 2177 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 2178 /* 2179 * Add a WME information element to a frame. 2180 */ 2181 uint8_t * 2182 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme, 2183 struct ieee80211_node *ni) 2184 { 2185 static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE }; 2186 struct ieee80211vap *vap = ni->ni_vap; 2187 2188 *frm++ = IEEE80211_ELEMID_VENDOR; 2189 *frm++ = sizeof(struct ieee80211_wme_info) - 2; 2190 memcpy(frm, oui, sizeof(oui)); 2191 frm += sizeof(oui); 2192 *frm++ = WME_INFO_OUI_SUBTYPE; 2193 *frm++ = WME_VERSION; 2194 2195 /* QoS info field depends upon operating mode */ 2196 switch (vap->iv_opmode) { 2197 case IEEE80211_M_HOSTAP: 2198 *frm = wme->wme_bssChanParams.cap_info; 2199 if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD) 2200 *frm |= WME_CAPINFO_UAPSD_EN; 2201 frm++; 2202 break; 2203 case IEEE80211_M_STA: 2204 /* 2205 * NB: UAPSD drivers must set this up in their 2206 * VAP creation method. 2207 */ 2208 *frm++ = vap->iv_uapsdinfo; 2209 break; 2210 default: 2211 *frm++ = 0; 2212 break; 2213 } 2214 2215 return frm; 2216 } 2217 2218 /* 2219 * Add a WME parameters element to a frame. 2220 */ 2221 static uint8_t * 2222 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme, 2223 int uapsd_enable) 2224 { 2225 #define ADDSHORT(frm, v) do { \ 2226 le16enc(frm, v); \ 2227 frm += 2; \ 2228 } while (0) 2229 /* NB: this works 'cuz a param has an info at the front */ 2230 static const struct ieee80211_wme_info param = { 2231 .wme_id = IEEE80211_ELEMID_VENDOR, 2232 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 2233 .wme_oui = { WME_OUI_BYTES }, 2234 .wme_type = WME_OUI_TYPE, 2235 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 2236 .wme_version = WME_VERSION, 2237 }; 2238 int i; 2239 2240 memcpy(frm, ¶m, sizeof(param)); 2241 frm += __offsetof(struct ieee80211_wme_info, wme_info); 2242 *frm = wme->wme_bssChanParams.cap_info; /* AC info */ 2243 if (uapsd_enable) 2244 *frm |= WME_CAPINFO_UAPSD_EN; 2245 frm++; 2246 *frm++ = 0; /* reserved field */ 2247 /* XXX TODO - U-APSD bits - SP, flags below */ 2248 for (i = 0; i < WME_NUM_AC; i++) { 2249 const struct wmeParams *ac = 2250 &wme->wme_bssChanParams.cap_wmeParams[i]; 2251 *frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI) 2252 | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM) 2253 | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN) 2254 ; 2255 *frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax, 2256 WME_PARAM_LOGCWMAX) 2257 | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin, 2258 WME_PARAM_LOGCWMIN) 2259 ; 2260 ADDSHORT(frm, ac->wmep_txopLimit); 2261 } 2262 return frm; 2263 #undef ADDSHORT 2264 } 2265 #undef WME_OUI_BYTES 2266 2267 /* 2268 * Add an 11h Power Constraint element to a frame. 2269 */ 2270 static uint8_t * 2271 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 2272 { 2273 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 2274 /* XXX per-vap tx power limit? */ 2275 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 2276 2277 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 2278 frm[1] = 1; 2279 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 2280 return frm + 3; 2281 } 2282 2283 /* 2284 * Add an 11h Power Capability element to a frame. 2285 */ 2286 static uint8_t * 2287 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 2288 { 2289 frm[0] = IEEE80211_ELEMID_PWRCAP; 2290 frm[1] = 2; 2291 frm[2] = c->ic_minpower; 2292 frm[3] = c->ic_maxpower; 2293 return frm + 4; 2294 } 2295 2296 /* 2297 * Add an 11h Supported Channels element to a frame. 2298 */ 2299 static uint8_t * 2300 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 2301 { 2302 static const int ielen = 26; 2303 2304 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 2305 frm[1] = ielen; 2306 /* XXX not correct */ 2307 memcpy(frm+2, ic->ic_chan_avail, ielen); 2308 return frm + 2 + ielen; 2309 } 2310 2311 /* 2312 * Add an 11h Quiet time element to a frame. 2313 */ 2314 static uint8_t * 2315 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) 2316 { 2317 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 2318 2319 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 2320 quiet->len = 6; 2321 2322 /* 2323 * Only update every beacon interval - otherwise probe responses 2324 * would update the quiet count value. 2325 */ 2326 if (update) { 2327 if (vap->iv_quiet_count_value == 1) 2328 vap->iv_quiet_count_value = vap->iv_quiet_count; 2329 else if (vap->iv_quiet_count_value > 1) 2330 vap->iv_quiet_count_value--; 2331 } 2332 2333 if (vap->iv_quiet_count_value == 0) { 2334 /* value 0 is reserved as per 802.11h standerd */ 2335 vap->iv_quiet_count_value = 1; 2336 } 2337 2338 quiet->tbttcount = vap->iv_quiet_count_value; 2339 quiet->period = vap->iv_quiet_period; 2340 quiet->duration = htole16(vap->iv_quiet_duration); 2341 quiet->offset = htole16(vap->iv_quiet_offset); 2342 return frm + sizeof(*quiet); 2343 } 2344 2345 /* 2346 * Add an 11h Channel Switch Announcement element to a frame. 2347 * Note that we use the per-vap CSA count to adjust the global 2348 * counter so we can use this routine to form probe response 2349 * frames and get the current count. 2350 */ 2351 static uint8_t * 2352 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2353 { 2354 struct ieee80211com *ic = vap->iv_ic; 2355 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2356 2357 csa->csa_ie = IEEE80211_ELEMID_CSA; 2358 csa->csa_len = 3; 2359 csa->csa_mode = 1; /* XXX force quiet on channel */ 2360 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2361 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2362 return frm + sizeof(*csa); 2363 } 2364 2365 /* 2366 * Add an 11h country information element to a frame. 2367 */ 2368 static uint8_t * 2369 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2370 { 2371 2372 if (ic->ic_countryie == NULL || 2373 ic->ic_countryie_chan != ic->ic_bsschan) { 2374 /* 2375 * Handle lazy construction of ie. This is done on 2376 * first use and after a channel change that requires 2377 * re-calculation. 2378 */ 2379 if (ic->ic_countryie != NULL) 2380 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2381 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2382 if (ic->ic_countryie == NULL) 2383 return frm; 2384 ic->ic_countryie_chan = ic->ic_bsschan; 2385 } 2386 return add_appie(frm, ic->ic_countryie); 2387 } 2388 2389 uint8_t * 2390 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2391 { 2392 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2393 return (add_ie(frm, vap->iv_wpa_ie)); 2394 else { 2395 /* XXX else complain? */ 2396 return (frm); 2397 } 2398 } 2399 2400 uint8_t * 2401 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2402 { 2403 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2404 return (add_ie(frm, vap->iv_rsn_ie)); 2405 else { 2406 /* XXX else complain? */ 2407 return (frm); 2408 } 2409 } 2410 2411 uint8_t * 2412 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2413 { 2414 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2415 *frm++ = IEEE80211_ELEMID_QOS; 2416 *frm++ = 1; 2417 *frm++ = 0; 2418 } 2419 2420 return (frm); 2421 } 2422 2423 /* 2424 * Send a probe request frame with the specified ssid 2425 * and any optional information element data. 2426 */ 2427 int 2428 ieee80211_send_probereq(struct ieee80211_node *ni, 2429 const uint8_t sa[IEEE80211_ADDR_LEN], 2430 const uint8_t da[IEEE80211_ADDR_LEN], 2431 const uint8_t bssid[IEEE80211_ADDR_LEN], 2432 const uint8_t *ssid, size_t ssidlen) 2433 { 2434 struct ieee80211vap *vap = ni->ni_vap; 2435 struct ieee80211com *ic = ni->ni_ic; 2436 struct ieee80211_node *bss; 2437 const struct ieee80211_txparam *tp; 2438 struct ieee80211_bpf_params params; 2439 const struct ieee80211_rateset *rs; 2440 struct mbuf *m; 2441 uint8_t *frm; 2442 int ret; 2443 2444 bss = ieee80211_ref_node(vap->iv_bss); 2445 2446 if (vap->iv_state == IEEE80211_S_CAC) { 2447 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2448 "block %s frame in CAC state", "probe request"); 2449 vap->iv_stats.is_tx_badstate++; 2450 ieee80211_free_node(bss); 2451 return EIO; /* XXX */ 2452 } 2453 2454 /* 2455 * Hold a reference on the node so it doesn't go away until after 2456 * the xmit is complete all the way in the driver. On error we 2457 * will remove our reference. 