1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211.c 336184 2018-07-10 23:30:19Z kevans $"); 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/socket.h> 42 #include <sys/sbuf.h> 43 44 #include <machine/stdarg.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 #include <net/ethernet.h> 52 #include <net/vnet.h> 53 54 #include <net80211/ieee80211_var.h> 55 #include <net80211/ieee80211_regdomain.h> 56 #ifdef IEEE80211_SUPPORT_SUPERG 57 #include <net80211/ieee80211_superg.h> 58 #endif 59 #include <net80211/ieee80211_ratectl.h> 60 #include <net80211/ieee80211_vht.h> 61 62 #include <net/bpf.h> 63 64 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 65 [IEEE80211_MODE_AUTO] = "auto", 66 [IEEE80211_MODE_11A] = "11a", 67 [IEEE80211_MODE_11B] = "11b", 68 [IEEE80211_MODE_11G] = "11g", 69 [IEEE80211_MODE_FH] = "FH", 70 [IEEE80211_MODE_TURBO_A] = "turboA", 71 [IEEE80211_MODE_TURBO_G] = "turboG", 72 [IEEE80211_MODE_STURBO_A] = "sturboA", 73 [IEEE80211_MODE_HALF] = "half", 74 [IEEE80211_MODE_QUARTER] = "quarter", 75 [IEEE80211_MODE_11NA] = "11na", 76 [IEEE80211_MODE_11NG] = "11ng", 77 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 78 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 79 }; 80 /* map ieee80211_opmode to the corresponding capability bit */ 81 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 82 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 83 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 84 [IEEE80211_M_STA] = IEEE80211_C_STA, 85 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 86 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 87 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 88 #ifdef IEEE80211_SUPPORT_MESH 89 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 90 #endif 91 }; 92 93 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 94 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 95 96 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 98 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 99 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 100 static int ieee80211_media_setup(struct ieee80211com *ic, 101 struct ifmedia *media, int caps, int addsta, 102 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 103 static int media_status(enum ieee80211_opmode, 104 const struct ieee80211_channel *); 105 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 106 107 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 108 109 /* 110 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 111 */ 112 #define B(r) ((r) | IEEE80211_RATE_BASIC) 113 static const struct ieee80211_rateset ieee80211_rateset_11a = 114 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 115 static const struct ieee80211_rateset ieee80211_rateset_half = 116 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 117 static const struct ieee80211_rateset ieee80211_rateset_quarter = 118 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 119 static const struct ieee80211_rateset ieee80211_rateset_11b = 120 { 4, { B(2), B(4), B(11), B(22) } }; 121 /* NB: OFDM rates are handled specially based on mode */ 122 static const struct ieee80211_rateset ieee80211_rateset_11g = 123 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 124 #undef B 125 126 static int set_vht_extchan(struct ieee80211_channel *c); 127 128 /* 129 * Fill in 802.11 available channel set, mark 130 * all available channels as active, and pick 131 * a default channel if not already specified. 132 */ 133 void 134 ieee80211_chan_init(struct ieee80211com *ic) 135 { 136 #define DEFAULTRATES(m, def) do { \ 137 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 138 ic->ic_sup_rates[m] = def; \ 139 } while (0) 140 struct ieee80211_channel *c; 141 int i; 142 143 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 144 ("invalid number of channels specified: %u", ic->ic_nchans)); 145 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 146 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 147 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 148 for (i = 0; i < ic->ic_nchans; i++) { 149 c = &ic->ic_channels[i]; 150 KASSERT(c->ic_flags != 0, ("channel with no flags")); 151 /* 152 * Help drivers that work only with frequencies by filling 153 * in IEEE channel #'s if not already calculated. Note this 154 * mimics similar work done in ieee80211_setregdomain when 155 * changing regulatory state. 156 */ 157 if (c->ic_ieee == 0) 158 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 159 160 /* 161 * Setup the HT40/VHT40 upper/lower bits. 162 * The VHT80 math is done elsewhere. 163 */ 164 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 165 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 166 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 167 c->ic_flags); 168 169 /* Update VHT math */ 170 /* 171 * XXX VHT again, note that this assumes VHT80 channels 172 * are legit already 173 */ 174 set_vht_extchan(c); 175 176 /* default max tx power to max regulatory */ 177 if (c->ic_maxpower == 0) 178 c->ic_maxpower = 2*c->ic_maxregpower; 179 setbit(ic->ic_chan_avail, c->ic_ieee); 180 /* 181 * Identify mode capabilities. 182 */ 183 if (IEEE80211_IS_CHAN_A(c)) 184 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 185 if (IEEE80211_IS_CHAN_B(c)) 186 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 187 if (IEEE80211_IS_CHAN_ANYG(c)) 188 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 189 if (IEEE80211_IS_CHAN_FHSS(c)) 190 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 191 if (IEEE80211_IS_CHAN_108A(c)) 192 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 193 if (IEEE80211_IS_CHAN_108G(c)) 194 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 195 if (IEEE80211_IS_CHAN_ST(c)) 196 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 197 if (IEEE80211_IS_CHAN_HALF(c)) 198 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 199 if (IEEE80211_IS_CHAN_QUARTER(c)) 200 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 201 if (IEEE80211_IS_CHAN_HTA(c)) 202 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 203 if (IEEE80211_IS_CHAN_HTG(c)) 204 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 205 if (IEEE80211_IS_CHAN_VHTA(c)) 206 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 207 if (IEEE80211_IS_CHAN_VHTG(c)) 208 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 209 } 210 /* initialize candidate channels to all available */ 211 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 212 sizeof(ic->ic_chan_avail)); 213 214 /* sort channel table to allow lookup optimizations */ 215 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 216 217 /* invalidate any previous state */ 218 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 219 ic->ic_prevchan = NULL; 220 ic->ic_csa_newchan = NULL; 221 /* arbitrarily pick the first channel */ 222 ic->ic_curchan = &ic->ic_channels[0]; 223 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 224 225 /* fillin well-known rate sets if driver has not specified */ 226 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 227 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 228 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 230 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 231 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 232 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 233 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 234 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 235 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 236 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 237 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 238 239 /* 240 * Setup required information to fill the mcsset field, if driver did 241 * not. Assume a 2T2R setup for historic reasons. 242 */ 243 if (ic->ic_rxstream == 0) 244 ic->ic_rxstream = 2; 245 if (ic->ic_txstream == 0) 246 ic->ic_txstream = 2; 247 248 ieee80211_init_suphtrates(ic); 249 250 /* 251 * Set auto mode to reset active channel state and any desired channel. 252 */ 253 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 254 #undef DEFAULTRATES 255 } 256 257 static void 258 null_update_mcast(struct ieee80211com *ic) 259 { 260 261 ic_printf(ic, "need multicast update callback\n"); 262 } 263 264 static void 265 null_update_promisc(struct ieee80211com *ic) 266 { 267 268 ic_printf(ic, "need promiscuous mode update callback\n"); 269 } 270 271 static void 272 null_update_chw(struct ieee80211com *ic) 273 { 274 275 ic_printf(ic, "%s: need callback\n", __func__); 276 } 277 278 int 279 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 280 { 281 va_list ap; 282 int retval; 283 284 retval = printf("%s: ", ic->ic_name); 285 va_start(ap, fmt); 286 retval += vprintf(fmt, ap); 287 va_end(ap); 288 return (retval); 289 } 290 291 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 292 static struct mtx ic_list_mtx; 293 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 294 295 static int 296 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 297 { 298 struct ieee80211com *ic; 299 struct sbuf sb; 300 char *sp; 301 int error; 302 303 error = sysctl_wire_old_buffer(req, 0); 304 if (error) 305 return (error); 306 #ifndef __HAIKU__ 307 // sysctl not used in Haiku, no need to fill the reply 308 sbuf_new_for_sysctl(&sb, NULL, 8, req); 309 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 310 sp = ""; 311 mtx_lock(&ic_list_mtx); 312 LIST_FOREACH(ic, &ic_head, ic_next) { 313 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 314 sp = " "; 315 } 316 mtx_unlock(&ic_list_mtx); 317 error = sbuf_finish(&sb); 318 sbuf_delete(&sb); 319 #endif 320 return (error); 321 } 322 323 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 324 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 325 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 326 327 /* 328 * Attach/setup the common net80211 state. Called by 329 * the driver on attach to prior to creating any vap's. 330 */ 331 void 332 ieee80211_ifattach(struct ieee80211com *ic) 333 { 334 335 IEEE80211_LOCK_INIT(ic, ic->ic_name); 336 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 337 TAILQ_INIT(&ic->ic_vaps); 338 339 /* Create a taskqueue for all state changes */ 340 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 341 taskqueue_thread_enqueue, &ic->ic_tq); 342 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 343 ic->ic_name); 344 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 345 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 346 /* 347 * Fill in 802.11 available channel set, mark all 348 * available channels as active, and pick a default 349 * channel if not already specified. 