1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211.c 336184 2018-07-10 23:30:19Z kevans $"); 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/malloc.h> 41 #include <sys/socket.h> 42 #include <sys/sbuf.h> 43 44 #include <machine/stdarg.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 #include <net/ethernet.h> 52 #include <net/vnet.h> 53 54 #include <net80211/ieee80211_var.h> 55 #include <net80211/ieee80211_regdomain.h> 56 #ifdef IEEE80211_SUPPORT_SUPERG 57 #include <net80211/ieee80211_superg.h> 58 #endif 59 #include <net80211/ieee80211_ratectl.h> 60 #include <net80211/ieee80211_vht.h> 61 62 #include <net/bpf.h> 63 64 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 65 [IEEE80211_MODE_AUTO] = "auto", 66 [IEEE80211_MODE_11A] = "11a", 67 [IEEE80211_MODE_11B] = "11b", 68 [IEEE80211_MODE_11G] = "11g", 69 [IEEE80211_MODE_FH] = "FH", 70 [IEEE80211_MODE_TURBO_A] = "turboA", 71 [IEEE80211_MODE_TURBO_G] = "turboG", 72 [IEEE80211_MODE_STURBO_A] = "sturboA", 73 [IEEE80211_MODE_HALF] = "half", 74 [IEEE80211_MODE_QUARTER] = "quarter", 75 [IEEE80211_MODE_11NA] = "11na", 76 [IEEE80211_MODE_11NG] = "11ng", 77 [IEEE80211_MODE_VHT_2GHZ] = "11acg", 78 [IEEE80211_MODE_VHT_5GHZ] = "11ac", 79 }; 80 /* map ieee80211_opmode to the corresponding capability bit */ 81 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 82 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 83 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 84 [IEEE80211_M_STA] = IEEE80211_C_STA, 85 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 86 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 87 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 88 #ifdef IEEE80211_SUPPORT_MESH 89 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 90 #endif 91 }; 92 93 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 94 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 95 96 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 97 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 98 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 99 static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); 100 static int ieee80211_media_setup(struct ieee80211com *ic, 101 struct ifmedia *media, int caps, int addsta, 102 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 103 static int media_status(enum ieee80211_opmode, 104 const struct ieee80211_channel *); 105 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); 106 107 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); 108 109 /* 110 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 111 */ 112 #define B(r) ((r) | IEEE80211_RATE_BASIC) 113 static const struct ieee80211_rateset ieee80211_rateset_11a = 114 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 115 static const struct ieee80211_rateset ieee80211_rateset_half = 116 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 117 static const struct ieee80211_rateset ieee80211_rateset_quarter = 118 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 119 static const struct ieee80211_rateset ieee80211_rateset_11b = 120 { 4, { B(2), B(4), B(11), B(22) } }; 121 /* NB: OFDM rates are handled specially based on mode */ 122 static const struct ieee80211_rateset ieee80211_rateset_11g = 123 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 124 #undef B 125 126 static int set_vht_extchan(struct ieee80211_channel *c); 127 128 /* 129 * Fill in 802.11 available channel set, mark 130 * all available channels as active, and pick 131 * a default channel if not already specified. 132 */ 133 void 134 ieee80211_chan_init(struct ieee80211com *ic) 135 { 136 #define DEFAULTRATES(m, def) do { \ 137 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 138 ic->ic_sup_rates[m] = def; \ 139 } while (0) 140 struct ieee80211_channel *c; 141 int i; 142 143 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 144 ("invalid number of channels specified: %u", ic->ic_nchans)); 145 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 146 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 147 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 148 for (i = 0; i < ic->ic_nchans; i++) { 149 c = &ic->ic_channels[i]; 150 KASSERT(c->ic_flags != 0, ("channel with no flags")); 151 /* 152 * Help drivers that work only with frequencies by filling 153 * in IEEE channel #'s if not already calculated. Note this 154 * mimics similar work done in ieee80211_setregdomain when 155 * changing regulatory state. 156 */ 157 if (c->ic_ieee == 0) 158 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 159 160 /* 161 * Setup the HT40/VHT40 upper/lower bits. 162 * The VHT80/... math is done elsewhere. 163 */ 164 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 165 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 166 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 167 c->ic_flags); 168 169 /* Update VHT math */ 170 /* 171 * XXX VHT again, note that this assumes VHT80/... channels 172 * are legit already. 173 */ 174 set_vht_extchan(c); 175 176 /* default max tx power to max regulatory */ 177 if (c->ic_maxpower == 0) 178 c->ic_maxpower = 2*c->ic_maxregpower; 179 setbit(ic->ic_chan_avail, c->ic_ieee); 180 /* 181 * Identify mode capabilities. 182 */ 183 if (IEEE80211_IS_CHAN_A(c)) 184 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 185 if (IEEE80211_IS_CHAN_B(c)) 186 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 187 if (IEEE80211_IS_CHAN_ANYG(c)) 188 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 189 if (IEEE80211_IS_CHAN_FHSS(c)) 190 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 191 if (IEEE80211_IS_CHAN_108A(c)) 192 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 193 if (IEEE80211_IS_CHAN_108G(c)) 194 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 195 if (IEEE80211_IS_CHAN_ST(c)) 196 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 197 if (IEEE80211_IS_CHAN_HALF(c)) 198 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 199 if (IEEE80211_IS_CHAN_QUARTER(c)) 200 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 201 if (IEEE80211_IS_CHAN_HTA(c)) 202 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 203 if (IEEE80211_IS_CHAN_HTG(c)) 204 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 205 if (IEEE80211_IS_CHAN_VHTA(c)) 206 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); 207 if (IEEE80211_IS_CHAN_VHTG(c)) 208 setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); 209 } 210 /* initialize candidate channels to all available */ 211 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 212 sizeof(ic->ic_chan_avail)); 213 214 /* sort channel table to allow lookup optimizations */ 215 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 216 217 /* invalidate any previous state */ 218 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 219 ic->ic_prevchan = NULL; 220 ic->ic_csa_newchan = NULL; 221 /* arbitrarily pick the first channel */ 222 ic->ic_curchan = &ic->ic_channels[0]; 223 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 224 225 /* fillin well-known rate sets if driver has not specified */ 226 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 227 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 228 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 229 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 230 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 231 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 232 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 233 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 234 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 235 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 236 DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); 237 DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); 238 239 /* 240 * Setup required information to fill the mcsset field, if driver did 241 * not. Assume a 2T2R setup for historic reasons. 242 */ 243 if (ic->ic_rxstream == 0) 244 ic->ic_rxstream = 2; 245 if (ic->ic_txstream == 0) 246 ic->ic_txstream = 2; 247 248 ieee80211_init_suphtrates(ic); 249 250 /* 251 * Set auto mode to reset active channel state and any desired channel. 252 */ 253 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 254 #undef DEFAULTRATES 255 } 256 257 static void 258 null_update_mcast(struct ieee80211com *ic) 259 { 260 261 ic_printf(ic, "need multicast update callback\n"); 262 } 263 264 static void 265 null_update_promisc(struct ieee80211com *ic) 266 { 267 268 ic_printf(ic, "need promiscuous mode update callback\n"); 269 } 270 271 static void 272 null_update_chw(struct ieee80211com *ic) 273 { 274 275 ic_printf(ic, "%s: need callback\n", __func__); 276 } 277 278 int 279 ic_printf(struct ieee80211com *ic, const char * fmt, ...) 280 { 281 va_list ap; 282 int retval; 283 284 retval = printf("%s: ", ic->ic_name); 285 va_start(ap, fmt); 286 retval += vprintf(fmt, ap); 287 va_end(ap); 288 return (retval); 289 } 290 291 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); 292 static struct mtx ic_list_mtx; 293 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); 294 295 static int 296 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) 297 { 298 struct ieee80211com *ic; 299 struct sbuf sb; 300 char *sp; 301 int error; 302 303 error = sysctl_wire_old_buffer(req, 0); 304 if (error) 305 return (error); 306 #ifndef __HAIKU__ 307 // sysctl not used in Haiku, no need to fill the reply 308 sbuf_new_for_sysctl(&sb, NULL, 8, req); 309 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 310 sp = ""; 311 mtx_lock(&ic_list_mtx); 312 LIST_FOREACH(ic, &ic_head, ic_next) { 313 sbuf_printf(&sb, "%s%s", sp, ic->ic_name); 314 sp = " "; 315 } 316 mtx_unlock(&ic_list_mtx); 317 error = sbuf_finish(&sb); 318 sbuf_delete(&sb); 319 #endif 320 return (error); 321 } 322 323 SYSCTL_PROC(_net_wlan, OID_AUTO, devices, 324 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 325 sysctl_ieee80211coms, "A", "names of available 802.11 devices"); 326 327 /* 328 * Attach/setup the common net80211 state. Called by 329 * the driver on attach to prior to creating any vap's. 330 */ 331 void 332 ieee80211_ifattach(struct ieee80211com *ic) 333 { 334 335 IEEE80211_LOCK_INIT(ic, ic->ic_name); 336 IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); 337 TAILQ_INIT(&ic->ic_vaps); 338 339 /* Create a taskqueue for all state changes */ 340 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 341 taskqueue_thread_enqueue, &ic->ic_tq); 342 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", 343 ic->ic_name); 344 ic->ic_ierrors = counter_u64_alloc(M_WAITOK); 345 ic->ic_oerrors = counter_u64_alloc(M_WAITOK); 346 /* 347 * Fill in 802.11 available channel set, mark all 348 * available channels as active, and pick a default 349 * channel if not already specified. 