2458 */ 2459 #ifndef __HAIKU__ 2460 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2461 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2462 __func__, __LINE__, 2463 ni, ether_sprintf(ni->ni_macaddr), 2464 ieee80211_node_refcnt(ni)+1); 2465 #endif 2466 ieee80211_ref_node(ni); 2467 2468 /* 2469 * prreq frame format 2470 * [tlv] ssid 2471 * [tlv] supported rates 2472 * [tlv] RSN (optional) 2473 * [tlv] extended supported rates 2474 * [tlv] HT cap (optional) 2475 * [tlv] VHT cap (optional) 2476 * [tlv] WPA (optional) 2477 * [tlv] user-specified ie's 2478 */ 2479 m = ieee80211_getmgtframe(&frm, 2480 ic->ic_headroom + sizeof(struct ieee80211_frame), 2481 2 + IEEE80211_NWID_LEN 2482 + 2 + IEEE80211_RATE_SIZE 2483 + sizeof(struct ieee80211_ie_htcap) 2484 + sizeof(struct ieee80211_ie_vhtcap) 2485 + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ 2486 + sizeof(struct ieee80211_ie_wpa) 2487 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2488 + sizeof(struct ieee80211_ie_wpa) 2489 + (vap->iv_appie_probereq != NULL ? 2490 vap->iv_appie_probereq->ie_len : 0) 2491 ); 2492 if (m == NULL) { 2493 vap->iv_stats.is_tx_nobuf++; 2494 ieee80211_free_node(ni); 2495 ieee80211_free_node(bss); 2496 return ENOMEM; 2497 } 2498 2499 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2500 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2501 frm = ieee80211_add_rates(frm, rs); 2502 frm = ieee80211_add_rsn(frm, vap); 2503 frm = ieee80211_add_xrates(frm, rs); 2504 2505 /* 2506 * Note: we can't use bss; we don't have one yet. 2507 * 2508 * So, we should announce our capabilities 2509 * in this channel mode (2g/5g), not the 2510 * channel details itself. 2511 */ 2512 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2513 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2514 struct ieee80211_channel *c; 2515 2516 /* 2517 * Get the HT channel that we should try upgrading to. 2518 * If we can do 40MHz then this'll upgrade it appropriately. 2519 */ 2520 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2521 vap->iv_flags_ht); 2522 frm = ieee80211_add_htcap_ch(frm, vap, c); 2523 } 2524 2525 /* 2526 * XXX TODO: need to figure out what/how to update the 2527 * VHT channel. 2528 */ 2529 #if 0 2530 (vap->iv_flags_vht & IEEE80211_FVHT_VHT) { 2531 struct ieee80211_channel *c; 2532 2533 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2534 vap->iv_flags_ht); 2535 c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht); 2536 frm = ieee80211_add_vhtcap_ch(frm, vap, c); 2537 } 2538 #endif 2539 2540 frm = ieee80211_add_wpa(frm, vap); 2541 if (vap->iv_appie_probereq != NULL) 2542 frm = add_appie(frm, vap->iv_appie_probereq); 2543 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2544 2545 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2546 ("leading space %zd", M_LEADINGSPACE(m))); 2547 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2548 if (m == NULL) { 2549 /* NB: cannot happen */ 2550 ieee80211_free_node(ni); 2551 ieee80211_free_node(bss); 2552 return ENOMEM; 2553 } 2554 2555 IEEE80211_TX_LOCK(ic); 2556 ieee80211_send_setup(ni, m, 2557 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2558 IEEE80211_NONQOS_TID, sa, da, bssid); 2559 /* XXX power management? */ 2560 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2561 2562 M_WME_SETAC(m, WME_AC_BE); 2563 2564 IEEE80211_NODE_STAT(ni, tx_probereq); 2565 IEEE80211_NODE_STAT(ni, tx_mgmt); 2566 2567 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2568 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2569 ieee80211_chan2ieee(ic, ic->ic_curchan), 2570 ether_sprintf(bssid), 2571 sa, ":", 2572 da, ":", 2573 ssidlen, ssid); 2574 2575 memset(¶ms, 0, sizeof(params)); 2576 params.ibp_pri = M_WME_GETAC(m); 2577 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2578 params.ibp_rate0 = tp->mgmtrate; 2579 if (IEEE80211_IS_MULTICAST(da)) { 2580 params.ibp_flags |= IEEE80211_BPF_NOACK; 2581 params.ibp_try0 = 1; 2582 } else 2583 params.ibp_try0 = tp->maxretry; 2584 params.ibp_power = ni->ni_txpower; 2585 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2586 IEEE80211_TX_UNLOCK(ic); 2587 ieee80211_free_node(bss); 2588 return (ret); 2589 } 2590 2591 /* 2592 * Calculate capability information for mgt frames. 2593 */ 2594 uint16_t 2595 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2596 { 2597 uint16_t capinfo; 2598 2599 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2600 2601 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2602 capinfo = IEEE80211_CAPINFO_ESS; 2603 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2604 capinfo = IEEE80211_CAPINFO_IBSS; 2605 else 2606 capinfo = 0; 2607 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2608 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2609 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && 2610 IEEE80211_IS_CHAN_2GHZ(chan)) 2611 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2612 if (vap->iv_flags & IEEE80211_F_SHSLOT) 2613 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2614 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2615 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2616 return capinfo; 2617 } 2618 2619 /* 2620 * Send a management frame. The node is for the destination (or ic_bss 2621 * when in station mode). Nodes other than ic_bss have their reference 2622 * count bumped to reflect our use for an indeterminant time. 2623 */ 2624 int 2625 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2626 { 2627 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2628 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2629 struct ieee80211vap *vap = ni->ni_vap; 2630 struct ieee80211com *ic = ni->ni_ic; 2631 struct ieee80211_node *bss = vap->iv_bss; 2632 struct ieee80211_bpf_params params; 2633 struct mbuf *m; 2634 uint8_t *frm; 2635 uint16_t capinfo; 2636 int has_challenge, is_shared_key, ret, status; 2637 2638 KASSERT(ni != NULL, ("null node")); 2639 2640 /* 2641 * Hold a reference on the node so it doesn't go away until after 2642 * the xmit is complete all the way in the driver. On error we 2643 * will remove our reference. 2644 */ 2645 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2646 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2647 __func__, __LINE__, 2648 ni, ether_sprintf(ni->ni_macaddr), 2649 ieee80211_node_refcnt(ni)+1); 2650 ieee80211_ref_node(ni); 2651 2652 memset(¶ms, 0, sizeof(params)); 2653 switch (type) { 2654 2655 case IEEE80211_FC0_SUBTYPE_AUTH: 2656 status = arg >> 16; 2657 arg &= 0xffff; 2658 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2659 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2660 ni->ni_challenge != NULL); 2661 2662 /* 2663 * Deduce whether we're doing open authentication or 2664 * shared key authentication. We do the latter if 2665 * we're in the middle of a shared key authentication 2666 * handshake or if we're initiating an authentication 2667 * request and configured to use shared key. 2668 */ 2669 is_shared_key = has_challenge || 2670 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2671 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2672 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2673 2674 m = ieee80211_getmgtframe(&frm, 2675 ic->ic_headroom + sizeof(struct ieee80211_frame), 2676 3 * sizeof(uint16_t) 2677 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2678 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2679 ); 2680 if (m == NULL) 2681 senderr(ENOMEM, is_tx_nobuf); 2682 2683 ((uint16_t *)frm)[0] = 2684 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2685 : htole16(IEEE80211_AUTH_ALG_OPEN); 2686 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2687 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2688 2689 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2690 ((uint16_t *)frm)[3] = 2691 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2692 IEEE80211_ELEMID_CHALLENGE); 2693 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2694 IEEE80211_CHALLENGE_LEN); 2695 m->m_pkthdr.len = m->m_len = 2696 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2697 