xref: /haiku/src/libs/compat/freebsd_wlan/net80211/ieee80211.c (revision b8a45b3a2df2379b4301bf3bd5949b9a105be4ba)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_private.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 #include <net/vnet.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #include <net80211/ieee80211_ratectl.h>
59 #include <net80211/ieee80211_vht.h>
60 
61 #include <net/bpf.h>
62 
63 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
64 	[IEEE80211_MODE_AUTO]	  = "auto",
65 	[IEEE80211_MODE_11A]	  = "11a",
66 	[IEEE80211_MODE_11B]	  = "11b",
67 	[IEEE80211_MODE_11G]	  = "11g",
68 	[IEEE80211_MODE_FH]	  = "FH",
69 	[IEEE80211_MODE_TURBO_A]  = "turboA",
70 	[IEEE80211_MODE_TURBO_G]  = "turboG",
71 	[IEEE80211_MODE_STURBO_A] = "sturboA",
72 	[IEEE80211_MODE_HALF]	  = "half",
73 	[IEEE80211_MODE_QUARTER]  = "quarter",
74 	[IEEE80211_MODE_11NA]	  = "11na",
75 	[IEEE80211_MODE_11NG]	  = "11ng",
76 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
77 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
78 };
79 /* map ieee80211_opmode to the corresponding capability bit */
80 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
81 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
82 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
83 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
84 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
85 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
86 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
87 #ifdef IEEE80211_SUPPORT_MESH
88 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
89 #endif
90 };
91 
92 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
93 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
94 
95 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
96 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
98 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
99 static	int ieee80211_media_setup(struct ieee80211com *ic,
100 		struct ifmedia *media, int caps, int addsta,
101 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
102 static	int media_status(enum ieee80211_opmode,
103 		const struct ieee80211_channel *);
104 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
105 
106 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
107 
108 /*
109  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
110  */
111 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
112 static const struct ieee80211_rateset ieee80211_rateset_11a =
113 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
114 static const struct ieee80211_rateset ieee80211_rateset_half =
115 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
116 static const struct ieee80211_rateset ieee80211_rateset_quarter =
117 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
118 static const struct ieee80211_rateset ieee80211_rateset_11b =
119 	{ 4, { B(2), B(4), B(11), B(22) } };
120 /* NB: OFDM rates are handled specially based on mode */
121 static const struct ieee80211_rateset ieee80211_rateset_11g =
122 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
123 #undef B
124 
125 static int set_vht_extchan(struct ieee80211_channel *c);
126 
127 /*
128  * Fill in 802.11 available channel set, mark
129  * all available channels as active, and pick
130  * a default channel if not already specified.
131  */
132 void
133 ieee80211_chan_init(struct ieee80211com *ic)
134 {
135 #define	DEFAULTRATES(m, def) do { \
136 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
137 		ic->ic_sup_rates[m] = def; \
138 } while (0)
139 	struct ieee80211_channel *c;
140 	int i;
141 
142 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
143 		("invalid number of channels specified: %u", ic->ic_nchans));
144 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
145 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
146 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
147 	for (i = 0; i < ic->ic_nchans; i++) {
148 		c = &ic->ic_channels[i];
149 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
150 		/*
151 		 * Help drivers that work only with frequencies by filling
152 		 * in IEEE channel #'s if not already calculated.  Note this
153 		 * mimics similar work done in ieee80211_setregdomain when
154 		 * changing regulatory state.
155 		 */
156 		if (c->ic_ieee == 0)
157 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
158 
159 		/*
160 		 * Setup the HT40/VHT40 upper/lower bits.
161 		 * The VHT80/... math is done elsewhere.
162 		 */
163 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
164 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
165 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
166 			    c->ic_flags);
167 
168 		/* Update VHT math */
169 		/*
170 		 * XXX VHT again, note that this assumes VHT80/... channels
171 		 * are legit already.
172 		 */
173 		set_vht_extchan(c);
174 
175 		/* default max tx power to max regulatory */
176 		if (c->ic_maxpower == 0)
177 			c->ic_maxpower = 2*c->ic_maxregpower;
178 		setbit(ic->ic_chan_avail, c->ic_ieee);
179 		/*
180 		 * Identify mode capabilities.
181 		 */
182 		if (IEEE80211_IS_CHAN_A(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
184 		if (IEEE80211_IS_CHAN_B(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
186 		if (IEEE80211_IS_CHAN_ANYG(c))
187 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
188 		if (IEEE80211_IS_CHAN_FHSS(c))
189 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
190 		if (IEEE80211_IS_CHAN_108A(c))
191 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
192 		if (IEEE80211_IS_CHAN_108G(c))
193 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
194 		if (IEEE80211_IS_CHAN_ST(c))
195 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
196 		if (IEEE80211_IS_CHAN_HALF(c))
197 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
198 		if (IEEE80211_IS_CHAN_QUARTER(c))
199 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
200 		if (IEEE80211_IS_CHAN_HTA(c))
201 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
202 		if (IEEE80211_IS_CHAN_HTG(c))
203 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
204 		if (IEEE80211_IS_CHAN_VHTA(c))
205 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
206 		if (IEEE80211_IS_CHAN_VHTG(c))
207 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
208 	}
209 	/* initialize candidate channels to all available */
210 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
211 		sizeof(ic->ic_chan_avail));
212 
213 	/* sort channel table to allow lookup optimizations */
214 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
215 
216 	/* invalidate any previous state */
217 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
218 	ic->ic_prevchan = NULL;
219 	ic->ic_csa_newchan = NULL;
220 	/* arbitrarily pick the first channel */
221 	ic->ic_curchan = &ic->ic_channels[0];
222 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
223 
224 	/* fillin well-known rate sets if driver has not specified */
225 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
226 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
227 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
228 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
229 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
230 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
231 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
232 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
233 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
234 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
235 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
236 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
237 
238 	/*
239 	 * Setup required information to fill the mcsset field, if driver did
240 	 * not. Assume a 2T2R setup for historic reasons.
241 	 */
242 	if (ic->ic_rxstream == 0)
243 		ic->ic_rxstream = 2;
244 	if (ic->ic_txstream == 0)
245 		ic->ic_txstream = 2;
246 
247 	ieee80211_init_suphtrates(ic);
248 
249 	/*
250 	 * Set auto mode to reset active channel state and any desired channel.
251 	 */
252 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
253 #undef DEFAULTRATES
254 }
255 
256 static void
257 null_update_mcast(struct ieee80211com *ic)
258 {
259 
260 	ic_printf(ic, "need multicast update callback\n");
261 }
262 
263 static void
264 null_update_promisc(struct ieee80211com *ic)
265 {
266 
267 	ic_printf(ic, "need promiscuous mode update callback\n");
268 }
269 
270 static void
271 null_update_chw(struct ieee80211com *ic)
272 {
273 
274 	ic_printf(ic, "%s: need callback\n", __func__);
275 }
276 
277 int
278 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
279 {
280 	va_list ap;
281 	int retval;
282 
283 	retval = printf("%s: ", ic->ic_name);
284 	va_start(ap, fmt);
285 	retval += vprintf(fmt, ap);
286 	va_end(ap);
287 	return (retval);
288 }
289 
290 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
291 static struct mtx ic_list_mtx;
292 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
293 
294 static int
295 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
296 {
297 	struct ieee80211com *ic;
298 	struct sbuf sb;
299 	char *sp;
300 	int error;
301 
302 	error = sysctl_wire_old_buffer(req, 0);
303 	if (error)
304 		return (error);
305 #ifndef __HAIKU__
306 	// sysctl not used in Haiku, no need to fill the reply
307 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
308 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
309 	sp = "";
310 	mtx_lock(&ic_list_mtx);
311 	LIST_FOREACH(ic, &ic_head, ic_next) {
312 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
313 		sp = " ";
314 	}
315 	mtx_unlock(&ic_list_mtx);
316 	error = sbuf_finish(&sb);
317 	sbuf_delete(&sb);
318 #endif
319 	return (error);
320 }
321 
322 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
323     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
324     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
325 
326 /*
327  * Attach/setup the common net80211 state.  Called by
328  * the driver on attach to prior to creating any vap's.
329  */
330 void
331 ieee80211_ifattach(struct ieee80211com *ic)
332 {
333 
334 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
335 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
336 	TAILQ_INIT(&ic->ic_vaps);
337 
338 	/* Create a taskqueue for all state changes */
339 	ic->ic_tq = taskqueue_create("ic_taskq",
340 	    IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
341 	    taskqueue_thread_enqueue, &ic->ic_tq);
342 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
343 	    ic->ic_name);
344 	ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
345 	ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
346 	/*
347 	 * Fill in 802.11 available channel set, mark all
348 	 * available channels as active, and pick a default
349 	 * channel if not already specified.
350 	 */
351 	ieee80211_chan_init(ic);
352 
353 	ic->ic_update_mcast = null_update_mcast;
354 	ic->ic_update_promisc = null_update_promisc;
355 	ic->ic_update_chw = null_update_chw;
356 
357 	ic->ic_hash_key = arc4random();
358 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
359 	ic->ic_lintval = ic->ic_bintval;
360 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
361 
362 	ieee80211_crypto_attach(ic);
363 	ieee80211_node_attach(ic);
364 	ieee80211_power_attach(ic);
365 	ieee80211_proto_attach(ic);
366 #ifdef IEEE80211_SUPPORT_SUPERG
367 	ieee80211_superg_attach(ic);
368 #endif
369 	ieee80211_ht_attach(ic);
370 	ieee80211_vht_attach(ic);
371 	ieee80211_scan_attach(ic);
372 	ieee80211_regdomain_attach(ic);
373 	ieee80211_dfs_attach(ic);
374 
375 	ieee80211_sysctl_attach(ic);
376 
377 	mtx_lock(&ic_list_mtx);
378 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
379 	mtx_unlock(&ic_list_mtx);
380 }
381 
382 /*
383  * Detach net80211 state on device detach.  Tear down
384  * all vap's and reclaim all common state prior to the
385  * device state going away.  Note we may call back into
386  * driver; it must be prepared for this.
387  */
388 void
389 ieee80211_ifdetach(struct ieee80211com *ic)
390 {
391 	struct ieee80211vap *vap;
392 
393 	/*
394 	 * We use this as an indicator that ifattach never had a chance to be
395 	 * called, e.g. early driver attach failed and ifdetach was called
396 	 * during subsequent detach.  Never fear, for we have nothing to do
397 	 * here.