350 */ 351 ieee80211_chan_init(ic); 352 353 ic->ic_update_mcast = null_update_mcast; 354 ic->ic_update_promisc = null_update_promisc; 355 ic->ic_update_chw = null_update_chw; 356 357 ic->ic_hash_key = arc4random(); 358 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 359 ic->ic_lintval = ic->ic_bintval; 360 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 361 362 ieee80211_crypto_attach(ic); 363 ieee80211_node_attach(ic); 364 ieee80211_power_attach(ic); 365 ieee80211_proto_attach(ic); 366 #ifdef IEEE80211_SUPPORT_SUPERG 367 ieee80211_superg_attach(ic); 368 #endif 369 ieee80211_ht_attach(ic); 370 ieee80211_vht_attach(ic); 371 ieee80211_scan_attach(ic); 372 ieee80211_regdomain_attach(ic); 373 ieee80211_dfs_attach(ic); 374 375 ieee80211_sysctl_attach(ic); 376 377 mtx_lock(&ic_list_mtx); 378 LIST_INSERT_HEAD(&ic_head, ic, ic_next); 379 mtx_unlock(&ic_list_mtx); 380 } 381 382 /* 383 * Detach net80211 state on device detach. Tear down 384 * all vap's and reclaim all common state prior to the 385 * device state going away. Note we may call back into 386 * driver; it must be prepared for this. 387 */ 388 void 389 ieee80211_ifdetach(struct ieee80211com *ic) 390 { 391 struct ieee80211vap *vap; 392 393 /* 394 * We use this as an indicator that ifattach never had a chance to be 395 * called, e.g. early driver attach failed and ifdetach was called 396 * during subsequent detach. Never fear, for we have nothing to do 397 * here. 398 */ 399 if (ic->ic_tq == NULL) 400 return; 401 402 mtx_lock(&ic_list_mtx); 403 LIST_REMOVE(ic, ic_next); 404 mtx_unlock(&ic_list_mtx); 405 406 taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); 407 408 /* 409 * The VAP is responsible for setting and clearing 410 * the VIMAGE context. 411 */ 412 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { 413 ieee80211_com_vdetach(vap); 414 ieee80211_vap_destroy(vap); 415 } 416 ieee80211_waitfor_parent(ic); 417 418 ieee80211_sysctl_detach(ic); 419 ieee80211_dfs_detach(ic); 420 ieee80211_regdomain_detach(ic); 421 ieee80211_scan_detach(ic); 422 #ifdef IEEE80211_SUPPORT_SUPERG 423 ieee80211_superg_detach(ic); 424 #endif 425 ieee80211_vht_detach(ic); 426 ieee80211_ht_detach(ic); 427 /* NB: must be called before ieee80211_node_detach */ 428 ieee80211_proto_detach(ic); 429 ieee80211_crypto_detach(ic); 430 ieee80211_power_detach(ic); 431 ieee80211_node_detach(ic); 432 433 counter_u64_free(ic->ic_ierrors); 434 counter_u64_free(ic->ic_oerrors); 435 436 taskqueue_free(ic->ic_tq); 437 IEEE80211_TX_LOCK_DESTROY(ic); 438 IEEE80211_LOCK_DESTROY(ic); 439 } 440 441 struct ieee80211com * 442 ieee80211_find_com(const char *name) 443 { 444 struct ieee80211com *ic; 445 446 mtx_lock(&ic_list_mtx); 447 LIST_FOREACH(ic, &ic_head, ic_next) 448 if (strcmp(ic->ic_name, name) == 0) 449 break; 450 mtx_unlock(&ic_list_mtx); 451 452 return (ic); 453 } 454 455 void 456 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) 457 { 458 struct ieee80211com *ic; 459 460 mtx_lock(&ic_list_mtx); 461 LIST_FOREACH(ic, &ic_head, ic_next) 462 (*f)(arg, ic); 463 mtx_unlock(&ic_list_mtx); 464 } 465 466 /* 467 * Default reset method for use with the ioctl support. This 468 * method is invoked after any state change in the 802.11 469 * layer that should be propagated to the hardware but not 470 * require re-initialization of the 802.11 state machine (e.g 471 * rescanning for an ap). We always return ENETRESET which 472 * should cause the driver to re-initialize the device. Drivers 473 * can override this method to implement more optimized support. 474 */ 475 static int 476 default_reset(struct ieee80211vap *vap, u_long cmd) 477 { 478 return ENETRESET; 479 } 480 481 /* 482 * Default for updating the VAP default TX key index. 483 * 484 * Drivers that support TX offload as well as hardware encryption offload 485 * may need to be informed of key index changes separate from the key 486 * update. 487 */ 488 static void 489 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) 490 { 491 492 /* XXX assert validity */ 493 /* XXX assert we're in a key update block */ 494 vap->iv_def_txkey = kid; 495 } 496 497 /* 498 * Add underlying device errors to vap errors. 499 */ 500 static uint64_t 501 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) 502 { 503 struct ieee80211vap *vap = ifp->if_softc; 504 struct ieee80211com *ic = vap->iv_ic; 505 uint64_t rv; 506 507 rv = if_get_counter_default(ifp, cnt); 508 switch (cnt) { 509 case IFCOUNTER_OERRORS: 510 rv += counter_u64_fetch(ic->ic_oerrors); 511 break; 512 case IFCOUNTER_IERRORS: 513 rv += counter_u64_fetch(ic->ic_ierrors); 514 break; 515 default: 516 break; 517 } 518 519 return (rv); 520 } 521 522 /* 523 * Prepare a vap for use. Drivers use this call to 524 * setup net80211 state in new vap's prior attaching 525 * them with ieee80211_vap_attach (below). 526 */ 527 int 528 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 529 const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, 530 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) 531 { 532 struct ifnet *ifp; 533 534 ifp = if_alloc(IFT_ETHER); 535 if (ifp == NULL) { 536 ic_printf(ic, "%s: unable to allocate ifnet\n", __func__); 537 return ENOMEM; 538 } 539 if_initname(ifp, name, unit); 540 ifp->if_softc = vap; /* back pointer */ 541 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 542 ifp->if_transmit = ieee80211_vap_transmit; 543 ifp->if_qflush = ieee80211_vap_qflush; 544 ifp->if_ioctl = ieee80211_ioctl; 545 ifp->if_init = ieee80211_init; 546 ifp->if_get_counter = ieee80211_get_counter; 547 548 vap->iv_ifp = ifp; 549 vap->iv_ic = ic; 550 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 551 vap->iv_flags_ext = ic->ic_flags_ext; 552 vap->iv_flags_ven = ic->ic_flags_ven; 553 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 554 555 /* 11n capabilities - XXX methodize */ 556 vap->iv_htcaps = ic->ic_htcaps; 557 vap->iv_htextcaps = ic->ic_htextcaps; 558 559 /* 11ac capabilities - XXX methodize */ 560 vap->iv_vhtcaps = ic->ic_vhtcaps; 561 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 562 563 vap->iv_opmode = opmode; 564 vap->iv_caps |= ieee80211_opcap[opmode]; 565 IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); 566 switch (opmode) { 567 case IEEE80211_M_WDS: 568 /* 569 * WDS links must specify the bssid of the far end. 570 * For legacy operation this is a static relationship. 571 * For non-legacy operation the station must associate 572 * and be authorized to pass traffic. Plumbing the 573 * vap to the proper node happens when the vap 574 * transitions to RUN state. 575 */ 576 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 577 vap->iv_flags |= IEEE80211_F_DESBSSID; 578 if (flags & IEEE80211_CLONE_WDSLEGACY) 579 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 580 break; 581 #ifdef IEEE80211_SUPPORT_TDMA 582 case IEEE80211_M_AHDEMO: 583 if (flags & IEEE80211_CLONE_TDMA) { 584 /* NB: checked before clone operation allowed */ 585 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 586 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 587 /* 588 * Propagate TDMA capability to mark vap; this 589 * cannot be removed and is used to distinguish 590 * regular ahdemo operation from ahdemo+tdma. 591 */ 592 vap->iv_caps |= IEEE80211_C_TDMA; 593 } 594 break; 595 #endif 596 default: 597 break; 598 } 599 /* auto-enable s/w beacon miss support */ 600 if (flags & IEEE80211_CLONE_NOBEACONS) 601 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 602 /* auto-generated or user supplied MAC address */ 603 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 604 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 605 /* 606 * Enable various functionality by default if we're 607 * capable; the driver can override us if it knows better. 608 */ 609 if (vap->iv_caps & IEEE80211_C_WME) 610 vap->iv_flags |= IEEE80211_F_WME; 611 if (vap->iv_caps & IEEE80211_C_BURST) 612 vap->iv_flags |= IEEE80211_F_BURST; 613 /* NB: bg scanning only makes sense for station mode right now */ 614 if (vap->iv_opmode == IEEE80211_M_STA && 615 (vap->iv_caps & IEEE80211_C_BGSCAN)) 616 vap->iv_flags |= IEEE80211_F_BGSCAN; 617 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 618 /* NB: DFS support only makes sense for ap mode right now */ 619 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 620 (vap->iv_caps & IEEE80211_C_DFS)) 621 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 622 /* NB: only flip on U-APSD for hostap/sta for now */ 623 if ((vap->iv_opmode == IEEE80211_M_STA) 624 || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { 625 if (vap->iv_caps & IEEE80211_C_UAPSD) 626 vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; 627 } 628 629 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 630 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 631 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 632 /* 633 * Install a default reset method for the ioctl support; 634 * the driver can override this. 635 */ 636 vap->iv_reset = default_reset; 637 638 /* 639 * Install a default crypto key update method, the driver 640 * can override this. 641 */ 642 vap->iv_update_deftxkey = default_update_deftxkey; 643 644 ieee80211_sysctl_vattach(vap); 645 ieee80211_crypto_vattach(vap); 646 ieee80211_node_vattach(vap); 647 ieee80211_power_vattach(vap); 648 ieee80211_proto_vattach(vap); 649 #ifdef IEEE80211_SUPPORT_SUPERG 650 ieee80211_superg_vattach(vap); 651 #endif 652 ieee80211_ht_vattach(vap); 653 ieee80211_vht_vattach(vap); 654 ieee80211_scan_vattach(vap); 655 ieee80211_regdomain_vattach(vap); 656 ieee80211_radiotap_vattach(vap); 657 ieee80211_vap_reset_erp(vap); 658 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 659 660 return 0; 661 } 662 663 /* 664 * Activate a vap. State should have been prepared with a 665 * call to ieee80211_vap_setup and by the driver. On return 666 * from this call the vap is ready for use. 667 */ 668 int 669 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, 670 ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) 671 { 672 struct ifnet *ifp = vap->iv_ifp; 673 struct ieee80211com *ic = vap->iv_ic; 674 struct ifmediareq imr; 675 int maxrate; 676 677 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 678 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 679 __func__, ieee80211_opmode_name[vap->iv_opmode], 680 ic->ic_name, vap->iv_flags, vap->iv_flags_ext); 681 682 /* 683 * Do late attach work that cannot happen until after 684 * the driver has had a chance to override defaults. 