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2698 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2699 "request encrypt frame (%s)", __func__); 2700 /* mark frame for encryption */ 2701 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2702 } 2703 } else 2704 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2705 2706 /* XXX not right for shared key */ 2707 if (status == IEEE80211_STATUS_SUCCESS) 2708 IEEE80211_NODE_STAT(ni, tx_auth); 2709 else 2710 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2711 2712 if (vap->iv_opmode == IEEE80211_M_STA) 2713 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2714 (void *) vap->iv_state); 2715 break; 2716 2717 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2718 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2719 "send station deauthenticate (reason: %d (%s))", arg, 2720 ieee80211_reason_to_string(arg)); 2721 m = ieee80211_getmgtframe(&frm, 2722 ic->ic_headroom + sizeof(struct ieee80211_frame), 2723 sizeof(uint16_t)); 2724 if (m == NULL) 2725 senderr(ENOMEM, is_tx_nobuf); 2726 *(uint16_t *)frm = htole16(arg); /* reason */ 2727 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2728 2729 IEEE80211_NODE_STAT(ni, tx_deauth); 2730 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2731 2732 ieee80211_node_unauthorize(ni); /* port closed */ 2733 break; 2734 2735 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2736 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2737 /* 2738 * asreq frame format 2739 * [2] capability information 2740 * [2] listen interval 2741 * [6*] current AP address (reassoc only) 2742 * [tlv] ssid 2743 * [tlv] supported rates 2744 * [tlv] extended supported rates 2745 * [4] power capability (optional) 2746 * [28] supported channels (optional) 2747 * [tlv] HT capabilities 2748 * [tlv] VHT capabilities 2749 * [tlv] WME (optional) 2750 * [tlv] Vendor OUI HT capabilities (optional) 2751 * [tlv] Atheros capabilities (if negotiated) 2752 * [tlv] AppIE's (optional) 2753 */ 2754 m = ieee80211_getmgtframe(&frm, 2755 ic->ic_headroom + sizeof(struct ieee80211_frame), 2756 sizeof(uint16_t) 2757 + sizeof(uint16_t) 2758 + IEEE80211_ADDR_LEN 2759 + 2 + IEEE80211_NWID_LEN 2760 + 2 + IEEE80211_RATE_SIZE 2761 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2762 + 4 2763 + 2 + 26 2764 + sizeof(struct ieee80211_wme_info) 2765 + sizeof(struct ieee80211_ie_htcap) 2766 + sizeof(struct ieee80211_ie_vhtcap) 2767 + 4 + sizeof(struct ieee80211_ie_htcap) 2768 #ifdef IEEE80211_SUPPORT_SUPERG 2769 + sizeof(struct ieee80211_ath_ie) 2770 #endif 2771 + (vap->iv_appie_wpa != NULL ? 2772 vap->iv_appie_wpa->ie_len : 0) 2773 + (vap->iv_appie_assocreq != NULL ? 2774 vap->iv_appie_assocreq->ie_len : 0) 2775 ); 2776 if (m == NULL) 2777 senderr(ENOMEM, is_tx_nobuf); 2778 2779 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2780 ("wrong mode %u", vap->iv_opmode)); 2781 capinfo = IEEE80211_CAPINFO_ESS; 2782 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2783 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2784 /* 2785 * NB: Some 11a AP's reject the request when 2786 * short preamble is set. 2787 */ 2788 if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && 2789 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2790 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2791 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2792 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2793 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2794 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2795 (vap->iv_flags & IEEE80211_F_DOTH)) 2796 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2797 *(uint16_t *)frm = htole16(capinfo); 2798 frm += 2; 2799 2800 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2801 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2802 bss->ni_intval)); 2803 frm += 2; 2804 2805 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2806 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2807 frm += IEEE80211_ADDR_LEN; 2808 } 2809 2810 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2811 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2812 frm = ieee80211_add_rsn(frm, vap); 2813 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2814 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2815 frm = ieee80211_add_powercapability(frm, 2816 ic->ic_curchan); 2817 frm = ieee80211_add_supportedchannels(frm, ic); 2818 } 2819 2820 /* 2821 * Check the channel - we may be using an 11n NIC with an 2822 * 11n capable station, but we're configured to be an 11b 2823 * channel. 2824 */ 2825 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2826 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2827 ni->ni_ies.htcap_ie != NULL && 2828 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2829 frm = ieee80211_add_htcap(frm, ni); 2830 } 2831 2832 if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) && 2833 IEEE80211_IS_CHAN_VHT(ni->ni_chan) && 2834 ni->ni_ies.vhtcap_ie != NULL && 2835 ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { 2836 frm = ieee80211_add_vhtcap(frm, ni); 2837 } 2838 2839 frm = ieee80211_add_wpa(frm, vap); 2840 if ((ic->ic_flags & IEEE80211_F_WME) && 2841 ni->ni_ies.wme_ie != NULL) 2842 frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni); 2843 2844 /* 2845 * Same deal - only send HT info if we're on an 11n 2846 * capable channel. 2847 */ 2848 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2849 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2850 ni->ni_ies.htcap_ie != NULL && 2851 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2852 frm = ieee80211_add_htcap_vendor(frm, ni); 2853 } 2854 #ifdef IEEE80211_SUPPORT_SUPERG 2855 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2856 frm = ieee80211_add_ath(frm, 2857 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2858 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2859 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2860 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2861 } 2862 #endif /* IEEE80211_SUPPORT_SUPERG */ 2863 if (vap->iv_appie_assocreq != NULL) 2864 frm = add_appie(frm, vap->iv_appie_assocreq); 2865 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2866 2867 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2868 (void *) vap->iv_state); 2869 break; 2870 2871 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2872 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2873 /* 2874 * asresp frame format 2875 * [2] capability information 2876 * [2] status 2877 * [2] association ID 2878 * [tlv] supported rates 2879 * [tlv] extended supported rates 2880 * [tlv] HT capabilities (standard, if STA enabled) 2881 * [tlv] HT information (standard, if STA enabled) 2882 * [tlv] VHT capabilities (standard, if STA enabled) 2883 * [tlv] VHT information (standard, if STA enabled) 2884 * [tlv] WME (if configured and STA enabled) 2885 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2886 * [tlv] HT information (vendor OUI, if STA enabled) 2887 * [tlv] Atheros capabilities (if STA enabled) 2888 * [tlv] AppIE's (optional) 2889 */ 2890 m = ieee80211_getmgtframe(&frm, 2891 ic->ic_headroom + sizeof(struct ieee80211_frame), 2892 sizeof(uint16_t) 2893 + sizeof(uint16_t) 2894 + sizeof(uint16_t) 2895 + 2 + IEEE80211_RATE_SIZE 2896 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2897 + sizeof(struct ieee80211_ie_htcap) + 4 2898 + sizeof(struct ieee80211_ie_htinfo) + 4 2899 + sizeof(struct ieee80211_ie_vhtcap) 2900 + sizeof(struct ieee80211_ie_vht_operation) 2901 + sizeof(struct ieee80211_wme_param) 2902 #ifdef IEEE80211_SUPPORT_SUPERG 2903 + sizeof(struct ieee80211_ath_ie) 2904 #endif 2905 + (vap->iv_appie_assocresp != NULL ? 