398 	 */
399 	if (ic->ic_tq == NULL)
400 		return;
401 
402 	mtx_lock(&ic_list_mtx);
403 	LIST_REMOVE(ic, ic_next);
404 	mtx_unlock(&ic_list_mtx);
405 
406 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
407 
408 	/*
409 	 * The VAP is responsible for setting and clearing
410 	 * the VIMAGE context.
411 	 */
412 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
413 		ieee80211_com_vdetach(vap);
414 		ieee80211_vap_destroy(vap);
415 	}
416 	ieee80211_waitfor_parent(ic);
417 
418 	ieee80211_sysctl_detach(ic);
419 	ieee80211_dfs_detach(ic);
420 	ieee80211_regdomain_detach(ic);
421 	ieee80211_scan_detach(ic);
422 #ifdef IEEE80211_SUPPORT_SUPERG
423 	ieee80211_superg_detach(ic);
424 #endif
425 	ieee80211_vht_detach(ic);
426 	ieee80211_ht_detach(ic);
427 	/* NB: must be called before ieee80211_node_detach */
428 	ieee80211_proto_detach(ic);
429 	ieee80211_crypto_detach(ic);
430 	ieee80211_power_detach(ic);
431 	ieee80211_node_detach(ic);
432 
433 	counter_u64_free(ic->ic_ierrors);
434 	counter_u64_free(ic->ic_oerrors);
435 
436 	taskqueue_free(ic->ic_tq);
437 	IEEE80211_TX_LOCK_DESTROY(ic);
438 	IEEE80211_LOCK_DESTROY(ic);
439 }
440 
441 struct ieee80211com *
442 ieee80211_find_com(const char *name)
443 {
444 	struct ieee80211com *ic;
445 
446 	mtx_lock(&ic_list_mtx);
447 	LIST_FOREACH(ic, &ic_head, ic_next)
448 		if (strcmp(ic->ic_name, name) == 0)
449 			break;
450 	mtx_unlock(&ic_list_mtx);
451 
452 	return (ic);
453 }
454 
455 void
456 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
457 {
458 	struct ieee80211com *ic;
459 
460 	mtx_lock(&ic_list_mtx);
461 	LIST_FOREACH(ic, &ic_head, ic_next)
462 		(*f)(arg, ic);
463 	mtx_unlock(&ic_list_mtx);
464 }
465 
466 /*
467  * Default reset method for use with the ioctl support.  This
468  * method is invoked after any state change in the 802.11
469  * layer that should be propagated to the hardware but not
470  * require re-initialization of the 802.11 state machine (e.g
471  * rescanning for an ap).  We always return ENETRESET which
472  * should cause the driver to re-initialize the device. Drivers
473  * can override this method to implement more optimized support.
474  */
475 static int
476 default_reset(struct ieee80211vap *vap, u_long cmd)
477 {
478 	return ENETRESET;
479 }
480 
481 /*
482  * Default for updating the VAP default TX key index.
483  *
484  * Drivers that support TX offload as well as hardware encryption offload
485  * may need to be informed of key index changes separate from the key
486  * update.
487  */
488 static void
489 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
490 {
491 
492 	/* XXX assert validity */
493 	/* XXX assert we're in a key update block */
494 	vap->iv_def_txkey = kid;
495 }
496 
497 /*
498  * Add underlying device errors to vap errors.
499  */
500 static uint64_t
501 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
502 {
503 	struct ieee80211vap *vap = ifp->if_softc;
504 	struct ieee80211com *ic = vap->iv_ic;
505 	uint64_t rv;
506 
507 	rv = if_get_counter_default(ifp, cnt);
508 	switch (cnt) {
509 	case IFCOUNTER_OERRORS:
510 		rv += counter_u64_fetch(ic->ic_oerrors);
511 		break;
512 	case IFCOUNTER_IERRORS:
513 		rv += counter_u64_fetch(ic->ic_ierrors);
514 		break;
515 	default:
516 		break;
517 	}
518 
519 	return (rv);
520 }
521 
522 /*
523  * Prepare a vap for use.  Drivers use this call to
524  * setup net80211 state in new vap's prior attaching
525  * them with ieee80211_vap_attach (below).
526  */
527 int
528 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
529     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
530     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
531 {
532 	struct ifnet *ifp;
533 
534 	ifp = if_alloc(IFT_ETHER);
535 	if (ifp == NULL) {
536 		ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
537 		return ENOMEM;
538 	}
539 	if_initname(ifp, name, unit);
540 	ifp->if_softc = vap;			/* back pointer */
541 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
542 	ifp->if_transmit = ieee80211_vap_transmit;
543 	ifp->if_qflush = ieee80211_vap_qflush;
544 	ifp->if_ioctl = ieee80211_ioctl;
545 	ifp->if_init = ieee80211_init;
546 	ifp->if_get_counter = ieee80211_get_counter;
547 
548 	vap->iv_ifp = ifp;
549 	vap->iv_ic = ic;
550 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
551 	vap->iv_flags_ext = ic->ic_flags_ext;
552 	vap->iv_flags_ven = ic->ic_flags_ven;
553 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
554 
555 	/* 11n capabilities - XXX methodize */
556 	vap->iv_htcaps = ic->ic_htcaps;
557 	vap->iv_htextcaps = ic->ic_htextcaps;
558 
559 	/* 11ac capabilities - XXX methodize */
560 	vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
561 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
562 
563 	vap->iv_opmode = opmode;
564 	vap->iv_caps |= ieee80211_opcap[opmode];
565 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
566 	switch (opmode) {
567 	case IEEE80211_M_WDS:
568 		/*
569 		 * WDS links must specify the bssid of the far end.
570 		 * For legacy operation this is a static relationship.
571 		 * For non-legacy operation the station must associate
572 		 * and be authorized to pass traffic.  Plumbing the
573 		 * vap to the proper node happens when the vap
574 		 * transitions to RUN state.
575 		 */
576 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
577 		vap->iv_flags |= IEEE80211_F_DESBSSID;
578 		if (flags & IEEE80211_CLONE_WDSLEGACY)
579 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
580 		break;
581 #ifdef IEEE80211_SUPPORT_TDMA
582 	case IEEE80211_M_AHDEMO:
583 		if (flags & IEEE80211_CLONE_TDMA) {
584 			/* NB: checked before clone operation allowed */
585 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
586 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
587 			/*
588 			 * Propagate TDMA capability to mark vap; this
589 			 * cannot be removed and is used to distinguish
590 			 * regular ahdemo operation from ahdemo+tdma.
591 			 */
592 			vap->iv_caps |= IEEE80211_C_TDMA;
593 		}
594 		break;
595 #endif
596 	default:
597 		break;
598 	}
599 	/* auto-enable s/w beacon miss support */
600 	if (flags & IEEE80211_CLONE_NOBEACONS)
601 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
602 	/* auto-generated or user supplied MAC address */
603 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
604 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
605 	/*
606 	 * Enable various functionality by default if we're
607 	 * capable; the driver can override us if it knows better.
608 	 */
609 	if (vap->iv_caps & IEEE80211_C_WME)
610 		vap->iv_flags |= IEEE80211_F_WME;
611 	if (vap->iv_caps & IEEE80211_C_BURST)
612 		vap->iv_flags |= IEEE80211_F_BURST;
613 	/* NB: bg scanning only makes sense for station mode right now */
614 	if (vap->iv_opmode == IEEE80211_M_STA &&
615 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
616 		vap->iv_flags |= IEEE80211_F_BGSCAN;
617 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
618 	/* NB: DFS support only makes sense for ap mode right now */
619 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
620 	    (vap->iv_caps & IEEE80211_C_DFS))
621 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
622 	/* NB: only flip on U-APSD for hostap/sta for now */
623 	if ((vap->iv_opmode == IEEE80211_M_STA)
624 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
625 		if (vap->iv_caps & IEEE80211_C_UAPSD)
626 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
627 	}
628 
629 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
630 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
631 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
632 	/*
633 	 * Install a default reset method for the ioctl support;
634 	 * the driver can override this.
635 	 */
636 	vap->iv_reset = default_reset;
637 
638 	/*
639 	 * Install a default crypto key update method, the driver
640 	 * can override this.
641 	 */
642 	vap->iv_update_deftxkey = default_update_deftxkey;
643 
644 	ieee80211_sysctl_vattach(vap);
645 	ieee80211_crypto_vattach(vap);
646 	ieee80211_node_vattach(vap);
647 	ieee80211_power_vattach(vap);
648 	ieee80211_proto_vattach(vap);
649 #ifdef IEEE80211_SUPPORT_SUPERG
650 	ieee80211_superg_vattach(vap);
651 #endif
652 	ieee80211_ht_vattach(vap);
653 	ieee80211_vht_vattach(vap);
654 	ieee80211_scan_vattach(vap);
655 	ieee80211_regdomain_vattach(vap);
656 	ieee80211_radiotap_vattach(vap);
657 	ieee80211_vap_reset_erp(vap);
658 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
659 
660 	return 0;
661 }
662 
663 /*
664  * Activate a vap.  State should have been prepared with a
665  * call to ieee80211_vap_setup and by the driver.  On return
666  * from this call the vap is ready for use.
667  */
668 int
669 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
670     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
671 {
672 	struct ifnet *ifp = vap->iv_ifp;
673 	struct ieee80211com *ic = vap->iv_ic;
674 	struct ifmediareq imr;
675 	int maxrate;
676 
677 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
678 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
679 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
680 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
681 
682 	/*
683 	 * Do late attach work that cannot happen until after
684 	 * the driver has had a chance to override defaults.
685 	 */
686 	ieee80211_node_latevattach(vap);
687 	ieee80211_power_latevattach(vap);
688 
689 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
690 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
691 	ieee80211_media_status(ifp, &imr);
692 	/* NB: strip explicit mode; we're actually in autoselect */
693 	ifmedia_set(&vap->iv_media,
694 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
695 	if (maxrate)
696 		ifp->if_baudrate = IF_Mbps(maxrate);
697 
698 	ether_ifattach(ifp, macaddr);
699 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
700 	/* hook output method setup by ether_ifattach */
701 	vap->iv_output = ifp->if_output;
702 	ifp->if_output = ieee80211_output;
703 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
704 
705 	IEEE80211_LOCK(ic);
706 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
707 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
708 #ifdef IEEE80211_SUPPORT_SUPERG
709 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
710 #endif
711 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
712 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
713 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
714 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
715 
716 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
717 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
718 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
719 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
720 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
721 	IEEE80211_UNLOCK(ic);
722 
723 	return 1;
724 }
725 
726 /*
727  * Tear down vap state and reclaim the ifnet.