350 */ 351 ieee80211_chan_init(ic); 352 353 ic->ic_update_mcast = null_update_mcast; 354 ic->ic_update_promisc = null_update_promisc; 355 ic->ic_update_chw = null_update_chw; 356 357 ic->ic_hash_key = arc4random(); 358 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 359 ic->ic_lintval = ic->ic_bintval; 360 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 361 362 ieee80211_crypto_attach(ic); 363 ieee80211_node_attach(ic); 364 ieee80211_power_attach(ic); 365 ieee80211_proto_attach(ic); 366 #ifdef IEEE80211_SUPPORT_SUPERG 367 ieee80211_superg_attach(ic); 368 #endif 369 ieee80211_ht_attach(ic); 370 ieee80211_vht_attach(ic); 371 ieee80211_scan_attach(ic); 372 ieee80211_regdomain_attach(ic); 373 ieee80211_dfs_attach(ic); 374 375 ieee80211_sysctl_attach(ic); 376 377 mtx_lock(&ic_list_mtx); 378 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 379 mtx_unlock(&ic_list_mtx); 380 } 381 382 /* 383 * Detach net80211 state on device detach. Tear down 384 * all vap's and reclaim all common state prior to the 385 * device state going away. Note we may call back into 386 * driver; it must be prepared for this. 387 */ 388 void 389 ieee80211_ifdetach(struct ieee80211com *ic) 390 { 391 struct ieee80211vap *vap; 392 393 /* 394 * We use this as an indicator that ifattach never had a chance to be 395 * called, e.g. early driver attach failed and ifdetach was called 396 * during subsequent detach. Never fear, for we have nothing to do 397 * here. 398 */ 399 if (ic->ic_tq == NULL) 400 return; 401 402 mtx_lock(&ic_list_mtx); 403 LIST_REMOVE(ic, ic_next); 404 mtx_unlock(&ic_list_mtx); 405 406 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 407 408 /* 409 * The VAP is responsible for setting and clearing 410 * the VIMAGE context. 411 */ 412 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 413 ieee80211_vap_destroy(vap); 414 ieee80211_waitfor_parent(ic); 415 416 ieee80211_sysctl_detach(ic); 417 ieee80211_dfs_detach(ic); 418 ieee80211_regdomain_detach(ic); 419 ieee80211_scan_detach(ic); 420 #ifdef IEEE80211_SUPPORT_SUPERG 421 ieee80211_superg_detach(ic); 422 #endif 423 ieee80211_vht_detach(ic); 424 ieee80211_ht_detach(ic); 425 /* NB: must be called before ieee80211_node_detach */ 426 ieee80211_proto_detach(ic); 427 ieee80211_crypto_detach(ic); 428 ieee80211_power_detach(ic); 429 ieee80211_node_detach(ic); 430 431 counter_u64_free(ic->ic_ierrors); 432 counter_u64_free(ic->ic_oerrors); 433 434 taskqueue_free(ic->ic_tq); 435 IEEE80211_TX_LOCK_DESTROY(ic); 436 IEEE80211_LOCK_DESTROY(ic); 437 } 438 439 struct ieee80211com * 440 ieee80211_find_com(const char *name) 441 { 442 struct ieee80211com *ic; 443 444 mtx_lock(&ic_list_mtx); 445 LIST_FOREACH(ic, &ic_head, ic_next) 446 if (strcmp(ic->ic_name, name) == 0) 447 break; 448 mtx_unlock(&ic_list_mtx); 449 450 return (ic); 451 } 452 453 void 454 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 455 { 456 struct ieee80211com *ic; 457 458 mtx_lock(&ic_list_mtx); 459 LIST_FOREACH(ic, &ic_head, ic_next) 460 (*f)(arg, ic); 461 mtx_unlock(&ic_list_mtx); 462 } 463 464 /* 465 * Default reset method for use with the ioctl support. This 466 * method is invoked after any state change in the 802.11 467 * layer that should be propagated to the hardware but not 468 * require re-initialization of the 802.11 state machine (e.g 469 * rescanning for an ap). We always return ENETRESET which 470 * should cause the driver to re-initialize the device. Drivers 471 * can override this method to implement more optimized support. 472 */ 473 static int 474 default_reset(struct ieee80211vap *vap, u_long cmd) 475 { 476 return ENETRESET; 477 } 478 479 /* 480 * Default for updating the VAP default TX key index. 481 * 482 * Drivers that support TX offload as well as hardware encryption offload 483 * may need to be informed of key index changes separate from the key 484 * update. 485 */ 486 static void 487 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 488 { 489 490 /* XXX assert validity */ 491 /* XXX assert we're in a key update block */ 492 vap->iv_def_txkey = kid; 493 } 494 495 /* 496 * Add underlying device errors to vap errors. 497 */ 498 static uint64_t 499 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 500 { 501 struct ieee80211vap *vap = ifp->if_softc; 502 struct ieee80211com *ic = vap->iv_ic; 503 uint64_t rv; 504 505 rv = if_get_counter_default(ifp, cnt); 506 switch (cnt) { 507 case IFCOUNTER_OERRORS: 508 rv += counter_u64_fetch(ic->ic_oerrors); 509 break; 510 case IFCOUNTER_IERRORS: 511 rv += counter_u64_fetch(ic->ic_ierrors); 512 break; 513 default: 514 break; 515 } 516 517 return (rv); 518 } 519 520 /* 521 * Prepare a vap for use. Drivers use this call to 522 * setup net80211 state in new vap's prior attaching 523 * them with ieee80211_vap_attach (below). 524 */ 525 int 526 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 527 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 528 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 529 { 530 struct ifnet *ifp; 531 532 ifp = if_alloc(IFT_ETHER); 533 if (ifp == NULL) { 534 ic_printf(ic, "%s: unable to allocate ifnet\n", 535 __func__); 536 return ENOMEM; 537 } 538 if_initname(ifp, name, unit); 539 ifp->if_softc = vap; /* back pointer */ 540 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 541 ifp->if_transmit = ieee80211_vap_transmit; 542 ifp->if_qflush = ieee80211_vap_qflush; 543 ifp->if_ioctl = ieee80211_ioctl; 544 ifp->if_init = ieee80211_init; 545 ifp->if_get_counter = ieee80211_get_counter; 546 547 vap->iv_ifp = ifp; 548 vap->iv_ic = ic; 549 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 550 vap->iv_flags_ext = ic->ic_flags_ext; 551 vap->iv_flags_ven = ic->ic_flags_ven; 552 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 553 554 /* 11n capabilities - XXX methodize */ 555 vap->iv_htcaps = ic->ic_htcaps; 556 vap->iv_htextcaps = ic->ic_htextcaps; 557 558 /* 11ac capabilities - XXX methodize */ 559 vap->iv_vhtcaps = ic->ic_vhtcaps; 560 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 561 562 vap->iv_opmode = opmode; 563 vap->iv_caps |= ieee80211_opcap[opmode]; 564 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 565 switch (opmode) { 566 case IEEE80211_M_WDS: 567 /* 568 * WDS links must specify the bssid of the far end. 569 * For legacy operation this is a static relationship. 570 * For non-legacy operation the station must associate 571 * and be authorized to pass traffic. Plumbing the 572 * vap to the proper node happens when the vap 573 * transitions to RUN state. 574 */ 575 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 576 vap->iv_flags |= IEEE80211_F_DESBSSID; 577 if (flags & IEEE80211_CLONE_WDSLEGACY) 578 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 579 break; 580 #ifdef IEEE80211_SUPPORT_TDMA 581 case IEEE80211_M_AHDEMO: 582 if (flags & IEEE80211_CLONE_TDMA) { 583 /* NB: checked before clone operation allowed */ 584 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 585 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 586 /* 587 * Propagate TDMA capability to mark vap; this 588 * cannot be removed and is used to distinguish 589 * regular ahdemo operation from ahdemo+tdma. 590 */ 591 vap->iv_caps |= IEEE80211_C_TDMA; 592 } 593 break; 594 #endif 595 default: 596 break; 597 } 598 /* auto-enable s/w beacon miss support */ 599 if (flags & IEEE80211_CLONE_NOBEACONS) 600 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 601 /* auto-generated or user supplied MAC address */ 602 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 603 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 604 /* 605 * Enable various functionality by default if we're 606 * capable; the driver can override us if it knows better. 