1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 #include <net80211/ieee80211_ratectl.h> 53 54 #include <net/bpf.h> 55 56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 57 [IEEE80211_MODE_AUTO] = "auto", 58 [IEEE80211_MODE_11A] = "11a", 59 [IEEE80211_MODE_11B] = "11b", 60 [IEEE80211_MODE_11G] = "11g", 61 [IEEE80211_MODE_FH] = "FH", 62 [IEEE80211_MODE_TURBO_A] = "turboA", 63 [IEEE80211_MODE_TURBO_G] = "turboG", 64 [IEEE80211_MODE_STURBO_A] = "sturboA", 65 [IEEE80211_MODE_HALF] = "half", 66 [IEEE80211_MODE_QUARTER] = "quarter", 67 [IEEE80211_MODE_11NA] = "11na", 68 [IEEE80211_MODE_11NG] = "11ng", 69 }; 70 /* map ieee80211_opmode to the corresponding capability bit */ 71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 72 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 73 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 74 [IEEE80211_M_STA] = IEEE80211_C_STA, 75 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 76 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 77 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 78 #ifdef IEEE80211_SUPPORT_MESH 79 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 80 #endif 81 }; 82 83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 84 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 85 86 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 87 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 88 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 89 static int ieee80211_media_setup(struct ieee80211com *ic, 90 struct ifmedia *media, int caps, int addsta, 91 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 92 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 93 static int ieee80211com_media_change(struct ifnet *); 94 static int media_status(enum ieee80211_opmode, 95 const struct ieee80211_channel *); 96 97 /* 98 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 99 */ 100 #define B(r) ((r) | IEEE80211_RATE_BASIC) 101 static const struct ieee80211_rateset ieee80211_rateset_11a = 102 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 103 static const struct ieee80211_rateset ieee80211_rateset_half = 104 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 105 static const struct ieee80211_rateset ieee80211_rateset_quarter = 106 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 107 static const struct ieee80211_rateset ieee80211_rateset_11b = 108 { 4, { B(2), B(4), B(11), B(22) } }; 109 /* NB: OFDM rates are handled specially based on mode */ 110 static const struct ieee80211_rateset ieee80211_rateset_11g = 111 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 112 #undef B 113 114 /* 115 * Fill in 802.11 available channel set, mark 116 * all available channels as active, and pick 117 * a default channel if not already specified. 118 */ 119 static void 120 ieee80211_chan_init(struct ieee80211com *ic) 121 { 122 #define DEFAULTRATES(m, def) do { \ 123 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 124 ic->ic_sup_rates[m] = def; \ 125 } while (0) 126 struct ieee80211_channel *c; 127 int i; 128 129 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 130 ("invalid number of channels specified: %u", ic->ic_nchans)); 131 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 132 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 133 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 134 for (i = 0; i < ic->ic_nchans; i++) { 135 c = &ic->ic_channels[i]; 136 KASSERT(c->ic_flags != 0, ("channel with no flags")); 137 /* 138 * Help drivers that work only with frequencies by filling 139 * in IEEE channel #'s if not already calculated. Note this 140 * mimics similar work done in ieee80211_setregdomain when 141 * changing regulatory state. 142 */ 143 if (c->ic_ieee == 0) 144 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 145 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 146 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 147 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 148 c->ic_flags); 149 /* default max tx power to max regulatory */ 150 if (c->ic_maxpower == 0) 151 c->ic_maxpower = 2*c->ic_maxregpower; 152 setbit(ic->ic_chan_avail, c->ic_ieee); 153 /* 154 * Identify mode capabilities. 155 */ 156 if (IEEE80211_IS_CHAN_A(c)) 157 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 158 if (IEEE80211_IS_CHAN_B(c)) 159 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 160 if (IEEE80211_IS_CHAN_ANYG(c)) 161 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 162 if (IEEE80211_IS_CHAN_FHSS(c)) 163 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 164 if (IEEE80211_IS_CHAN_108A(c)) 165 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 166 if (IEEE80211_IS_CHAN_108G(c)) 167 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 168 if (IEEE80211_IS_CHAN_ST(c)) 169 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 170 if (IEEE80211_IS_CHAN_HALF(c)) 171 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 172 if (IEEE80211_IS_CHAN_QUARTER(c)) 173 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 174 if (IEEE80211_IS_CHAN_HTA(c)) 175 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 176 if (IEEE80211_IS_CHAN_HTG(c)) 177 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 178 } 179 /* initialize candidate channels to all available */ 180 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 181 sizeof(ic->ic_chan_avail)); 182 183 /* sort channel table to allow lookup optimizations */ 184 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 185 186 /* invalidate any previous state */ 187 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 188 ic->ic_prevchan = NULL; 189 ic->ic_csa_newchan = NULL; 190 /* arbitrarily pick the first channel */ 191 ic->ic_curchan = &ic->ic_channels[0]; 192 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 193 194 /* fillin well-known rate sets if driver has not specified */ 195 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 196 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 197 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 198 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 199 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 200 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 201 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 202 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 203 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 204 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 205 206 /* 207 * Set auto mode to reset active channel state and any desired channel. 