728  * The driver is assumed to have prepared for
729  * this; e.g. by turning off interrupts for the
730  * underlying device.
731  */
732 void
733 ieee80211_vap_detach(struct ieee80211vap *vap)
734 {
735 	struct ieee80211com *ic = vap->iv_ic;
736 	struct ifnet *ifp = vap->iv_ifp;
737 	int i;
738 
739 	CURVNET_SET(ifp->if_vnet);
740 
741 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
742 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
743 
744 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
745 	ether_ifdetach(ifp);
746 
747 	ieee80211_stop(vap);
748 
749 	/*
750 	 * Flush any deferred vap tasks.
751 	 */
752 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
753 		ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
754 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
755 	ieee80211_draintask(ic, &vap->iv_wme_task);
756 	ieee80211_draintask(ic, &ic->ic_parent_task);
757 
758 	/* XXX band-aid until ifnet handles this for us */
759 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
760 
761 	IEEE80211_LOCK(ic);
762 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
763 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
764 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
765 #ifdef IEEE80211_SUPPORT_SUPERG
766 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
767 #endif
768 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
769 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
770 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
771 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
772 
773 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
774 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
775 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
776 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
777 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
778 
779 	/* NB: this handles the bpfdetach done below */
780 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
781 	if (vap->iv_ifflags & IFF_PROMISC)
782 		ieee80211_promisc(vap, false);
783 	if (vap->iv_ifflags & IFF_ALLMULTI)
784 		ieee80211_allmulti(vap, false);
785 	IEEE80211_UNLOCK(ic);
786 
787 	ifmedia_removeall(&vap->iv_media);
788 
789 	ieee80211_radiotap_vdetach(vap);
790 	ieee80211_regdomain_vdetach(vap);
791 	ieee80211_scan_vdetach(vap);
792 #ifdef IEEE80211_SUPPORT_SUPERG
793 	ieee80211_superg_vdetach(vap);
794 #endif
795 	ieee80211_vht_vdetach(vap);
796 	ieee80211_ht_vdetach(vap);
797 	/* NB: must be before ieee80211_node_vdetach */
798 	ieee80211_proto_vdetach(vap);
799 	ieee80211_crypto_vdetach(vap);
800 	ieee80211_power_vdetach(vap);
801 	ieee80211_node_vdetach(vap);
802 	ieee80211_sysctl_vdetach(vap);
803 
804 	if_free(ifp);
805 
806 	CURVNET_RESTORE();
807 }
808 
809 /*
810  * Count number of vaps in promisc, and issue promisc on
811  * parent respectively.
812  */
813 void
814 ieee80211_promisc(struct ieee80211vap *vap, bool on)
815 {
816 	struct ieee80211com *ic = vap->iv_ic;
817 
818 	IEEE80211_LOCK_ASSERT(ic);
819 
820 	if (on) {
821 		if (++ic->ic_promisc == 1)
822 			ieee80211_runtask(ic, &ic->ic_promisc_task);
823 	} else {
824 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
825 		    __func__, ic));
826 		if (--ic->ic_promisc == 0)
827 			ieee80211_runtask(ic, &ic->ic_promisc_task);
828 	}
829 }
830 
831 /*
832  * Count number of vaps in allmulti, and issue allmulti on
833  * parent respectively.
834  */
835 void
836 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
837 {
838 	struct ieee80211com *ic = vap->iv_ic;
839 
840 	IEEE80211_LOCK_ASSERT(ic);
841 
842 	if (on) {
843 		if (++ic->ic_allmulti == 1)
844 			ieee80211_runtask(ic, &ic->ic_mcast_task);
845 	} else {
846 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
847 		    __func__, ic));
848 		if (--ic->ic_allmulti == 0)
849 			ieee80211_runtask(ic, &ic->ic_mcast_task);
850 	}
851 }
852 
853 /*
854  * Synchronize flag bit state in the com structure
855  * according to the state of all vap's.  This is used,
856  * for example, to handle state changes via ioctls.
857  */
858 static void
859 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
860 {
861 	struct ieee80211vap *vap;
862 	int bit;
863 
864 	IEEE80211_LOCK_ASSERT(ic);
865 
866 	bit = 0;
867 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
868 		if (vap->iv_flags & flag) {
869 			bit = 1;
870 			break;
871 		}
872 	if (bit)
873 		ic->ic_flags |= flag;
874 	else
875 		ic->ic_flags &= ~flag;
876 }
877 
878 void
879 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
880 {
881 	struct ieee80211com *ic = vap->iv_ic;
882 
883 	IEEE80211_LOCK(ic);
884 	if (flag < 0) {
885 		flag = -flag;
886 		vap->iv_flags &= ~flag;
887 	} else
888 		vap->iv_flags |= flag;
889 	ieee80211_syncflag_locked(ic, flag);
890 	IEEE80211_UNLOCK(ic);
891 }
892 
893 /*
894  * Synchronize flags_ht bit state in the com structure
895  * according to the state of all vap's.  This is used,
896  * for example, to handle state changes via ioctls.
897  */
898 static void
899 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
900 {
901 	struct ieee80211vap *vap;
902 	int bit;
903 
904 	IEEE80211_LOCK_ASSERT(ic);
905 
906 	bit = 0;
907 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
908 		if (vap->iv_flags_ht & flag) {
909 			bit = 1;
910 			break;
911 		}
912 	if (bit)
913 		ic->ic_flags_ht |= flag;
914 	else
915 		ic->ic_flags_ht &= ~flag;
916 }
917 
918 void
919 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
920 {
921 	struct ieee80211com *ic = vap->iv_ic;
922 
923 	IEEE80211_LOCK(ic);
924 	if (flag < 0) {
925 		flag = -flag;
926 		vap->iv_flags_ht &= ~flag;
927 	} else
928 		vap->iv_flags_ht |= flag;
929 	ieee80211_syncflag_ht_locked(ic, flag);
930 	IEEE80211_UNLOCK(ic);
931 }
932 
933 /*
934  * Synchronize flags_vht bit state in the com structure
935  * according to the state of all vap's.  This is used,
936  * for example, to handle state changes via ioctls.
937  */
938 static void
939 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
940 {
941 	struct ieee80211vap *vap;
942 	int bit;
943 
944 	IEEE80211_LOCK_ASSERT(ic);
945 
946 	bit = 0;
947 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
948 		if (vap->iv_vht_flags & flag) {
949 			bit = 1;
950 			break;
951 		}
952 	if (bit)
953 		ic->ic_vht_flags |= flag;
954 	else
955 		ic->ic_vht_flags &= ~flag;
956 }
957 
958 void
959 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
960 {
961 	struct ieee80211com *ic = vap->iv_ic;
962 
963 	IEEE80211_LOCK(ic);
964 	if (flag < 0) {
965 		flag = -flag;
966 		vap->iv_vht_flags &= ~flag;
967 	} else
968 		vap->iv_vht_flags |= flag;
969 	ieee80211_syncflag_vht_locked(ic, flag);
970 	IEEE80211_UNLOCK(ic);
971 }
972 
973 /*
974  * Synchronize flags_ext bit state in the com structure
975  * according to the state of all vap's.  This is used,
976  * for example, to handle state changes via ioctls.
977  */
978 static void
979 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
980 {
981 	struct ieee80211vap *vap;
982 	int bit;
983 
984 	IEEE80211_LOCK_ASSERT(ic);
985 
986 	bit = 0;
987 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
988 		if (vap->iv_flags_ext & flag) {
989 			bit = 1;
990 			break;
991 		}
992 	if (bit)
993 		ic->ic_flags_ext |= flag;
994 	else
995 		ic->ic_flags_ext &= ~flag;
996 }
997 
998 void
999 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1000 {
1001 	struct ieee80211com *ic = vap->iv_ic;
1002 
1003 	IEEE80211_LOCK(ic);
1004 	if (flag < 0) {
1005 		flag = -flag;
1006 		vap->iv_flags_ext &= ~flag;
1007 	} else
1008 		vap->iv_flags_ext |= flag;
1009 	ieee80211_syncflag_ext_locked(ic, flag);
1010 	IEEE80211_UNLOCK(ic);
1011 }
1012 
1013 static __inline int
1014 mapgsm(u_int freq, u_int flags)
1015 {
1016 	freq *= 10;
1017 	if (flags & IEEE80211_CHAN_QUARTER)
1018 		freq += 5;
1019 	else if (flags & IEEE80211_CHAN_HALF)
1020 		freq += 10;
1021 	else
1022 		freq += 20;
1023 	/* NB: there is no 907/20 wide but leave room */
1024 	return (freq - 906*10) / 5;
1025 }
1026 
1027 static __inline int
1028 mappsb(u_int freq, u_int flags)
1029 {
1030 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1031 }
1032 
1033 /*
1034  * Convert MHz frequency to IEEE channel number.
1035  */
1036 int
1037 ieee80211_mhz2ieee(u_int freq, u_int flags)
1038 {
1039 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1040 	if (flags & IEEE80211_CHAN_GSM)
1041 		return mapgsm(freq, flags);
1042 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1043 		if (freq == 2484)
1044 			return 14;
1045 		if (freq < 2484)
1046 			return ((int) freq - 2407) / 5;
1047 		else
1048 			return 15 + ((freq - 2512) / 20);
1049 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1050 		if (freq <= 5000) {
1051 			/* XXX check regdomain? */
1052 			if (IS_FREQ_IN_PSB(freq))
1053 				return mappsb(freq, flags);
1054 			return (freq - 4000) / 5;
1055 		} else
1056 			return (freq - 5000) / 5;
1057 	} else {				/* either, guess */
1058 		if (freq == 2484)
1059 			return 14;
1060 		if (freq < 2484) {
1061 			if (907 <= freq && freq <= 922)
1062 				return mapgsm(freq, flags);
1063 			return ((int) freq - 2407) / 5;
1064 		}
1065 		if (freq < 5000) {
1066 			if (IS_FREQ_IN_PSB(freq))
1067 				return mappsb(freq, flags);
1068 			else if (freq > 4900)
1069 				return (freq - 4000) / 5;
1070 			else
1071 				return 15 + ((freq - 2512) / 20);
1072 		}
1073 		return (freq - 5000) / 5;
1074 	}
1075 #undef IS_FREQ_IN_PSB
1076 }
1077 
1078 /*
1079  * Convert channel to IEEE channel number.