607 */ 608 if (vap->iv_caps & IEEE80211_C_WME) 609 vap->iv_flags |= IEEE80211_F_WME; 610 if (vap->iv_caps & IEEE80211_C_BURST) 611 vap->iv_flags |= IEEE80211_F_BURST; 612 /* NB: bg scanning only makes sense for station mode right now */ 613 if (vap->iv_opmode == IEEE80211_M_STA && 614 (vap->iv_caps & IEEE80211_C_BGSCAN)) 615 vap->iv_flags |= IEEE80211_F_BGSCAN; 616 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 617 /* NB: DFS support only makes sense for ap mode right now */ 618 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 619 (vap->iv_caps & IEEE80211_C_DFS)) 620 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 621 622 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 623 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 624 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 625 /* 626 * Install a default reset method for the ioctl support; 627 * the driver can override this. 628 */ 629 vap->iv_reset = default_reset; 630 631 /* 632 * Install a default crypto key update method, the driver 633 * can override this. 634 */ 635 vap->iv_update_deftxkey = default_update_deftxkey; 636 637 ieee80211_sysctl_vattach(vap); 638 ieee80211_crypto_vattach(vap); 639 ieee80211_node_vattach(vap); 640 ieee80211_power_vattach(vap); 641 ieee80211_proto_vattach(vap); 642 #ifdef IEEE80211_SUPPORT_SUPERG 643 ieee80211_superg_vattach(vap); 644 #endif 645 ieee80211_ht_vattach(vap); 646 ieee80211_vht_vattach(vap); 647 ieee80211_scan_vattach(vap); 648 ieee80211_regdomain_vattach(vap); 649 ieee80211_radiotap_vattach(vap); 650 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 651 652 return 0; 653 } 654 655 /* 656 * Activate a vap. State should have been prepared with a 657 * call to ieee80211_vap_setup and by the driver. On return 658 * from this call the vap is ready for use. 659 */ 660 int 661 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 662 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 663 { 664 struct ifnet *ifp = vap->iv_ifp; 665 struct ieee80211com *ic = vap->iv_ic; 666 struct ifmediareq imr; 667 int maxrate; 668 669 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 670 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 671 __func__, ieee80211_opmode_name[vap->iv_opmode], 672 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 673 674 /* 675 * Do late attach work that cannot happen until after 676 * the driver has had a chance to override defaults. 677 */ 678 ieee80211_node_latevattach(vap); 679 ieee80211_power_latevattach(vap); 680 681 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 682 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 683 ieee80211_media_status(ifp, &imr); 684 /* NB: strip explicit mode; we're actually in autoselect */ 685 ifmedia_set(&vap->iv_media, 686 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 687 if (maxrate) 688 ifp->if_baudrate = IF_Mbps(maxrate); 689 690 ether_ifattach(ifp, macaddr); 691 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 692 /* hook output method setup by ether_ifattach */ 693 vap->iv_output = ifp->if_output; 694 ifp->if_output = ieee80211_output; 695 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 696 697 IEEE80211_LOCK(ic); 698 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 699 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 700 #ifdef IEEE80211_SUPPORT_SUPERG 701 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 702 #endif 703 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 704 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 705 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 706 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 707 708 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 709 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 710 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 711 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 712 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 713 IEEE80211_UNLOCK(ic); 714 715 return 1; 716 } 717 718 /* 719 * Tear down vap state and reclaim the ifnet. 720 * The driver is assumed to have prepared for 721 * this; e.g. by turning off interrupts for the 722 * underlying device. 723 */ 724 void 725 ieee80211_vap_detach(struct ieee80211vap *vap) 726 { 727 struct ieee80211com *ic = vap->iv_ic; 728 struct ifnet *ifp = vap->iv_ifp; 729 730 CURVNET_SET(ifp->if_vnet); 731 732 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 733 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 734 735 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 736 ether_ifdetach(ifp); 737 738 ieee80211_stop(vap); 739 740 /* 741 * Flush any deferred vap tasks. 742 */ 743 ieee80211_draintask(ic, &vap->iv_nstate_task); 744 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 745 ieee80211_draintask(ic, &vap->iv_wme_task); 746 ieee80211_draintask(ic, &ic->ic_parent_task); 747 748 /* XXX band-aid until ifnet handles this for us */ 749 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 750 751 IEEE80211_LOCK(ic); 752 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 753 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 754 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 755 #ifdef IEEE80211_SUPPORT_SUPERG 756 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 757 #endif 758 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 759 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 760 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 761 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 762 763 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 764 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 765 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 766 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 767 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 768 769 /* NB: this handles the bpfdetach done below */ 770 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 771 if (vap->iv_ifflags & IFF_PROMISC) 772 ieee80211_promisc(vap, false); 773 if (vap->iv_ifflags & IFF_ALLMULTI) 774 ieee80211_allmulti(vap, false); 775 IEEE80211_UNLOCK(ic); 776 777 ifmedia_removeall(&vap->iv_media); 778 779 ieee80211_radiotap_vdetach(vap); 780 ieee80211_regdomain_vdetach(vap); 781 ieee80211_scan_vdetach(vap); 782 #ifdef IEEE80211_SUPPORT_SUPERG 783 ieee80211_superg_vdetach(vap); 784 #endif 785 ieee80211_vht_vdetach(vap); 786 ieee80211_ht_vdetach(vap); 787 /* NB: must be before ieee80211_node_vdetach */ 788 ieee80211_proto_vdetach(vap); 789 ieee80211_crypto_vdetach(vap); 790 ieee80211_power_vdetach(vap); 791 ieee80211_node_vdetach(vap); 792 ieee80211_sysctl_vdetach(vap); 793 794 if_free(ifp); 795 796 CURVNET_RESTORE(); 797 } 798 799 /* 800 * Count number of vaps in promisc, and issue promisc on 801 * parent respectively. 802 */ 803 void 804 ieee80211_promisc(struct ieee80211vap *vap, bool on) 805 { 806 struct ieee80211com *ic = vap->iv_ic; 807 808 IEEE80211_LOCK_ASSERT(ic); 809 810 if (on) { 811 if (++ic->ic_promisc == 1) 812 ieee80211_runtask(ic, &ic->ic_promisc_task); 813 } else { 814 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 815 __func__, ic)); 816 if (--ic->ic_promisc == 0) 817 ieee80211_runtask(ic, &ic->ic_promisc_task); 818 } 819 } 820 821 /* 822 * Count number of vaps in allmulti, and issue allmulti on 823 * parent respectively. 824 */ 825 void 826 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 827 { 828 struct ieee80211com *ic = vap->iv_ic; 829 830 IEEE80211_LOCK_ASSERT(ic); 831 832 if (on) { 833 if (++ic->ic_allmulti == 1) 834 ieee80211_runtask(ic, &ic->ic_mcast_task); 835 } else { 836 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 837 __func__, ic)); 838 if (--ic->ic_allmulti == 0) 839 ieee80211_runtask(ic, &ic->ic_mcast_task); 840 } 841 } 842 843 /* 844 * Synchronize flag bit state in the com structure 845 * according to the state of all vap's. This is used, 846 * for example, to handle state changes via ioctls. 847 */ 848 static void 849 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 850 { 851 struct ieee80211vap *vap; 852 int bit; 853 854 IEEE80211_LOCK_ASSERT(ic); 855 856 bit = 0; 857 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 858 if (vap->iv_flags & flag) { 859 bit = 1; 860 break; 861 } 862 if (bit) 863 ic->ic_flags |= flag; 864 else 865 ic->ic_flags &= ~flag; 866 } 867 868 void 869 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 870 { 871 struct ieee80211com *ic = vap->iv_ic; 872 873 IEEE80211_LOCK(ic); 874 if (flag < 0) { 875 flag = -flag; 876 vap->iv_flags &= ~flag; 877 } else 878 vap->iv_flags |= flag; 879 ieee80211_syncflag_locked(ic, flag); 880 IEEE80211_UNLOCK(ic); 881 } 882 883 /* 884 * Synchronize flags_ht bit state in the com structure 885 * according to the state of all vap's. This is used, 886 * for example, to handle state changes via ioctls. 887 */ 888 static void 889 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 890 { 891 struct ieee80211vap *vap; 892 int bit; 893 894 IEEE80211_LOCK_ASSERT(ic); 895 896 bit = 0; 897 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 898 if (vap->iv_flags_ht & flag) { 899 bit = 1; 900 break; 901 } 902 if (bit) 903 ic->ic_flags_ht |= flag; 904 else 905 ic->ic_flags_ht &= ~flag; 906 } 907 908 void 909 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 910 { 911 struct ieee80211com *ic = vap->iv_ic; 912 913 IEEE80211_LOCK(ic); 914 if (flag < 0) { 915 flag = -flag; 916 vap->iv_flags_ht &= ~flag; 917 } else 918 vap->iv_flags_ht |= flag; 919 ieee80211_syncflag_ht_locked(ic, flag); 920 IEEE80211_UNLOCK(ic); 921 } 922 923 /* 924 * Synchronize flags_vht bit state in the com structure 925 * according to the state of all vap's. This is used, 926 * for example, to handle state changes via ioctls. 