2906 vap->iv_appie_assocresp->ie_len : 0) 2907 ); 2908 if (m == NULL) 2909 senderr(ENOMEM, is_tx_nobuf); 2910 2911 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2912 *(uint16_t *)frm = htole16(capinfo); 2913 frm += 2; 2914 2915 *(uint16_t *)frm = htole16(arg); /* status */ 2916 frm += 2; 2917 2918 if (arg == IEEE80211_STATUS_SUCCESS) { 2919 *(uint16_t *)frm = htole16(ni->ni_associd); 2920 IEEE80211_NODE_STAT(ni, tx_assoc); 2921 } else 2922 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2923 frm += 2; 2924 2925 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2926 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2927 /* NB: respond according to what we received */ 2928 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2929 frm = ieee80211_add_htcap(frm, ni); 2930 frm = ieee80211_add_htinfo(frm, ni); 2931 } 2932 if ((vap->iv_flags & IEEE80211_F_WME) && 2933 ni->ni_ies.wme_ie != NULL) 2934 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 2935 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 2936 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2937 frm = ieee80211_add_htcap_vendor(frm, ni); 2938 frm = ieee80211_add_htinfo_vendor(frm, ni); 2939 } 2940 if (ni->ni_flags & IEEE80211_NODE_VHT) { 2941 frm = ieee80211_add_vhtcap(frm, ni); 2942 frm = ieee80211_add_vhtinfo(frm, ni); 2943 } 2944 #ifdef IEEE80211_SUPPORT_SUPERG 2945 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2946 frm = ieee80211_add_ath(frm, 2947 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2948 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2949 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2950 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2951 #endif /* IEEE80211_SUPPORT_SUPERG */ 2952 if (vap->iv_appie_assocresp != NULL) 2953 frm = add_appie(frm, vap->iv_appie_assocresp); 2954 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2955 break; 2956 2957 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2958 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2959 "send station disassociate (reason: %d (%s))", arg, 2960 ieee80211_reason_to_string(arg)); 2961 m = ieee80211_getmgtframe(&frm, 2962 ic->ic_headroom + sizeof(struct ieee80211_frame), 2963 sizeof(uint16_t)); 2964 if (m == NULL) 2965 senderr(ENOMEM, is_tx_nobuf); 2966 *(uint16_t *)frm = htole16(arg); /* reason */ 2967 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2968 2969 IEEE80211_NODE_STAT(ni, tx_disassoc); 2970 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2971 break; 2972 2973 default: 2974 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2975 "invalid mgmt frame type %u", type); 2976 senderr(EINVAL, is_tx_unknownmgt); 2977 /* NOTREACHED */ 2978 } 2979 2980 /* NB: force non-ProbeResp frames to the highest queue */ 2981 params.ibp_pri = WME_AC_VO; 2982 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2983 /* NB: we know all frames are unicast */ 2984 params.ibp_try0 = bss->ni_txparms->maxretry; 2985 params.ibp_power = bss->ni_txpower; 2986 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2987 bad: 2988 ieee80211_free_node(ni); 2989 return ret; 2990 #undef senderr 2991 #undef HTFLAGS 2992 } 2993 2994 /* 2995 * Return an mbuf with a probe response frame in it. 2996 * Space is left to prepend and 802.11 header at the 2997 * front but it's left to the caller to fill in. 2998 */ 2999 struct mbuf * 3000 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 3001 { 3002 struct ieee80211vap *vap = bss->ni_vap; 3003 struct ieee80211com *ic = bss->ni_ic; 3004 const struct ieee80211_rateset *rs; 3005 struct mbuf *m; 3006 uint16_t capinfo; 3007 uint8_t *frm; 3008 3009 /* 3010 * probe response frame format 3011 * [8] time stamp 3012 * [2] beacon interval 3013 * [2] cabability information 3014 * [tlv] ssid 3015 * [tlv] supported rates 3016 * [tlv] parameter set (FH/DS) 3017 * [tlv] parameter set (IBSS) 3018 * [tlv] country (optional) 3019 * [3] power control (optional) 3020 * [5] channel switch announcement (CSA) (optional) 3021 * [tlv] extended rate phy (ERP) 3022 * [tlv] extended supported rates 3023 * [tlv] RSN (optional) 3024 * [tlv] HT capabilities 3025 * [tlv] HT information 3026 * [tlv] VHT capabilities 3027 * [tlv] VHT information 3028 * [tlv] WPA (optional) 3029 * [tlv] WME (optional) 3030 * [tlv] Vendor OUI HT capabilities (optional) 3031 * [tlv] Vendor OUI HT information (optional) 3032 * [tlv] Atheros capabilities 3033 * [tlv] AppIE's (optional) 3034 * [tlv] Mesh ID (MBSS) 3035 * [tlv] Mesh Conf (MBSS) 3036 */ 3037 m = ieee80211_getmgtframe(&frm, 3038 ic->ic_headroom + sizeof(struct ieee80211_frame), 3039 8 3040 + sizeof(uint16_t) 3041 + sizeof(uint16_t) 3042 + 2 + IEEE80211_NWID_LEN 3043 + 2 + IEEE80211_RATE_SIZE 3044 + 7 /* max(7,3) */ 3045 + IEEE80211_COUNTRY_MAX_SIZE 3046 + 3 3047 + sizeof(struct ieee80211_csa_ie) 3048 + sizeof(struct ieee80211_quiet_ie) 3049 + 3 3050 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3051 + sizeof(struct ieee80211_ie_wpa) 3052 + sizeof(struct ieee80211_ie_htcap) 3053 + sizeof(struct ieee80211_ie_htinfo) 3054 + sizeof(struct ieee80211_ie_wpa) 3055 + sizeof(struct ieee80211_wme_param) 3056 + 4 + sizeof(struct ieee80211_ie_htcap) 3057 + 4 + sizeof(struct ieee80211_ie_htinfo) 3058 + sizeof(struct ieee80211_ie_vhtcap) 3059 + sizeof(struct ieee80211_ie_vht_operation) 3060 #ifdef IEEE80211_SUPPORT_SUPERG 3061 + sizeof(struct ieee80211_ath_ie) 3062 #endif 3063 #ifdef IEEE80211_SUPPORT_MESH 3064 + 2 + IEEE80211_MESHID_LEN 3065 + sizeof(struct ieee80211_meshconf_ie) 3066 #endif 3067 + (vap->iv_appie_proberesp != NULL ? 3068 vap->iv_appie_proberesp->ie_len : 0) 3069 ); 3070 if (m == NULL) { 3071 vap->iv_stats.is_tx_nobuf++; 3072 return NULL; 3073 } 3074 3075 memset(frm, 0, 8); /* timestamp should be filled later */ 3076 frm += 8; 3077 *(uint16_t *)frm = htole16(bss->ni_intval); 3078 frm += 2; 3079 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 3080 *(uint16_t *)frm = htole16(capinfo); 3081 frm += 2; 3082 3083 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 3084 rs = ieee80211_get_suprates(ic, bss->ni_chan); 3085 frm = ieee80211_add_rates(frm, rs); 3086 3087 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 3088 *frm++ = IEEE80211_ELEMID_FHPARMS; 3089 *frm++ = 5; 3090 *frm++ = bss->ni_fhdwell & 0x00ff; 3091 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 3092 *frm++ = IEEE80211_FH_CHANSET( 3093 ieee80211_chan2ieee(ic, bss->ni_chan)); 3094 *frm++ = IEEE80211_FH_CHANPAT( 3095 ieee80211_chan2ieee(ic, bss->ni_chan)); 3096 *frm++ = bss->ni_fhindex; 3097 } else { 3098 *frm++ = IEEE80211_ELEMID_DSPARMS; 3099 *frm++ = 1; 3100 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 3101 } 3102 3103 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3104 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3105 *frm++ = 2; 3106 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3107 } 3108 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3109 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3110 frm = ieee80211_add_countryie(frm, ic); 3111 if (vap->iv_flags & IEEE80211_F_DOTH) { 3112 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 3113 frm = ieee80211_add_powerconstraint(frm, vap); 3114 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3115 frm = ieee80211_add_csa(frm, vap); 3116 } 3117 if (vap->iv_flags & IEEE80211_F_DOTH) { 3118 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3119 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3120 if (vap->iv_quiet) 3121 frm = ieee80211_add_quiet(frm, vap, 0); 3122 } 3123 } 3124 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 3125 frm = ieee80211_add_erp(frm, vap); 3126 frm = ieee80211_add_xrates(frm, rs); 3127 frm = ieee80211_add_rsn(frm, vap); 3128 /* 3129 * NB: legacy 11b clients do not get certain ie's. 3130 * The caller identifies such clients by passing 3131 * a token in legacy to us. Could expand this to be 3132 * any legacy client for stuff like HT ie's. 3133 */ 3134 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3135 legacy != IEEE80211_SEND_LEGACY_11B) { 3136 frm = ieee80211_add_htcap(frm, bss); 3137 frm = ieee80211_add_htinfo(frm, bss); 3138 } 3139 if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && 3140 legacy != IEEE80211_SEND_LEGACY_11B) { 3141 frm = ieee80211_add_vhtcap(frm, bss); 3142 frm = ieee80211_add_vhtinfo(frm, bss); 3143 } 3144 frm = ieee80211_add_wpa(frm, vap); 3145 if (vap->iv_flags & IEEE80211_F_WME) 3146 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 3147 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 3148 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 3149 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 3150 legacy != IEEE80211_SEND_LEGACY_11B) { 3151 frm = ieee80211_add_htcap_vendor(frm, bss); 3152 frm = ieee80211_add_htinfo_vendor(frm, bss); 3153 } 3154 #ifdef IEEE80211_SUPPORT_SUPERG 3155 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 3156 legacy != IEEE80211_SEND_LEGACY_11B) 3157 frm = ieee80211_add_athcaps(frm, bss); 3158 #endif 3159 if (vap->iv_appie_proberesp != NULL) 3160 frm = add_appie(frm, vap->iv_appie_proberesp); 3161 #ifdef IEEE80211_SUPPORT_MESH 3162 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3163 frm = ieee80211_add_meshid(frm, vap); 3164 frm = ieee80211_add_meshconf(frm, vap); 3165 } 3166 #endif 3167 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3168 3169 return m; 3170 } 3171 3172 /* 3173 * Send a probe response frame to the specified mac address. 