1080  */
1081 int
1082 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1083 {
1084 	if (c == NULL) {
1085 		ic_printf(ic, "invalid channel (NULL)\n");
1086 		return 0;		/* XXX */
1087 	}
1088 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1089 }
1090 
1091 /*
1092  * Convert IEEE channel number to MHz frequency.
1093  */
1094 u_int
1095 ieee80211_ieee2mhz(u_int chan, u_int flags)
1096 {
1097 	if (flags & IEEE80211_CHAN_GSM)
1098 		return 907 + 5 * (chan / 10);
1099 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1100 		if (chan == 14)
1101 			return 2484;
1102 		if (chan < 14)
1103 			return 2407 + chan*5;
1104 		else
1105 			return 2512 + ((chan-15)*20);
1106 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1107 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1108 			chan -= 37;
1109 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1110 		}
1111 		return 5000 + (chan*5);
1112 	} else {				/* either, guess */
1113 		/* XXX can't distinguish PSB+GSM channels */
1114 		if (chan == 14)
1115 			return 2484;
1116 		if (chan < 14)			/* 0-13 */
1117 			return 2407 + chan*5;
1118 		if (chan < 27)			/* 15-26 */
1119 			return 2512 + ((chan-15)*20);
1120 		return 5000 + (chan*5);
1121 	}
1122 }
1123 
1124 static __inline void
1125 set_extchan(struct ieee80211_channel *c)
1126 {
1127 
1128 	/*
1129 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1130 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1131 	 */
1132 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1133 		c->ic_extieee = c->ic_ieee + 4;
1134 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1135 		c->ic_extieee = c->ic_ieee - 4;
1136 	else
1137 		c->ic_extieee = 0;
1138 }
1139 
1140 /*
1141  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1142  *
1143  * This for now uses a hard-coded list of 80MHz wide channels.
1144  *
1145  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1146  * wide channel we've already decided upon.
1147  *
1148  * For VHT80 and VHT160, there are only a small number of fixed
1149  * 80/160MHz wide channels, so we just use those.
1150  *
1151  * This is all likely very very wrong - both the regulatory code
1152  * and this code needs to ensure that all four channels are
1153  * available and valid before the VHT80 (and eight for VHT160) channel
1154  * is created.
1155  */
1156 
1157 struct vht_chan_range {
1158 	uint16_t freq_start;
1159 	uint16_t freq_end;
1160 };
1161 
1162 struct vht_chan_range vht80_chan_ranges[] = {
1163 	{ 5170, 5250 },
1164 	{ 5250, 5330 },
1165 	{ 5490, 5570 },
1166 	{ 5570, 5650 },
1167 	{ 5650, 5730 },
1168 	{ 5735, 5815 },
1169 	{ 0, 0 }
1170 };
1171 
1172 struct vht_chan_range vht160_chan_ranges[] = {
1173 	{ 5170, 5330 },
1174 	{ 5490, 5650 },
1175 	{ 0, 0 }
1176 };
1177 
1178 static int
1179 set_vht_extchan(struct ieee80211_channel *c)
1180 {
1181 	int i;
1182 
1183 	if (! IEEE80211_IS_CHAN_VHT(c))
1184 		return (0);
1185 
1186 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1187 		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1188 		    __func__, c->ic_ieee, c->ic_flags);
1189 	}
1190 
1191 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1192 		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1193 			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1194 			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1195 				int midpoint;
1196 
1197 				midpoint = vht160_chan_ranges[i].freq_start + 80;
1198 				c->ic_vht_ch_freq1 =
1199 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1200 				c->ic_vht_ch_freq2 = 0;
1201 #if 0
1202 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1203 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1204 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1205 #endif
1206 				return (1);
1207 			}
1208 		}
1209 		return (0);
1210 	}
1211 
1212 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1213 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1214 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1215 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1216 				int midpoint;
1217 
1218 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1219 				c->ic_vht_ch_freq1 =
1220 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1221 				c->ic_vht_ch_freq2 = 0;
1222 #if 0
1223 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1224 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1225 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1226 #endif
1227 				return (1);
1228 			}
1229 		}
1230 		return (0);
1231 	}
1232 
1233 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1234 		if (IEEE80211_IS_CHAN_HT40U(c))
1235 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1236 		else if (IEEE80211_IS_CHAN_HT40D(c))
1237 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1238 		else
1239 			return (0);
1240 		return (1);
1241 	}
1242 
1243 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1244 		c->ic_vht_ch_freq1 = c->ic_ieee;
1245 		return (1);
1246 	}
1247 
1248 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1249 	    __func__, c->ic_ieee, c->ic_flags);
1250 
1251 	return (0);
1252 }
1253 
1254 /*
1255  * Return whether the current channel could possibly be a part of
1256  * a VHT80/VHT160 channel.
1257  *
1258  * This doesn't check that the whole range is in the allowed list
1259  * according to regulatory.
1260  */
1261 static bool
1262 is_vht160_valid_freq(uint16_t freq)
1263 {
1264 	int i;
1265 
1266 	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1267 		if (freq >= vht160_chan_ranges[i].freq_start &&
1268 		    freq < vht160_chan_ranges[i].freq_end)
1269 			return (true);
1270 	}
1271 	return (false);
1272 }
1273 
1274 static int
1275 is_vht80_valid_freq(uint16_t freq)
1276 {
1277 	int i;
1278 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1279 		if (freq >= vht80_chan_ranges[i].freq_start &&
1280 		    freq < vht80_chan_ranges[i].freq_end)
1281 			return (1);
1282 	}
1283 	return (0);
1284 }
1285 
1286 static int
1287 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1288     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1289 {
1290 	struct ieee80211_channel *c;
1291 
1292 	if (*nchans >= maxchans)
1293 		return (ENOBUFS);
1294 
1295 #if 0
1296 	printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1297 	    __func__, *nchans, maxchans, ieee, freq, flags);
1298 #endif
1299 
1300 	c = &chans[(*nchans)++];
1301 	c->ic_ieee = ieee;
1302 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1303 	c->ic_maxregpower = maxregpower;
1304 	c->ic_maxpower = 2 * maxregpower;
1305 	c->ic_flags = flags;
1306 	c->ic_vht_ch_freq1 = 0;
1307 	c->ic_vht_ch_freq2 = 0;
1308 	set_extchan(c);
1309 	set_vht_extchan(c);
1310 
1311 	return (0);
1312 }
1313 
1314 static int
1315 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1316     uint32_t flags)
1317 {
1318 	struct ieee80211_channel *c;
1319 
1320 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1321 
1322 	if (*nchans >= maxchans)
1323 		return (ENOBUFS);
1324 
1325 #if 0
1326 	printf("%s: %d of %d: flags=0x%08x\n",
1327 	    __func__, *nchans, maxchans, flags);
1328 #endif
1329 
1330 	c = &chans[(*nchans)++];
1331 	c[0] = c[-1];
1332 	c->ic_flags = flags;
1333 	c->ic_vht_ch_freq1 = 0;
1334 	c->ic_vht_ch_freq2 = 0;
1335 	set_extchan(c);
1336 	set_vht_extchan(c);
1337 
1338 	return (0);
1339 }
1340 
1341 /*
1342  * XXX VHT-2GHz
1343  */
1344 static void
1345 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1346 {
1347 	int nmodes;
1348 
1349 	nmodes = 0;
1350 	if (isset(bands, IEEE80211_MODE_11B))
1351 		flags[nmodes++] = IEEE80211_CHAN_B;
1352 	if (isset(bands, IEEE80211_MODE_11G))
1353 		flags[nmodes++] = IEEE80211_CHAN_G;
1354 	if (isset(bands, IEEE80211_MODE_11NG))
1355 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1356 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1357 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1358 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1359 	}
1360 	flags[nmodes] = 0;
1361 }
1362 
1363 static void
1364 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1365 {
1366 	int nmodes;
1367 
1368 	/*
1369 	 * The addchan_list() function seems to expect the flags array to
1370 	 * be in channel width order, so the VHT bits are interspersed
1371 	 * as appropriate to maintain said order.
1372 	 *
1373 	 * It also assumes HT40U is before HT40D.
1374 	 */
1375 	nmodes = 0;
1376 
1377 	/* 20MHz */
1378 	if (isset(bands, IEEE80211_MODE_11A))
1379 		flags[nmodes++] = IEEE80211_CHAN_A;
1380 	if (isset(bands, IEEE80211_MODE_11NA))
1381 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1382 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1383 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1384 		    IEEE80211_CHAN_VHT20;
1385 	}
1386 
1387 	/* 40MHz */
1388 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1389 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1390 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1391 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1392 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1393 		    IEEE80211_CHAN_VHT40U;
1394 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1395 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1396 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1397 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1398 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1399 		    IEEE80211_CHAN_VHT40D;
1400 
1401 	/* 80MHz */
1402 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1403 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1404 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1405 		    IEEE80211_CHAN_VHT80;
1406 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1407 		    IEEE80211_CHAN_VHT80;
1408 	}
1409 
1410 	/* VHT160 */
1411 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1412 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1413 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1414 		    IEEE80211_CHAN_VHT160;
1415 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1416 		    IEEE80211_CHAN_VHT160;
1417 	}
1418 
1419 	/* VHT80+80 */
1420 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1421 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1422 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1423 		    IEEE80211_CHAN_VHT80P80;
1424 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1425 		    IEEE80211_CHAN_VHT80P80;
1426 	}
1427 
1428 	flags[nmodes] = 0;
1429 }
1430 
1431 static void
1432 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1433 {
1434 
1435 	flags[0] = 0;
1436 	if (isset(bands, IEEE80211_MODE_11A) ||
1437 	    isset(bands, IEEE80211_MODE_11NA) ||
1438 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1439 		if (isset(bands, IEEE80211_MODE_11B) ||
1440 		    isset(bands, IEEE80211_MODE_11G) ||
1441 		    isset(bands, IEEE80211_MODE_11NG) ||
1442 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1443 			return;
1444 
1445 		getflags_5ghz(bands, flags, cbw_flags);
1446 	} else
1447 		getflags_2ghz(bands, flags, cbw_flags);
1448 }
1449 
1450 /*
1451  * Add one 20 MHz channel into specified channel list.