927 */ 928 static void 929 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 930 { 931 struct ieee80211vap *vap; 932 int bit; 933 934 IEEE80211_LOCK_ASSERT(ic); 935 936 bit = 0; 937 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 938 if (vap->iv_flags_vht & flag) { 939 bit = 1; 940 break; 941 } 942 if (bit) 943 ic->ic_flags_vht |= flag; 944 else 945 ic->ic_flags_vht &= ~flag; 946 } 947 948 void 949 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 950 { 951 struct ieee80211com *ic = vap->iv_ic; 952 953 IEEE80211_LOCK(ic); 954 if (flag < 0) { 955 flag = -flag; 956 vap->iv_flags_vht &= ~flag; 957 } else 958 vap->iv_flags_vht |= flag; 959 ieee80211_syncflag_vht_locked(ic, flag); 960 IEEE80211_UNLOCK(ic); 961 } 962 963 /* 964 * Synchronize flags_ext bit state in the com structure 965 * according to the state of all vap's. This is used, 966 * for example, to handle state changes via ioctls. 967 */ 968 static void 969 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 970 { 971 struct ieee80211vap *vap; 972 int bit; 973 974 IEEE80211_LOCK_ASSERT(ic); 975 976 bit = 0; 977 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 978 if (vap->iv_flags_ext & flag) { 979 bit = 1; 980 break; 981 } 982 if (bit) 983 ic->ic_flags_ext |= flag; 984 else 985 ic->ic_flags_ext &= ~flag; 986 } 987 988 void 989 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 990 { 991 struct ieee80211com *ic = vap->iv_ic; 992 993 IEEE80211_LOCK(ic); 994 if (flag < 0) { 995 flag = -flag; 996 vap->iv_flags_ext &= ~flag; 997 } else 998 vap->iv_flags_ext |= flag; 999 ieee80211_syncflag_ext_locked(ic, flag); 1000 IEEE80211_UNLOCK(ic); 1001 } 1002 1003 static __inline int 1004 mapgsm(u_int freq, u_int flags) 1005 { 1006 freq *= 10; 1007 if (flags & IEEE80211_CHAN_QUARTER) 1008 freq += 5; 1009 else if (flags & IEEE80211_CHAN_HALF) 1010 freq += 10; 1011 else 1012 freq += 20; 1013 /* NB: there is no 907/20 wide but leave room */ 1014 return (freq - 906*10) / 5; 1015 } 1016 1017 static __inline int 1018 mappsb(u_int freq, u_int flags) 1019 { 1020 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1021 } 1022 1023 /* 1024 * Convert MHz frequency to IEEE channel number. 1025 */ 1026 int 1027 ieee80211_mhz2ieee(u_int freq, u_int flags) 1028 { 1029 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1030 if (flags & IEEE80211_CHAN_GSM) 1031 return mapgsm(freq, flags); 1032 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1033 if (freq == 2484) 1034 return 14; 1035 if (freq < 2484) 1036 return ((int) freq - 2407) / 5; 1037 else 1038 return 15 + ((freq - 2512) / 20); 1039 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1040 if (freq <= 5000) { 1041 /* XXX check regdomain? */ 1042 if (IS_FREQ_IN_PSB(freq)) 1043 return mappsb(freq, flags); 1044 return (freq - 4000) / 5; 1045 } else 1046 return (freq - 5000) / 5; 1047 } else { /* either, guess */ 1048 if (freq == 2484) 1049 return 14; 1050 if (freq < 2484) { 1051 if (907 <= freq && freq <= 922) 1052 return mapgsm(freq, flags); 1053 return ((int) freq - 2407) / 5; 1054 } 1055 if (freq < 5000) { 1056 if (IS_FREQ_IN_PSB(freq)) 1057 return mappsb(freq, flags); 1058 else if (freq > 4900) 1059 return (freq - 4000) / 5; 1060 else 1061 return 15 + ((freq - 2512) / 20); 1062 } 1063 return (freq - 5000) / 5; 1064 } 1065 #undef IS_FREQ_IN_PSB 1066 } 1067 1068 /* 1069 * Convert channel to IEEE channel number. 1070 */ 1071 int 1072 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1073 { 1074 if (c == NULL) { 1075 ic_printf(ic, "invalid channel (NULL)\n"); 1076 return 0; /* XXX */ 1077 } 1078 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1079 } 1080 1081 /* 1082 * Convert IEEE channel number to MHz frequency. 1083 */ 1084 u_int 1085 ieee80211_ieee2mhz(u_int chan, u_int flags) 1086 { 1087 if (flags & IEEE80211_CHAN_GSM) 1088 return 907 + 5 * (chan / 10); 1089 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1090 if (chan == 14) 1091 return 2484; 1092 if (chan < 14) 1093 return 2407 + chan*5; 1094 else 1095 return 2512 + ((chan-15)*20); 1096 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1097 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1098 chan -= 37; 1099 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1100 } 1101 return 5000 + (chan*5); 1102 } else { /* either, guess */ 1103 /* XXX can't distinguish PSB+GSM channels */ 1104 if (chan == 14) 1105 return 2484; 1106 if (chan < 14) /* 0-13 */ 1107 return 2407 + chan*5; 1108 if (chan < 27) /* 15-26 */ 1109 return 2512 + ((chan-15)*20); 1110 return 5000 + (chan*5); 1111 } 1112 } 1113 1114 static __inline void 1115 set_extchan(struct ieee80211_channel *c) 1116 { 1117 1118 /* 1119 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1120 * "the secondary channel number shall be 'N + [1,-1] * 4' 1121 */ 1122 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1123 c->ic_extieee = c->ic_ieee + 4; 1124 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1125 c->ic_extieee = c->ic_ieee - 4; 1126 else 1127 c->ic_extieee = 0; 1128 } 1129 1130 /* 1131 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1132 * 1133 * This for now uses a hard-coded list of 80MHz wide channels. 1134 * 1135 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1136 * wide channel we've already decided upon. 1137 * 1138 * For VHT80 and VHT160, there are only a small number of fixed 1139 * 80/160MHz wide channels, so we just use those. 1140 * 1141 * This is all likely very very wrong - both the regulatory code 1142 * and this code needs to ensure that all four channels are 1143 * available and valid before the VHT80 (and eight for VHT160) channel 1144 * is created. 1145 */ 1146 1147 struct vht_chan_range { 1148 uint16_t freq_start; 1149 uint16_t freq_end; 1150 }; 1151 1152 struct vht_chan_range vht80_chan_ranges[] = { 1153 { 5170, 5250 }, 1154 { 5250, 5330 }, 1155 { 5490, 5570 }, 1156 { 5570, 5650 }, 1157 { 5650, 5730 }, 1158 { 5735, 5815 }, 1159 { 0, 0, } 1160 }; 1161 1162 static int 1163 set_vht_extchan(struct ieee80211_channel *c) 1164 { 1165 int i; 1166 1167 if (! IEEE80211_IS_CHAN_VHT(c)) { 1168 return (0); 1169 } 1170 1171 if (IEEE80211_IS_CHAN_VHT20(c)) { 1172 c->ic_vht_ch_freq1 = c->ic_ieee; 1173 return (1); 1174 } 1175 1176 if (IEEE80211_IS_CHAN_VHT40(c)) { 1177 if (IEEE80211_IS_CHAN_HT40U(c)) 1178 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1179 else if (IEEE80211_IS_CHAN_HT40D(c)) 1180 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1181 else 1182 return (0); 1183 return (1); 1184 } 1185 1186 if (IEEE80211_IS_CHAN_VHT80(c)) { 1187 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1188 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1189 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1190 int midpoint; 1191 1192 midpoint = vht80_chan_ranges[i].freq_start + 40; 1193 c->ic_vht_ch_freq1 = 1194 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1195 c->ic_vht_ch_freq2 = 0; 1196 #if 0 1197 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1198 __func__, c->ic_ieee, c->ic_freq, midpoint, 1199 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1200 #endif 1201 return (1); 1202 } 1203 } 1204 return (0); 1205 } 1206 1207 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1208 __func__, 1209 c->ic_ieee, 1210 c->ic_flags); 1211 1212 return (0); 1213 } 1214 1215 /* 1216 * Return whether the current channel could possibly be a part of 1217 * a VHT80 channel. 1218 * 1219 * This doesn't check that the whole range is in the allowed list 1220 * according to regulatory. 1221 */ 1222 static int 1223 is_vht80_valid_freq(uint16_t freq) 1224 { 1225 int i; 1226 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1227 if (freq >= vht80_chan_ranges[i].freq_start && 1228 freq < vht80_chan_ranges[i].freq_end) 1229 return (1); 1230 } 1231 return (0); 1232 } 1233 1234 static int 1235 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1236 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1237 { 1238 struct ieee80211_channel *c; 1239 1240 if (*nchans >= maxchans) 1241 return (ENOBUFS); 1242 1243 #if 0 1244 printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n", 1245 __func__, 1246 *nchans, 1247 ieee, 1248 freq, 1249 flags); 1250 #endif 1251 1252 c = &chans[(*nchans)++]; 1253 c->ic_ieee = ieee; 1254 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1255 c->ic_maxregpower = maxregpower; 1256 c->ic_maxpower = 2 * maxregpower; 1257 c->ic_flags = flags; 1258 c->ic_vht_ch_freq1 = 0; 1259 c->ic_vht_ch_freq2 = 0; 1260 set_extchan(c); 1261 set_vht_extchan(c); 1262 1263 return (0); 1264 } 1265 1266 static int 1267 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1268 uint32_t flags) 1269 { 1270 struct ieee80211_channel *c; 1271 1272 KASSERT(*nchans > 0, ("channel list is empty\n")); 1273 1274 if (*nchans >= maxchans) 1275 return (ENOBUFS); 1276 1277 #if 0 1278 printf("%s: %d: flags=0x%08x\n", 1279 __func__, 1280 *nchans, 1281 flags); 1282 #endif 1283 1284 c = &chans[(*nchans)++]; 1285 c[0] = c[-1]; 1286 c->ic_flags = flags; 1287 c->ic_vht_ch_freq1 = 0; 1288 c->ic_vht_ch_freq2 = 0; 1289 set_extchan(c); 1290 set_vht_extchan(c); 1291 1292 return (0); 1293 } 1294 1295 /* 1296 * XXX VHT-2GHz 1297 */ 1298 static void 1299 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40) 1300 { 1301 int nmodes; 1302 1303 nmodes = 0; 1304 if (isset(bands, IEEE80211_MODE_11B)) 1305 flags[nmodes++] = IEEE80211_CHAN_B; 1306 if (isset(bands, IEEE80211_MODE_11G)) 1307 flags[nmodes++] = IEEE80211_CHAN_G; 1308 if (isset(bands, IEEE80211_MODE_11NG)) 1309 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1310 if (ht40) { 1311 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1312 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1313 } 1314 flags[nmodes] = 0; 1315 } 1316 1317 static void 1318 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1319 { 1320 int nmodes; 1321 1322 /* 1323 * the addchan_list function seems to expect the flags array to 1324 * be in channel width order, so the VHT bits are interspersed 1325 * as appropriate to maintain said order. 