208 */ 209 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 210 #undef DEFAULTRATES 211 } 212 213 static void 214 null_update_mcast(struct ifnet *ifp) 215 { 216 if_printf(ifp, "need multicast update callback\n"); 217 } 218 219 static void 220 null_update_promisc(struct ifnet *ifp) 221 { 222 if_printf(ifp, "need promiscuous mode update callback\n"); 223 } 224 225 static int 226 null_transmit(struct ifnet *ifp, struct mbuf *m) 227 { 228 m_freem(m); 229 ifp->if_oerrors++; 230 return EACCES; /* XXX EIO/EPERM? */ 231 } 232 233 static int 234 null_output(struct ifnet *ifp, struct mbuf *m, 235 struct sockaddr *dst, struct route *ro) 236 { 237 if_printf(ifp, "discard raw packet\n"); 238 return null_transmit(ifp, m); 239 } 240 241 static void 242 null_input(struct ifnet *ifp, struct mbuf *m) 243 { 244 if_printf(ifp, "if_input should not be called\n"); 245 m_freem(m); 246 } 247 248 /* 249 * Attach/setup the common net80211 state. Called by 250 * the driver on attach to prior to creating any vap's. 251 */ 252 void 253 ieee80211_ifattach(struct ieee80211com *ic, 254 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 255 { 256 struct ifnet *ifp = ic->ic_ifp; 257 struct sockaddr_dl *sdl; 258 struct ifaddr *ifa; 259 260 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 261 262 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 263 TAILQ_INIT(&ic->ic_vaps); 264 265 /* Create a taskqueue for all state changes */ 266 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 267 taskqueue_thread_enqueue, &ic->ic_tq); 268 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq", 269 ifp->if_xname); 270 /* 271 * Fill in 802.11 available channel set, mark all 272 * available channels as active, and pick a default 273 * channel if not already specified. 274 */ 275 ieee80211_media_init(ic); 276 277 ic->ic_update_mcast = null_update_mcast; 278 ic->ic_update_promisc = null_update_promisc; 279 280 ic->ic_hash_key = arc4random(); 281 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 282 ic->ic_lintval = ic->ic_bintval; 283 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 284 285 ieee80211_crypto_attach(ic); 286 ieee80211_node_attach(ic); 287 ieee80211_power_attach(ic); 288 ieee80211_proto_attach(ic); 289 #ifdef IEEE80211_SUPPORT_SUPERG 290 ieee80211_superg_attach(ic); 291 #endif 292 ieee80211_ht_attach(ic); 293 ieee80211_scan_attach(ic); 294 ieee80211_regdomain_attach(ic); 295 ieee80211_dfs_attach(ic); 296 #if defined(__HAIKU__) 297 ieee80211_ratectl_attach(ic); 298 #endif 299 300 ieee80211_sysctl_attach(ic); 301 302 ifp->if_addrlen = IEEE80211_ADDR_LEN; 303 ifp->if_hdrlen = 0; 304 if_attach(ifp); 305 ifp->if_mtu = IEEE80211_MTU_MAX; 306 ifp->if_broadcastaddr = ieee80211broadcastaddr; 307 ifp->if_output = null_output; 308 ifp->if_input = null_input; /* just in case */ 309 ifp->if_resolvemulti = NULL; /* NB: callers check */ 310 311 #ifndef __HAIKU__ 312 ifa = ifaddr_byindex(ifp->if_index); 313 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 314 sdl = (struct sockaddr_dl *)ifa->ifa_addr;; 315 #else 316 sdl = &ifp->if_lladdr; 317 #endif 318 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 319 sdl->sdl_alen = IEEE80211_ADDR_LEN; 320 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 321 ifa_free(ifa); 322 } 323 324 /* 325 * Detach net80211 state on device detach. Tear down 326 * all vap's and reclaim all common state prior to the 327 * device state going away. Note we may call back into 328 * driver; it must be prepared for this. 329 */ 330 void 331 ieee80211_ifdetach(struct ieee80211com *ic) 332 { 333 struct ifnet *ifp = ic->ic_ifp; 334 struct ieee80211vap *vap; 335 336 if_detach(ifp); 337 338 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 339 ieee80211_vap_destroy(vap); 340 ieee80211_waitfor_parent(ic); 341 342 ieee80211_sysctl_detach(ic); 343 #if defined(__HAIKU__) 344 ieee80211_ratectl_detach(ic); 345 #endif 346 ieee80211_dfs_detach(ic); 347 ieee80211_regdomain_detach(ic); 348 ieee80211_scan_detach(ic); 349 #ifdef IEEE80211_SUPPORT_SUPERG 350 ieee80211_superg_detach(ic); 351 #endif 352 ieee80211_ht_detach(ic); 353 /* NB: must be called before ieee80211_node_detach */ 354 ieee80211_proto_detach(ic); 355 ieee80211_crypto_detach(ic); 356 ieee80211_power_detach(ic); 357 ieee80211_node_detach(ic); 358 359 ifmedia_removeall(&ic->ic_media); 360 taskqueue_free(ic->ic_tq); 361 IEEE80211_LOCK_DESTROY(ic); 362 } 363 364 /* 365 * Default reset method for use with the ioctl support. This 366 * method is invoked after any state change in the 802.11 367 * layer that should be propagated to the hardware but not 368 * require re-initialization of the 802.11 state machine (e.g 369 * rescanning for an ap). We always return ENETRESET which 370 * should cause the driver to re-initialize the device. Drivers 371 * can override this method to implement more optimized support. 372 */ 373 static int 374 default_reset(struct ieee80211vap *vap, u_long cmd) 375 { 376 return ENETRESET; 377 } 378 379 /* 380 * Prepare a vap for use. Drivers use this call to 381 * setup net80211 state in new vap's prior attaching 382 * them with ieee80211_vap_attach (below). 383 */ 384 int 385 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 386 const char name[IFNAMSIZ], int unit, int opmode, int flags, 387 const uint8_t bssid[IEEE80211_ADDR_LEN], 388 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 389 { 390 struct ifnet *ifp; 391 392 ifp = if_alloc(IFT_ETHER); 393 if (ifp == NULL) { 394 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 395 __func__); 396 return ENOMEM; 397 } 398 if_initname(ifp, name, unit); 399 ifp->if_softc = vap; /* back pointer */ 400 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 401 ifp->if_start = ieee80211_start; 402 ifp->if_ioctl = ieee80211_ioctl; 403 ifp->if_init = ieee80211_init; 404 /* NB: input+output filled in by ether_ifattach */ 405 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 406 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 407 IFQ_SET_READY(&ifp->if_snd); 408 409 vap->iv_ifp = ifp; 410 vap->iv_ic = ic; 411 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 412 vap->iv_flags_ext = ic->ic_flags_ext; 413 vap->iv_flags_ven = ic->ic_flags_ven; 414 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 415 vap->iv_htcaps = ic->ic_htcaps; 416 vap->iv_opmode = opmode; 417 vap->iv_caps |= ieee80211_opcap[opmode]; 418 switch (opmode) { 419 case IEEE80211_M_WDS: 420 /* 421 * WDS links must specify the bssid of the far end. 422 * For legacy operation this is a static relationship. 