1452  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1453  * channels if you have any B/G/N band bit set.
1454  * The _cbw() variant does also support HT40/VHT80/160/80+80.
1455  */
1456 int
1457 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1458     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1459     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1460 {
1461 	uint32_t flags[IEEE80211_MODE_MAX];
1462 	int i, error;
1463 
1464 	getflags(bands, flags, cbw_flags);
1465 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1466 
1467 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1468 	    flags[0] | chan_flags);
1469 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1470 		error = copychan_prev(chans, maxchans, nchans,
1471 		    flags[i] | chan_flags);
1472 	}
1473 
1474 	return (error);
1475 }
1476 
1477 int
1478 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1479     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1480     uint32_t chan_flags, const uint8_t bands[])
1481 {
1482 
1483 	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1484 	    maxregpower, chan_flags, bands, 0));
1485 }
1486 
1487 static struct ieee80211_channel *
1488 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1489     uint32_t flags)
1490 {
1491 	struct ieee80211_channel *c;
1492 	int i;
1493 
1494 	flags &= IEEE80211_CHAN_ALLTURBO;
1495 	/* brute force search */
1496 	for (i = 0; i < nchans; i++) {
1497 		c = &chans[i];
1498 		if (c->ic_freq == freq &&
1499 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1500 			return c;
1501 	}
1502 	return NULL;
1503 }
1504 
1505 /*
1506  * Add 40 MHz channel pair into specified channel list.
1507  */
1508 /* XXX VHT */
1509 int
1510 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1511     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1512 {
1513 	struct ieee80211_channel *cent, *extc;
1514 	uint16_t freq;
1515 	int error;
1516 
1517 	freq = ieee80211_ieee2mhz(ieee, flags);
1518 
1519 	/*
1520 	 * Each entry defines an HT40 channel pair; find the
1521 	 * center channel, then the extension channel above.
1522 	 */
1523 	flags |= IEEE80211_CHAN_HT20;
1524 	cent = findchannel(chans, *nchans, freq, flags);
1525 	if (cent == NULL)
1526 		return (EINVAL);
1527 
1528 	extc = findchannel(chans, *nchans, freq + 20, flags);
1529 	if (extc == NULL)
1530 		return (ENOENT);
1531 
1532 	flags &= ~IEEE80211_CHAN_HT;
1533 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1534 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1535 	if (error != 0)
1536 		return (error);
1537 
1538 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1539 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1540 
1541 	return (error);
1542 }
1543 
1544 /*
1545  * Fetch the center frequency for the primary channel.
1546  */
1547 uint32_t
1548 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1549 {
1550 
1551 	return (c->ic_freq);
1552 }
1553 
1554 /*
1555  * Fetch the center frequency for the primary BAND channel.
1556  *
1557  * For 5, 10, 20MHz channels it'll be the normally configured channel
1558  * frequency.
1559  *
1560  * For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1561  * wide channel, not the centre of the primary channel (that's ic_freq).
1562  *
1563  * For 80+80MHz channels this will be the centre of the primary
1564  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1565  */
1566 uint32_t
1567 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1568 {
1569 
1570 	/*
1571 	 * VHT - use the pre-calculated centre frequency
1572 	 * of the given channel.
1573 	 */
1574 	if (IEEE80211_IS_CHAN_VHT(c))
1575 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1576 
1577 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1578 		return (c->ic_freq + 10);
1579 	}
1580 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1581 		return (c->ic_freq - 10);
1582 	}
1583 
1584 	return (c->ic_freq);
1585 }
1586 
1587 /*
1588  * For now, no 80+80 support; it will likely always return 0.
1589  */
1590 uint32_t
1591 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1592 {
1593 
1594 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1595 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1596 
1597 	return (0);
1598 }
1599 
1600 /*
1601  * Adds channels into specified channel list (ieee[] array must be sorted).
1602  * Channels are already sorted.
1603  */
1604 static int
1605 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1606     const uint8_t ieee[], int nieee, uint32_t flags[])
1607 {
1608 	uint16_t freq;
1609 	int i, j, error;
1610 	int is_vht;
1611 
1612 	for (i = 0; i < nieee; i++) {
1613 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1614 		for (j = 0; flags[j] != 0; j++) {
1615 			/*
1616 			 * Notes:
1617 			 * + HT40 and VHT40 channels occur together, so
1618 			 *   we need to be careful that we actually allow that.
1619 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1620 			 *   make sure it's not skipped because of the overlap
1621 			 *   check used for (V)HT40.
1622 			 */
1623 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1624 
1625 			/* XXX TODO FIXME VHT80P80. */
1626 
1627 			/* Test for VHT160 analogue to the VHT80 below. */
1628 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1629 				if (! is_vht160_valid_freq(freq))
1630 					continue;
1631 
1632 			/*
1633 			 * Test for VHT80.
1634 			 * XXX This is all very broken right now.
1635 			 * What we /should/ do is:
1636 			 *
1637 			 * + check that the frequency is in the list of
1638 			 *   allowed VHT80 ranges; and
1639 			 * + the other 3 channels in the list are actually
1640 			 *   also available.
1641 			 */
1642 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1643 				if (! is_vht80_valid_freq(freq))
1644 					continue;
1645 
1646 			/*
1647 			 * Test for (V)HT40.
1648 			 *
1649 			 * This is also a fall through from VHT80; as we only
1650 			 * allow a VHT80 channel if the VHT40 combination is
1651 			 * also valid.  If the VHT40 form is not valid then
1652 			 * we certainly can't do VHT80..
1653 			 */
1654 			if (flags[j] & IEEE80211_CHAN_HT40D)
1655 				/*
1656 				 * Can't have a "lower" channel if we are the
1657 				 * first channel.
1658 				 *
1659 				 * Can't have a "lower" channel if it's below/
1660 				 * within 20MHz of the first channel.
1661 				 *
1662 				 * Can't have a "lower" channel if the channel
1663 				 * below it is not 20MHz away.
1664 				 */
1665 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1666 				    freq - 20 !=
1667 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1668 					continue;
1669 			if (flags[j] & IEEE80211_CHAN_HT40U)
1670 				/*
1671 				 * Can't have an "upper" channel if we are
1672 				 * the last channel.
1673 				 *
1674 				 * Can't have an "upper" channel be above the
1675 				 * last channel in the list.
1676 				 *
1677 				 * Can't have an "upper" channel if the next
1678 				 * channel according to the math isn't 20MHz
1679 				 * away.  (Likely for channel 13/14.)
1680 				 */
1681 				if (i == nieee - 1 ||
1682 				    ieee[i] + 4 > ieee[nieee - 1] ||
1683 				    freq + 20 !=
1684 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1685 					continue;
1686 
1687 			if (j == 0) {
1688 				error = addchan(chans, maxchans, nchans,
1689 				    ieee[i], freq, 0, flags[j]);
1690 			} else {
1691 				error = copychan_prev(chans, maxchans, nchans,
1692 				    flags[j]);
1693 			}
1694 			if (error != 0)
1695 				return (error);
1696 		}
1697 	}
1698 
1699 	return (0);
1700 }
1701 
1702 int
1703 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1704     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1705     int cbw_flags)
1706 {
1707 	uint32_t flags[IEEE80211_MODE_MAX];
1708 
1709 	/* XXX no VHT for now */
1710 	getflags_2ghz(bands, flags, cbw_flags);
1711 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1712 
1713 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1714 }
1715 
1716 int
1717 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1718     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1719 {
1720 	const uint8_t default_chan_list[] =
1721 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1722 
1723 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1724 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1725 }
1726 
1727 int
1728 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1729     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1730     int cbw_flags)
1731 {
1732 	/*
1733 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1734 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1735 	 */
1736 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1737 
1738 	getflags_5ghz(bands, flags, cbw_flags);
1739 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1740 
1741 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1742 }
1743 
1744 /*
1745  * Locate a channel given a frequency+flags.  We cache
1746  * the previous lookup to optimize switching between two
1747  * channels--as happens with dynamic turbo.
1748  */
1749 struct ieee80211_channel *
1750 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1751 {
1752 	struct ieee80211_channel *c;
1753 
1754 	flags &= IEEE80211_CHAN_ALLTURBO;
1755 	c = ic->ic_prevchan;
1756 	if (c != NULL && c->ic_freq == freq &&
1757 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1758 		return c;
1759 	/* brute force search */
1760 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1761 }
1762 
1763 /*
1764  * Locate a channel given a channel number+flags.  We cache
1765  * the previous lookup to optimize switching between two
1766  * channels--as happens with dynamic turbo.
1767  */
1768 struct ieee80211_channel *
1769 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1770 {
1771 	struct ieee80211_channel *c;
1772 	int i;
1773 
1774 	flags &= IEEE80211_CHAN_ALLTURBO;
1775 	c = ic->ic_prevchan;
1776 	if (c != NULL && c->ic_ieee == ieee &&
1777 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1778 		return c;
1779 	/* brute force search */
1780 	for (i = 0; i < ic->ic_nchans; i++) {
1781 		c = &ic->ic_channels[i];
1782 		if (c->ic_ieee == ieee &&
1783 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1784 			return c;
1785 	}
1786 	return NULL;
1787 }
1788 
1789 /*
1790  * Lookup a channel suitable for the given rx status.
1791  *
1792  * This is used to find a channel for a frame (eg beacon, probe
1793  * response) based purely on the received PHY information.
1794  *
1795  * For now it tries to do it based on R_FREQ / R_IEEE.
1796  * This is enough for 11bg and 11a (and thus 11ng/11na)
1797  * but it will not be enough for GSM, PSB channels and the
1798  * like.  It also doesn't know about legacy-turbog and
1799  * legacy-turbo modes, which some offload NICs actually
1800  * support in weird ways.
1801  *
1802  * Takes the ic and rxstatus; returns the channel or NULL
1803  * if not found.
1804  *
1805  * XXX TODO: Add support for that when the need arises.