1326 * 1327 * It also assumes HT40U is before HT40D. 1328 */ 1329 nmodes = 0; 1330 1331 /* 20MHz */ 1332 if (isset(bands, IEEE80211_MODE_11A)) 1333 flags[nmodes++] = IEEE80211_CHAN_A; 1334 if (isset(bands, IEEE80211_MODE_11NA)) 1335 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1336 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1337 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1338 IEEE80211_CHAN_VHT20; 1339 } 1340 1341 /* 40MHz */ 1342 if (ht40) { 1343 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1344 } 1345 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1346 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U 1347 | IEEE80211_CHAN_VHT40U; 1348 } 1349 if (ht40) { 1350 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1351 } 1352 if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1353 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D 1354 | IEEE80211_CHAN_VHT40D; 1355 } 1356 1357 /* 80MHz */ 1358 if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1359 flags[nmodes++] = IEEE80211_CHAN_A | 1360 IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; 1361 flags[nmodes++] = IEEE80211_CHAN_A | 1362 IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; 1363 } 1364 1365 /* XXX VHT80+80 */ 1366 /* XXX VHT160 */ 1367 flags[nmodes] = 0; 1368 } 1369 1370 static void 1371 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80) 1372 { 1373 1374 flags[0] = 0; 1375 if (isset(bands, IEEE80211_MODE_11A) || 1376 isset(bands, IEEE80211_MODE_11NA) || 1377 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1378 if (isset(bands, IEEE80211_MODE_11B) || 1379 isset(bands, IEEE80211_MODE_11G) || 1380 isset(bands, IEEE80211_MODE_11NG) || 1381 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1382 return; 1383 1384 getflags_5ghz(bands, flags, ht40, vht80); 1385 } else 1386 getflags_2ghz(bands, flags, ht40); 1387 } 1388 1389 /* 1390 * Add one 20 MHz channel into specified channel list. 1391 */ 1392 /* XXX VHT */ 1393 int 1394 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1395 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1396 uint32_t chan_flags, const uint8_t bands[]) 1397 { 1398 uint32_t flags[IEEE80211_MODE_MAX]; 1399 int i, error; 1400 1401 getflags(bands, flags, 0, 0); 1402 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1403 1404 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1405 flags[0] | chan_flags); 1406 for (i = 1; flags[i] != 0 && error == 0; i++) { 1407 error = copychan_prev(chans, maxchans, nchans, 1408 flags[i] | chan_flags); 1409 } 1410 1411 return (error); 1412 } 1413 1414 static struct ieee80211_channel * 1415 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1416 uint32_t flags) 1417 { 1418 struct ieee80211_channel *c; 1419 int i; 1420 1421 flags &= IEEE80211_CHAN_ALLTURBO; 1422 /* brute force search */ 1423 for (i = 0; i < nchans; i++) { 1424 c = &chans[i]; 1425 if (c->ic_freq == freq && 1426 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1427 return c; 1428 } 1429 return NULL; 1430 } 1431 1432 /* 1433 * Add 40 MHz channel pair into specified channel list. 1434 */ 1435 /* XXX VHT */ 1436 int 1437 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1438 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1439 { 1440 struct ieee80211_channel *cent, *extc; 1441 uint16_t freq; 1442 int error; 1443 1444 freq = ieee80211_ieee2mhz(ieee, flags); 1445 1446 /* 1447 * Each entry defines an HT40 channel pair; find the 1448 * center channel, then the extension channel above. 1449 */ 1450 flags |= IEEE80211_CHAN_HT20; 1451 cent = findchannel(chans, *nchans, freq, flags); 1452 if (cent == NULL) 1453 return (EINVAL); 1454 1455 extc = findchannel(chans, *nchans, freq + 20, flags); 1456 if (extc == NULL) 1457 return (ENOENT); 1458 1459 flags &= ~IEEE80211_CHAN_HT; 1460 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1461 maxregpower, flags | IEEE80211_CHAN_HT40U); 1462 if (error != 0) 1463 return (error); 1464 1465 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1466 maxregpower, flags | IEEE80211_CHAN_HT40D); 1467 1468 return (error); 1469 } 1470 1471 /* 1472 * Fetch the center frequency for the primary channel. 1473 */ 1474 uint32_t 1475 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1476 { 1477 1478 return (c->ic_freq); 1479 } 1480 1481 /* 1482 * Fetch the center frequency for the primary BAND channel. 1483 * 1484 * For 5, 10, 20MHz channels it'll be the normally configured channel 1485 * frequency. 1486 * 1487 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the 1488 * wide channel, not the centre of the primary channel (that's ic_freq). 1489 * 1490 * For 80+80MHz channels this will be the centre of the primary 1491 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1492 */ 1493 uint32_t 1494 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1495 { 1496 1497 /* 1498 * VHT - use the pre-calculated centre frequency 1499 * of the given channel. 1500 */ 1501 if (IEEE80211_IS_CHAN_VHT(c)) 1502 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1503 1504 if (IEEE80211_IS_CHAN_HT40U(c)) { 1505 return (c->ic_freq + 10); 1506 } 1507 if (IEEE80211_IS_CHAN_HT40D(c)) { 1508 return (c->ic_freq - 10); 1509 } 1510 1511 return (c->ic_freq); 1512 } 1513 1514 /* 1515 * For now, no 80+80 support; it will likely always return 0. 1516 */ 1517 uint32_t 1518 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1519 { 1520 1521 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1522 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1523 1524 return (0); 1525 } 1526 1527 /* 1528 * Adds channels into specified channel list (ieee[] array must be sorted). 1529 * Channels are already sorted. 1530 */ 1531 static int 1532 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1533 const uint8_t ieee[], int nieee, uint32_t flags[]) 1534 { 1535 uint16_t freq; 1536 int i, j, error; 1537 int is_vht; 1538 1539 for (i = 0; i < nieee; i++) { 1540 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1541 for (j = 0; flags[j] != 0; j++) { 1542 /* 1543 * Notes: 1544 * + HT40 and VHT40 channels occur together, so 1545 * we need to be careful that we actually allow that. 1546 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1547 * make sure it's not skipped because of the overlap 1548 * check used for (V)HT40. 1549 */ 1550 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1551 1552 /* 1553 * Test for VHT80. 1554 * XXX This is all very broken right now. 1555 * What we /should/ do is: 1556 * 1557 * + check that the frequency is in the list of 1558 * allowed VHT80 ranges; and 1559 * + the other 3 channels in the list are actually 1560 * also available. 1561 */ 1562 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1563 if (! is_vht80_valid_freq(freq)) 1564 continue; 1565 1566 /* 1567 * Test for (V)HT40. 1568 * 1569 * This is also a fall through from VHT80; as we only 1570 * allow a VHT80 channel if the VHT40 combination is 1571 * also valid. If the VHT40 form is not valid then 1572 * we certainly can't do VHT80.. 1573 */ 1574 if (flags[j] & IEEE80211_CHAN_HT40D) 1575 /* 1576 * Can't have a "lower" channel if we are the 1577 * first channel. 1578 * 1579 * Can't have a "lower" channel if it's below/ 1580 * within 20MHz of the first channel. 1581 * 1582 * Can't have a "lower" channel if the channel 1583 * below it is not 20MHz away. 1584 */ 1585 if (i == 0 || ieee[i] < ieee[0] + 4 || 1586 freq - 20 != 1587 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1588 continue; 1589 if (flags[j] & IEEE80211_CHAN_HT40U) 1590 /* 1591 * Can't have an "upper" channel if we are 1592 * the last channel. 1593 * 1594 * Can't have an "upper" channel be above the 1595 * last channel in the list. 1596 * 1597 * Can't have an "upper" channel if the next 1598 * channel according to the math isn't 20MHz 1599 * away. (Likely for channel 13/14.) 1600 */ 1601 if (i == nieee - 1 || 1602 ieee[i] + 4 > ieee[nieee - 1] || 1603 freq + 20 != 1604 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1605 continue; 1606 1607 if (j == 0) { 1608 error = addchan(chans, maxchans, nchans, 1609 ieee[i], freq, 0, flags[j]); 1610 } else { 1611 error = copychan_prev(chans, maxchans, nchans, 1612 flags[j]); 1613 } 1614 if (error != 0) 1615 return (error); 1616 } 1617 } 1618 1619 return (0); 1620 } 1621 1622 int 1623 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1624 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1625 int ht40) 1626 { 1627 uint32_t flags[IEEE80211_MODE_MAX]; 1628 1629 /* XXX no VHT for now */ 1630 getflags_2ghz(bands, flags, ht40); 1631 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1632 1633 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1634 } 1635 1636 int 1637 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1638 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1639 int ht40) 1640 { 1641 uint32_t flags[IEEE80211_MODE_MAX]; 1642 int vht80 = 0; 1643 1644 /* 1645 * For now, assume VHT == VHT80 support as a minimum. 