423 * For non-legacy operation the station must associate 424 * and be authorized to pass traffic. Plumbing the 425 * vap to the proper node happens when the vap 426 * transitions to RUN state. 427 */ 428 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 429 vap->iv_flags |= IEEE80211_F_DESBSSID; 430 if (flags & IEEE80211_CLONE_WDSLEGACY) 431 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 432 break; 433 #ifdef IEEE80211_SUPPORT_TDMA 434 case IEEE80211_M_AHDEMO: 435 if (flags & IEEE80211_CLONE_TDMA) { 436 /* NB: checked before clone operation allowed */ 437 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 438 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 439 /* 440 * Propagate TDMA capability to mark vap; this 441 * cannot be removed and is used to distinguish 442 * regular ahdemo operation from ahdemo+tdma. 443 */ 444 vap->iv_caps |= IEEE80211_C_TDMA; 445 } 446 break; 447 #endif 448 } 449 /* auto-enable s/w beacon miss support */ 450 if (flags & IEEE80211_CLONE_NOBEACONS) 451 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 452 /* auto-generated or user supplied MAC address */ 453 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 454 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 455 /* 456 * Enable various functionality by default if we're 457 * capable; the driver can override us if it knows better. 458 */ 459 if (vap->iv_caps & IEEE80211_C_WME) 460 vap->iv_flags |= IEEE80211_F_WME; 461 if (vap->iv_caps & IEEE80211_C_BURST) 462 vap->iv_flags |= IEEE80211_F_BURST; 463 /* NB: bg scanning only makes sense for station mode right now */ 464 #if 0 465 if (vap->iv_opmode == IEEE80211_M_STA && 466 (vap->iv_caps & IEEE80211_C_BGSCAN)) 467 vap->iv_flags |= IEEE80211_F_BGSCAN; 468 #endif 469 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 470 /* NB: DFS support only makes sense for ap mode right now */ 471 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 472 (vap->iv_caps & IEEE80211_C_DFS)) 473 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 474 475 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 476 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 477 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 478 /* 479 * Install a default reset method for the ioctl support; 480 * the driver can override this. 481 */ 482 vap->iv_reset = default_reset; 483 484 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 485 486 ieee80211_sysctl_vattach(vap); 487 ieee80211_crypto_vattach(vap); 488 ieee80211_node_vattach(vap); 489 ieee80211_power_vattach(vap); 490 ieee80211_proto_vattach(vap); 491 #ifdef IEEE80211_SUPPORT_SUPERG 492 ieee80211_superg_vattach(vap); 493 #endif 494 ieee80211_ht_vattach(vap); 495 ieee80211_scan_vattach(vap); 496 ieee80211_regdomain_vattach(vap); 497 ieee80211_radiotap_vattach(vap); 498 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 499 500 return 0; 501 } 502 503 /* 504 * Activate a vap. State should have been prepared with a 505 * call to ieee80211_vap_setup and by the driver. On return 506 * from this call the vap is ready for use. 507 */ 508 int 509 ieee80211_vap_attach(struct ieee80211vap *vap, 510 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 511 { 512 struct ifnet *ifp = vap->iv_ifp; 513 struct ieee80211com *ic = vap->iv_ic; 514 struct ifmediareq imr; 515 int maxrate; 516 517 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 518 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 519 __func__, ieee80211_opmode_name[vap->iv_opmode], 520 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 521 522 /* 523 * Do late attach work that cannot happen until after 524 * the driver has had a chance to override defaults. 525 */ 526 ieee80211_node_latevattach(vap); 527 ieee80211_power_latevattach(vap); 528 529 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 530 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 531 ieee80211_media_status(ifp, &imr); 532 /* NB: strip explicit mode; we're actually in autoselect */ 533 ifmedia_set(&vap->iv_media, 534 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 535 if (maxrate) 536 ifp->if_baudrate = IF_Mbps(maxrate); 537 538 ether_ifattach(ifp, vap->iv_myaddr); 539 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 540 /* NB: disallow transmit */ 541 ifp->if_transmit = null_transmit; 542 ifp->if_output = null_output; 543 } else { 544 /* hook output method setup by ether_ifattach */ 545 vap->iv_output = ifp->if_output; 546 ifp->if_output = ieee80211_output; 547 } 548 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 549 550 IEEE80211_LOCK(ic); 551 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 552 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 553 #ifdef IEEE80211_SUPPORT_SUPERG 554 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 555 #endif 556 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 557 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 558 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 559 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 560 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 561 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 562 IEEE80211_UNLOCK(ic); 563 564 return 1; 565 } 566 567 /* 568 * Tear down vap state and reclaim the ifnet. 569 * The driver is assumed to have prepared for 570 * this; e.g. by turning off interrupts for the 571 * underlying device. 572 */ 573 void 574 ieee80211_vap_detach(struct ieee80211vap *vap) 575 { 576 struct ieee80211com *ic = vap->iv_ic; 577 struct ifnet *ifp = vap->iv_ifp; 578 579 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 580 __func__, ieee80211_opmode_name[vap->iv_opmode], 581 ic->ic_ifp->if_xname); 582 583 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 584 ether_ifdetach(ifp); 585 586 ieee80211_stop(vap); 587 588 /* 589 * Flush any deferred vap tasks. 