1806  */
1807 struct ieee80211_channel *
1808 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1809     const struct ieee80211_rx_stats *rxs)
1810 {
1811 	struct ieee80211com *ic = vap->iv_ic;
1812 	uint32_t flags;
1813 	struct ieee80211_channel *c;
1814 
1815 	if (rxs == NULL)
1816 		return (NULL);
1817 
1818 	/*
1819 	 * Strictly speaking we only use freq for now,
1820 	 * however later on we may wish to just store
1821 	 * the ieee for verification.
1822 	 */
1823 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1824 		return (NULL);
1825 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1826 		return (NULL);
1827 	if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1828 		return (NULL);
1829 
1830 	/*
1831 	 * If the rx status contains a valid ieee/freq, then
1832 	 * ensure we populate the correct channel information
1833 	 * in rxchan before passing it up to the scan infrastructure.
1834 	 * Offload NICs will pass up beacons from all channels
1835 	 * during background scans.
1836 	 */
1837 
1838 	/* Determine a band */
1839 	switch (rxs->c_band) {
1840 	case IEEE80211_CHAN_2GHZ:
1841 		flags = IEEE80211_CHAN_G;
1842 		break;
1843 	case IEEE80211_CHAN_5GHZ:
1844 		flags = IEEE80211_CHAN_A;
1845 		break;
1846 	default:
1847 		if (rxs->c_freq < 3000) {
1848 			flags = IEEE80211_CHAN_G;
1849 		} else {
1850 			flags = IEEE80211_CHAN_A;
1851 		}
1852 		break;
1853 	}
1854 
1855 	/* Channel lookup */
1856 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1857 
1858 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1859 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1860 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1861 
1862 	return (c);
1863 }
1864 
1865 static void
1866 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1867 {
1868 #define	ADD(_ic, _s, _o) \
1869 	ifmedia_add(media, \
1870 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1871 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1872 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1873 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1874 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1875 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1876 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1877 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1878 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1879 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1880 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1881 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1882 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1883 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1884 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1885 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1886 	};
1887 	u_int mopt;
1888 
1889 	mopt = mopts[mode];
1890 	if (addsta)
1891 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1892 	if (caps & IEEE80211_C_IBSS)
1893 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1894 	if (caps & IEEE80211_C_HOSTAP)
1895 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1896 	if (caps & IEEE80211_C_AHDEMO)
1897 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1898 	if (caps & IEEE80211_C_MONITOR)
1899 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1900 	if (caps & IEEE80211_C_WDS)
1901 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1902 	if (caps & IEEE80211_C_MBSS)
1903 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1904 #undef ADD
1905 }
1906 
1907 /*
1908  * Setup the media data structures according to the channel and
1909  * rate tables.
1910  */
1911 static int
1912 ieee80211_media_setup(struct ieee80211com *ic,
1913 	struct ifmedia *media, int caps, int addsta,
1914 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1915 {
1916 	int i, j, rate, maxrate, mword, r;
1917 	enum ieee80211_phymode mode;
1918 	const struct ieee80211_rateset *rs;
1919 	struct ieee80211_rateset allrates;
1920 
1921 	/*
1922 	 * Fill in media characteristics.
1923 	 */
1924 	ifmedia_init(media, 0, media_change, media_stat);
1925 	maxrate = 0;
1926 	/*
1927 	 * Add media for legacy operating modes.
1928 	 */
1929 	memset(&allrates, 0, sizeof(allrates));
1930 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1931 		if (isclr(ic->ic_modecaps, mode))
1932 			continue;
1933 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1934 		if (mode == IEEE80211_MODE_AUTO)
1935 			continue;
1936 		rs = &ic->ic_sup_rates[mode];
1937 		for (i = 0; i < rs->rs_nrates; i++) {
1938 			rate = rs->rs_rates[i];
1939 			mword = ieee80211_rate2media(ic, rate, mode);
1940 			if (mword == 0)
1941 				continue;
1942 			addmedia(media, caps, addsta, mode, mword);
1943 			/*
1944 			 * Add legacy rate to the collection of all rates.
1945 			 */
1946 			r = rate & IEEE80211_RATE_VAL;
1947 			for (j = 0; j < allrates.rs_nrates; j++)
1948 				if (allrates.rs_rates[j] == r)
1949 					break;
1950 			if (j == allrates.rs_nrates) {
1951 				/* unique, add to the set */
1952 				allrates.rs_rates[j] = r;
1953 				allrates.rs_nrates++;
1954 			}
1955 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1956 			if (rate > maxrate)
1957 				maxrate = rate;
1958 		}
1959 	}
1960 	for (i = 0; i < allrates.rs_nrates; i++) {
1961 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1962 				IEEE80211_MODE_AUTO);
1963 		if (mword == 0)
1964 			continue;
1965 		/* NB: remove media options from mword */
1966 		addmedia(media, caps, addsta,
1967 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1968 	}
1969 	/*
1970 	 * Add HT/11n media.  Note that we do not have enough
1971 	 * bits in the media subtype to express the MCS so we
1972 	 * use a "placeholder" media subtype and any fixed MCS
1973 	 * must be specified with a different mechanism.
1974 	 */
1975 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1976 		if (isclr(ic->ic_modecaps, mode))
1977 			continue;
1978 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1979 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1980 	}
1981 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1982 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1983 		addmedia(media, caps, addsta,
1984 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1985 		i = ic->ic_txstream * 8 - 1;
1986 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1987 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1988 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1989 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1990 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1991 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1992 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1993 		else
1994 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1995 		if (rate > maxrate)
1996 			maxrate = rate;
1997 	}
1998 
1999 	/*
2000 	 * Add VHT media.
2001 	 * XXX-BZ skip "VHT_2GHZ" for now.
2002 	 */
2003 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2004 	    mode++) {
2005 		if (isclr(ic->ic_modecaps, mode))
2006 			continue;
2007 		addmedia(media, caps, addsta, mode, IFM_AUTO);
2008 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2009 	}
2010 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2011 	       addmedia(media, caps, addsta,
2012 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2013 
2014 		/* XXX TODO: VHT maxrate */
2015 	}
2016 
2017 	return maxrate;
2018 }
2019 
2020 /* XXX inline or eliminate? */
2021 const struct ieee80211_rateset *
2022 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2023 {
2024 	/* XXX does this work for 11ng basic rates? */
2025 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2026 }
2027 
2028 /* XXX inline or eliminate? */
2029 const struct ieee80211_htrateset *
2030 ieee80211_get_suphtrates(struct ieee80211com *ic,
2031     const struct ieee80211_channel *c)
2032 {
2033 	return &ic->ic_sup_htrates;
2034 }
2035 
2036 void
2037 ieee80211_announce(struct ieee80211com *ic)
2038 {
2039 	int i, rate, mword;
2040 	enum ieee80211_phymode mode;
2041 	const struct ieee80211_rateset *rs;
2042 
2043 	/* NB: skip AUTO since it has no rates */
2044 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2045 		if (isclr(ic->ic_modecaps, mode))
2046 			continue;
2047 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2048 		rs = &ic->ic_sup_rates[mode];
2049 		for (i = 0; i < rs->rs_nrates; i++) {
2050 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2051 			if (mword == 0)
2052 				continue;
2053 			rate = ieee80211_media2rate(mword);
2054 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
2055 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2056 		}
2057 		printf("\n");
2058 	}
2059 	ieee80211_ht_announce(ic);
2060 	ieee80211_vht_announce(ic);
2061 }
2062 
2063 void
2064 ieee80211_announce_channels(struct ieee80211com *ic)
2065 {
2066 	const struct ieee80211_channel *c;
2067 	char type;
2068 	int i, cw;
2069 
2070 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2071 	for (i = 0; i < ic->ic_nchans; i++) {
2072 		c = &ic->ic_channels[i];
2073 		if (IEEE80211_IS_CHAN_ST(c))
2074 			type = 'S';
2075 		else if (IEEE80211_IS_CHAN_108A(c))
2076 			type = 'T';
2077 		else if (IEEE80211_IS_CHAN_108G(c))
2078 			type = 'G';
2079 		else if (IEEE80211_IS_CHAN_HT(c))
2080 			type = 'n';
2081 		else if (IEEE80211_IS_CHAN_A(c))
2082 			type = 'a';
2083 		else if (IEEE80211_IS_CHAN_ANYG(c))
2084 			type = 'g';
2085 		else if (IEEE80211_IS_CHAN_B(c))
2086 			type = 'b';
2087 		else
2088 			type = 'f';
2089 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2090 			cw = 40;
2091 		else if (IEEE80211_IS_CHAN_HALF(c))
2092 			cw = 10;
2093 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2094 			cw = 5;
2095 		else
2096 			cw = 20;
2097 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2098 			, c->ic_ieee, c->ic_freq, type
2099 			, cw
2100 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2101 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2102 			, c->ic_maxregpower
2103 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2104 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2105 		);
2106 	}
2107 }
2108 
2109 static int
2110 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2111 {
2112 	switch (IFM_MODE(ime->ifm_media)) {
2113 	case IFM_IEEE80211_11A:
2114 		*mode = IEEE80211_MODE_11A;
2115 		break;
2116 	case IFM_IEEE80211_11B:
2117 		*mode = IEEE80211_MODE_11B;
2118 		break;
2119 	case IFM_IEEE80211_11G:
2120 		*mode = IEEE80211_MODE_11G;
2121 		break;
2122 	case IFM_IEEE80211_FH:
2123 		*mode = IEEE80211_MODE_FH;
2124 		break;
2125 	case IFM_IEEE80211_11NA:
2126 		*mode = IEEE80211_MODE_11NA;
2127 		break;
2128 	case IFM_IEEE80211_11NG:
2129 		*mode = IEEE80211_MODE_11NG;
2130 		break;
2131 	case IFM_IEEE80211_VHT2G:
2132 		*mode = IEEE80211_MODE_VHT_2GHZ;
2133 		break;
2134 	case IFM_IEEE80211_VHT5G:
2135 		*mode = IEEE80211_MODE_VHT_5GHZ;
2136 		break;
2137 	case IFM_AUTO:
2138 		*mode = IEEE80211_MODE_AUTO;
2139 		break;
2140 	default:
2141 		return 0;
2142 	}
2143 	/*
2144 	 * Turbo mode is an ``option''.