1646 */ 1647 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1648 vht80 = 1; 1649 1650 getflags_5ghz(bands, flags, ht40, vht80); 1651 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1652 1653 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1654 } 1655 1656 /* 1657 * Locate a channel given a frequency+flags. We cache 1658 * the previous lookup to optimize switching between two 1659 * channels--as happens with dynamic turbo. 1660 */ 1661 struct ieee80211_channel * 1662 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1663 { 1664 struct ieee80211_channel *c; 1665 1666 flags &= IEEE80211_CHAN_ALLTURBO; 1667 c = ic->ic_prevchan; 1668 if (c != NULL && c->ic_freq == freq && 1669 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1670 return c; 1671 /* brute force search */ 1672 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1673 } 1674 1675 /* 1676 * Locate a channel given a channel number+flags. We cache 1677 * the previous lookup to optimize switching between two 1678 * channels--as happens with dynamic turbo. 1679 */ 1680 struct ieee80211_channel * 1681 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1682 { 1683 struct ieee80211_channel *c; 1684 int i; 1685 1686 flags &= IEEE80211_CHAN_ALLTURBO; 1687 c = ic->ic_prevchan; 1688 if (c != NULL && c->ic_ieee == ieee && 1689 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1690 return c; 1691 /* brute force search */ 1692 for (i = 0; i < ic->ic_nchans; i++) { 1693 c = &ic->ic_channels[i]; 1694 if (c->ic_ieee == ieee && 1695 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1696 return c; 1697 } 1698 return NULL; 1699 } 1700 1701 /* 1702 * Lookup a channel suitable for the given rx status. 1703 * 1704 * This is used to find a channel for a frame (eg beacon, probe 1705 * response) based purely on the received PHY information. 1706 * 1707 * For now it tries to do it based on R_FREQ / R_IEEE. 1708 * This is enough for 11bg and 11a (and thus 11ng/11na) 1709 * but it will not be enough for GSM, PSB channels and the 1710 * like. It also doesn't know about legacy-turbog and 1711 * legacy-turbo modes, which some offload NICs actually 1712 * support in weird ways. 1713 * 1714 * Takes the ic and rxstatus; returns the channel or NULL 1715 * if not found. 1716 * 1717 * XXX TODO: Add support for that when the need arises. 1718 */ 1719 struct ieee80211_channel * 1720 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1721 const struct ieee80211_rx_stats *rxs) 1722 { 1723 struct ieee80211com *ic = vap->iv_ic; 1724 uint32_t flags; 1725 struct ieee80211_channel *c; 1726 1727 if (rxs == NULL) 1728 return (NULL); 1729 1730 /* 1731 * Strictly speaking we only use freq for now, 1732 * however later on we may wish to just store 1733 * the ieee for verification. 1734 */ 1735 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1736 return (NULL); 1737 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1738 return (NULL); 1739 1740 /* 1741 * If the rx status contains a valid ieee/freq, then 1742 * ensure we populate the correct channel information 1743 * in rxchan before passing it up to the scan infrastructure. 1744 * Offload NICs will pass up beacons from all channels 1745 * during background scans. 1746 */ 1747 1748 /* Determine a band */ 1749 /* XXX should be done by the driver? */ 1750 if (rxs->c_freq < 3000) { 1751 flags = IEEE80211_CHAN_G; 1752 } else { 1753 flags = IEEE80211_CHAN_A; 1754 } 1755 1756 /* Channel lookup */ 1757 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1758 1759 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1760 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1761 __func__, 1762 (int) rxs->c_freq, 1763 (int) rxs->c_ieee, 1764 flags, 1765 c); 1766 1767 return (c); 1768 } 1769 1770 static void 1771 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1772 { 1773 #define ADD(_ic, _s, _o) \ 1774 ifmedia_add(media, \ 1775 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1776 static const u_int mopts[IEEE80211_MODE_MAX] = { 1777 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1778 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1779 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1780 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1781 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1782 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1783 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1784 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1785 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1786 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1787 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1788 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1789 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1790 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1791 }; 1792 u_int mopt; 1793 1794 mopt = mopts[mode]; 1795 if (addsta) 1796 ADD(ic, mword, mopt); /* STA mode has no cap */ 1797 if (caps & IEEE80211_C_IBSS) 1798 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1799 if (caps & IEEE80211_C_HOSTAP) 1800 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1801 if (caps & IEEE80211_C_AHDEMO) 1802 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1803 if (caps & IEEE80211_C_MONITOR) 1804 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1805 if (caps & IEEE80211_C_WDS) 1806 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1807 if (caps & IEEE80211_C_MBSS) 1808 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1809 #undef ADD 1810 } 1811 1812 /* 1813 * Setup the media data structures according to the channel and 1814 * rate tables. 1815 */ 1816 static int 1817 ieee80211_media_setup(struct ieee80211com *ic, 1818 struct ifmedia *media, int caps, int addsta, 1819 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1820 { 1821 int i, j, rate, maxrate, mword, r; 1822 enum ieee80211_phymode mode; 1823 const struct ieee80211_rateset *rs; 1824 struct ieee80211_rateset allrates; 1825 1826 /* 1827 * Fill in media characteristics. 1828 */ 1829 ifmedia_init(media, 0, media_change, media_stat); 1830 maxrate = 0; 1831 /* 1832 * Add media for legacy operating modes. 1833 */ 1834 memset(&allrates, 0, sizeof(allrates)); 1835 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1836 if (isclr(ic->ic_modecaps, mode)) 1837 continue; 1838 addmedia(media, caps, addsta, mode, IFM_AUTO); 1839 if (mode == IEEE80211_MODE_AUTO) 1840 continue; 1841 rs = &ic->ic_sup_rates[mode]; 1842 for (i = 0; i < rs->rs_nrates; i++) { 1843 rate = rs->rs_rates[i]; 1844 mword = ieee80211_rate2media(ic, rate, mode); 1845 if (mword == 0) 1846 continue; 1847 addmedia(media, caps, addsta, mode, mword); 1848 /* 1849 * Add legacy rate to the collection of all rates. 1850 */ 1851 r = rate & IEEE80211_RATE_VAL; 1852 for (j = 0; j < allrates.rs_nrates; j++) 1853 if (allrates.rs_rates[j] == r) 1854 break; 1855 if (j == allrates.rs_nrates) { 1856 /* unique, add to the set */ 1857 allrates.rs_rates[j] = r; 1858 allrates.rs_nrates++; 1859 } 1860 rate = (rate & IEEE80211_RATE_VAL) / 2; 1861 if (rate > maxrate) 1862 maxrate = rate; 1863 } 1864 } 1865 for (i = 0; i < allrates.rs_nrates; i++) { 1866 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1867 IEEE80211_MODE_AUTO); 1868 if (mword == 0) 1869 continue; 1870 /* NB: remove media options from mword */ 1871 addmedia(media, caps, addsta, 1872 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1873 } 1874 /* 1875 * Add HT/11n media. Note that we do not have enough 1876 * bits in the media subtype to express the MCS so we 1877 * use a "placeholder" media subtype and any fixed MCS 1878 * must be specified with a different mechanism. 1879 */ 1880 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1881 if (isclr(ic->ic_modecaps, mode)) 1882 continue; 1883 addmedia(media, caps, addsta, mode, IFM_AUTO); 1884 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1885 } 1886 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1887 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1888 addmedia(media, caps, addsta, 1889 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1890 i = ic->ic_txstream * 8 - 1; 1891 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1892 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1893 rate = ieee80211_htrates[i].ht40_rate_400ns; 1894 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1895 rate = ieee80211_htrates[i].ht40_rate_800ns; 1896 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1897 rate = ieee80211_htrates[i].ht20_rate_400ns; 1898 else 1899 rate = ieee80211_htrates[i].ht20_rate_800ns; 1900 if (rate > maxrate) 1901 maxrate = rate; 1902 } 1903 1904 /* 1905 * Add VHT media. 