3174 * This does not go through the normal mgt frame api so we 3175 * can specify the destination address and re-use the bss node 3176 * for the sta reference. 3177 */ 3178 int 3179 ieee80211_send_proberesp(struct ieee80211vap *vap, 3180 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 3181 { 3182 struct ieee80211_node *bss = vap->iv_bss; 3183 struct ieee80211com *ic = vap->iv_ic; 3184 struct mbuf *m; 3185 int ret; 3186 3187 if (vap->iv_state == IEEE80211_S_CAC) { 3188 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 3189 "block %s frame in CAC state", "probe response"); 3190 vap->iv_stats.is_tx_badstate++; 3191 return EIO; /* XXX */ 3192 } 3193 3194 /* 3195 * Hold a reference on the node so it doesn't go away until after 3196 * the xmit is complete all the way in the driver. On error we 3197 * will remove our reference. 3198 */ 3199 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 3200 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 3201 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 3202 ieee80211_node_refcnt(bss)+1); 3203 ieee80211_ref_node(bss); 3204 3205 m = ieee80211_alloc_proberesp(bss, legacy); 3206 if (m == NULL) { 3207 ieee80211_free_node(bss); 3208 return ENOMEM; 3209 } 3210 3211 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3212 KASSERT(m != NULL, ("no room for header")); 3213 3214 IEEE80211_TX_LOCK(ic); 3215 ieee80211_send_setup(bss, m, 3216 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 3217 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 3218 /* XXX power management? */ 3219 m->m_flags |= M_ENCAP; /* mark encapsulated */ 3220 3221 M_WME_SETAC(m, WME_AC_BE); 3222 3223 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 3224 "send probe resp on channel %u to %s%s\n", 3225 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 3226 legacy ? " <legacy>" : ""); 3227 IEEE80211_NODE_STAT(bss, tx_mgmt); 3228 3229 ret = ieee80211_raw_output(vap, bss, m, NULL); 3230 IEEE80211_TX_UNLOCK(ic); 3231 return (ret); 3232 } 3233 3234 /* 3235 * Allocate and build a RTS (Request To Send) control frame. 3236 */ 3237 struct mbuf * 3238 ieee80211_alloc_rts(struct ieee80211com *ic, 3239 const uint8_t ra[IEEE80211_ADDR_LEN], 3240 const uint8_t ta[IEEE80211_ADDR_LEN], 3241 uint16_t dur) 3242 { 3243 struct ieee80211_frame_rts *rts; 3244 struct mbuf *m; 3245 3246 /* XXX honor ic_headroom */ 3247 m = m_gethdr(M_NOWAIT, MT_DATA); 3248 if (m != NULL) { 3249 rts = mtod(m, struct ieee80211_frame_rts *); 3250 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3251 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 3252 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3253 *(u_int16_t *)rts->i_dur = htole16(dur); 3254 IEEE80211_ADDR_COPY(rts->i_ra, ra); 3255 IEEE80211_ADDR_COPY(rts->i_ta, ta); 3256 3257 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 3258 } 3259 return m; 3260 } 3261 3262 /* 3263 * Allocate and build a CTS (Clear To Send) control frame. 3264 */ 3265 struct mbuf * 3266 ieee80211_alloc_cts(struct ieee80211com *ic, 3267 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 3268 { 3269 struct ieee80211_frame_cts *cts; 3270 struct mbuf *m; 3271 3272 /* XXX honor ic_headroom */ 3273 m = m_gethdr(M_NOWAIT, MT_DATA); 3274 if (m != NULL) { 3275 cts = mtod(m, struct ieee80211_frame_cts *); 3276 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 3277 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 3278 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3279 *(u_int16_t *)cts->i_dur = htole16(dur); 3280 IEEE80211_ADDR_COPY(cts->i_ra, ra); 3281 3282 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 3283 } 3284 return m; 3285 } 3286 3287 /* 3288 * Wrapper for CTS/RTS frame allocation. 3289 */ 3290 struct mbuf * 3291 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, 3292 uint8_t rate, int prot) 3293 { 3294 struct ieee80211com *ic = ni->ni_ic; 3295 struct ieee80211vap *vap = ni->ni_vap; 3296 const struct ieee80211_frame *wh; 3297 struct mbuf *mprot; 3298 uint16_t dur; 3299 int pktlen, isshort; 3300 3301 KASSERT(prot == IEEE80211_PROT_RTSCTS || 3302 prot == IEEE80211_PROT_CTSONLY, 3303 ("wrong protection type %d", prot)); 3304 3305 wh = mtod(m, const struct ieee80211_frame *); 3306 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3307 isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0; 3308 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3309 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3310 3311 if (prot == IEEE80211_PROT_RTSCTS) { 3312 /* NB: CTS is the same size as an ACK */ 3313 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3314 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3315 } else 3316 mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur); 3317 3318 return (mprot); 3319 } 3320 3321 static void 3322 ieee80211_tx_mgt_timeout(void *arg) 3323 { 3324 struct ieee80211vap *vap = arg; 3325 3326 IEEE80211_LOCK(vap->iv_ic); 3327 if (vap->iv_state != IEEE80211_S_INIT && 3328 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3329 /* 3330 * NB: it's safe to specify a timeout as the reason here; 3331 * it'll only be used in the right state. 3332 */ 3333 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 3334 IEEE80211_SCAN_FAIL_TIMEOUT); 3335 } 3336 IEEE80211_UNLOCK(vap->iv_ic); 3337 } 3338 3339 /* 3340 * This is the callback set on net80211-sourced transmitted 3341 * authentication request frames. 3342 * 3343 * This does a couple of things: 3344 * 3345 * + If the frame transmitted was a success, it schedules a future 3346 * event which will transition the interface to scan. 3347 * If a state transition _then_ occurs before that event occurs, 3348 * said state transition will cancel this callout. 3349 * 3350 * + If the frame transmit was a failure, it immediately schedules 3351 * the transition back to scan. 3352 */ 3353 static void 3354 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 3355 { 3356 struct ieee80211vap *vap = ni->ni_vap; 3357 enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg; 3358 3359 /* 3360 * Frame transmit completed; arrange timer callback. If 3361 * transmit was successfully we wait for response. Otherwise 3362 * we arrange an immediate callback instead of doing the 3363 * callback directly since we don't know what state the driver 3364 * is in (e.g. what locks it is holding). This work should 3365 * not be too time-critical and not happen too often so the 3366 * added overhead is acceptable. 3367 * 3368 * XXX what happens if !acked but response shows up before callback? 3369 */ 3370 if (vap->iv_state == ostate) { 3371 callout_reset(&vap->iv_mgtsend, 3372 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 3373 ieee80211_tx_mgt_timeout, vap); 3374 } 3375 } 3376 3377 static void 3378 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 3379 struct ieee80211_node *ni) 3380 { 3381 struct ieee80211vap *vap = ni->ni_vap; 3382 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3383 struct ieee80211com *ic = ni->ni_ic; 3384 struct ieee80211_rateset *rs = &ni->ni_rates; 3385 uint16_t capinfo; 3386 3387 /* 3388 * beacon frame format 3389 * 3390 * TODO: update to 802.11-2012; a lot of stuff has changed; 3391 * vendor extensions should be at the end, etc. 3392 * 3393 * [8] time stamp 3394 * [2] beacon interval 3395 * [2] cabability information 3396 * [tlv] ssid 3397 * [tlv] supported rates 3398 * [3] parameter set (DS) 3399 * [8] CF parameter set (optional) 3400 * [tlv] parameter set (IBSS/TIM) 3401 * [tlv] country (optional) 3402 * [3] power control (optional) 3403 * [5] channel switch announcement (CSA) (optional) 3404 * XXX TODO: Quiet 3405 * XXX TODO: IBSS DFS 3406 * XXX TODO: TPC report 3407 * [tlv] extended rate phy (ERP) 3408 * [tlv] extended supported rates 3409 * [tlv] RSN parameters 3410 * XXX TODO: BSSLOAD 3411 * (XXX EDCA parameter set, QoS capability?) 