590 */ 591 ieee80211_draintask(ic, &vap->iv_nstate_task); 592 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 593 594 IEEE80211_LOCK(ic); 595 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 596 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 597 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 598 #ifdef IEEE80211_SUPPORT_SUPERG 599 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 600 #endif 601 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 602 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 603 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 604 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 605 /* NB: this handles the bpfdetach done below */ 606 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 607 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 608 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 609 IEEE80211_UNLOCK(ic); 610 611 ifmedia_removeall(&vap->iv_media); 612 613 ieee80211_radiotap_vdetach(vap); 614 ieee80211_regdomain_vdetach(vap); 615 ieee80211_scan_vdetach(vap); 616 #ifdef IEEE80211_SUPPORT_SUPERG 617 ieee80211_superg_vdetach(vap); 618 #endif 619 ieee80211_ht_vdetach(vap); 620 /* NB: must be before ieee80211_node_vdetach */ 621 ieee80211_proto_vdetach(vap); 622 ieee80211_crypto_vdetach(vap); 623 ieee80211_power_vdetach(vap); 624 ieee80211_node_vdetach(vap); 625 ieee80211_sysctl_vdetach(vap); 626 627 if_free(ifp); 628 } 629 630 /* 631 * Synchronize flag bit state in the parent ifnet structure 632 * according to the state of all vap ifnet's. This is used, 633 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 634 */ 635 void 636 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 637 { 638 struct ifnet *ifp = ic->ic_ifp; 639 struct ieee80211vap *vap; 640 int bit, oflags; 641 642 IEEE80211_LOCK_ASSERT(ic); 643 644 bit = 0; 645 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 646 if (vap->iv_ifp->if_flags & flag) { 647 /* 648 * XXX the bridge sets PROMISC but we don't want to 649 * enable it on the device, discard here so all the 650 * drivers don't need to special-case it 651 */ 652 if (flag == IFF_PROMISC && 653 !(vap->iv_opmode == IEEE80211_M_MONITOR || 654 (vap->iv_opmode == IEEE80211_M_AHDEMO && 655 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 656 continue; 657 bit = 1; 658 break; 659 } 660 oflags = ifp->if_flags; 661 if (bit) 662 ifp->if_flags |= flag; 663 else 664 ifp->if_flags &= ~flag; 665 if ((ifp->if_flags ^ oflags) & flag) { 666 /* XXX should we return 1/0 and let caller do this? */ 667 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 668 if (flag == IFF_PROMISC) 669 ieee80211_runtask(ic, &ic->ic_promisc_task); 670 else if (flag == IFF_ALLMULTI) 671 ieee80211_runtask(ic, &ic->ic_mcast_task); 672 } 673 } 674 } 675 676 /* 677 * Synchronize flag bit state in the com structure 678 * according to the state of all vap's. This is used, 679 * for example, to handle state changes via ioctls. 680 */ 681 static void 682 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 683 { 684 struct ieee80211vap *vap; 685 int bit; 686 687 IEEE80211_LOCK_ASSERT(ic); 688 689 bit = 0; 690 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 691 if (vap->iv_flags & flag) { 692 bit = 1; 693 break; 694 } 695 if (bit) 696 ic->ic_flags |= flag; 697 else 698 ic->ic_flags &= ~flag; 699 } 700 701 void 702 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 703 { 704 struct ieee80211com *ic = vap->iv_ic; 705 706 IEEE80211_LOCK(ic); 707 if (flag < 0) { 708 flag = -flag; 709 vap->iv_flags &= ~flag; 710 } else 711 vap->iv_flags |= flag; 712 ieee80211_syncflag_locked(ic, flag); 713 IEEE80211_UNLOCK(ic); 714 } 715 716 /* 717 * Synchronize flags_ht bit state in the com structure 718 * according to the state of all vap's. This is used, 719 * for example, to handle state changes via ioctls. 720 */ 721 static void 722 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 723 { 724 struct ieee80211vap *vap; 725 int bit; 726 727 IEEE80211_LOCK_ASSERT(ic); 728 729 bit = 0; 730 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 731 if (vap->iv_flags_ht & flag) { 732 bit = 1; 733 break; 734 } 735 if (bit) 736 ic->ic_flags_ht |= flag; 737 else 738 ic->ic_flags_ht &= ~flag; 739 } 740 741 void 742 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 743 { 744 struct ieee80211com *ic = vap->iv_ic; 745 746 IEEE80211_LOCK(ic); 747 if (flag < 0) { 748 flag = -flag; 749 vap->iv_flags_ht &= ~flag; 750 } else 751 vap->iv_flags_ht |= flag; 752 ieee80211_syncflag_ht_locked(ic, flag); 753 IEEE80211_UNLOCK(ic); 754 } 755 756 /* 757 * Synchronize flags_ext bit state in the com structure 758 * according to the state of all vap's. This is used, 759 * for example, to handle state changes via ioctls. 760 */ 761 static void 762 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 763 { 764 struct ieee80211vap *vap; 765 int bit; 766 767 IEEE80211_LOCK_ASSERT(ic); 768 769 bit = 0; 770 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 771 if (vap->iv_flags_ext & flag) { 772 bit = 1; 773 break; 774 } 775 if (bit) 776 ic->ic_flags_ext |= flag; 777 else 778 ic->ic_flags_ext &= ~flag; 779 } 780 781 void 782 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 783 { 784 struct ieee80211com *ic = vap->iv_ic; 785 786 IEEE80211_LOCK(ic); 787 if (flag < 0) { 788 flag = -flag; 789 vap->iv_flags_ext &= ~flag; 790 } else 791 vap->iv_flags_ext |= flag; 792 ieee80211_syncflag_ext_locked(ic, flag); 793 IEEE80211_UNLOCK(ic); 794 } 795 796 static __inline int 797 mapgsm(u_int freq, u_int flags) 798 { 799 freq *= 10; 800 if (flags & IEEE80211_CHAN_QUARTER) 801 freq += 5; 802 else if (flags & IEEE80211_CHAN_HALF) 803 freq += 10; 804 else 805 freq += 20; 806 /* NB: there is no 907/20 wide but leave room */ 807 return (freq - 906*10) / 5; 808 } 809 810 static __inline int 811 mappsb(u_int freq, u_int flags) 812 { 813 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 814 } 815 816 /* 817 * Convert MHz frequency to IEEE channel number. 