1906 */ 1907 for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) { 1908 if (isclr(ic->ic_modecaps, mode)) 1909 continue; 1910 addmedia(media, caps, addsta, mode, IFM_AUTO); 1911 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 1912 1913 /* XXX TODO: VHT maxrate */ 1914 } 1915 1916 return maxrate; 1917 } 1918 1919 /* XXX inline or eliminate? */ 1920 const struct ieee80211_rateset * 1921 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1922 { 1923 /* XXX does this work for 11ng basic rates? */ 1924 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1925 } 1926 1927 /* XXX inline or eliminate? */ 1928 const struct ieee80211_htrateset * 1929 ieee80211_get_suphtrates(struct ieee80211com *ic, 1930 const struct ieee80211_channel *c) 1931 { 1932 return &ic->ic_sup_htrates; 1933 } 1934 1935 void 1936 ieee80211_announce(struct ieee80211com *ic) 1937 { 1938 int i, rate, mword; 1939 enum ieee80211_phymode mode; 1940 const struct ieee80211_rateset *rs; 1941 1942 /* NB: skip AUTO since it has no rates */ 1943 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1944 if (isclr(ic->ic_modecaps, mode)) 1945 continue; 1946 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 1947 rs = &ic->ic_sup_rates[mode]; 1948 for (i = 0; i < rs->rs_nrates; i++) { 1949 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1950 if (mword == 0) 1951 continue; 1952 rate = ieee80211_media2rate(mword); 1953 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1954 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1955 } 1956 printf("\n"); 1957 } 1958 ieee80211_ht_announce(ic); 1959 ieee80211_vht_announce(ic); 1960 } 1961 1962 void 1963 ieee80211_announce_channels(struct ieee80211com *ic) 1964 { 1965 const struct ieee80211_channel *c; 1966 char type; 1967 int i, cw; 1968 1969 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1970 for (i = 0; i < ic->ic_nchans; i++) { 1971 c = &ic->ic_channels[i]; 1972 if (IEEE80211_IS_CHAN_ST(c)) 1973 type = 'S'; 1974 else if (IEEE80211_IS_CHAN_108A(c)) 1975 type = 'T'; 1976 else if (IEEE80211_IS_CHAN_108G(c)) 1977 type = 'G'; 1978 else if (IEEE80211_IS_CHAN_HT(c)) 1979 type = 'n'; 1980 else if (IEEE80211_IS_CHAN_A(c)) 1981 type = 'a'; 1982 else if (IEEE80211_IS_CHAN_ANYG(c)) 1983 type = 'g'; 1984 else if (IEEE80211_IS_CHAN_B(c)) 1985 type = 'b'; 1986 else 1987 type = 'f'; 1988 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1989 cw = 40; 1990 else if (IEEE80211_IS_CHAN_HALF(c)) 1991 cw = 10; 1992 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1993 cw = 5; 1994 else 1995 cw = 20; 1996 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1997 , c->ic_ieee, c->ic_freq, type 1998 , cw 1999 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2000 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2001 , c->ic_maxregpower 2002 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2003 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2004 ); 2005 } 2006 } 2007 2008 static int 2009 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2010 { 2011 switch (IFM_MODE(ime->ifm_media)) { 2012 case IFM_IEEE80211_11A: 2013 *mode = IEEE80211_MODE_11A; 2014 break; 2015 case IFM_IEEE80211_11B: 2016 *mode = IEEE80211_MODE_11B; 2017 break; 2018 case IFM_IEEE80211_11G: 2019 *mode = IEEE80211_MODE_11G; 2020 break; 2021 case IFM_IEEE80211_FH: 2022 *mode = IEEE80211_MODE_FH; 2023 break; 2024 case IFM_IEEE80211_11NA: 2025 *mode = IEEE80211_MODE_11NA; 2026 break; 2027 case IFM_IEEE80211_11NG: 2028 *mode = IEEE80211_MODE_11NG; 2029 break; 2030 case IFM_AUTO: 2031 *mode = IEEE80211_MODE_AUTO; 2032 break; 2033 default: 2034 return 0; 2035 } 2036 /* 2037 * Turbo mode is an ``option''. 2038 * XXX does not apply to AUTO 2039 */ 2040 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2041 if (*mode == IEEE80211_MODE_11A) { 2042 if (flags & IEEE80211_F_TURBOP) 2043 *mode = IEEE80211_MODE_TURBO_A; 2044 else 2045 *mode = IEEE80211_MODE_STURBO_A; 2046 } else if (*mode == IEEE80211_MODE_11G) 2047 *mode = IEEE80211_MODE_TURBO_G; 2048 else 2049 return 0; 2050 } 2051 /* XXX HT40 +/- */ 2052 return 1; 2053 } 2054 2055 /* 2056 * Handle a media change request on the vap interface. 2057 */ 2058 int 2059 ieee80211_media_change(struct ifnet *ifp) 2060 { 2061 struct ieee80211vap *vap = ifp->if_softc; 2062 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2063 uint16_t newmode; 2064 2065 if (!media2mode(ime, vap->iv_flags, &newmode)) 2066 return EINVAL; 2067 if (vap->iv_des_mode != newmode) { 2068 vap->iv_des_mode = newmode; 2069 /* XXX kick state machine if up+running */ 2070 } 2071 return 0; 2072 } 2073 2074 /* 2075 * Common code to calculate the media status word 2076 * from the operating mode and channel state. 2077 */ 2078 static int 2079 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2080 { 2081 int status; 2082 2083 status = IFM_IEEE80211; 2084 switch (opmode) { 2085 case IEEE80211_M_STA: 2086 break; 2087 case IEEE80211_M_IBSS: 2088 status |= IFM_IEEE80211_ADHOC; 2089 break; 2090 case IEEE80211_M_HOSTAP: 2091 status |= IFM_IEEE80211_HOSTAP; 2092 break; 2093 case IEEE80211_M_MONITOR: 2094 status |= IFM_IEEE80211_MONITOR; 2095 break; 2096 case IEEE80211_M_AHDEMO: 2097 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2098 break; 2099 case IEEE80211_M_WDS: 2100 status |= IFM_IEEE80211_WDS; 2101 break; 2102 case IEEE80211_M_MBSS: 2103 status |= IFM_IEEE80211_MBSS; 2104 break; 2105 } 2106 if (IEEE80211_IS_CHAN_HTA(chan)) { 2107 status |= IFM_IEEE80211_11NA; 2108 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2109 status |= IFM_IEEE80211_11NG; 2110 } else if (IEEE80211_IS_CHAN_A(chan)) { 2111 status |= IFM_IEEE80211_11A; 2112 } else if (IEEE80211_IS_CHAN_B(chan)) { 2113 status |= IFM_IEEE80211_11B; 2114 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2115 status |= IFM_IEEE80211_11G; 2116 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2117 status |= IFM_IEEE80211_FH; 2118 } 2119 /* XXX else complain? */ 2120 2121 if (IEEE80211_IS_CHAN_TURBO(chan)) 2122 status |= IFM_IEEE80211_TURBO; 2123 #if 0 2124 if (IEEE80211_IS_CHAN_HT20(chan)) 2125 status |= IFM_IEEE80211_HT20; 2126 if (IEEE80211_IS_CHAN_HT40(chan)) 2127 status |= IFM_IEEE80211_HT40; 2128 #endif 2129 return status; 2130 } 2131 2132 void 2133 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2134 { 2135 struct ieee80211vap *vap = ifp->if_softc; 2136 struct ieee80211com *ic = vap->iv_ic; 2137 enum ieee80211_phymode mode; 2138 2139 imr->ifm_status = IFM_AVALID; 2140 /* 2141 * NB: use the current channel's mode to lock down a xmit 2142 * rate only when running; otherwise we may have a mismatch 2143 * in which case the rate will not be convertible. 2144 */ 2145 if (vap->iv_state == IEEE80211_S_RUN || 2146 vap->iv_state == IEEE80211_S_SLEEP) { 2147 imr->ifm_status |= IFM_ACTIVE; 2148 mode = ieee80211_chan2mode(ic->ic_curchan); 2149 } else 2150 mode = IEEE80211_MODE_AUTO; 2151 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2152 /* 2153 * Calculate a current rate if possible. 2154 */ 2155 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2156 /* 2157 * A fixed rate is set, report that. 2158 */ 2159 imr->ifm_active |= ieee80211_rate2media(ic, 2160 vap->iv_txparms[mode].ucastrate, mode); 2161 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2162 /* 2163 * In station mode report the current transmit rate. 2164 */ 2165 imr->ifm_active |= ieee80211_rate2media(ic, 2166 vap->iv_bss->ni_txrate, mode); 2167 } else 2168 imr->ifm_active |= IFM_AUTO; 2169 if (imr->ifm_status & IFM_ACTIVE) 2170 imr->ifm_current = imr->ifm_active; 2171 } 2172 2173 /* 2174 * Set the current phy mode and recalculate the active channel 2175 * set based on the available channels for this mode. Also 2176 * select a new default/current channel if the current one is 2177 * inappropriate for this mode. 2178 */ 2179 int 2180 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2181 { 2182 /* 2183 * Adjust basic rates in 11b/11g supported rate set. 2184 * Note that if operating on a hal/quarter rate channel 2185 * this is a noop as those rates sets are different 2186 * and used instead. 2187 */ 2188 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2189 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2190 2191 ic->ic_curmode = mode; 2192 ieee80211_reset_erp(ic); /* reset ERP state */ 2193 2194 return 0; 2195 } 2196 2197 /* 2198 * Return the phy mode for with the specified channel. 2199 */ 2200 enum ieee80211_phymode 2201 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2202 { 2203 2204 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2205 return IEEE80211_MODE_VHT_2GHZ; 2206 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2207 return IEEE80211_MODE_VHT_5GHZ; 2208 else if (IEEE80211_IS_CHAN_HTA(chan)) 2209 return IEEE80211_MODE_11NA; 2210 else if (IEEE80211_IS_CHAN_HTG(chan)) 2211 return IEEE80211_MODE_11NG; 2212 else if (IEEE80211_IS_CHAN_108G(chan)) 2213 return IEEE80211_MODE_TURBO_G; 2214 else if (IEEE80211_IS_CHAN_ST(chan)) 2215 return IEEE80211_MODE_STURBO_A; 2216 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2217 return IEEE80211_MODE_TURBO_A; 2218 else if (IEEE80211_IS_CHAN_HALF(chan)) 2219 return IEEE80211_MODE_HALF; 2220 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2221 return IEEE80211_MODE_QUARTER; 2222 else if (IEEE80211_IS_CHAN_A(chan)) 2223 return IEEE80211_MODE_11A; 2224 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2225 return IEEE80211_MODE_11G; 2226 else if (IEEE80211_IS_CHAN_B(chan)) 2227 return IEEE80211_MODE_11B; 2228 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2229 return IEEE80211_MODE_FH; 2230 2231 /* NB: should not get here */ 2232 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2233 __func__, chan->ic_freq, chan->ic_flags); 2234 return IEEE80211_MODE_11B; 2235 } 2236 2237 struct ratemedia { 2238 u_int match; /* rate + mode */ 2239 u_int media; /* if_media rate */ 2240 }; 2241 2242 static int 2243 findmedia(const struct ratemedia rates[], int n, u_int match) 2244 { 2245 int i; 2246 2247 for (i = 0; i < n; i++) 2248 if (rates[i].match == match) 2249 return rates[i].media; 2250 return IFM_AUTO; 2251 } 2252 2253 /* 2254 * Convert IEEE80211 rate value to ifmedia subtype. 