685 */ 686 ieee80211_node_latevattach(vap); 687 ieee80211_power_latevattach(vap); 688 689 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 690 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 691 ieee80211_media_status(ifp, &imr); 692 /* NB: strip explicit mode; we're actually in autoselect */ 693 ifmedia_set(&vap->iv_media, 694 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 695 if (maxrate) 696 ifp->if_baudrate = IF_Mbps(maxrate); 697 698 ether_ifattach(ifp, macaddr); 699 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); 700 /* hook output method setup by ether_ifattach */ 701 vap->iv_output = ifp->if_output; 702 ifp->if_output = ieee80211_output; 703 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 704 705 IEEE80211_LOCK(ic); 706 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 707 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 708 #ifdef IEEE80211_SUPPORT_SUPERG 709 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 710 #endif 711 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 712 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 713 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 714 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 715 716 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 717 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 718 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 719 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 720 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 721 IEEE80211_UNLOCK(ic); 722 723 return 1; 724 } 725 726 /* 727 * Tear down vap state and reclaim the ifnet. 728 * The driver is assumed to have prepared for 729 * this; e.g. by turning off interrupts for the 730 * underlying device. 731 */ 732 void 733 ieee80211_vap_detach(struct ieee80211vap *vap) 734 { 735 struct ieee80211com *ic = vap->iv_ic; 736 struct ifnet *ifp = vap->iv_ifp; 737 738 CURVNET_SET(ifp->if_vnet); 739 740 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 741 __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); 742 743 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 744 ether_ifdetach(ifp); 745 746 ieee80211_stop(vap); 747 748 /* 749 * Flush any deferred vap tasks. 750 */ 751 ieee80211_draintask(ic, &vap->iv_nstate_task); 752 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 753 ieee80211_draintask(ic, &vap->iv_wme_task); 754 ieee80211_draintask(ic, &ic->ic_parent_task); 755 756 /* XXX band-aid until ifnet handles this for us */ 757 taskqueue_drain(taskqueue_swi, &ifp->if_linktask); 758 759 IEEE80211_LOCK(ic); 760 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 761 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 762 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 763 #ifdef IEEE80211_SUPPORT_SUPERG 764 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 765 #endif 766 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 767 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 768 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 769 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 770 771 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); 772 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); 773 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); 774 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); 775 ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); 776 777 /* NB: this handles the bpfdetach done below */ 778 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 779 if (vap->iv_ifflags & IFF_PROMISC) 780 ieee80211_promisc(vap, false); 781 if (vap->iv_ifflags & IFF_ALLMULTI) 782 ieee80211_allmulti(vap, false); 783 IEEE80211_UNLOCK(ic); 784 785 ifmedia_removeall(&vap->iv_media); 786 787 ieee80211_radiotap_vdetach(vap); 788 ieee80211_regdomain_vdetach(vap); 789 ieee80211_scan_vdetach(vap); 790 #ifdef IEEE80211_SUPPORT_SUPERG 791 ieee80211_superg_vdetach(vap); 792 #endif 793 ieee80211_vht_vdetach(vap); 794 ieee80211_ht_vdetach(vap); 795 /* NB: must be before ieee80211_node_vdetach */ 796 ieee80211_proto_vdetach(vap); 797 ieee80211_crypto_vdetach(vap); 798 ieee80211_power_vdetach(vap); 799 ieee80211_node_vdetach(vap); 800 ieee80211_sysctl_vdetach(vap); 801 802 if_free(ifp); 803 804 CURVNET_RESTORE(); 805 } 806 807 /* 808 * Count number of vaps in promisc, and issue promisc on 809 * parent respectively. 810 */ 811 void 812 ieee80211_promisc(struct ieee80211vap *vap, bool on) 813 { 814 struct ieee80211com *ic = vap->iv_ic; 815 816 IEEE80211_LOCK_ASSERT(ic); 817 818 if (on) { 819 if (++ic->ic_promisc == 1) 820 ieee80211_runtask(ic, &ic->ic_promisc_task); 821 } else { 822 KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", 823 __func__, ic)); 824 if (--ic->ic_promisc == 0) 825 ieee80211_runtask(ic, &ic->ic_promisc_task); 826 } 827 } 828 829 /* 830 * Count number of vaps in allmulti, and issue allmulti on 831 * parent respectively. 832 */ 833 void 834 ieee80211_allmulti(struct ieee80211vap *vap, bool on) 835 { 836 struct ieee80211com *ic = vap->iv_ic; 837 838 IEEE80211_LOCK_ASSERT(ic); 839 840 if (on) { 841 if (++ic->ic_allmulti == 1) 842 ieee80211_runtask(ic, &ic->ic_mcast_task); 843 } else { 844 KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", 845 __func__, ic)); 846 if (--ic->ic_allmulti == 0) 847 ieee80211_runtask(ic, &ic->ic_mcast_task); 848 } 849 } 850 851 /* 852 * Synchronize flag bit state in the com structure 853 * according to the state of all vap's. This is used, 854 * for example, to handle state changes via ioctls. 855 */ 856 static void 857 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 858 { 859 struct ieee80211vap *vap; 860 int bit; 861 862 IEEE80211_LOCK_ASSERT(ic); 863 864 bit = 0; 865 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 866 if (vap->iv_flags & flag) { 867 bit = 1; 868 break; 869 } 870 if (bit) 871 ic->ic_flags |= flag; 872 else 873 ic->ic_flags &= ~flag; 874 } 875 876 void 877 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 878 { 879 struct ieee80211com *ic = vap->iv_ic; 880 881 IEEE80211_LOCK(ic); 882 if (flag < 0) { 883 flag = -flag; 884 vap->iv_flags &= ~flag; 885 } else 886 vap->iv_flags |= flag; 887 ieee80211_syncflag_locked(ic, flag); 888 IEEE80211_UNLOCK(ic); 889 } 890 891 /* 892 * Synchronize flags_ht bit state in the com structure 893 * according to the state of all vap's. This is used, 894 * for example, to handle state changes via ioctls. 895 */ 896 static void 897 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 898 { 899 struct ieee80211vap *vap; 900 int bit; 901 902 IEEE80211_LOCK_ASSERT(ic); 903 904 bit = 0; 905 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 906 if (vap->iv_flags_ht & flag) { 907 bit = 1; 908 break; 909 } 910 if (bit) 911 ic->ic_flags_ht |= flag; 912 else 913 ic->ic_flags_ht &= ~flag; 914 } 915 916 void 917 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 918 { 919 struct ieee80211com *ic = vap->iv_ic; 920 921 IEEE80211_LOCK(ic); 922 if (flag < 0) { 923 flag = -flag; 924 vap->iv_flags_ht &= ~flag; 925 } else 926 vap->iv_flags_ht |= flag; 927 ieee80211_syncflag_ht_locked(ic, flag); 928 IEEE80211_UNLOCK(ic); 929 } 930 931 /* 932 * Synchronize flags_vht bit state in the com structure 933 * according to the state of all vap's. This is used, 934 * for example, to handle state changes via ioctls. 935 */ 936 static void 937 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) 938 { 939 struct ieee80211vap *vap; 940 int bit; 941 942 IEEE80211_LOCK_ASSERT(ic); 943 944 bit = 0; 945 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 946 if (vap->iv_flags_vht & flag) { 947 bit = 1; 948 break; 949 } 950 if (bit) 951 ic->ic_flags_vht |= flag; 952 else 953 ic->ic_flags_vht &= ~flag; 954 } 955 956 void 957 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) 958 { 959 struct ieee80211com *ic = vap->iv_ic; 960 961 IEEE80211_LOCK(ic); 962 if (flag < 0) { 963 flag = -flag; 964 vap->iv_flags_vht &= ~flag; 965 } else 966 vap->iv_flags_vht |= flag; 967 ieee80211_syncflag_vht_locked(ic, flag); 968 IEEE80211_UNLOCK(ic); 969 } 970 971 /* 972 * Synchronize flags_ext bit state in the com structure 973 * according to the state of all vap's. This is used, 974 * for example, to handle state changes via ioctls. 