3412 * XXX TODO: AP channel report 3413 * 3414 * [tlv] HT capabilities 3415 * [tlv] HT information 3416 * XXX TODO: 20/40 BSS coexistence 3417 * Mesh: 3418 * XXX TODO: Meshid 3419 * XXX TODO: mesh config 3420 * XXX TODO: mesh awake window 3421 * XXX TODO: beacon timing (mesh, etc) 3422 * XXX TODO: MCCAOP Advertisement Overview 3423 * XXX TODO: MCCAOP Advertisement 3424 * XXX TODO: Mesh channel switch parameters 3425 * VHT: 3426 * XXX TODO: VHT capabilities 3427 * XXX TODO: VHT operation 3428 * XXX TODO: VHT transmit power envelope 3429 * XXX TODO: channel switch wrapper element 3430 * XXX TODO: extended BSS load element 3431 * 3432 * XXX Vendor-specific OIDs (e.g. Atheros) 3433 * [tlv] WPA parameters 3434 * [tlv] WME parameters 3435 * [tlv] Vendor OUI HT capabilities (optional) 3436 * [tlv] Vendor OUI HT information (optional) 3437 * [tlv] Atheros capabilities (optional) 3438 * [tlv] TDMA parameters (optional) 3439 * [tlv] Mesh ID (MBSS) 3440 * [tlv] Mesh Conf (MBSS) 3441 * [tlv] application data (optional) 3442 */ 3443 3444 memset(bo, 0, sizeof(*bo)); 3445 3446 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 3447 frm += 8; 3448 *(uint16_t *)frm = htole16(ni->ni_intval); 3449 frm += 2; 3450 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3451 bo->bo_caps = (uint16_t *)frm; 3452 *(uint16_t *)frm = htole16(capinfo); 3453 frm += 2; 3454 *frm++ = IEEE80211_ELEMID_SSID; 3455 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 3456 *frm++ = ni->ni_esslen; 3457 memcpy(frm, ni->ni_essid, ni->ni_esslen); 3458 frm += ni->ni_esslen; 3459 } else 3460 *frm++ = 0; 3461 frm = ieee80211_add_rates(frm, rs); 3462 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 3463 *frm++ = IEEE80211_ELEMID_DSPARMS; 3464 *frm++ = 1; 3465 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 3466 } 3467 if (ic->ic_flags & IEEE80211_F_PCF) { 3468 bo->bo_cfp = frm; 3469 frm = ieee80211_add_cfparms(frm, ic); 3470 } 3471 bo->bo_tim = frm; 3472 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3473 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3474 *frm++ = 2; 3475 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3476 bo->bo_tim_len = 0; 3477 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3478 vap->iv_opmode == IEEE80211_M_MBSS) { 3479 /* TIM IE is the same for Mesh and Hostap */ 3480 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3481 3482 tie->tim_ie = IEEE80211_ELEMID_TIM; 3483 tie->tim_len = 4; /* length */ 3484 tie->tim_count = 0; /* DTIM count */ 3485 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3486 tie->tim_bitctl = 0; /* bitmap control */ 3487 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3488 frm += sizeof(struct ieee80211_tim_ie); 3489 bo->bo_tim_len = 1; 3490 } 3491 bo->bo_tim_trailer = frm; 3492 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3493 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3494 frm = ieee80211_add_countryie(frm, ic); 3495 if (vap->iv_flags & IEEE80211_F_DOTH) { 3496 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3497 frm = ieee80211_add_powerconstraint(frm, vap); 3498 bo->bo_csa = frm; 3499 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3500 frm = ieee80211_add_csa(frm, vap); 3501 } else 3502 bo->bo_csa = frm; 3503 3504 bo->bo_quiet = NULL; 3505 if (vap->iv_flags & IEEE80211_F_DOTH) { 3506 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3507 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 3508 (vap->iv_quiet == 1)) { 3509 /* 3510 * We only insert the quiet IE offset if 3511 * the quiet IE is enabled. Otherwise don't 3512 * put it here or we'll just overwrite 3513 * some other beacon contents. 3514 */ 3515 if (vap->iv_quiet) { 3516 bo->bo_quiet = frm; 3517 frm = ieee80211_add_quiet(frm,vap, 0); 3518 } 3519 } 3520 } 3521 3522 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3523 bo->bo_erp = frm; 3524 frm = ieee80211_add_erp(frm, vap); 3525 } 3526 frm = ieee80211_add_xrates(frm, rs); 3527 frm = ieee80211_add_rsn(frm, vap); 3528 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3529 frm = ieee80211_add_htcap(frm, ni); 3530 bo->bo_htinfo = frm; 3531 frm = ieee80211_add_htinfo(frm, ni); 3532 } 3533 3534 if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { 3535 frm = ieee80211_add_vhtcap(frm, ni); 3536 bo->bo_vhtinfo = frm; 3537 frm = ieee80211_add_vhtinfo(frm, ni); 3538 /* Transmit power envelope */ 3539 /* Channel switch wrapper element */ 3540 /* Extended bss load element */ 3541 } 3542 3543 frm = ieee80211_add_wpa(frm, vap); 3544 if (vap->iv_flags & IEEE80211_F_WME) { 3545 bo->bo_wme = frm; 3546 frm = ieee80211_add_wme_param(frm, &ic->ic_wme, 3547 !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); 3548 } 3549 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3550 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3551 frm = ieee80211_add_htcap_vendor(frm, ni); 3552 frm = ieee80211_add_htinfo_vendor(frm, ni); 3553 } 3554 3555 #ifdef IEEE80211_SUPPORT_SUPERG 3556 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3557 bo->bo_ath = frm; 3558 frm = ieee80211_add_athcaps(frm, ni); 3559 } 3560 #endif 3561 #ifdef IEEE80211_SUPPORT_TDMA 3562 if (vap->iv_caps & IEEE80211_C_TDMA) { 3563 bo->bo_tdma = frm; 3564 frm = ieee80211_add_tdma(frm, vap); 3565 } 3566 #endif 3567 if (vap->iv_appie_beacon != NULL) { 3568 bo->bo_appie = frm; 3569 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3570 frm = add_appie(frm, vap->iv_appie_beacon); 3571 } 3572 3573 /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ 3574 #ifdef IEEE80211_SUPPORT_MESH 3575 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3576 frm = ieee80211_add_meshid(frm, vap); 3577 bo->bo_meshconf = frm; 3578 frm = ieee80211_add_meshconf(frm, vap); 3579 } 3580 #endif 3581 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3582 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3583 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3584 } 3585 3586 /* 3587 * Allocate a beacon frame and fillin the appropriate bits. 3588 */ 3589 struct mbuf * 3590 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3591 { 3592 struct ieee80211vap *vap = ni->ni_vap; 3593 struct ieee80211com *ic = ni->ni_ic; 3594 struct ifnet *ifp = vap->iv_ifp; 3595 struct ieee80211_frame *wh; 3596 struct mbuf *m; 3597 int pktlen; 3598 uint8_t *frm; 3599 3600 /* 3601 * Update the "We're putting the quiet IE in the beacon" state. 3602 */ 3603 if (vap->iv_quiet == 1) 3604 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3605 else if (vap->iv_quiet == 0) 3606 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3607 3608 /* 3609 * beacon frame format 3610 * 3611 * Note: This needs updating for 802.11-2012. 3612 * 3613 * [8] time stamp 3614 * [2] beacon interval 3615 * [2] cabability information 3616 * [tlv] ssid 3617 * [tlv] supported rates 3618 * [3] parameter set (DS) 3619 * [8] CF parameter set (optional) 3620 * [tlv] parameter set (IBSS/TIM) 3621 * [tlv] country (optional) 3622 * [3] power control (optional) 3623 * [5] channel switch announcement (CSA) (optional) 3624 * [tlv] extended rate phy (ERP) 3625 * [tlv] extended supported rates 3626 * [tlv] RSN parameters 3627 * [tlv] HT capabilities 3628 * [tlv] HT information 3629 * [tlv] VHT capabilities 3630 * [tlv] VHT operation 3631 * [tlv] Vendor OUI HT capabilities (optional) 3632 * [tlv] Vendor OUI HT information (optional) 3633 * XXX Vendor-specific OIDs (e.g. Atheros) 3634 * [tlv] WPA parameters 3635 * [tlv] WME parameters 3636 * [tlv] TDMA parameters (optional) 3637 * [tlv] Mesh ID (MBSS) 3638 * [tlv] Mesh Conf (MBSS) 3639 * [tlv] application data (optional) 3640 * NB: we allocate the max space required for the TIM bitmap. 