2255 * Rate is either a legacy rate in units of 0.5Mbps 2256 * or an MCS index. 2257 */ 2258 int 2259 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2260 { 2261 static const struct ratemedia rates[] = { 2262 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2263 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2264 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2265 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2266 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2267 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2268 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2269 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2270 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2271 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2272 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2273 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2274 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2275 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2276 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2277 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2278 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2279 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2280 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2281 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2282 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2283 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2284 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2285 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2286 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2287 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2288 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2289 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2290 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2291 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2292 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2293 }; 2294 static const struct ratemedia htrates[] = { 2295 { 0, IFM_IEEE80211_MCS }, 2296 { 1, IFM_IEEE80211_MCS }, 2297 { 2, IFM_IEEE80211_MCS }, 2298 { 3, IFM_IEEE80211_MCS }, 2299 { 4, IFM_IEEE80211_MCS }, 2300 { 5, IFM_IEEE80211_MCS }, 2301 { 6, IFM_IEEE80211_MCS }, 2302 { 7, IFM_IEEE80211_MCS }, 2303 { 8, IFM_IEEE80211_MCS }, 2304 { 9, IFM_IEEE80211_MCS }, 2305 { 10, IFM_IEEE80211_MCS }, 2306 { 11, IFM_IEEE80211_MCS }, 2307 { 12, IFM_IEEE80211_MCS }, 2308 { 13, IFM_IEEE80211_MCS }, 2309 { 14, IFM_IEEE80211_MCS }, 2310 { 15, IFM_IEEE80211_MCS }, 2311 { 16, IFM_IEEE80211_MCS }, 2312 { 17, IFM_IEEE80211_MCS }, 2313 { 18, IFM_IEEE80211_MCS }, 2314 { 19, IFM_IEEE80211_MCS }, 2315 { 20, IFM_IEEE80211_MCS }, 2316 { 21, IFM_IEEE80211_MCS }, 2317 { 22, IFM_IEEE80211_MCS }, 2318 { 23, IFM_IEEE80211_MCS }, 2319 { 24, IFM_IEEE80211_MCS }, 2320 { 25, IFM_IEEE80211_MCS }, 2321 { 26, IFM_IEEE80211_MCS }, 2322 { 27, IFM_IEEE80211_MCS }, 2323 { 28, IFM_IEEE80211_MCS }, 2324 { 29, IFM_IEEE80211_MCS }, 2325 { 30, IFM_IEEE80211_MCS }, 2326 { 31, IFM_IEEE80211_MCS }, 2327 { 32, IFM_IEEE80211_MCS }, 2328 { 33, IFM_IEEE80211_MCS }, 2329 { 34, IFM_IEEE80211_MCS }, 2330 { 35, IFM_IEEE80211_MCS }, 2331 { 36, IFM_IEEE80211_MCS }, 2332 { 37, IFM_IEEE80211_MCS }, 2333 { 38, IFM_IEEE80211_MCS }, 2334 { 39, IFM_IEEE80211_MCS }, 2335 { 40, IFM_IEEE80211_MCS }, 2336 { 41, IFM_IEEE80211_MCS }, 2337 { 42, IFM_IEEE80211_MCS }, 2338 { 43, IFM_IEEE80211_MCS }, 2339 { 44, IFM_IEEE80211_MCS }, 2340 { 45, IFM_IEEE80211_MCS }, 2341 { 46, IFM_IEEE80211_MCS }, 2342 { 47, IFM_IEEE80211_MCS }, 2343 { 48, IFM_IEEE80211_MCS }, 2344 { 49, IFM_IEEE80211_MCS }, 2345 { 50, IFM_IEEE80211_MCS }, 2346 { 51, IFM_IEEE80211_MCS }, 2347 { 52, IFM_IEEE80211_MCS }, 2348 { 53, IFM_IEEE80211_MCS }, 2349 { 54, IFM_IEEE80211_MCS }, 2350 { 55, IFM_IEEE80211_MCS }, 2351 { 56, IFM_IEEE80211_MCS }, 2352 { 57, IFM_IEEE80211_MCS }, 2353 { 58, IFM_IEEE80211_MCS }, 2354 { 59, IFM_IEEE80211_MCS }, 2355 { 60, IFM_IEEE80211_MCS }, 2356 { 61, IFM_IEEE80211_MCS }, 2357 { 62, IFM_IEEE80211_MCS }, 2358 { 63, IFM_IEEE80211_MCS }, 2359 { 64, IFM_IEEE80211_MCS }, 2360 { 65, IFM_IEEE80211_MCS }, 2361 { 66, IFM_IEEE80211_MCS }, 2362 { 67, IFM_IEEE80211_MCS }, 2363 { 68, IFM_IEEE80211_MCS }, 2364 { 69, IFM_IEEE80211_MCS }, 2365 { 70, IFM_IEEE80211_MCS }, 2366 { 71, IFM_IEEE80211_MCS }, 2367 { 72, IFM_IEEE80211_MCS }, 2368 { 73, IFM_IEEE80211_MCS }, 2369 { 74, IFM_IEEE80211_MCS }, 2370 { 75, IFM_IEEE80211_MCS }, 2371 { 76, IFM_IEEE80211_MCS }, 2372 }; 2373 int m; 2374 2375 /* 2376 * Check 11n rates first for match as an MCS. 2377 */ 2378 if (mode == IEEE80211_MODE_11NA) { 2379 if (rate & IEEE80211_RATE_MCS) { 2380 rate &= ~IEEE80211_RATE_MCS; 2381 m = findmedia(htrates, nitems(htrates), rate); 2382 if (m != IFM_AUTO) 2383 return m | IFM_IEEE80211_11NA; 2384 } 2385 } else if (mode == IEEE80211_MODE_11NG) { 2386 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2387 if (rate & IEEE80211_RATE_MCS) { 2388 rate &= ~IEEE80211_RATE_MCS; 2389 m = findmedia(htrates, nitems(htrates), rate); 2390 if (m != IFM_AUTO) 2391 return m | IFM_IEEE80211_11NG; 2392 } 2393 } 2394 rate &= IEEE80211_RATE_VAL; 2395 switch (mode) { 2396 case IEEE80211_MODE_11A: 2397 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2398 case IEEE80211_MODE_QUARTER: 2399 case IEEE80211_MODE_11NA: 2400 case IEEE80211_MODE_TURBO_A: 2401 case IEEE80211_MODE_STURBO_A: 2402 return findmedia(rates, nitems(rates), 2403 rate | IFM_IEEE80211_11A); 2404 case IEEE80211_MODE_11B: 2405 return findmedia(rates, nitems(rates), 2406 rate | IFM_IEEE80211_11B); 2407 case IEEE80211_MODE_FH: 2408 return findmedia(rates, nitems(rates), 2409 rate | IFM_IEEE80211_FH); 2410 case IEEE80211_MODE_AUTO: 2411 /* NB: ic may be NULL for some drivers */ 2412 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2413 return findmedia(rates, nitems(rates), 2414 rate | IFM_IEEE80211_FH); 2415 /* NB: hack, 11g matches both 11b+11a rates */ 2416 /* fall thru... */ 2417 case IEEE80211_MODE_11G: 2418 case IEEE80211_MODE_11NG: 2419 case IEEE80211_MODE_TURBO_G: 2420 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2421 case IEEE80211_MODE_VHT_2GHZ: 2422 case IEEE80211_MODE_VHT_5GHZ: 2423 /* XXX TODO: need to figure out mapping for VHT rates */ 2424 return IFM_AUTO; 2425 } 2426 return IFM_AUTO; 2427 } 2428 2429 int 2430 ieee80211_media2rate(int mword) 2431 { 2432 static const int ieeerates[] = { 2433 -1, /* IFM_AUTO */ 2434 0, /* IFM_MANUAL */ 2435 0, /* IFM_NONE */ 2436 2, /* IFM_IEEE80211_FH1 */ 2437 4, /* IFM_IEEE80211_FH2 */ 2438 2, /* IFM_IEEE80211_DS1 */ 2439 4, /* IFM_IEEE80211_DS2 */ 2440 11, /* IFM_IEEE80211_DS5 */ 2441 22, /* IFM_IEEE80211_DS11 */ 2442 44, /* IFM_IEEE80211_DS22 */ 2443 12, /* IFM_IEEE80211_OFDM6 */ 2444 18, /* IFM_IEEE80211_OFDM9 */ 2445 24, /* IFM_IEEE80211_OFDM12 */ 2446 36, /* IFM_IEEE80211_OFDM18 */ 2447 48, /* IFM_IEEE80211_OFDM24 */ 2448 72, /* IFM_IEEE80211_OFDM36 */ 2449 96, /* IFM_IEEE80211_OFDM48 */ 2450 108, /* IFM_IEEE80211_OFDM54 */ 2451 144, /* IFM_IEEE80211_OFDM72 */ 2452 0, /* IFM_IEEE80211_DS354k */ 2453 0, /* IFM_IEEE80211_DS512k */ 2454 6, /* IFM_IEEE80211_OFDM3 */ 2455 9, /* IFM_IEEE80211_OFDM4 */ 2456 54, /* IFM_IEEE80211_OFDM27 */ 2457 -1, /* IFM_IEEE80211_MCS */ 2458 -1, /* IFM_IEEE80211_VHT */ 2459 }; 2460 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2461 ieeerates[IFM_SUBTYPE(mword)] : 0; 2462 } 2463 2464 /* 2465 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2466 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2467 */ 2468 #define mix(a, b, c) \ 2469 do { \ 2470 a -= b; a -= c; a ^= (c >> 13); \ 2471 b -= c; b -= a; b ^= (a << 8); \ 2472 c -= a; c -= b; c ^= (b >> 13); \ 2473 a -= b; a -= c; a ^= (c >> 12); \ 2474 b -= c; b -= a; b ^= (a << 16); \ 2475 c -= a; c -= b; c ^= (b >> 5); \ 2476 a -= b; a -= c; a ^= (c >> 3); \ 2477 b -= c; b -= a; b ^= (a << 10); \ 2478 c -= a; c -= b; c ^= (b >> 15); \ 2479 } while (/*CONSTCOND*/0) 2480 2481 uint32_t 2482 ieee80211_mac_hash(const struct ieee80211com *ic, 2483 const uint8_t addr[IEEE80211_ADDR_LEN]) 2484 { 2485 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2486 2487 b += addr[5] << 8; 2488 b += addr[4]; 2489 a += addr[3] << 24; 2490 a += addr[2] << 16; 2491 a += addr[1] << 8; 2492 a += addr[0]; 2493 2494 mix(a, b, c); 2495 2496 return c; 2497 } 2498 #undef mix 2499 2500 char 2501 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2502 { 2503 if (IEEE80211_IS_CHAN_ST(c)) 2504 return 'S'; 2505 if (IEEE80211_IS_CHAN_108A(c)) 2506 return 'T'; 2507 if (IEEE80211_IS_CHAN_108G(c)) 2508 return 'G'; 2509 if (IEEE80211_IS_CHAN_VHT(c)) 2510 return 'v'; 2511 if (IEEE80211_IS_CHAN_HT(c)) 2512 return 'n'; 2513 if (IEEE80211_IS_CHAN_A(c)) 2514 return 'a'; 2515 if (IEEE80211_IS_CHAN_ANYG(c)) 2516 return 'g'; 2517 if (IEEE80211_IS_CHAN_B(c)) 2518 return 'b'; 2519 return 'f'; 2520 } 2521