975 */ 976 static void 977 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 978 { 979 struct ieee80211vap *vap; 980 int bit; 981 982 IEEE80211_LOCK_ASSERT(ic); 983 984 bit = 0; 985 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 986 if (vap->iv_flags_ext & flag) { 987 bit = 1; 988 break; 989 } 990 if (bit) 991 ic->ic_flags_ext |= flag; 992 else 993 ic->ic_flags_ext &= ~flag; 994 } 995 996 void 997 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 998 { 999 struct ieee80211com *ic = vap->iv_ic; 1000 1001 IEEE80211_LOCK(ic); 1002 if (flag < 0) { 1003 flag = -flag; 1004 vap->iv_flags_ext &= ~flag; 1005 } else 1006 vap->iv_flags_ext |= flag; 1007 ieee80211_syncflag_ext_locked(ic, flag); 1008 IEEE80211_UNLOCK(ic); 1009 } 1010 1011 static __inline int 1012 mapgsm(u_int freq, u_int flags) 1013 { 1014 freq *= 10; 1015 if (flags & IEEE80211_CHAN_QUARTER) 1016 freq += 5; 1017 else if (flags & IEEE80211_CHAN_HALF) 1018 freq += 10; 1019 else 1020 freq += 20; 1021 /* NB: there is no 907/20 wide but leave room */ 1022 return (freq - 906*10) / 5; 1023 } 1024 1025 static __inline int 1026 mappsb(u_int freq, u_int flags) 1027 { 1028 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 1029 } 1030 1031 /* 1032 * Convert MHz frequency to IEEE channel number. 1033 */ 1034 int 1035 ieee80211_mhz2ieee(u_int freq, u_int flags) 1036 { 1037 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 1038 if (flags & IEEE80211_CHAN_GSM) 1039 return mapgsm(freq, flags); 1040 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1041 if (freq == 2484) 1042 return 14; 1043 if (freq < 2484) 1044 return ((int) freq - 2407) / 5; 1045 else 1046 return 15 + ((freq - 2512) / 20); 1047 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 1048 if (freq <= 5000) { 1049 /* XXX check regdomain? */ 1050 if (IS_FREQ_IN_PSB(freq)) 1051 return mappsb(freq, flags); 1052 return (freq - 4000) / 5; 1053 } else 1054 return (freq - 5000) / 5; 1055 } else { /* either, guess */ 1056 if (freq == 2484) 1057 return 14; 1058 if (freq < 2484) { 1059 if (907 <= freq && freq <= 922) 1060 return mapgsm(freq, flags); 1061 return ((int) freq - 2407) / 5; 1062 } 1063 if (freq < 5000) { 1064 if (IS_FREQ_IN_PSB(freq)) 1065 return mappsb(freq, flags); 1066 else if (freq > 4900) 1067 return (freq - 4000) / 5; 1068 else 1069 return 15 + ((freq - 2512) / 20); 1070 } 1071 return (freq - 5000) / 5; 1072 } 1073 #undef IS_FREQ_IN_PSB 1074 } 1075 1076 /* 1077 * Convert channel to IEEE channel number. 1078 */ 1079 int 1080 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 1081 { 1082 if (c == NULL) { 1083 ic_printf(ic, "invalid channel (NULL)\n"); 1084 return 0; /* XXX */ 1085 } 1086 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 1087 } 1088 1089 /* 1090 * Convert IEEE channel number to MHz frequency. 1091 */ 1092 u_int 1093 ieee80211_ieee2mhz(u_int chan, u_int flags) 1094 { 1095 if (flags & IEEE80211_CHAN_GSM) 1096 return 907 + 5 * (chan / 10); 1097 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 1098 if (chan == 14) 1099 return 2484; 1100 if (chan < 14) 1101 return 2407 + chan*5; 1102 else 1103 return 2512 + ((chan-15)*20); 1104 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 1105 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 1106 chan -= 37; 1107 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 1108 } 1109 return 5000 + (chan*5); 1110 } else { /* either, guess */ 1111 /* XXX can't distinguish PSB+GSM channels */ 1112 if (chan == 14) 1113 return 2484; 1114 if (chan < 14) /* 0-13 */ 1115 return 2407 + chan*5; 1116 if (chan < 27) /* 15-26 */ 1117 return 2512 + ((chan-15)*20); 1118 return 5000 + (chan*5); 1119 } 1120 } 1121 1122 static __inline void 1123 set_extchan(struct ieee80211_channel *c) 1124 { 1125 1126 /* 1127 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: 1128 * "the secondary channel number shall be 'N + [1,-1] * 4' 1129 */ 1130 if (c->ic_flags & IEEE80211_CHAN_HT40U) 1131 c->ic_extieee = c->ic_ieee + 4; 1132 else if (c->ic_flags & IEEE80211_CHAN_HT40D) 1133 c->ic_extieee = c->ic_ieee - 4; 1134 else 1135 c->ic_extieee = 0; 1136 } 1137 1138 /* 1139 * Populate the freq1/freq2 fields as appropriate for VHT channels. 1140 * 1141 * This for now uses a hard-coded list of 80MHz wide channels. 1142 * 1143 * For HT20/HT40, freq1 just is the centre frequency of the 40MHz 1144 * wide channel we've already decided upon. 1145 * 1146 * For VHT80 and VHT160, there are only a small number of fixed 1147 * 80/160MHz wide channels, so we just use those. 1148 * 1149 * This is all likely very very wrong - both the regulatory code 1150 * and this code needs to ensure that all four channels are 1151 * available and valid before the VHT80 (and eight for VHT160) channel 1152 * is created. 1153 */ 1154 1155 struct vht_chan_range { 1156 uint16_t freq_start; 1157 uint16_t freq_end; 1158 }; 1159 1160 struct vht_chan_range vht80_chan_ranges[] = { 1161 { 5170, 5250 }, 1162 { 5250, 5330 }, 1163 { 5490, 5570 }, 1164 { 5570, 5650 }, 1165 { 5650, 5730 }, 1166 { 5735, 5815 }, 1167 { 0, 0 } 1168 }; 1169 1170 struct vht_chan_range vht160_chan_ranges[] = { 1171 { 5170, 5330 }, 1172 { 5490, 5650 }, 1173 { 0, 0 } 1174 }; 1175 1176 static int 1177 set_vht_extchan(struct ieee80211_channel *c) 1178 { 1179 int i; 1180 1181 if (! IEEE80211_IS_CHAN_VHT(c)) 1182 return (0); 1183 1184 if (IEEE80211_IS_CHAN_VHT80P80(c)) { 1185 printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", 1186 __func__, c->ic_ieee, c->ic_flags); 1187 } 1188 1189 if (IEEE80211_IS_CHAN_VHT160(c)) { 1190 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1191 if (c->ic_freq >= vht160_chan_ranges[i].freq_start && 1192 c->ic_freq < vht160_chan_ranges[i].freq_end) { 1193 int midpoint; 1194 1195 midpoint = vht160_chan_ranges[i].freq_start + 80; 1196 c->ic_vht_ch_freq1 = 1197 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1198 c->ic_vht_ch_freq2 = 0; 1199 #if 0 1200 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1201 __func__, c->ic_ieee, c->ic_freq, midpoint, 1202 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1203 #endif 1204 return (1); 1205 } 1206 } 1207 return (0); 1208 } 1209 1210 if (IEEE80211_IS_CHAN_VHT80(c)) { 1211 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1212 if (c->ic_freq >= vht80_chan_ranges[i].freq_start && 1213 c->ic_freq < vht80_chan_ranges[i].freq_end) { 1214 int midpoint; 1215 1216 midpoint = vht80_chan_ranges[i].freq_start + 40; 1217 c->ic_vht_ch_freq1 = 1218 ieee80211_mhz2ieee(midpoint, c->ic_flags); 1219 c->ic_vht_ch_freq2 = 0; 1220 #if 0 1221 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", 1222 __func__, c->ic_ieee, c->ic_freq, midpoint, 1223 c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); 1224 #endif 1225 return (1); 1226 } 1227 } 1228 return (0); 1229 } 1230 1231 if (IEEE80211_IS_CHAN_VHT40(c)) { 1232 if (IEEE80211_IS_CHAN_HT40U(c)) 1233 c->ic_vht_ch_freq1 = c->ic_ieee + 2; 1234 else if (IEEE80211_IS_CHAN_HT40D(c)) 1235 c->ic_vht_ch_freq1 = c->ic_ieee - 2; 1236 else 1237 return (0); 1238 return (1); 1239 } 1240 1241 if (IEEE80211_IS_CHAN_VHT20(c)) { 1242 c->ic_vht_ch_freq1 = c->ic_ieee; 1243 return (1); 1244 } 1245 1246 printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", 1247 __func__, c->ic_ieee, c->ic_flags); 1248 1249 return (0); 1250 } 1251 1252 /* 1253 * Return whether the current channel could possibly be a part of 1254 * a VHT80/VHT160 channel. 1255 * 1256 * This doesn't check that the whole range is in the allowed list 1257 * according to regulatory. 1258 */ 1259 static bool 1260 is_vht160_valid_freq(uint16_t freq) 1261 { 1262 int i; 1263 1264 for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { 1265 if (freq >= vht160_chan_ranges[i].freq_start && 1266 freq < vht160_chan_ranges[i].freq_end) 1267 return (true); 1268 } 1269 return (false); 1270 } 1271 1272 static int 1273 is_vht80_valid_freq(uint16_t freq) 1274 { 1275 int i; 1276 for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { 1277 if (freq >= vht80_chan_ranges[i].freq_start && 1278 freq < vht80_chan_ranges[i].freq_end) 1279 return (1); 1280 } 1281 return (0); 1282 } 1283 1284 static int 1285 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, 1286 uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) 1287 { 1288 struct ieee80211_channel *c; 1289 1290 if (*nchans >= maxchans) 1291 return (ENOBUFS); 1292 1293 #if 0 1294 printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n", 1295 __func__, *nchans, ieee, freq, flags); 1296 #endif 1297 1298 c = &chans[(*nchans)++]; 1299 c->ic_ieee = ieee; 1300 c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); 1301 c->ic_maxregpower = maxregpower; 1302 c->ic_maxpower = 2 * maxregpower; 1303 c->ic_flags = flags; 1304 c->ic_vht_ch_freq1 = 0; 1305 c->ic_vht_ch_freq2 = 0; 1306 set_extchan(c); 1307 set_vht_extchan(c); 1308 1309 return (0); 1310 } 1311 1312 static int 1313 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, 1314 uint32_t flags) 1315 { 1316 struct ieee80211_channel *c; 1317 1318 KASSERT(*nchans > 0, ("channel list is empty\n")); 1319 1320 if (*nchans >= maxchans) 1321 return (ENOBUFS); 1322 1323 #if 0 1324 printf("%s: %d: flags=0x%08x\n", 1325 __func__, *nchans, flags); 1326 #endif 1327 1328 c = &chans[(*nchans)++]; 1329 c[0] = c[-1]; 1330 c->ic_flags = flags; 1331 c->ic_vht_ch_freq1 = 0; 1332 c->ic_vht_ch_freq2 = 0; 1333 set_extchan(c); 1334 set_vht_extchan(c); 1335 1336 return (0); 1337 } 1338 1339 /* 1340 * XXX VHT-2GHz 1341 */ 1342 static void 1343 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1344 { 1345 int nmodes; 1346 1347 nmodes = 0; 1348 if (isset(bands, IEEE80211_MODE_11B)) 1349 flags[nmodes++] = IEEE80211_CHAN_B; 1350 if (isset(bands, IEEE80211_MODE_11G)) 1351 flags[nmodes++] = IEEE80211_CHAN_G; 1352 if (isset(bands, IEEE80211_MODE_11NG)) 1353 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; 1354 if (cbw_flags & NET80211_CBW_FLAG_HT40) { 1355 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; 1356 flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; 1357 } 1358 flags[nmodes] = 0; 1359 } 1360 1361 static void 1362 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1363 { 1364 int nmodes; 1365 1366 /* 1367 * The addchan_list() function seems to expect the flags array to 1368 * be in channel width order, so the VHT bits are interspersed 1369 * as appropriate to maintain said order. 