818 */ 819 int 820 ieee80211_mhz2ieee(u_int freq, u_int flags) 821 { 822 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 823 if (flags & IEEE80211_CHAN_GSM) 824 return mapgsm(freq, flags); 825 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 826 if (freq == 2484) 827 return 14; 828 if (freq < 2484) 829 return ((int) freq - 2407) / 5; 830 else 831 return 15 + ((freq - 2512) / 20); 832 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 833 if (freq <= 5000) { 834 /* XXX check regdomain? */ 835 if (IS_FREQ_IN_PSB(freq)) 836 return mappsb(freq, flags); 837 return (freq - 4000) / 5; 838 } else 839 return (freq - 5000) / 5; 840 } else { /* either, guess */ 841 if (freq == 2484) 842 return 14; 843 if (freq < 2484) { 844 if (907 <= freq && freq <= 922) 845 return mapgsm(freq, flags); 846 return ((int) freq - 2407) / 5; 847 } 848 if (freq < 5000) { 849 if (IS_FREQ_IN_PSB(freq)) 850 return mappsb(freq, flags); 851 else if (freq > 4900) 852 return (freq - 4000) / 5; 853 else 854 return 15 + ((freq - 2512) / 20); 855 } 856 return (freq - 5000) / 5; 857 } 858 #undef IS_FREQ_IN_PSB 859 } 860 861 /* 862 * Convert channel to IEEE channel number. 863 */ 864 int 865 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 866 { 867 if (c == NULL) { 868 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 869 return 0; /* XXX */ 870 } 871 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 872 } 873 874 /* 875 * Convert IEEE channel number to MHz frequency. 876 */ 877 u_int 878 ieee80211_ieee2mhz(u_int chan, u_int flags) 879 { 880 if (flags & IEEE80211_CHAN_GSM) 881 return 907 + 5 * (chan / 10); 882 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 883 if (chan == 14) 884 return 2484; 885 if (chan < 14) 886 return 2407 + chan*5; 887 else 888 return 2512 + ((chan-15)*20); 889 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 890 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 891 chan -= 37; 892 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 893 } 894 return 5000 + (chan*5); 895 } else { /* either, guess */ 896 /* XXX can't distinguish PSB+GSM channels */ 897 if (chan == 14) 898 return 2484; 899 if (chan < 14) /* 0-13 */ 900 return 2407 + chan*5; 901 if (chan < 27) /* 15-26 */ 902 return 2512 + ((chan-15)*20); 903 return 5000 + (chan*5); 904 } 905 } 906 907 /* 908 * Locate a channel given a frequency+flags. We cache 909 * the previous lookup to optimize switching between two 910 * channels--as happens with dynamic turbo. 911 */ 912 struct ieee80211_channel * 913 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 914 { 915 struct ieee80211_channel *c; 916 int i; 917 918 flags &= IEEE80211_CHAN_ALLTURBO; 919 c = ic->ic_prevchan; 920 if (c != NULL && c->ic_freq == freq && 921 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 922 return c; 923 /* brute force search */ 924 for (i = 0; i < ic->ic_nchans; i++) { 925 c = &ic->ic_channels[i]; 926 if (c->ic_freq == freq && 927 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 928 return c; 929 } 930 return NULL; 931 } 932 933 /* 934 * Locate a channel given a channel number+flags. We cache 935 * the previous lookup to optimize switching between two 936 * channels--as happens with dynamic turbo. 937 */ 938 struct ieee80211_channel * 939 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 940 { 941 struct ieee80211_channel *c; 942 int i; 943 944 flags &= IEEE80211_CHAN_ALLTURBO; 945 c = ic->ic_prevchan; 946 if (c != NULL && c->ic_ieee == ieee && 947 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 948 return c; 949 /* brute force search */ 950 for (i = 0; i < ic->ic_nchans; i++) { 951 c = &ic->ic_channels[i]; 952 if (c->ic_ieee == ieee && 953 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 954 return c; 955 } 956 return NULL; 957 } 958 959 static void 960 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 961 { 962 #define ADD(_ic, _s, _o) \ 963 ifmedia_add(media, \ 964 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 965 static const u_int mopts[IEEE80211_MODE_MAX] = { 966 [IEEE80211_MODE_AUTO] = IFM_AUTO, 967 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 968 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 969 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 970 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 971 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 972 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 973 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 974 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 975 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 976 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 977 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 978 }; 979 u_int mopt; 980 981 mopt = mopts[mode]; 982 if (addsta) 983 ADD(ic, mword, mopt); /* STA mode has no cap */ 984 if (caps & IEEE80211_C_IBSS) 985 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 986 if (caps & IEEE80211_C_HOSTAP) 987 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 988 if (caps & IEEE80211_C_AHDEMO) 989 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 990 if (caps & IEEE80211_C_MONITOR) 991 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 992 if (caps & IEEE80211_C_WDS) 993 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 994 if (caps & IEEE80211_C_MBSS) 995 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 996 #undef ADD 997 } 998 999 /* 1000 * Setup the media data structures according to the channel and 1001 * rate tables. 1002 */ 1003 static int 1004 ieee80211_media_setup(struct ieee80211com *ic, 1005 struct ifmedia *media, int caps, int addsta, 1006 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1007 { 1008 int i, j, mode, rate, maxrate, mword, r; 1009 const struct ieee80211_rateset *rs; 1010 struct ieee80211_rateset allrates; 1011 1012 /* 1013 * Fill in media characteristics. 1014 */ 1015 ifmedia_init(media, 0, media_change, media_stat); 1016 maxrate = 0; 1017 /* 1018 * Add media for legacy operating modes. 1019 */ 1020 memset(&allrates, 0, sizeof(allrates)); 1021 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1022 if (isclr(ic->ic_modecaps, mode)) 1023 continue; 1024 addmedia(media, caps, addsta, mode, IFM_AUTO); 1025 if (mode == IEEE80211_MODE_AUTO) 1026 continue; 1027 rs = &ic->ic_sup_rates[mode]; 1028 for (i = 0; i < rs->rs_nrates; i++) { 1029 rate = rs->rs_rates[i]; 1030 mword = ieee80211_rate2media(ic, rate, mode); 1031 if (mword == 0) 1032 continue; 1033 addmedia(media, caps, addsta, mode, mword); 1034 /* 1035 * Add legacy rate to the collection of all rates. 