2145 	 * XXX does not apply to AUTO
2146 	 */
2147 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2148 		if (*mode == IEEE80211_MODE_11A) {
2149 			if (flags & IEEE80211_F_TURBOP)
2150 				*mode = IEEE80211_MODE_TURBO_A;
2151 			else
2152 				*mode = IEEE80211_MODE_STURBO_A;
2153 		} else if (*mode == IEEE80211_MODE_11G)
2154 			*mode = IEEE80211_MODE_TURBO_G;
2155 		else
2156 			return 0;
2157 	}
2158 	/* XXX HT40 +/- */
2159 	return 1;
2160 }
2161 
2162 /*
2163  * Handle a media change request on the vap interface.
2164  */
2165 int
2166 ieee80211_media_change(struct ifnet *ifp)
2167 {
2168 	struct ieee80211vap *vap = ifp->if_softc;
2169 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2170 	uint16_t newmode;
2171 
2172 	if (!media2mode(ime, vap->iv_flags, &newmode))
2173 		return EINVAL;
2174 	if (vap->iv_des_mode != newmode) {
2175 		vap->iv_des_mode = newmode;
2176 		/* XXX kick state machine if up+running */
2177 	}
2178 	return 0;
2179 }
2180 
2181 /*
2182  * Common code to calculate the media status word
2183  * from the operating mode and channel state.
2184  */
2185 static int
2186 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2187 {
2188 	int status;
2189 
2190 	status = IFM_IEEE80211;
2191 	switch (opmode) {
2192 	case IEEE80211_M_STA:
2193 		break;
2194 	case IEEE80211_M_IBSS:
2195 		status |= IFM_IEEE80211_ADHOC;
2196 		break;
2197 	case IEEE80211_M_HOSTAP:
2198 		status |= IFM_IEEE80211_HOSTAP;
2199 		break;
2200 	case IEEE80211_M_MONITOR:
2201 		status |= IFM_IEEE80211_MONITOR;
2202 		break;
2203 	case IEEE80211_M_AHDEMO:
2204 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2205 		break;
2206 	case IEEE80211_M_WDS:
2207 		status |= IFM_IEEE80211_WDS;
2208 		break;
2209 	case IEEE80211_M_MBSS:
2210 		status |= IFM_IEEE80211_MBSS;
2211 		break;
2212 	}
2213 	if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2214 		status |= IFM_IEEE80211_VHT5G;
2215 	} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2216 		status |= IFM_IEEE80211_VHT2G;
2217 	} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2218 		status |= IFM_IEEE80211_11NA;
2219 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2220 		status |= IFM_IEEE80211_11NG;
2221 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2222 		status |= IFM_IEEE80211_11A;
2223 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2224 		status |= IFM_IEEE80211_11B;
2225 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2226 		status |= IFM_IEEE80211_11G;
2227 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2228 		status |= IFM_IEEE80211_FH;
2229 	}
2230 	/* XXX else complain? */
2231 
2232 	if (IEEE80211_IS_CHAN_TURBO(chan))
2233 		status |= IFM_IEEE80211_TURBO;
2234 #if 0
2235 	if (IEEE80211_IS_CHAN_HT20(chan))
2236 		status |= IFM_IEEE80211_HT20;
2237 	if (IEEE80211_IS_CHAN_HT40(chan))
2238 		status |= IFM_IEEE80211_HT40;
2239 #endif
2240 	return status;
2241 }
2242 
2243 void
2244 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2245 {
2246 	struct ieee80211vap *vap = ifp->if_softc;
2247 	struct ieee80211com *ic = vap->iv_ic;
2248 	enum ieee80211_phymode mode;
2249 
2250 	imr->ifm_status = IFM_AVALID;
2251 	/*
2252 	 * NB: use the current channel's mode to lock down a xmit
2253 	 * rate only when running; otherwise we may have a mismatch
2254 	 * in which case the rate will not be convertible.
2255 	 */
2256 	if (vap->iv_state == IEEE80211_S_RUN ||
2257 	    vap->iv_state == IEEE80211_S_SLEEP) {
2258 		imr->ifm_status |= IFM_ACTIVE;
2259 		mode = ieee80211_chan2mode(ic->ic_curchan);
2260 	} else
2261 		mode = IEEE80211_MODE_AUTO;
2262 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2263 	/*
2264 	 * Calculate a current rate if possible.
2265 	 */
2266 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2267 		/*
2268 		 * A fixed rate is set, report that.
2269 		 */
2270 		imr->ifm_active |= ieee80211_rate2media(ic,
2271 			vap->iv_txparms[mode].ucastrate, mode);
2272 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2273 		/*
2274 		 * In station mode report the current transmit rate.
2275 		 */
2276 		imr->ifm_active |= ieee80211_rate2media(ic,
2277 			vap->iv_bss->ni_txrate, mode);
2278 	} else
2279 		imr->ifm_active |= IFM_AUTO;
2280 	if (imr->ifm_status & IFM_ACTIVE)
2281 		imr->ifm_current = imr->ifm_active;
2282 }
2283 
2284 /*
2285  * Set the current phy mode and recalculate the active channel
2286  * set based on the available channels for this mode.  Also
2287  * select a new default/current channel if the current one is
2288  * inappropriate for this mode.
2289  */
2290 int
2291 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2292 {
2293 	/*
2294 	 * Adjust basic rates in 11b/11g supported rate set.
2295 	 * Note that if operating on a hal/quarter rate channel
2296 	 * this is a noop as those rates sets are different
2297 	 * and used instead.
2298 	 */
2299 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2300 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2301 
2302 	ic->ic_curmode = mode;
2303 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2304 
2305 	return 0;
2306 }
2307 
2308 /*
2309  * Return the phy mode for with the specified channel.
2310  */
2311 enum ieee80211_phymode
2312 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2313 {
2314 
2315 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2316 		return IEEE80211_MODE_VHT_2GHZ;
2317 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2318 		return IEEE80211_MODE_VHT_5GHZ;
2319 	else if (IEEE80211_IS_CHAN_HTA(chan))
2320 		return IEEE80211_MODE_11NA;
2321 	else if (IEEE80211_IS_CHAN_HTG(chan))
2322 		return IEEE80211_MODE_11NG;
2323 	else if (IEEE80211_IS_CHAN_108G(chan))
2324 		return IEEE80211_MODE_TURBO_G;
2325 	else if (IEEE80211_IS_CHAN_ST(chan))
2326 		return IEEE80211_MODE_STURBO_A;
2327 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2328 		return IEEE80211_MODE_TURBO_A;
2329 	else if (IEEE80211_IS_CHAN_HALF(chan))
2330 		return IEEE80211_MODE_HALF;
2331 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2332 		return IEEE80211_MODE_QUARTER;
2333 	else if (IEEE80211_IS_CHAN_A(chan))
2334 		return IEEE80211_MODE_11A;
2335 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2336 		return IEEE80211_MODE_11G;
2337 	else if (IEEE80211_IS_CHAN_B(chan))
2338 		return IEEE80211_MODE_11B;
2339 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2340 		return IEEE80211_MODE_FH;
2341 
2342 	/* NB: should not get here */
2343 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2344 		__func__, chan->ic_freq, chan->ic_flags);
2345 	return IEEE80211_MODE_11B;
2346 }
2347 
2348 struct ratemedia {
2349 	u_int	match;	/* rate + mode */
2350 	u_int	media;	/* if_media rate */
2351 };
2352 
2353 static int
2354 findmedia(const struct ratemedia rates[], int n, u_int match)
2355 {
2356 	int i;
2357 
2358 	for (i = 0; i < n; i++)
2359 		if (rates[i].match == match)
2360 			return rates[i].media;
2361 	return IFM_AUTO;
2362 }
2363 
2364 /*
2365  * Convert IEEE80211 rate value to ifmedia subtype.
2366  * Rate is either a legacy rate in units of 0.5Mbps
2367  * or an MCS index.