1370 * 1371 * It also assumes HT40U is before HT40D. 1372 */ 1373 nmodes = 0; 1374 1375 /* 20MHz */ 1376 if (isset(bands, IEEE80211_MODE_11A)) 1377 flags[nmodes++] = IEEE80211_CHAN_A; 1378 if (isset(bands, IEEE80211_MODE_11NA)) 1379 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; 1380 if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1381 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | 1382 IEEE80211_CHAN_VHT20; 1383 } 1384 1385 /* 40MHz */ 1386 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1387 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; 1388 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1389 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1390 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1391 IEEE80211_CHAN_VHT40U; 1392 if (cbw_flags & NET80211_CBW_FLAG_HT40) 1393 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; 1394 if ((cbw_flags & NET80211_CBW_FLAG_HT40) && 1395 isset(bands, IEEE80211_MODE_VHT_5GHZ)) 1396 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1397 IEEE80211_CHAN_VHT40D; 1398 1399 /* 80MHz */ 1400 if ((cbw_flags & NET80211_CBW_FLAG_VHT80) && 1401 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1402 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1403 IEEE80211_CHAN_VHT80; 1404 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1405 IEEE80211_CHAN_VHT80; 1406 } 1407 1408 /* VHT160 */ 1409 if ((cbw_flags & NET80211_CBW_FLAG_VHT160) && 1410 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1411 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1412 IEEE80211_CHAN_VHT160; 1413 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1414 IEEE80211_CHAN_VHT160; 1415 } 1416 1417 /* VHT80+80 */ 1418 if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) && 1419 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1420 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | 1421 IEEE80211_CHAN_VHT80P80; 1422 flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | 1423 IEEE80211_CHAN_VHT80P80; 1424 } 1425 1426 flags[nmodes] = 0; 1427 } 1428 1429 static void 1430 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags) 1431 { 1432 1433 flags[0] = 0; 1434 if (isset(bands, IEEE80211_MODE_11A) || 1435 isset(bands, IEEE80211_MODE_11NA) || 1436 isset(bands, IEEE80211_MODE_VHT_5GHZ)) { 1437 if (isset(bands, IEEE80211_MODE_11B) || 1438 isset(bands, IEEE80211_MODE_11G) || 1439 isset(bands, IEEE80211_MODE_11NG) || 1440 isset(bands, IEEE80211_MODE_VHT_2GHZ)) 1441 return; 1442 1443 getflags_5ghz(bands, flags, cbw_flags); 1444 } else 1445 getflags_2ghz(bands, flags, cbw_flags); 1446 } 1447 1448 /* 1449 * Add one 20 MHz channel into specified channel list. 1450 * You MUST NOT mix bands when calling this. It will not add 5ghz 1451 * channels if you have any B/G/N band bit set. 1452 * The _cbw() variant does also support HT40/VHT80/160/80+80. 1453 */ 1454 int 1455 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans, 1456 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1457 uint32_t chan_flags, const uint8_t bands[], int cbw_flags) 1458 { 1459 uint32_t flags[IEEE80211_MODE_MAX]; 1460 int i, error; 1461 1462 getflags(bands, flags, cbw_flags); 1463 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1464 1465 error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, 1466 flags[0] | chan_flags); 1467 for (i = 1; flags[i] != 0 && error == 0; i++) { 1468 error = copychan_prev(chans, maxchans, nchans, 1469 flags[i] | chan_flags); 1470 } 1471 1472 return (error); 1473 } 1474 1475 int 1476 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, 1477 int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, 1478 uint32_t chan_flags, const uint8_t bands[]) 1479 { 1480 1481 return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq, 1482 maxregpower, chan_flags, bands, 0)); 1483 } 1484 1485 static struct ieee80211_channel * 1486 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, 1487 uint32_t flags) 1488 { 1489 struct ieee80211_channel *c; 1490 int i; 1491 1492 flags &= IEEE80211_CHAN_ALLTURBO; 1493 /* brute force search */ 1494 for (i = 0; i < nchans; i++) { 1495 c = &chans[i]; 1496 if (c->ic_freq == freq && 1497 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1498 return c; 1499 } 1500 return NULL; 1501 } 1502 1503 /* 1504 * Add 40 MHz channel pair into specified channel list. 1505 */ 1506 /* XXX VHT */ 1507 int 1508 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, 1509 int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) 1510 { 1511 struct ieee80211_channel *cent, *extc; 1512 uint16_t freq; 1513 int error; 1514 1515 freq = ieee80211_ieee2mhz(ieee, flags); 1516 1517 /* 1518 * Each entry defines an HT40 channel pair; find the 1519 * center channel, then the extension channel above. 1520 */ 1521 flags |= IEEE80211_CHAN_HT20; 1522 cent = findchannel(chans, *nchans, freq, flags); 1523 if (cent == NULL) 1524 return (EINVAL); 1525 1526 extc = findchannel(chans, *nchans, freq + 20, flags); 1527 if (extc == NULL) 1528 return (ENOENT); 1529 1530 flags &= ~IEEE80211_CHAN_HT; 1531 error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, 1532 maxregpower, flags | IEEE80211_CHAN_HT40U); 1533 if (error != 0) 1534 return (error); 1535 1536 error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, 1537 maxregpower, flags | IEEE80211_CHAN_HT40D); 1538 1539 return (error); 1540 } 1541 1542 /* 1543 * Fetch the center frequency for the primary channel. 1544 */ 1545 uint32_t 1546 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) 1547 { 1548 1549 return (c->ic_freq); 1550 } 1551 1552 /* 1553 * Fetch the center frequency for the primary BAND channel. 1554 * 1555 * For 5, 10, 20MHz channels it'll be the normally configured channel 1556 * frequency. 1557 * 1558 * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the 1559 * wide channel, not the centre of the primary channel (that's ic_freq). 1560 * 1561 * For 80+80MHz channels this will be the centre of the primary 1562 * 80MHz channel; the secondary 80MHz channel will be center_freq2(). 1563 */ 1564 uint32_t 1565 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) 1566 { 1567 1568 /* 1569 * VHT - use the pre-calculated centre frequency 1570 * of the given channel. 1571 */ 1572 if (IEEE80211_IS_CHAN_VHT(c)) 1573 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); 1574 1575 if (IEEE80211_IS_CHAN_HT40U(c)) { 1576 return (c->ic_freq + 10); 1577 } 1578 if (IEEE80211_IS_CHAN_HT40D(c)) { 1579 return (c->ic_freq - 10); 1580 } 1581 1582 return (c->ic_freq); 1583 } 1584 1585 /* 1586 * For now, no 80+80 support; it will likely always return 0. 1587 */ 1588 uint32_t 1589 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) 1590 { 1591 1592 if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) 1593 return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); 1594 1595 return (0); 1596 } 1597 1598 /* 1599 * Adds channels into specified channel list (ieee[] array must be sorted). 1600 * Channels are already sorted. 1601 */ 1602 static int 1603 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, 1604 const uint8_t ieee[], int nieee, uint32_t flags[]) 1605 { 1606 uint16_t freq; 1607 int i, j, error; 1608 int is_vht; 1609 1610 for (i = 0; i < nieee; i++) { 1611 freq = ieee80211_ieee2mhz(ieee[i], flags[0]); 1612 for (j = 0; flags[j] != 0; j++) { 1613 /* 1614 * Notes: 1615 * + HT40 and VHT40 channels occur together, so 1616 * we need to be careful that we actually allow that. 1617 * + VHT80, VHT160 will coexist with HT40/VHT40, so 1618 * make sure it's not skipped because of the overlap 1619 * check used for (V)HT40. 1620 */ 1621 is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); 1622 1623 /* XXX TODO FIXME VHT80P80. */ 1624 1625 /* Test for VHT160 analogue to the VHT80 below. */ 1626 if (is_vht && flags[j] & IEEE80211_CHAN_VHT160) 1627 if (! is_vht160_valid_freq(freq)) 1628 continue; 1629 1630 /* 1631 * Test for VHT80. 1632 * XXX This is all very broken right now. 1633 * What we /should/ do is: 1634 * 1635 * + check that the frequency is in the list of 1636 * allowed VHT80 ranges; and 1637 * + the other 3 channels in the list are actually 1638 * also available. 1639 */ 1640 if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) 1641 if (! is_vht80_valid_freq(freq)) 1642 continue; 1643 1644 /* 1645 * Test for (V)HT40. 1646 * 1647 * This is also a fall through from VHT80; as we only 1648 * allow a VHT80 channel if the VHT40 combination is 1649 * also valid. If the VHT40 form is not valid then 1650 * we certainly can't do VHT80.. 1651 */ 1652 if (flags[j] & IEEE80211_CHAN_HT40D) 1653 /* 1654 * Can't have a "lower" channel if we are the 1655 * first channel. 1656 * 1657 * Can't have a "lower" channel if it's below/ 1658 * within 20MHz of the first channel. 1659 * 1660 * Can't have a "lower" channel if the channel 1661 * below it is not 20MHz away. 1662 */ 1663 if (i == 0 || ieee[i] < ieee[0] + 4 || 1664 freq - 20 != 1665 ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) 1666 continue; 1667 if (flags[j] & IEEE80211_CHAN_HT40U) 1668 /* 1669 * Can't have an "upper" channel if we are 1670 * the last channel. 1671 * 1672 * Can't have an "upper" channel be above the 1673 * last channel in the list. 1674 * 1675 * Can't have an "upper" channel if the next 1676 * channel according to the math isn't 20MHz 1677 * away. (Likely for channel 13/14.) 