3641 * XXX how big is this? 3642 */ 3643 pktlen = 8 /* time stamp */ 3644 + sizeof(uint16_t) /* beacon interval */ 3645 + sizeof(uint16_t) /* capabilities */ 3646 + 2 + ni->ni_esslen /* ssid */ 3647 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3648 + 2 + 1 /* DS parameters */ 3649 + 2 + 6 /* CF parameters */ 3650 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3651 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3652 + 2 + 1 /* power control */ 3653 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3654 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3655 + 2 + 1 /* ERP */ 3656 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3657 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3658 2*sizeof(struct ieee80211_ie_wpa) : 0) 3659 /* XXX conditional? */ 3660 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3661 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3662 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */ 3663 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */ 3664 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3665 sizeof(struct ieee80211_wme_param) : 0) 3666 #ifdef IEEE80211_SUPPORT_SUPERG 3667 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3668 #endif 3669 #ifdef IEEE80211_SUPPORT_TDMA 3670 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3671 sizeof(struct ieee80211_tdma_param) : 0) 3672 #endif 3673 #ifdef IEEE80211_SUPPORT_MESH 3674 + 2 + ni->ni_meshidlen 3675 + sizeof(struct ieee80211_meshconf_ie) 3676 #endif 3677 + IEEE80211_MAX_APPIE 3678 ; 3679 m = ieee80211_getmgtframe(&frm, 3680 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3681 if (m == NULL) { 3682 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3683 "%s: cannot get buf; size %u\n", __func__, pktlen); 3684 vap->iv_stats.is_tx_nobuf++; 3685 return NULL; 3686 } 3687 ieee80211_beacon_construct(m, frm, ni); 3688 3689 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3690 KASSERT(m != NULL, ("no space for 802.11 header?")); 3691 wh = mtod(m, struct ieee80211_frame *); 3692 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3693 IEEE80211_FC0_SUBTYPE_BEACON; 3694 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3695 *(uint16_t *)wh->i_dur = 0; 3696 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3697 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3698 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3699 *(uint16_t *)wh->i_seq = 0; 3700 3701 return m; 3702 } 3703 3704 /* 3705 * Update the dynamic parts of a beacon frame based on the current state. 3706 */ 3707 int 3708 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3709 { 3710 struct ieee80211vap *vap = ni->ni_vap; 3711 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3712 struct ieee80211com *ic = ni->ni_ic; 3713 int len_changed = 0; 3714 uint16_t capinfo; 3715 struct ieee80211_frame *wh; 3716 ieee80211_seq seqno; 3717 3718 IEEE80211_LOCK(ic); 3719 /* 3720 * Handle 11h channel change when we've reached the count. 3721 * We must recalculate the beacon frame contents to account 3722 * for the new channel. Note we do this only for the first 3723 * vap that reaches this point; subsequent vaps just update 3724 * their beacon state to reflect the recalculated channel. 3725 */ 3726 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3727 vap->iv_csa_count == ic->ic_csa_count) { 3728 vap->iv_csa_count = 0; 3729 /* 3730 * Effect channel change before reconstructing the beacon 3731 * frame contents as many places reference ni_chan. 3732 */ 3733 if (ic->ic_csa_newchan != NULL) 3734 ieee80211_csa_completeswitch(ic); 3735 /* 3736 * NB: ieee80211_beacon_construct clears all pending 3737 * updates in bo_flags so we don't need to explicitly 3738 * clear IEEE80211_BEACON_CSA. 3739 */ 3740 ieee80211_beacon_construct(m, 3741 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3742 3743 /* XXX do WME aggressive mode processing? */ 3744 IEEE80211_UNLOCK(ic); 3745 return 1; /* just assume length changed */ 3746 } 3747 3748 /* 3749 * Handle the quiet time element being added and removed. 3750 * Again, for now we just cheat and reconstruct the whole 3751 * beacon - that way the gap is provided as appropriate. 3752 * 3753 * So, track whether we have already added the IE versus 3754 * whether we want to be adding the IE. 3755 */ 3756 if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && 3757 (vap->iv_quiet == 0)) { 3758 /* 3759 * Quiet time beacon IE enabled, but it's disabled; 3760 * recalc 3761 */ 3762 vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; 3763 ieee80211_beacon_construct(m, 3764 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3765 /* XXX do WME aggressive mode processing? */ 3766 IEEE80211_UNLOCK(ic); 3767 return 1; /* just assume length changed */ 3768 } 3769 3770 if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && 3771 (vap->iv_quiet == 1)) { 3772 /* 3773 * Quiet time beacon IE disabled, but it's now enabled; 3774 * recalc 3775 */ 3776 vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; 3777 ieee80211_beacon_construct(m, 3778 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3779 /* XXX do WME aggressive mode processing? */ 3780 IEEE80211_UNLOCK(ic); 3781 return 1; /* just assume length changed */ 3782 } 3783 3784 wh = mtod(m, struct ieee80211_frame *); 3785 3786 /* 3787 * XXX TODO Strictly speaking this should be incremented with the TX 3788 * lock held so as to serialise access to the non-qos TID sequence 3789 * number space. 3790 * 3791 * If the driver identifies it does its own TX seqno management then 3792 * we can skip this (and still not do the TX seqno.) 3793 */ 3794 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3795 *(uint16_t *)&wh->i_seq[0] = 3796 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3797 M_SEQNO_SET(m, seqno); 3798 3799 /* XXX faster to recalculate entirely or just changes? */ 3800 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3801 *bo->bo_caps = htole16(capinfo); 3802 3803 if (vap->iv_flags & IEEE80211_F_WME) { 3804 struct ieee80211_wme_state *wme = &ic->ic_wme; 3805 3806 /* 3807 * Check for aggressive mode change. When there is 3808 * significant high priority traffic in the BSS 3809 * throttle back BE traffic by using conservative 3810 * parameters. Otherwise BE uses aggressive params 3811 * to optimize performance of legacy/non-QoS traffic. 3812 */ 3813 if (wme->wme_flags & WME_F_AGGRMODE) { 3814 if (wme->wme_hipri_traffic > 3815 wme->wme_hipri_switch_thresh) { 3816 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3817 "%s: traffic %u, disable aggressive mode\n", 3818 __func__, wme->wme_hipri_traffic); 3819 wme->wme_flags &= ~WME_F_AGGRMODE; 3820 ieee80211_wme_updateparams_locked(vap); 3821 wme->wme_hipri_traffic = 3822 wme->wme_hipri_switch_hysteresis; 3823 } else 3824 wme->wme_hipri_traffic = 0; 3825 } else { 3826 if (wme->wme_hipri_traffic <= 3827 wme->wme_hipri_switch_thresh) { 3828 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3829 "%s: traffic %u, enable aggressive mode\n", 3830 __func__, wme->wme_hipri_traffic); 3831 wme->wme_flags |= WME_F_AGGRMODE; 3832 ieee80211_wme_updateparams_locked(vap); 3833 wme->wme_hipri_traffic = 0; 3834 } else 3835 wme->wme_hipri_traffic = 3836 wme->wme_hipri_switch_hysteresis; 3837 } 3838 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3839 (void) ieee80211_add_wme_param(bo->bo_wme, wme, 3840 vap->iv_flags_ext & IEEE80211_FEXT_UAPSD); 3841 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3842 } 3843 } 3844 3845 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3846 ieee80211_ht_update_beacon(vap, bo); 3847 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3848 } 3849 #ifdef IEEE80211_SUPPORT_TDMA 3850 if (vap->iv_caps & IEEE80211_C_TDMA) { 3851 /* 3852 * NB: the beacon is potentially updated every TBTT. 3853 */ 3854 ieee80211_tdma_update_beacon(vap, bo); 3855 } 3856 #endif 3857 #ifdef IEEE80211_SUPPORT_MESH 3858 if (vap->iv_opmode == IEEE80211_M_MBSS) 3859 ieee80211_mesh_update_beacon(vap, bo); 3860 #endif 3861 3862 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3863 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3864 struct ieee80211_tim_ie *tie = 3865 (struct ieee80211_tim_ie *) bo->bo_tim; 3866 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3867 u_int timlen, timoff, i; 3868 /* 3869 * ATIM/DTIM needs updating. If it fits in the 3870 * current space allocated then just copy in the 3871 * new bits. Otherwise we need to move any trailing 3872 * data to make room. Note that we know there is 3873 * contiguous space because ieee80211_beacon_allocate 3874 * insures there is space in the mbuf to write a 3875 * maximal-size virtual bitmap (based on iv_max_aid). 