1036 */ 1037 r = rate & IEEE80211_RATE_VAL; 1038 for (j = 0; j < allrates.rs_nrates; j++) 1039 if (allrates.rs_rates[j] == r) 1040 break; 1041 if (j == allrates.rs_nrates) { 1042 /* unique, add to the set */ 1043 allrates.rs_rates[j] = r; 1044 allrates.rs_nrates++; 1045 } 1046 rate = (rate & IEEE80211_RATE_VAL) / 2; 1047 if (rate > maxrate) 1048 maxrate = rate; 1049 } 1050 } 1051 for (i = 0; i < allrates.rs_nrates; i++) { 1052 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1053 IEEE80211_MODE_AUTO); 1054 if (mword == 0) 1055 continue; 1056 /* NB: remove media options from mword */ 1057 addmedia(media, caps, addsta, 1058 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1059 } 1060 /* 1061 * Add HT/11n media. Note that we do not have enough 1062 * bits in the media subtype to express the MCS so we 1063 * use a "placeholder" media subtype and any fixed MCS 1064 * must be specified with a different mechanism. 1065 */ 1066 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1067 if (isclr(ic->ic_modecaps, mode)) 1068 continue; 1069 addmedia(media, caps, addsta, mode, IFM_AUTO); 1070 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1071 } 1072 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1073 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1074 addmedia(media, caps, addsta, 1075 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1076 /* XXX could walk htrates */ 1077 /* XXX known array size */ 1078 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1079 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1080 } 1081 return maxrate; 1082 } 1083 1084 void 1085 ieee80211_media_init(struct ieee80211com *ic) 1086 { 1087 struct ifnet *ifp = ic->ic_ifp; 1088 int maxrate; 1089 1090 /* NB: this works because the structure is initialized to zero */ 1091 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1092 /* 1093 * We are re-initializing the channel list; clear 1094 * the existing media state as the media routines 1095 * don't suppress duplicates. 1096 */ 1097 ifmedia_removeall(&ic->ic_media); 1098 } 1099 ieee80211_chan_init(ic); 1100 1101 /* 1102 * Recalculate media settings in case new channel list changes 1103 * the set of available modes. 1104 */ 1105 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1106 ieee80211com_media_change, ieee80211com_media_status); 1107 /* NB: strip explicit mode; we're actually in autoselect */ 1108 ifmedia_set(&ic->ic_media, 1109 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1110 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1111 if (maxrate) 1112 ifp->if_baudrate = IF_Mbps(maxrate); 1113 1114 /* XXX need to propagate new media settings to vap's */ 1115 } 1116 1117 /* XXX inline or eliminate? */ 1118 const struct ieee80211_rateset * 1119 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1120 { 1121 /* XXX does this work for 11ng basic rates? */ 1122 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1123 } 1124 1125 void 1126 ieee80211_announce(struct ieee80211com *ic) 1127 { 1128 struct ifnet *ifp = ic->ic_ifp; 1129 int i, mode, rate, mword; 1130 const struct ieee80211_rateset *rs; 1131 1132 /* NB: skip AUTO since it has no rates */ 1133 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1134 if (isclr(ic->ic_modecaps, mode)) 1135 continue; 1136 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1137 rs = &ic->ic_sup_rates[mode]; 1138 for (i = 0; i < rs->rs_nrates; i++) { 1139 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1140 if (mword == 0) 1141 continue; 1142 rate = ieee80211_media2rate(mword); 1143 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1144 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1145 } 1146 printf("\n"); 1147 } 1148 ieee80211_ht_announce(ic); 1149 } 1150 1151 void 1152 ieee80211_announce_channels(struct ieee80211com *ic) 1153 { 1154 const struct ieee80211_channel *c; 1155 char type; 1156 int i, cw; 1157 1158 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1159 for (i = 0; i < ic->ic_nchans; i++) { 1160 c = &ic->ic_channels[i]; 1161 if (IEEE80211_IS_CHAN_ST(c)) 1162 type = 'S'; 1163 else if (IEEE80211_IS_CHAN_108A(c)) 1164 type = 'T'; 1165 else if (IEEE80211_IS_CHAN_108G(c)) 1166 type = 'G'; 1167 else if (IEEE80211_IS_CHAN_HT(c)) 1168 type = 'n'; 1169 else if (IEEE80211_IS_CHAN_A(c)) 1170 type = 'a'; 1171 else if (IEEE80211_IS_CHAN_ANYG(c)) 1172 type = 'g'; 1173 else if (IEEE80211_IS_CHAN_B(c)) 1174 type = 'b'; 1175 else 1176 type = 'f'; 1177 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1178 cw = 40; 1179 else if (IEEE80211_IS_CHAN_HALF(c)) 1180 cw = 10; 1181 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1182 cw = 5; 1183 else 1184 cw = 20; 1185 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1186 , c->ic_ieee, c->ic_freq, type 1187 , cw 1188 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1189 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1190 , c->ic_maxregpower 1191 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1192 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1193 ); 1194 } 1195 } 1196 1197 static int 1198 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1199 { 1200 switch (IFM_MODE(ime->ifm_media)) { 1201 case IFM_IEEE80211_11A: 1202 *mode = IEEE80211_MODE_11A; 1203 break; 1204 case IFM_IEEE80211_11B: 1205 *mode = IEEE80211_MODE_11B; 1206 break; 1207 case IFM_IEEE80211_11G: 1208 *mode = IEEE80211_MODE_11G; 1209 break; 1210 case IFM_IEEE80211_FH: 1211 *mode = IEEE80211_MODE_FH; 1212 break; 1213 case IFM_IEEE80211_11NA: 1214 *mode = IEEE80211_MODE_11NA; 1215 break; 1216 case IFM_IEEE80211_11NG: 1217 *mode = IEEE80211_MODE_11NG; 1218 break; 1219 case IFM_AUTO: 1220 *mode = IEEE80211_MODE_AUTO; 1221 break; 1222 default: 1223 return 0; 1224 } 1225 /* 1226 * Turbo mode is an ``option''. 1227 * XXX does not apply to AUTO 1228 */ 1229 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1230 if (*mode == IEEE80211_MODE_11A) { 1231 if (flags & IEEE80211_F_TURBOP) 1232 *mode = IEEE80211_MODE_TURBO_A; 1233 else 1234 *mode = IEEE80211_MODE_STURBO_A; 1235 } else if (*mode == IEEE80211_MODE_11G) 1236 *mode = IEEE80211_MODE_TURBO_G; 1237 else 1238 return 0; 1239 } 1240 /* XXX HT40 +/- */ 1241 return 1; 1242 } 1243 1244 /* 1245 * Handle a media change request on the underlying interface. 1246 */ 1247 int 1248 ieee80211com_media_change(struct ifnet *ifp) 1249 { 1250 return EINVAL; 1251 } 1252 1253 /* 1254 * Handle a media change request on the vap interface. 