1678 */ 1679 if (i == nieee - 1 || 1680 ieee[i] + 4 > ieee[nieee - 1] || 1681 freq + 20 != 1682 ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) 1683 continue; 1684 1685 if (j == 0) { 1686 error = addchan(chans, maxchans, nchans, 1687 ieee[i], freq, 0, flags[j]); 1688 } else { 1689 error = copychan_prev(chans, maxchans, nchans, 1690 flags[j]); 1691 } 1692 if (error != 0) 1693 return (error); 1694 } 1695 } 1696 1697 return (0); 1698 } 1699 1700 int 1701 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, 1702 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1703 int cbw_flags) 1704 { 1705 uint32_t flags[IEEE80211_MODE_MAX]; 1706 1707 /* XXX no VHT for now */ 1708 getflags_2ghz(bands, flags, cbw_flags); 1709 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1710 1711 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1712 } 1713 1714 int 1715 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], 1716 int maxchans, int *nchans, const uint8_t bands[], int cbw_flags) 1717 { 1718 const uint8_t default_chan_list[] = 1719 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 1720 1721 return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 1722 default_chan_list, nitems(default_chan_list), bands, cbw_flags)); 1723 } 1724 1725 int 1726 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, 1727 int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], 1728 int cbw_flags) 1729 { 1730 /* 1731 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all 1732 * uses of IEEE80211_MODE_MAX and add a new #define name for array size. 1733 */ 1734 uint32_t flags[2 * IEEE80211_MODE_MAX]; 1735 1736 getflags_5ghz(bands, flags, cbw_flags); 1737 KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); 1738 1739 return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); 1740 } 1741 1742 /* 1743 * Locate a channel given a frequency+flags. We cache 1744 * the previous lookup to optimize switching between two 1745 * channels--as happens with dynamic turbo. 1746 */ 1747 struct ieee80211_channel * 1748 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 1749 { 1750 struct ieee80211_channel *c; 1751 1752 flags &= IEEE80211_CHAN_ALLTURBO; 1753 c = ic->ic_prevchan; 1754 if (c != NULL && c->ic_freq == freq && 1755 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1756 return c; 1757 /* brute force search */ 1758 return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); 1759 } 1760 1761 /* 1762 * Locate a channel given a channel number+flags. We cache 1763 * the previous lookup to optimize switching between two 1764 * channels--as happens with dynamic turbo. 1765 */ 1766 struct ieee80211_channel * 1767 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 1768 { 1769 struct ieee80211_channel *c; 1770 int i; 1771 1772 flags &= IEEE80211_CHAN_ALLTURBO; 1773 c = ic->ic_prevchan; 1774 if (c != NULL && c->ic_ieee == ieee && 1775 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1776 return c; 1777 /* brute force search */ 1778 for (i = 0; i < ic->ic_nchans; i++) { 1779 c = &ic->ic_channels[i]; 1780 if (c->ic_ieee == ieee && 1781 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 1782 return c; 1783 } 1784 return NULL; 1785 } 1786 1787 /* 1788 * Lookup a channel suitable for the given rx status. 1789 * 1790 * This is used to find a channel for a frame (eg beacon, probe 1791 * response) based purely on the received PHY information. 1792 * 1793 * For now it tries to do it based on R_FREQ / R_IEEE. 1794 * This is enough for 11bg and 11a (and thus 11ng/11na) 1795 * but it will not be enough for GSM, PSB channels and the 1796 * like. It also doesn't know about legacy-turbog and 1797 * legacy-turbo modes, which some offload NICs actually 1798 * support in weird ways. 1799 * 1800 * Takes the ic and rxstatus; returns the channel or NULL 1801 * if not found. 1802 * 1803 * XXX TODO: Add support for that when the need arises. 1804 */ 1805 struct ieee80211_channel * 1806 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, 1807 const struct ieee80211_rx_stats *rxs) 1808 { 1809 struct ieee80211com *ic = vap->iv_ic; 1810 uint32_t flags; 1811 struct ieee80211_channel *c; 1812 1813 if (rxs == NULL) 1814 return (NULL); 1815 1816 /* 1817 * Strictly speaking we only use freq for now, 1818 * however later on we may wish to just store 1819 * the ieee for verification. 1820 */ 1821 if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) 1822 return (NULL); 1823 if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) 1824 return (NULL); 1825 1826 /* 1827 * If the rx status contains a valid ieee/freq, then 1828 * ensure we populate the correct channel information 1829 * in rxchan before passing it up to the scan infrastructure. 1830 * Offload NICs will pass up beacons from all channels 1831 * during background scans. 1832 */ 1833 1834 /* Determine a band */ 1835 /* XXX should be done by the driver? */ 1836 if (rxs->c_freq < 3000) { 1837 flags = IEEE80211_CHAN_G; 1838 } else { 1839 flags = IEEE80211_CHAN_A; 1840 } 1841 1842 /* Channel lookup */ 1843 c = ieee80211_find_channel(ic, rxs->c_freq, flags); 1844 1845 IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, 1846 "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", 1847 __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); 1848 1849 return (c); 1850 } 1851 1852 static void 1853 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 1854 { 1855 #define ADD(_ic, _s, _o) \ 1856 ifmedia_add(media, \ 1857 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 1858 static const u_int mopts[IEEE80211_MODE_MAX] = { 1859 [IEEE80211_MODE_AUTO] = IFM_AUTO, 1860 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 1861 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 1862 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 1863 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 1864 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1865 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 1866 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 1867 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 1868 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 1869 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 1870 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 1871 [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, 1872 [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, 1873 }; 1874 u_int mopt; 1875 1876 mopt = mopts[mode]; 1877 if (addsta) 1878 ADD(ic, mword, mopt); /* STA mode has no cap */ 1879 if (caps & IEEE80211_C_IBSS) 1880 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 1881 if (caps & IEEE80211_C_HOSTAP) 1882 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 1883 if (caps & IEEE80211_C_AHDEMO) 1884 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1885 if (caps & IEEE80211_C_MONITOR) 1886 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1887 if (caps & IEEE80211_C_WDS) 1888 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1889 if (caps & IEEE80211_C_MBSS) 1890 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1891 #undef ADD 1892 } 1893 1894 /* 1895 * Setup the media data structures according to the channel and 1896 * rate tables. 1897 */ 1898 static int 1899 ieee80211_media_setup(struct ieee80211com *ic, 1900 struct ifmedia *media, int caps, int addsta, 1901 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1902 { 1903 int i, j, rate, maxrate, mword, r; 1904 enum ieee80211_phymode mode; 1905 const struct ieee80211_rateset *rs; 1906 struct ieee80211_rateset allrates; 1907 1908 /* 1909 * Fill in media characteristics. 1910 */ 1911 ifmedia_init(media, 0, media_change, media_stat); 1912 maxrate = 0; 1913 /* 1914 * Add media for legacy operating modes. 1915 */ 1916 memset(&allrates, 0, sizeof(allrates)); 1917 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1918 if (isclr(ic->ic_modecaps, mode)) 1919 continue; 1920 addmedia(media, caps, addsta, mode, IFM_AUTO); 1921 if (mode == IEEE80211_MODE_AUTO) 1922 continue; 1923 rs = &ic->ic_sup_rates[mode]; 1924 for (i = 0; i < rs->rs_nrates; i++) { 1925 rate = rs->rs_rates[i]; 1926 mword = ieee80211_rate2media(ic, rate, mode); 1927 if (mword == 0) 1928 continue; 1929 addmedia(media, caps, addsta, mode, mword); 1930 /* 1931 * Add legacy rate to the collection of all rates. 1932 */ 1933 r = rate & IEEE80211_RATE_VAL; 1934 for (j = 0; j < allrates.rs_nrates; j++) 1935 if (allrates.rs_rates[j] == r) 1936 break; 1937 if (j == allrates.rs_nrates) { 1938 /* unique, add to the set */ 1939 allrates.rs_rates[j] = r; 1940 allrates.rs_nrates++; 1941 } 1942 rate = (rate & IEEE80211_RATE_VAL) / 2; 1943 if (rate > maxrate) 1944 maxrate = rate; 1945 } 1946 } 1947 for (i = 0; i < allrates.rs_nrates; i++) { 1948 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1949 IEEE80211_MODE_AUTO); 1950 if (mword == 0) 1951 continue; 1952 /* NB: remove media options from mword */ 1953 addmedia(media, caps, addsta, 1954 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1955 } 1956 /* 1957 * Add HT/11n media. Note that we do not have enough 1958 * bits in the media subtype to express the MCS so we 1959 * use a "placeholder" media subtype and any fixed MCS 1960 * must be specified with a different mechanism. 1961 */ 1962 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1963 if (isclr(ic->ic_modecaps, mode)) 1964 continue; 1965 addmedia(media, caps, addsta, mode, IFM_AUTO); 1966 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1967 } 1968 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1969 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1970 addmedia(media, caps, addsta, 1971 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1972 i = ic->ic_txstream * 8 - 1; 1973 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1974 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1975 rate = ieee80211_htrates[i].ht40_rate_400ns; 1976 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1977 rate = ieee80211_htrates[i].ht40_rate_800ns; 1978 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1979 rate = ieee80211_htrates[i].ht20_rate_400ns; 1980 else 1981 rate = ieee80211_htrates[i].ht20_rate_800ns; 1982 if (rate > maxrate) 1983 maxrate = rate; 1984 } 1985 1986 /* 1987 * Add VHT media. 