2368  */
2369 int
2370 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2371 {
2372 	static const struct ratemedia rates[] = {
2373 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2374 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2375 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2376 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2377 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2378 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2379 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2380 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2381 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2382 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2383 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2384 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2385 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2386 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2387 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2388 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2389 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2390 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2391 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2392 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2393 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2394 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2395 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2396 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2397 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2398 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2399 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2400 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2401 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2402 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2403 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2404 	};
2405 	static const struct ratemedia htrates[] = {
2406 		{   0, IFM_IEEE80211_MCS },
2407 		{   1, IFM_IEEE80211_MCS },
2408 		{   2, IFM_IEEE80211_MCS },
2409 		{   3, IFM_IEEE80211_MCS },
2410 		{   4, IFM_IEEE80211_MCS },
2411 		{   5, IFM_IEEE80211_MCS },
2412 		{   6, IFM_IEEE80211_MCS },
2413 		{   7, IFM_IEEE80211_MCS },
2414 		{   8, IFM_IEEE80211_MCS },
2415 		{   9, IFM_IEEE80211_MCS },
2416 		{  10, IFM_IEEE80211_MCS },
2417 		{  11, IFM_IEEE80211_MCS },
2418 		{  12, IFM_IEEE80211_MCS },
2419 		{  13, IFM_IEEE80211_MCS },
2420 		{  14, IFM_IEEE80211_MCS },
2421 		{  15, IFM_IEEE80211_MCS },
2422 		{  16, IFM_IEEE80211_MCS },
2423 		{  17, IFM_IEEE80211_MCS },
2424 		{  18, IFM_IEEE80211_MCS },
2425 		{  19, IFM_IEEE80211_MCS },
2426 		{  20, IFM_IEEE80211_MCS },
2427 		{  21, IFM_IEEE80211_MCS },
2428 		{  22, IFM_IEEE80211_MCS },
2429 		{  23, IFM_IEEE80211_MCS },
2430 		{  24, IFM_IEEE80211_MCS },
2431 		{  25, IFM_IEEE80211_MCS },
2432 		{  26, IFM_IEEE80211_MCS },
2433 		{  27, IFM_IEEE80211_MCS },
2434 		{  28, IFM_IEEE80211_MCS },
2435 		{  29, IFM_IEEE80211_MCS },
2436 		{  30, IFM_IEEE80211_MCS },
2437 		{  31, IFM_IEEE80211_MCS },
2438 		{  32, IFM_IEEE80211_MCS },
2439 		{  33, IFM_IEEE80211_MCS },
2440 		{  34, IFM_IEEE80211_MCS },
2441 		{  35, IFM_IEEE80211_MCS },
2442 		{  36, IFM_IEEE80211_MCS },
2443 		{  37, IFM_IEEE80211_MCS },
2444 		{  38, IFM_IEEE80211_MCS },
2445 		{  39, IFM_IEEE80211_MCS },
2446 		{  40, IFM_IEEE80211_MCS },
2447 		{  41, IFM_IEEE80211_MCS },
2448 		{  42, IFM_IEEE80211_MCS },
2449 		{  43, IFM_IEEE80211_MCS },
2450 		{  44, IFM_IEEE80211_MCS },
2451 		{  45, IFM_IEEE80211_MCS },
2452 		{  46, IFM_IEEE80211_MCS },
2453 		{  47, IFM_IEEE80211_MCS },
2454 		{  48, IFM_IEEE80211_MCS },
2455 		{  49, IFM_IEEE80211_MCS },
2456 		{  50, IFM_IEEE80211_MCS },
2457 		{  51, IFM_IEEE80211_MCS },
2458 		{  52, IFM_IEEE80211_MCS },
2459 		{  53, IFM_IEEE80211_MCS },
2460 		{  54, IFM_IEEE80211_MCS },
2461 		{  55, IFM_IEEE80211_MCS },
2462 		{  56, IFM_IEEE80211_MCS },
2463 		{  57, IFM_IEEE80211_MCS },
2464 		{  58, IFM_IEEE80211_MCS },
2465 		{  59, IFM_IEEE80211_MCS },
2466 		{  60, IFM_IEEE80211_MCS },
2467 		{  61, IFM_IEEE80211_MCS },
2468 		{  62, IFM_IEEE80211_MCS },
2469 		{  63, IFM_IEEE80211_MCS },
2470 		{  64, IFM_IEEE80211_MCS },
2471 		{  65, IFM_IEEE80211_MCS },
2472 		{  66, IFM_IEEE80211_MCS },
2473 		{  67, IFM_IEEE80211_MCS },
2474 		{  68, IFM_IEEE80211_MCS },
2475 		{  69, IFM_IEEE80211_MCS },
2476 		{  70, IFM_IEEE80211_MCS },
2477 		{  71, IFM_IEEE80211_MCS },
2478 		{  72, IFM_IEEE80211_MCS },
2479 		{  73, IFM_IEEE80211_MCS },
2480 		{  74, IFM_IEEE80211_MCS },
2481 		{  75, IFM_IEEE80211_MCS },
2482 		{  76, IFM_IEEE80211_MCS },
2483 	};
2484 	static const struct ratemedia vhtrates[] = {
2485 		{   0, IFM_IEEE80211_VHT },
2486 		{   1, IFM_IEEE80211_VHT },
2487 		{   2, IFM_IEEE80211_VHT },
2488 		{   3, IFM_IEEE80211_VHT },
2489 		{   4, IFM_IEEE80211_VHT },
2490 		{   5, IFM_IEEE80211_VHT },
2491 		{   6, IFM_IEEE80211_VHT },
2492 		{   7, IFM_IEEE80211_VHT },
2493 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2494 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2495 #if 0
2496 		/* Some QCA and BRCM seem to support this; offspec. */
2497 		{  10, IFM_IEEE80211_VHT },
2498 		{  11, IFM_IEEE80211_VHT },
2499 #endif
2500 	};
2501 	int m;
2502 
2503 	/*
2504 	 * Check 11ac/11n rates first for match as an MCS.
2505 	 */
2506 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2507 		if (rate & IFM_IEEE80211_VHT) {
2508 			rate &= ~IFM_IEEE80211_VHT;
2509 			m = findmedia(vhtrates, nitems(vhtrates), rate);
2510 			if (m != IFM_AUTO)
2511 				return (m | IFM_IEEE80211_VHT);
2512 		}
2513 	} else if (mode == IEEE80211_MODE_11NA) {
2514 		if (rate & IEEE80211_RATE_MCS) {
2515 			rate &= ~IEEE80211_RATE_MCS;
2516 			m = findmedia(htrates, nitems(htrates), rate);
2517 			if (m != IFM_AUTO)
2518 				return m | IFM_IEEE80211_11NA;
2519 		}
2520 	} else if (mode == IEEE80211_MODE_11NG) {
2521 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2522 		if (rate & IEEE80211_RATE_MCS) {
2523 			rate &= ~IEEE80211_RATE_MCS;
2524 			m = findmedia(htrates, nitems(htrates), rate);
2525 			if (m != IFM_AUTO)
2526 				return m | IFM_IEEE80211_11NG;
2527 		}
2528 	}
2529 	rate &= IEEE80211_RATE_VAL;
2530 	switch (mode) {
2531 	case IEEE80211_MODE_11A:
2532 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2533 	case IEEE80211_MODE_QUARTER:
2534 	case IEEE80211_MODE_11NA:
2535 	case IEEE80211_MODE_TURBO_A:
2536 	case IEEE80211_MODE_STURBO_A:
2537 		return findmedia(rates, nitems(rates),
2538 		    rate | IFM_IEEE80211_11A);
2539 	case IEEE80211_MODE_11B:
2540 		return findmedia(rates, nitems(rates),
2541 		    rate | IFM_IEEE80211_11B);
2542 	case IEEE80211_MODE_FH:
2543 		return findmedia(rates, nitems(rates),
2544 		    rate | IFM_IEEE80211_FH);
2545 	case IEEE80211_MODE_AUTO:
2546 		/* NB: ic may be NULL for some drivers */
2547 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2548 			return findmedia(rates, nitems(rates),
2549 			    rate | IFM_IEEE80211_FH);
2550 		/* NB: hack, 11g matches both 11b+11a rates */
2551 		/* fall thru... */
2552 	case IEEE80211_MODE_11G:
2553 	case IEEE80211_MODE_11NG:
2554 	case IEEE80211_MODE_TURBO_G:
2555 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2556 	case IEEE80211_MODE_VHT_2GHZ:
2557 	case IEEE80211_MODE_VHT_5GHZ:
2558 		/* XXX TODO: need to figure out mapping for VHT rates */
2559 		return IFM_AUTO;
2560 	}
2561 	return IFM_AUTO;
2562 }
2563 
2564 int
2565 ieee80211_media2rate(int mword)
2566 {
2567 	static const int ieeerates[] = {
2568 		-1,		/* IFM_AUTO */
2569 		0,		/* IFM_MANUAL */
2570 		0,		/* IFM_NONE */
2571 		2,		/* IFM_IEEE80211_FH1 */
2572 		4,		/* IFM_IEEE80211_FH2 */
2573 		2,		/* IFM_IEEE80211_DS1 */
2574 		4,		/* IFM_IEEE80211_DS2 */
2575 		11,		/* IFM_IEEE80211_DS5 */
2576 		22,		/* IFM_IEEE80211_DS11 */
2577 		44,		/* IFM_IEEE80211_DS22 */
2578 		12,		/* IFM_IEEE80211_OFDM6 */
2579 		18,		/* IFM_IEEE80211_OFDM9 */
2580 		24,		/* IFM_IEEE80211_OFDM12 */
2581 		36,		/* IFM_IEEE80211_OFDM18 */
2582 		48,		/* IFM_IEEE80211_OFDM24 */
2583 		72,		/* IFM_IEEE80211_OFDM36 */
2584 		96,		/* IFM_IEEE80211_OFDM48 */
2585 		108,		/* IFM_IEEE80211_OFDM54 */
2586 		144,		/* IFM_IEEE80211_OFDM72 */
2587 		0,		/* IFM_IEEE80211_DS354k */
2588 		0,		/* IFM_IEEE80211_DS512k */
2589 		6,		/* IFM_IEEE80211_OFDM3 */
2590 		9,		/* IFM_IEEE80211_OFDM4 */
2591 		54,		/* IFM_IEEE80211_OFDM27 */
2592 		-1,		/* IFM_IEEE80211_MCS */
2593 		-1,		/* IFM_IEEE80211_VHT */
2594 	};
2595 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2596 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2597 }
2598 
2599 /*
2600  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2601  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2602  */
2603 #define	mix(a, b, c)							\
2604 do {									\
2605 	a -= b; a -= c; a ^= (c >> 13);					\
2606 	b -= c; b -= a; b ^= (a << 8);					\
2607 	c -= a; c -= b; c ^= (b >> 13);					\
2608 	a -= b; a -= c; a ^= (c >> 12);					\
2609 	b -= c; b -= a; b ^= (a << 16);					\
2610 	c -= a; c -= b; c ^= (b >> 5);					\
2611 	a -= b; a -= c; a ^= (c >> 3);					\
2612 	b -= c; b -= a; b ^= (a << 10);					\
2613 	c -= a; c -= b; c ^= (b >> 15);					\
2614 } while (/*CONSTCOND*/0)
2615 
2616 uint32_t
2617 ieee80211_mac_hash(const struct ieee80211com *ic,
2618 	const uint8_t addr[IEEE80211_ADDR_LEN])
2619 {
2620 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2621 
2622 	b += addr[5] << 8;
2623 	b += addr[4];
2624 	a += addr[3] << 24;
2625 	a += addr[2] << 16;
2626 	a += addr[1] << 8;
2627 	a += addr[0];
2628 
2629 	mix(a, b, c);
2630 
2631 	return c;
2632 }
2633 #undef mix
2634 
2635 char
2636 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2637 {
2638 	if (IEEE80211_IS_CHAN_ST(c))
2639 		return 'S';
2640 	if (IEEE80211_IS_CHAN_108A(c))
2641 		return 'T';
2642 	if (IEEE80211_IS_CHAN_108G(c))
2643 		return 'G';
2644 	if (IEEE80211_IS_CHAN_VHT(c))
2645 		return 'v';
2646 	if (IEEE80211_IS_CHAN_HT(c))
2647 		return 'n';
2648 	if (IEEE80211_IS_CHAN_A(c))
2649 		return 'a';
2650 	if (IEEE80211_IS_CHAN_ANYG(c))
2651 		return 'g';
2652 	if (IEEE80211_IS_CHAN_B(c))
2653 		return 'b';
2654 	return 'f';
2655 }
2656