1255 */ 1256 int 1257 ieee80211_media_change(struct ifnet *ifp) 1258 { 1259 struct ieee80211vap *vap = ifp->if_softc; 1260 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1261 uint16_t newmode; 1262 1263 if (!media2mode(ime, vap->iv_flags, &newmode)) 1264 return EINVAL; 1265 if (vap->iv_des_mode != newmode) { 1266 vap->iv_des_mode = newmode; 1267 /* XXX kick state machine if up+running */ 1268 } 1269 return 0; 1270 } 1271 1272 /* 1273 * Common code to calculate the media status word 1274 * from the operating mode and channel state. 1275 */ 1276 static int 1277 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1278 { 1279 int status; 1280 1281 status = IFM_IEEE80211; 1282 switch (opmode) { 1283 case IEEE80211_M_STA: 1284 break; 1285 case IEEE80211_M_IBSS: 1286 status |= IFM_IEEE80211_ADHOC; 1287 break; 1288 case IEEE80211_M_HOSTAP: 1289 status |= IFM_IEEE80211_HOSTAP; 1290 break; 1291 case IEEE80211_M_MONITOR: 1292 status |= IFM_IEEE80211_MONITOR; 1293 break; 1294 case IEEE80211_M_AHDEMO: 1295 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1296 break; 1297 case IEEE80211_M_WDS: 1298 status |= IFM_IEEE80211_WDS; 1299 break; 1300 case IEEE80211_M_MBSS: 1301 status |= IFM_IEEE80211_MBSS; 1302 break; 1303 } 1304 if (IEEE80211_IS_CHAN_HTA(chan)) { 1305 status |= IFM_IEEE80211_11NA; 1306 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1307 status |= IFM_IEEE80211_11NG; 1308 } else if (IEEE80211_IS_CHAN_A(chan)) { 1309 status |= IFM_IEEE80211_11A; 1310 } else if (IEEE80211_IS_CHAN_B(chan)) { 1311 status |= IFM_IEEE80211_11B; 1312 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1313 status |= IFM_IEEE80211_11G; 1314 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1315 status |= IFM_IEEE80211_FH; 1316 } 1317 /* XXX else complain? */ 1318 1319 if (IEEE80211_IS_CHAN_TURBO(chan)) 1320 status |= IFM_IEEE80211_TURBO; 1321 #if 0 1322 if (IEEE80211_IS_CHAN_HT20(chan)) 1323 status |= IFM_IEEE80211_HT20; 1324 if (IEEE80211_IS_CHAN_HT40(chan)) 1325 status |= IFM_IEEE80211_HT40; 1326 #endif 1327 return status; 1328 } 1329 1330 static void 1331 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1332 { 1333 struct ieee80211com *ic = ifp->if_l2com; 1334 struct ieee80211vap *vap; 1335 1336 imr->ifm_status = IFM_AVALID; 1337 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1338 if (vap->iv_ifp->if_flags & IFF_UP) { 1339 imr->ifm_status |= IFM_ACTIVE; 1340 break; 1341 } 1342 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1343 if (imr->ifm_status & IFM_ACTIVE) 1344 imr->ifm_current = imr->ifm_active; 1345 } 1346 1347 void 1348 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1349 { 1350 struct ieee80211vap *vap = ifp->if_softc; 1351 struct ieee80211com *ic = vap->iv_ic; 1352 enum ieee80211_phymode mode; 1353 1354 imr->ifm_status = IFM_AVALID; 1355 /* 1356 * NB: use the current channel's mode to lock down a xmit 1357 * rate only when running; otherwise we may have a mismatch 1358 * in which case the rate will not be convertible. 1359 */ 1360 if (vap->iv_state == IEEE80211_S_RUN) { 1361 imr->ifm_status |= IFM_ACTIVE; 1362 mode = ieee80211_chan2mode(ic->ic_curchan); 1363 } else 1364 mode = IEEE80211_MODE_AUTO; 1365 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1366 /* 1367 * Calculate a current rate if possible. 1368 */ 1369 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1370 /* 1371 * A fixed rate is set, report that. 1372 */ 1373 imr->ifm_active |= ieee80211_rate2media(ic, 1374 vap->iv_txparms[mode].ucastrate, mode); 1375 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1376 /* 1377 * In station mode report the current transmit rate. 1378 */ 1379 imr->ifm_active |= ieee80211_rate2media(ic, 1380 vap->iv_bss->ni_txrate, mode); 1381 } else 1382 imr->ifm_active |= IFM_AUTO; 1383 if (imr->ifm_status & IFM_ACTIVE) 1384 imr->ifm_current = imr->ifm_active; 1385 } 1386 1387 /* 1388 * Set the current phy mode and recalculate the active channel 1389 * set based on the available channels for this mode. Also 1390 * select a new default/current channel if the current one is 1391 * inappropriate for this mode. 1392 */ 1393 int 1394 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1395 { 1396 /* 1397 * Adjust basic rates in 11b/11g supported rate set. 1398 * Note that if operating on a hal/quarter rate channel 1399 * this is a noop as those rates sets are different 1400 * and used instead. 1401 */ 1402 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1403 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1404 1405 ic->ic_curmode = mode; 1406 ieee80211_reset_erp(ic); /* reset ERP state */ 1407 1408 return 0; 1409 } 1410 1411 /* 1412 * Return the phy mode for with the specified channel. 1413 */ 1414 enum ieee80211_phymode 1415 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1416 { 1417 1418 if (IEEE80211_IS_CHAN_HTA(chan)) 1419 return IEEE80211_MODE_11NA; 1420 else if (IEEE80211_IS_CHAN_HTG(chan)) 1421 return IEEE80211_MODE_11NG; 1422 else if (IEEE80211_IS_CHAN_108G(chan)) 1423 return IEEE80211_MODE_TURBO_G; 1424 else if (IEEE80211_IS_CHAN_ST(chan)) 1425 return IEEE80211_MODE_STURBO_A; 1426 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1427 return IEEE80211_MODE_TURBO_A; 1428 else if (IEEE80211_IS_CHAN_HALF(chan)) 1429 return IEEE80211_MODE_HALF; 1430 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1431 return IEEE80211_MODE_QUARTER; 1432 else if (IEEE80211_IS_CHAN_A(chan)) 1433 return IEEE80211_MODE_11A; 1434 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1435 return IEEE80211_MODE_11G; 1436 else if (IEEE80211_IS_CHAN_B(chan)) 1437 return IEEE80211_MODE_11B; 1438 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1439 return IEEE80211_MODE_FH; 1440 1441 /* NB: should not get here */ 1442 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1443 __func__, chan->ic_freq, chan->ic_flags); 1444 return IEEE80211_MODE_11B; 1445 } 1446 1447 struct ratemedia { 1448 u_int match; /* rate + mode */ 1449 u_int media; /* if_media rate */ 1450 }; 1451 1452 static int 1453 findmedia(const struct ratemedia rates[], int n, u_int match) 1454 { 1455 int i; 1456 1457 for (i = 0; i < n; i++) 1458 if (rates[i].match == match) 1459 return rates[i].media; 1460 return IFM_AUTO; 1461 } 1462 1463 /* 1464 * Convert IEEE80211 rate value to ifmedia subtype. 