1988 * XXX-BZ skip "VHT_2GHZ" for now. 1989 */ 1990 for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; 1991 mode++) { 1992 if (isclr(ic->ic_modecaps, mode)) 1993 continue; 1994 addmedia(media, caps, addsta, mode, IFM_AUTO); 1995 addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); 1996 } 1997 if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { 1998 addmedia(media, caps, addsta, 1999 IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); 2000 2001 /* XXX TODO: VHT maxrate */ 2002 } 2003 2004 return maxrate; 2005 } 2006 2007 /* XXX inline or eliminate? */ 2008 const struct ieee80211_rateset * 2009 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 2010 { 2011 /* XXX does this work for 11ng basic rates? */ 2012 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 2013 } 2014 2015 /* XXX inline or eliminate? */ 2016 const struct ieee80211_htrateset * 2017 ieee80211_get_suphtrates(struct ieee80211com *ic, 2018 const struct ieee80211_channel *c) 2019 { 2020 return &ic->ic_sup_htrates; 2021 } 2022 2023 void 2024 ieee80211_announce(struct ieee80211com *ic) 2025 { 2026 int i, rate, mword; 2027 enum ieee80211_phymode mode; 2028 const struct ieee80211_rateset *rs; 2029 2030 /* NB: skip AUTO since it has no rates */ 2031 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 2032 if (isclr(ic->ic_modecaps, mode)) 2033 continue; 2034 ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); 2035 rs = &ic->ic_sup_rates[mode]; 2036 for (i = 0; i < rs->rs_nrates; i++) { 2037 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 2038 if (mword == 0) 2039 continue; 2040 rate = ieee80211_media2rate(mword); 2041 printf("%s%d%sMbps", (i != 0 ? " " : ""), 2042 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 2043 } 2044 printf("\n"); 2045 } 2046 ieee80211_ht_announce(ic); 2047 ieee80211_vht_announce(ic); 2048 } 2049 2050 void 2051 ieee80211_announce_channels(struct ieee80211com *ic) 2052 { 2053 const struct ieee80211_channel *c; 2054 char type; 2055 int i, cw; 2056 2057 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 2058 for (i = 0; i < ic->ic_nchans; i++) { 2059 c = &ic->ic_channels[i]; 2060 if (IEEE80211_IS_CHAN_ST(c)) 2061 type = 'S'; 2062 else if (IEEE80211_IS_CHAN_108A(c)) 2063 type = 'T'; 2064 else if (IEEE80211_IS_CHAN_108G(c)) 2065 type = 'G'; 2066 else if (IEEE80211_IS_CHAN_HT(c)) 2067 type = 'n'; 2068 else if (IEEE80211_IS_CHAN_A(c)) 2069 type = 'a'; 2070 else if (IEEE80211_IS_CHAN_ANYG(c)) 2071 type = 'g'; 2072 else if (IEEE80211_IS_CHAN_B(c)) 2073 type = 'b'; 2074 else 2075 type = 'f'; 2076 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 2077 cw = 40; 2078 else if (IEEE80211_IS_CHAN_HALF(c)) 2079 cw = 10; 2080 else if (IEEE80211_IS_CHAN_QUARTER(c)) 2081 cw = 5; 2082 else 2083 cw = 20; 2084 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 2085 , c->ic_ieee, c->ic_freq, type 2086 , cw 2087 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 2088 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 2089 , c->ic_maxregpower 2090 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 2091 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 2092 ); 2093 } 2094 } 2095 2096 static int 2097 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 2098 { 2099 switch (IFM_MODE(ime->ifm_media)) { 2100 case IFM_IEEE80211_11A: 2101 *mode = IEEE80211_MODE_11A; 2102 break; 2103 case IFM_IEEE80211_11B: 2104 *mode = IEEE80211_MODE_11B; 2105 break; 2106 case IFM_IEEE80211_11G: 2107 *mode = IEEE80211_MODE_11G; 2108 break; 2109 case IFM_IEEE80211_FH: 2110 *mode = IEEE80211_MODE_FH; 2111 break; 2112 case IFM_IEEE80211_11NA: 2113 *mode = IEEE80211_MODE_11NA; 2114 break; 2115 case IFM_IEEE80211_11NG: 2116 *mode = IEEE80211_MODE_11NG; 2117 break; 2118 case IFM_IEEE80211_VHT2G: 2119 *mode = IEEE80211_MODE_VHT_2GHZ; 2120 break; 2121 case IFM_IEEE80211_VHT5G: 2122 *mode = IEEE80211_MODE_VHT_5GHZ; 2123 break; 2124 case IFM_AUTO: 2125 *mode = IEEE80211_MODE_AUTO; 2126 break; 2127 default: 2128 return 0; 2129 } 2130 /* 2131 * Turbo mode is an ``option''. 2132 * XXX does not apply to AUTO 2133 */ 2134 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 2135 if (*mode == IEEE80211_MODE_11A) { 2136 if (flags & IEEE80211_F_TURBOP) 2137 *mode = IEEE80211_MODE_TURBO_A; 2138 else 2139 *mode = IEEE80211_MODE_STURBO_A; 2140 } else if (*mode == IEEE80211_MODE_11G) 2141 *mode = IEEE80211_MODE_TURBO_G; 2142 else 2143 return 0; 2144 } 2145 /* XXX HT40 +/- */ 2146 return 1; 2147 } 2148 2149 /* 2150 * Handle a media change request on the vap interface. 2151 */ 2152 int 2153 ieee80211_media_change(struct ifnet *ifp) 2154 { 2155 struct ieee80211vap *vap = ifp->if_softc; 2156 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 2157 uint16_t newmode; 2158 2159 if (!media2mode(ime, vap->iv_flags, &newmode)) 2160 return EINVAL; 2161 if (vap->iv_des_mode != newmode) { 2162 vap->iv_des_mode = newmode; 2163 /* XXX kick state machine if up+running */ 2164 } 2165 return 0; 2166 } 2167 2168 /* 2169 * Common code to calculate the media status word 2170 * from the operating mode and channel state. 2171 */ 2172 static int 2173 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 2174 { 2175 int status; 2176 2177 status = IFM_IEEE80211; 2178 switch (opmode) { 2179 case IEEE80211_M_STA: 2180 break; 2181 case IEEE80211_M_IBSS: 2182 status |= IFM_IEEE80211_ADHOC; 2183 break; 2184 case IEEE80211_M_HOSTAP: 2185 status |= IFM_IEEE80211_HOSTAP; 2186 break; 2187 case IEEE80211_M_MONITOR: 2188 status |= IFM_IEEE80211_MONITOR; 2189 break; 2190 case IEEE80211_M_AHDEMO: 2191 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 2192 break; 2193 case IEEE80211_M_WDS: 2194 status |= IFM_IEEE80211_WDS; 2195 break; 2196 case IEEE80211_M_MBSS: 2197 status |= IFM_IEEE80211_MBSS; 2198 break; 2199 } 2200 if (IEEE80211_IS_CHAN_HTA(chan)) { 2201 status |= IFM_IEEE80211_11NA; 2202 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 2203 status |= IFM_IEEE80211_11NG; 2204 } else if (IEEE80211_IS_CHAN_A(chan)) { 2205 status |= IFM_IEEE80211_11A; 2206 } else if (IEEE80211_IS_CHAN_B(chan)) { 2207 status |= IFM_IEEE80211_11B; 2208 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 2209 status |= IFM_IEEE80211_11G; 2210 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 2211 status |= IFM_IEEE80211_FH; 2212 } 2213 /* XXX else complain? */ 2214 2215 if (IEEE80211_IS_CHAN_TURBO(chan)) 2216 status |= IFM_IEEE80211_TURBO; 2217 #if 0 2218 if (IEEE80211_IS_CHAN_HT20(chan)) 2219 status |= IFM_IEEE80211_HT20; 2220 if (IEEE80211_IS_CHAN_HT40(chan)) 2221 status |= IFM_IEEE80211_HT40; 2222 #endif 2223 return status; 2224 } 2225 2226 void 2227 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 2228 { 2229 struct ieee80211vap *vap = ifp->if_softc; 2230 struct ieee80211com *ic = vap->iv_ic; 2231 enum ieee80211_phymode mode; 2232 2233 imr->ifm_status = IFM_AVALID; 2234 /* 2235 * NB: use the current channel's mode to lock down a xmit 2236 * rate only when running; otherwise we may have a mismatch 2237 * in which case the rate will not be convertible. 2238 */ 2239 if (vap->iv_state == IEEE80211_S_RUN || 2240 vap->iv_state == IEEE80211_S_SLEEP) { 2241 imr->ifm_status |= IFM_ACTIVE; 2242 mode = ieee80211_chan2mode(ic->ic_curchan); 2243 } else 2244 mode = IEEE80211_MODE_AUTO; 2245 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 2246 /* 2247 * Calculate a current rate if possible. 2248 */ 2249 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 2250 /* 2251 * A fixed rate is set, report that. 2252 */ 2253 imr->ifm_active |= ieee80211_rate2media(ic, 2254 vap->iv_txparms[mode].ucastrate, mode); 2255 } else if (vap->iv_opmode == IEEE80211_M_STA) { 2256 /* 2257 * In station mode report the current transmit rate. 2258 */ 2259 imr->ifm_active |= ieee80211_rate2media(ic, 2260 vap->iv_bss->ni_txrate, mode); 2261 } else 2262 imr->ifm_active |= IFM_AUTO; 2263 if (imr->ifm_status & IFM_ACTIVE) 2264 imr->ifm_current = imr->ifm_active; 2265 } 2266 2267 /* 2268 * Set the current phy mode and recalculate the active channel 2269 * set based on the available channels for this mode. Also 2270 * select a new default/current channel if the current one is 2271 * inappropriate for this mode. 2272 */ 2273 int 2274 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 2275 { 2276 /* 2277 * Adjust basic rates in 11b/11g supported rate set. 2278 * Note that if operating on a hal/quarter rate channel 2279 * this is a noop as those rates sets are different 2280 * and used instead. 2281 */ 2282 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 2283 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 2284 2285 ic->ic_curmode = mode; 2286 ieee80211_reset_erp(ic); /* reset global ERP state */ 2287 2288 return 0; 2289 } 2290 2291 /* 2292 * Return the phy mode for with the specified channel. 2293 */ 2294 enum ieee80211_phymode 2295 ieee80211_chan2mode(const struct ieee80211_channel *chan) 2296 { 2297 2298 if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) 2299 return IEEE80211_MODE_VHT_2GHZ; 2300 else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) 2301 return IEEE80211_MODE_VHT_5GHZ; 2302 else if (IEEE80211_IS_CHAN_HTA(chan)) 2303 return IEEE80211_MODE_11NA; 2304 else if (IEEE80211_IS_CHAN_HTG(chan)) 2305 return IEEE80211_MODE_11NG; 2306 else if (IEEE80211_IS_CHAN_108G(chan)) 2307 return IEEE80211_MODE_TURBO_G; 2308 else if (IEEE80211_IS_CHAN_ST(chan)) 2309 return IEEE80211_MODE_STURBO_A; 2310 else if (IEEE80211_IS_CHAN_TURBO(chan)) 2311 return IEEE80211_MODE_TURBO_A; 2312 else if (IEEE80211_IS_CHAN_HALF(chan)) 2313 return IEEE80211_MODE_HALF; 2314 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 2315 return IEEE80211_MODE_QUARTER; 2316 else if (IEEE80211_IS_CHAN_A(chan)) 2317 return IEEE80211_MODE_11A; 2318 else if (IEEE80211_IS_CHAN_ANYG(chan)) 2319 return IEEE80211_MODE_11G; 2320 else if (IEEE80211_IS_CHAN_B(chan)) 2321 return IEEE80211_MODE_11B; 2322 else if (IEEE80211_IS_CHAN_FHSS(chan)) 2323 return IEEE80211_MODE_FH; 2324 2325 /* NB: should not get here */ 2326 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 2327 __func__, chan->ic_freq, chan->ic_flags); 2328 return IEEE80211_MODE_11B; 2329 } 2330 2331 struct ratemedia { 2332 u_int match; /* rate + mode */ 2333 u_int media; /* if_media rate */ 2334 }; 2335 2336 static int 2337 findmedia(const struct ratemedia rates[], int n, u_int match) 2338 { 2339 int i; 2340 2341 for (i = 0; i < n; i++) 2342 if (rates[i].match == match) 2343 return rates[i].media; 2344 return IFM_AUTO; 2345 } 2346 2347 /* 2348 * Convert IEEE80211 rate value to ifmedia subtype. 