3876 */ 3877 /* 3878 * Calculate the bitmap size and offset, copy any 3879 * trailer out of the way, and then copy in the 3880 * new bitmap and update the information element. 3881 * Note that the tim bitmap must contain at least 3882 * one byte and any offset must be even. 3883 */ 3884 if (vap->iv_ps_pending != 0) { 3885 timoff = 128; /* impossibly large */ 3886 for (i = 0; i < vap->iv_tim_len; i++) 3887 if (vap->iv_tim_bitmap[i]) { 3888 timoff = i &~ 1; 3889 break; 3890 } 3891 KASSERT(timoff != 128, ("tim bitmap empty!")); 3892 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3893 if (vap->iv_tim_bitmap[i]) 3894 break; 3895 timlen = 1 + (i - timoff); 3896 } else { 3897 timoff = 0; 3898 timlen = 1; 3899 } 3900 3901 /* 3902 * TODO: validate this! 3903 */ 3904 if (timlen != bo->bo_tim_len) { 3905 /* copy up/down trailer */ 3906 int adjust = tie->tim_bitmap+timlen 3907 - bo->bo_tim_trailer; 3908 ovbcopy(bo->bo_tim_trailer, 3909 bo->bo_tim_trailer+adjust, 3910 bo->bo_tim_trailer_len); 3911 bo->bo_tim_trailer += adjust; 3912 bo->bo_erp += adjust; 3913 bo->bo_htinfo += adjust; 3914 bo->bo_vhtinfo += adjust; 3915 #ifdef IEEE80211_SUPPORT_SUPERG 3916 bo->bo_ath += adjust; 3917 #endif 3918 #ifdef IEEE80211_SUPPORT_TDMA 3919 bo->bo_tdma += adjust; 3920 #endif 3921 #ifdef IEEE80211_SUPPORT_MESH 3922 bo->bo_meshconf += adjust; 3923 #endif 3924 bo->bo_appie += adjust; 3925 bo->bo_wme += adjust; 3926 bo->bo_csa += adjust; 3927 bo->bo_quiet += adjust; 3928 bo->bo_tim_len = timlen; 3929 3930 /* update information element */ 3931 tie->tim_len = 3 + timlen; 3932 tie->tim_bitctl = timoff; 3933 len_changed = 1; 3934 } 3935 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3936 bo->bo_tim_len); 3937 3938 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3939 3940 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3941 "%s: TIM updated, pending %u, off %u, len %u\n", 3942 __func__, vap->iv_ps_pending, timoff, timlen); 3943 } 3944 /* count down DTIM period */ 3945 if (tie->tim_count == 0) 3946 tie->tim_count = tie->tim_period - 1; 3947 else 3948 tie->tim_count--; 3949 /* update state for buffered multicast frames on DTIM */ 3950 if (mcast && tie->tim_count == 0) 3951 tie->tim_bitctl |= 1; 3952 else 3953 tie->tim_bitctl &= ~1; 3954 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3955 struct ieee80211_csa_ie *csa = 3956 (struct ieee80211_csa_ie *) bo->bo_csa; 3957 3958 /* 3959 * Insert or update CSA ie. If we're just starting 3960 * to count down to the channel switch then we need 3961 * to insert the CSA ie. Otherwise we just need to 3962 * drop the count. The actual change happens above 3963 * when the vap's count reaches the target count. 3964 */ 3965 if (vap->iv_csa_count == 0) { 3966 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3967 bo->bo_erp += sizeof(*csa); 3968 bo->bo_htinfo += sizeof(*csa); 3969 bo->bo_vhtinfo += sizeof(*csa); 3970 bo->bo_wme += sizeof(*csa); 3971 #ifdef IEEE80211_SUPPORT_SUPERG 3972 bo->bo_ath += sizeof(*csa); 3973 #endif 3974 #ifdef IEEE80211_SUPPORT_TDMA 3975 bo->bo_tdma += sizeof(*csa); 3976 #endif 3977 #ifdef IEEE80211_SUPPORT_MESH 3978 bo->bo_meshconf += sizeof(*csa); 3979 #endif 3980 bo->bo_appie += sizeof(*csa); 3981 bo->bo_csa_trailer_len += sizeof(*csa); 3982 bo->bo_quiet += sizeof(*csa); 3983 bo->bo_tim_trailer_len += sizeof(*csa); 3984 m->m_len += sizeof(*csa); 3985 m->m_pkthdr.len += sizeof(*csa); 3986 3987 ieee80211_add_csa(bo->bo_csa, vap); 3988 } else 3989 csa->csa_count--; 3990 vap->iv_csa_count++; 3991 /* NB: don't clear IEEE80211_BEACON_CSA */ 3992 } 3993 3994 /* 3995 * Only add the quiet time IE if we've enabled it 3996 * as appropriate. 3997 */ 3998 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3999 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 4000 if (vap->iv_quiet && 4001 (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { 4002 ieee80211_add_quiet(bo->bo_quiet, vap, 1); 4003 } 4004 } 4005 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 4006 /* 4007 * ERP element needs updating. 4008 */ 4009 (void) ieee80211_add_erp(bo->bo_erp, vap); 4010 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 4011 } 4012 #ifdef IEEE80211_SUPPORT_SUPERG 4013 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 4014 ieee80211_add_athcaps(bo->bo_ath, ni); 4015 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 4016 } 4017 #endif 4018 } 4019 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 4020 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 4021 int aielen; 4022 uint8_t *frm; 4023 4024 aielen = 0; 4025 if (aie != NULL) 4026 aielen += aie->ie_len; 4027 if (aielen != bo->bo_appie_len) { 4028 /* copy up/down trailer */ 4029 int adjust = aielen - bo->bo_appie_len; 4030 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 4031 bo->bo_tim_trailer_len); 4032 bo->bo_tim_trailer += adjust; 4033 bo->bo_appie += adjust; 4034 bo->bo_appie_len = aielen; 4035 4036 len_changed = 1; 4037 } 4038 frm = bo->bo_appie; 4039 if (aie != NULL) 4040 frm = add_appie(frm, aie); 4041 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 4042 } 4043 IEEE80211_UNLOCK(ic); 4044 4045 return len_changed; 4046 } 4047 4048 /* 4049 * Do Ethernet-LLC encapsulation for each payload in a fast frame 4050 * tunnel encapsulation. The frame is assumed to have an Ethernet 4051 * header at the front that must be stripped before prepending the 4052 * LLC followed by the Ethernet header passed in (with an Ethernet 4053 * type that specifies the payload size). 4054 */ 4055 struct mbuf * 4056 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 4057 const struct ether_header *eh) 4058 { 4059 struct llc *llc; 4060 uint16_t payload; 4061 4062 /* XXX optimize by combining m_adj+M_PREPEND */ 4063 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 4064 llc = mtod(m, struct llc *); 4065 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 4066 llc->llc_control = LLC_UI; 4067 llc->llc_snap.org_code[0] = 0; 4068 llc->llc_snap.org_code[1] = 0; 4069 llc->llc_snap.org_code[2] = 0; 4070 llc->llc_snap.ether_type = eh->ether_type; 4071 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 4072 4073 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 4074 if (m == NULL) { /* XXX cannot happen */ 4075 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 4076 "%s: no space for ether_header\n", __func__); 4077 vap->iv_stats.is_tx_nobuf++; 4078 return NULL; 4079 } 4080 ETHER_HEADER_COPY(mtod(m, void *), eh); 4081 mtod(m, struct ether_header *)->ether_type = htons(payload); 4082 return m; 4083 } 4084 4085 /* 4086 * Complete an mbuf transmission. 4087 * 4088 * For now, this simply processes a completed frame after the 4089 * driver has completed it's transmission and/or retransmission. 4090 * It assumes the frame is an 802.11 encapsulated frame. 4091 * 4092 * Later on it will grow to become the exit path for a given frame 4093 * from the driver and, depending upon how it's been encapsulated 4094 * and already transmitted, it may end up doing A-MPDU retransmission, 4095 * power save requeuing, etc. 4096 * 4097 * In order for the above to work, the driver entry point to this 4098 * must not hold any driver locks. Thus, the driver needs to delay 4099 * any actual mbuf completion until it can release said locks. 4100 * 4101 * This frees the mbuf and if the mbuf has a node reference, 4102 * the node reference will be freed. 4103 */ 4104 void 4105 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 4106 { 4107 4108 if (ni != NULL) { 4109 struct ifnet *ifp = ni->ni_vap->iv_ifp; 4110 4111 if (status == 0) { 4112 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 4113 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4114 if (m->m_flags & M_MCAST) 4115 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 4116 } else 4117 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 4118 if (m->m_flags & M_TXCB) 4119 ieee80211_process_callback(ni, m, status); 4120 ieee80211_free_node(ni); 4121 } 4122 m_freem(m); 4123 } 4124