1465 * Rate is either a legacy rate in units of 0.5Mbps 1466 * or an MCS index. 1467 */ 1468 int 1469 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1470 { 1471 #define N(a) (sizeof(a) / sizeof(a[0])) 1472 static const struct ratemedia rates[] = { 1473 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1474 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1475 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1476 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1477 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1478 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1479 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1480 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1481 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1482 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1483 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1484 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1485 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1486 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1487 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1488 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1489 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1490 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1491 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1492 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1493 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1494 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1495 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1496 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1497 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1498 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1499 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1500 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1501 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1502 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1503 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1504 }; 1505 static const struct ratemedia htrates[] = { 1506 { 0, IFM_IEEE80211_MCS }, 1507 { 1, IFM_IEEE80211_MCS }, 1508 { 2, IFM_IEEE80211_MCS }, 1509 { 3, IFM_IEEE80211_MCS }, 1510 { 4, IFM_IEEE80211_MCS }, 1511 { 5, IFM_IEEE80211_MCS }, 1512 { 6, IFM_IEEE80211_MCS }, 1513 { 7, IFM_IEEE80211_MCS }, 1514 { 8, IFM_IEEE80211_MCS }, 1515 { 9, IFM_IEEE80211_MCS }, 1516 { 10, IFM_IEEE80211_MCS }, 1517 { 11, IFM_IEEE80211_MCS }, 1518 { 12, IFM_IEEE80211_MCS }, 1519 { 13, IFM_IEEE80211_MCS }, 1520 { 14, IFM_IEEE80211_MCS }, 1521 { 15, IFM_IEEE80211_MCS }, 1522 }; 1523 int m; 1524 1525 /* 1526 * Check 11n rates first for match as an MCS. 1527 */ 1528 if (mode == IEEE80211_MODE_11NA) { 1529 if (rate & IEEE80211_RATE_MCS) { 1530 rate &= ~IEEE80211_RATE_MCS; 1531 m = findmedia(htrates, N(htrates), rate); 1532 if (m != IFM_AUTO) 1533 return m | IFM_IEEE80211_11NA; 1534 } 1535 } else if (mode == IEEE80211_MODE_11NG) { 1536 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1537 if (rate & IEEE80211_RATE_MCS) { 1538 rate &= ~IEEE80211_RATE_MCS; 1539 m = findmedia(htrates, N(htrates), rate); 1540 if (m != IFM_AUTO) 1541 return m | IFM_IEEE80211_11NG; 1542 } 1543 } 1544 rate &= IEEE80211_RATE_VAL; 1545 switch (mode) { 1546 case IEEE80211_MODE_11A: 1547 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1548 case IEEE80211_MODE_QUARTER: 1549 case IEEE80211_MODE_11NA: 1550 case IEEE80211_MODE_TURBO_A: 1551 case IEEE80211_MODE_STURBO_A: 1552 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1553 case IEEE80211_MODE_11B: 1554 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1555 case IEEE80211_MODE_FH: 1556 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1557 case IEEE80211_MODE_AUTO: 1558 /* NB: ic may be NULL for some drivers */ 1559 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1560 return findmedia(rates, N(rates), 1561 rate | IFM_IEEE80211_FH); 1562 /* NB: hack, 11g matches both 11b+11a rates */ 1563 /* fall thru... */ 1564 case IEEE80211_MODE_11G: 1565 case IEEE80211_MODE_11NG: 1566 case IEEE80211_MODE_TURBO_G: 1567 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1568 } 1569 return IFM_AUTO; 1570 #undef N 1571 } 1572 1573 int 1574 ieee80211_media2rate(int mword) 1575 { 1576 #define N(a) (sizeof(a) / sizeof(a[0])) 1577 static const int ieeerates[] = { 1578 -1, /* IFM_AUTO */ 1579 0, /* IFM_MANUAL */ 1580 0, /* IFM_NONE */ 1581 2, /* IFM_IEEE80211_FH1 */ 1582 4, /* IFM_IEEE80211_FH2 */ 1583 2, /* IFM_IEEE80211_DS1 */ 1584 4, /* IFM_IEEE80211_DS2 */ 1585 11, /* IFM_IEEE80211_DS5 */ 1586 22, /* IFM_IEEE80211_DS11 */ 1587 44, /* IFM_IEEE80211_DS22 */ 1588 12, /* IFM_IEEE80211_OFDM6 */ 1589 18, /* IFM_IEEE80211_OFDM9 */ 1590 24, /* IFM_IEEE80211_OFDM12 */ 1591 36, /* IFM_IEEE80211_OFDM18 */ 1592 48, /* IFM_IEEE80211_OFDM24 */ 1593 72, /* IFM_IEEE80211_OFDM36 */ 1594 96, /* IFM_IEEE80211_OFDM48 */ 1595 108, /* IFM_IEEE80211_OFDM54 */ 1596 144, /* IFM_IEEE80211_OFDM72 */ 1597 0, /* IFM_IEEE80211_DS354k */ 1598 0, /* IFM_IEEE80211_DS512k */ 1599 6, /* IFM_IEEE80211_OFDM3 */ 1600 9, /* IFM_IEEE80211_OFDM4 */ 1601 54, /* IFM_IEEE80211_OFDM27 */ 1602 -1, /* IFM_IEEE80211_MCS */ 1603 }; 1604 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1605 ieeerates[IFM_SUBTYPE(mword)] : 0; 1606 #undef N 1607 } 1608 1609 /* 1610 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1611 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1612 */ 1613 #define mix(a, b, c) \ 1614 do { \ 1615 a -= b; a -= c; a ^= (c >> 13); \ 1616 b -= c; b -= a; b ^= (a << 8); \ 1617 c -= a; c -= b; c ^= (b >> 13); \ 1618 a -= b; a -= c; a ^= (c >> 12); \ 1619 b -= c; b -= a; b ^= (a << 16); \ 1620 c -= a; c -= b; c ^= (b >> 5); \ 1621 a -= b; a -= c; a ^= (c >> 3); \ 1622 b -= c; b -= a; b ^= (a << 10); \ 1623 c -= a; c -= b; c ^= (b >> 15); \ 1624 } while (/*CONSTCOND*/0) 1625 1626 uint32_t 1627 ieee80211_mac_hash(const struct ieee80211com *ic, 1628 const uint8_t addr[IEEE80211_ADDR_LEN]) 1629 { 1630 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1631 1632 b += addr[5] << 8; 1633 b += addr[4]; 1634 a += addr[3] << 24; 1635 a += addr[2] << 16; 1636 a += addr[1] << 8; 1637 a += addr[0]; 1638 1639 mix(a, b, c); 1640 1641 return c; 1642 } 1643 #undef mix 1644