2349 * Rate is either a legacy rate in units of 0.5Mbps 2350 * or an MCS index. 2351 */ 2352 int 2353 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 2354 { 2355 static const struct ratemedia rates[] = { 2356 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 2357 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 2358 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 2359 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 2360 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 2361 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 2362 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 2363 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 2364 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 2365 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 2366 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 2367 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 2368 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 2369 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 2370 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 2371 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 2372 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 2373 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 2374 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 2375 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 2376 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 2377 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 2378 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 2379 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 2380 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 2381 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 2382 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 2383 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 2384 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 2385 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 2386 /* NB: OFDM72 doesn't really exist so we don't handle it */ 2387 }; 2388 static const struct ratemedia htrates[] = { 2389 { 0, IFM_IEEE80211_MCS }, 2390 { 1, IFM_IEEE80211_MCS }, 2391 { 2, IFM_IEEE80211_MCS }, 2392 { 3, IFM_IEEE80211_MCS }, 2393 { 4, IFM_IEEE80211_MCS }, 2394 { 5, IFM_IEEE80211_MCS }, 2395 { 6, IFM_IEEE80211_MCS }, 2396 { 7, IFM_IEEE80211_MCS }, 2397 { 8, IFM_IEEE80211_MCS }, 2398 { 9, IFM_IEEE80211_MCS }, 2399 { 10, IFM_IEEE80211_MCS }, 2400 { 11, IFM_IEEE80211_MCS }, 2401 { 12, IFM_IEEE80211_MCS }, 2402 { 13, IFM_IEEE80211_MCS }, 2403 { 14, IFM_IEEE80211_MCS }, 2404 { 15, IFM_IEEE80211_MCS }, 2405 { 16, IFM_IEEE80211_MCS }, 2406 { 17, IFM_IEEE80211_MCS }, 2407 { 18, IFM_IEEE80211_MCS }, 2408 { 19, IFM_IEEE80211_MCS }, 2409 { 20, IFM_IEEE80211_MCS }, 2410 { 21, IFM_IEEE80211_MCS }, 2411 { 22, IFM_IEEE80211_MCS }, 2412 { 23, IFM_IEEE80211_MCS }, 2413 { 24, IFM_IEEE80211_MCS }, 2414 { 25, IFM_IEEE80211_MCS }, 2415 { 26, IFM_IEEE80211_MCS }, 2416 { 27, IFM_IEEE80211_MCS }, 2417 { 28, IFM_IEEE80211_MCS }, 2418 { 29, IFM_IEEE80211_MCS }, 2419 { 30, IFM_IEEE80211_MCS }, 2420 { 31, IFM_IEEE80211_MCS }, 2421 { 32, IFM_IEEE80211_MCS }, 2422 { 33, IFM_IEEE80211_MCS }, 2423 { 34, IFM_IEEE80211_MCS }, 2424 { 35, IFM_IEEE80211_MCS }, 2425 { 36, IFM_IEEE80211_MCS }, 2426 { 37, IFM_IEEE80211_MCS }, 2427 { 38, IFM_IEEE80211_MCS }, 2428 { 39, IFM_IEEE80211_MCS }, 2429 { 40, IFM_IEEE80211_MCS }, 2430 { 41, IFM_IEEE80211_MCS }, 2431 { 42, IFM_IEEE80211_MCS }, 2432 { 43, IFM_IEEE80211_MCS }, 2433 { 44, IFM_IEEE80211_MCS }, 2434 { 45, IFM_IEEE80211_MCS }, 2435 { 46, IFM_IEEE80211_MCS }, 2436 { 47, IFM_IEEE80211_MCS }, 2437 { 48, IFM_IEEE80211_MCS }, 2438 { 49, IFM_IEEE80211_MCS }, 2439 { 50, IFM_IEEE80211_MCS }, 2440 { 51, IFM_IEEE80211_MCS }, 2441 { 52, IFM_IEEE80211_MCS }, 2442 { 53, IFM_IEEE80211_MCS }, 2443 { 54, IFM_IEEE80211_MCS }, 2444 { 55, IFM_IEEE80211_MCS }, 2445 { 56, IFM_IEEE80211_MCS }, 2446 { 57, IFM_IEEE80211_MCS }, 2447 { 58, IFM_IEEE80211_MCS }, 2448 { 59, IFM_IEEE80211_MCS }, 2449 { 60, IFM_IEEE80211_MCS }, 2450 { 61, IFM_IEEE80211_MCS }, 2451 { 62, IFM_IEEE80211_MCS }, 2452 { 63, IFM_IEEE80211_MCS }, 2453 { 64, IFM_IEEE80211_MCS }, 2454 { 65, IFM_IEEE80211_MCS }, 2455 { 66, IFM_IEEE80211_MCS }, 2456 { 67, IFM_IEEE80211_MCS }, 2457 { 68, IFM_IEEE80211_MCS }, 2458 { 69, IFM_IEEE80211_MCS }, 2459 { 70, IFM_IEEE80211_MCS }, 2460 { 71, IFM_IEEE80211_MCS }, 2461 { 72, IFM_IEEE80211_MCS }, 2462 { 73, IFM_IEEE80211_MCS }, 2463 { 74, IFM_IEEE80211_MCS }, 2464 { 75, IFM_IEEE80211_MCS }, 2465 { 76, IFM_IEEE80211_MCS }, 2466 }; 2467 static const struct ratemedia vhtrates[] = { 2468 { 0, IFM_IEEE80211_VHT }, 2469 { 1, IFM_IEEE80211_VHT }, 2470 { 2, IFM_IEEE80211_VHT }, 2471 { 3, IFM_IEEE80211_VHT }, 2472 { 4, IFM_IEEE80211_VHT }, 2473 { 5, IFM_IEEE80211_VHT }, 2474 { 6, IFM_IEEE80211_VHT }, 2475 { 7, IFM_IEEE80211_VHT }, 2476 { 8, IFM_IEEE80211_VHT }, /* Optional. */ 2477 { 9, IFM_IEEE80211_VHT }, /* Optional. */ 2478 #if 0 2479 /* Some QCA and BRCM seem to support this; offspec. */ 2480 { 10, IFM_IEEE80211_VHT }, 2481 { 11, IFM_IEEE80211_VHT }, 2482 #endif 2483 }; 2484 int m; 2485 2486 /* 2487 * Check 11ac/11n rates first for match as an MCS. 2488 */ 2489 if (mode == IEEE80211_MODE_VHT_5GHZ) { 2490 if (rate & IFM_IEEE80211_VHT) { 2491 rate &= ~IFM_IEEE80211_VHT; 2492 m = findmedia(vhtrates, nitems(vhtrates), rate); 2493 if (m != IFM_AUTO) 2494 return (m | IFM_IEEE80211_VHT); 2495 } 2496 } else if (mode == IEEE80211_MODE_11NA) { 2497 if (rate & IEEE80211_RATE_MCS) { 2498 rate &= ~IEEE80211_RATE_MCS; 2499 m = findmedia(htrates, nitems(htrates), rate); 2500 if (m != IFM_AUTO) 2501 return m | IFM_IEEE80211_11NA; 2502 } 2503 } else if (mode == IEEE80211_MODE_11NG) { 2504 /* NB: 12 is ambiguous, it will be treated as an MCS */ 2505 if (rate & IEEE80211_RATE_MCS) { 2506 rate &= ~IEEE80211_RATE_MCS; 2507 m = findmedia(htrates, nitems(htrates), rate); 2508 if (m != IFM_AUTO) 2509 return m | IFM_IEEE80211_11NG; 2510 } 2511 } 2512 rate &= IEEE80211_RATE_VAL; 2513 switch (mode) { 2514 case IEEE80211_MODE_11A: 2515 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 2516 case IEEE80211_MODE_QUARTER: 2517 case IEEE80211_MODE_11NA: 2518 case IEEE80211_MODE_TURBO_A: 2519 case IEEE80211_MODE_STURBO_A: 2520 return findmedia(rates, nitems(rates), 2521 rate | IFM_IEEE80211_11A); 2522 case IEEE80211_MODE_11B: 2523 return findmedia(rates, nitems(rates), 2524 rate | IFM_IEEE80211_11B); 2525 case IEEE80211_MODE_FH: 2526 return findmedia(rates, nitems(rates), 2527 rate | IFM_IEEE80211_FH); 2528 case IEEE80211_MODE_AUTO: 2529 /* NB: ic may be NULL for some drivers */ 2530 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 2531 return findmedia(rates, nitems(rates), 2532 rate | IFM_IEEE80211_FH); 2533 /* NB: hack, 11g matches both 11b+11a rates */ 2534 /* fall thru... */ 2535 case IEEE80211_MODE_11G: 2536 case IEEE80211_MODE_11NG: 2537 case IEEE80211_MODE_TURBO_G: 2538 return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); 2539 case IEEE80211_MODE_VHT_2GHZ: 2540 case IEEE80211_MODE_VHT_5GHZ: 2541 /* XXX TODO: need to figure out mapping for VHT rates */ 2542 return IFM_AUTO; 2543 } 2544 return IFM_AUTO; 2545 } 2546 2547 int 2548 ieee80211_media2rate(int mword) 2549 { 2550 static const int ieeerates[] = { 2551 -1, /* IFM_AUTO */ 2552 0, /* IFM_MANUAL */ 2553 0, /* IFM_NONE */ 2554 2, /* IFM_IEEE80211_FH1 */ 2555 4, /* IFM_IEEE80211_FH2 */ 2556 2, /* IFM_IEEE80211_DS1 */ 2557 4, /* IFM_IEEE80211_DS2 */ 2558 11, /* IFM_IEEE80211_DS5 */ 2559 22, /* IFM_IEEE80211_DS11 */ 2560 44, /* IFM_IEEE80211_DS22 */ 2561 12, /* IFM_IEEE80211_OFDM6 */ 2562 18, /* IFM_IEEE80211_OFDM9 */ 2563 24, /* IFM_IEEE80211_OFDM12 */ 2564 36, /* IFM_IEEE80211_OFDM18 */ 2565 48, /* IFM_IEEE80211_OFDM24 */ 2566 72, /* IFM_IEEE80211_OFDM36 */ 2567 96, /* IFM_IEEE80211_OFDM48 */ 2568 108, /* IFM_IEEE80211_OFDM54 */ 2569 144, /* IFM_IEEE80211_OFDM72 */ 2570 0, /* IFM_IEEE80211_DS354k */ 2571 0, /* IFM_IEEE80211_DS512k */ 2572 6, /* IFM_IEEE80211_OFDM3 */ 2573 9, /* IFM_IEEE80211_OFDM4 */ 2574 54, /* IFM_IEEE80211_OFDM27 */ 2575 -1, /* IFM_IEEE80211_MCS */ 2576 -1, /* IFM_IEEE80211_VHT */ 2577 }; 2578 return IFM_SUBTYPE(mword) < nitems(ieeerates) ? 2579 ieeerates[IFM_SUBTYPE(mword)] : 0; 2580 } 2581 2582 /* 2583 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 2584 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 2585 */ 2586 #define mix(a, b, c) \ 2587 do { \ 2588 a -= b; a -= c; a ^= (c >> 13); \ 2589 b -= c; b -= a; b ^= (a << 8); \ 2590 c -= a; c -= b; c ^= (b >> 13); \ 2591 a -= b; a -= c; a ^= (c >> 12); \ 2592 b -= c; b -= a; b ^= (a << 16); \ 2593 c -= a; c -= b; c ^= (b >> 5); \ 2594 a -= b; a -= c; a ^= (c >> 3); \ 2595 b -= c; b -= a; b ^= (a << 10); \ 2596 c -= a; c -= b; c ^= (b >> 15); \ 2597 } while (/*CONSTCOND*/0) 2598 2599 uint32_t 2600 ieee80211_mac_hash(const struct ieee80211com *ic, 2601 const uint8_t addr[IEEE80211_ADDR_LEN]) 2602 { 2603 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 2604 2605 b += addr[5] << 8; 2606 b += addr[4]; 2607 a += addr[3] << 24; 2608 a += addr[2] << 16; 2609 a += addr[1] << 8; 2610 a += addr[0]; 2611 2612 mix(a, b, c); 2613 2614 return c; 2615 } 2616 #undef mix 2617 2618 char 2619 ieee80211_channel_type_char(const struct ieee80211_channel *c) 2620 { 2621 if (IEEE80211_IS_CHAN_ST(c)) 2622 return 'S'; 2623 if (IEEE80211_IS_CHAN_108A(c)) 2624 return 'T'; 2625 if (IEEE80211_IS_CHAN_108G(c)) 2626 return 'G'; 2627 if (IEEE80211_IS_CHAN_VHT(c)) 2628 return 'v'; 2629 if (IEEE80211_IS_CHAN_HT(c)) 2630 return 'n'; 2631 if (IEEE80211_IS_CHAN_A(c)) 2632 return 'a'; 2633 if (IEEE80211_IS_CHAN_ANYG(c)) 2634 return 'g'; 2635 if (IEEE80211_IS_CHAN_B(c)) 2636 return 'b'; 2637 return 'f'; 2638 } 2639