1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 53 #include <net/bpf.h> 54 55 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 56 [IEEE80211_MODE_AUTO] = "auto", 57 [IEEE80211_MODE_11A] = "11a", 58 [IEEE80211_MODE_11B] = "11b", 59 [IEEE80211_MODE_11G] = "11g", 60 [IEEE80211_MODE_FH] = "FH", 61 [IEEE80211_MODE_TURBO_A] = "turboA", 62 [IEEE80211_MODE_TURBO_G] = "turboG", 63 [IEEE80211_MODE_STURBO_A] = "sturboA", 64 [IEEE80211_MODE_HALF] = "half", 65 [IEEE80211_MODE_QUARTER] = "quarter", 66 [IEEE80211_MODE_11NA] = "11na", 67 [IEEE80211_MODE_11NG] = "11ng", 68 }; 69 /* map ieee80211_opmode to the corresponding capability bit */ 70 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 71 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 72 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 73 [IEEE80211_M_STA] = IEEE80211_C_STA, 74 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 75 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 76 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 77 #ifdef IEEE80211_SUPPORT_MESH 78 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 79 #endif 80 }; 81 82 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 83 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 84 85 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 86 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 87 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 88 static int ieee80211_media_setup(struct ieee80211com *ic, 89 struct ifmedia *media, int caps, int addsta, 90 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 91 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 92 static int ieee80211com_media_change(struct ifnet *); 93 static int media_status(enum ieee80211_opmode, 94 const struct ieee80211_channel *); 95 96 /* 97 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 98 */ 99 #define B(r) ((r) | IEEE80211_RATE_BASIC) 100 static const struct ieee80211_rateset ieee80211_rateset_11a = 101 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 102 static const struct ieee80211_rateset ieee80211_rateset_half = 103 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 104 static const struct ieee80211_rateset ieee80211_rateset_quarter = 105 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 106 static const struct ieee80211_rateset ieee80211_rateset_11b = 107 { 4, { B(2), B(4), B(11), B(22) } }; 108 /* NB: OFDM rates are handled specially based on mode */ 109 static const struct ieee80211_rateset ieee80211_rateset_11g = 110 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 111 #undef B 112 113 /* 114 * Fill in 802.11 available channel set, mark 115 * all available channels as active, and pick 116 * a default channel if not already specified. 117 */ 118 static void 119 ieee80211_chan_init(struct ieee80211com *ic) 120 { 121 #define DEFAULTRATES(m, def) do { \ 122 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 123 ic->ic_sup_rates[m] = def; \ 124 } while (0) 125 struct ieee80211_channel *c; 126 int i; 127 128 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 129 ("invalid number of channels specified: %u", ic->ic_nchans)); 130 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 131 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 132 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 133 for (i = 0; i < ic->ic_nchans; i++) { 134 c = &ic->ic_channels[i]; 135 KASSERT(c->ic_flags != 0, ("channel with no flags")); 136 /* 137 * Help drivers that work only with frequencies by filling 138 * in IEEE channel #'s if not already calculated. Note this 139 * mimics similar work done in ieee80211_setregdomain when 140 * changing regulatory state. 141 */ 142 if (c->ic_ieee == 0) 143 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 144 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 145 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 146 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 147 c->ic_flags); 148 /* default max tx power to max regulatory */ 149 if (c->ic_maxpower == 0) 150 c->ic_maxpower = 2*c->ic_maxregpower; 151 setbit(ic->ic_chan_avail, c->ic_ieee); 152 /* 153 * Identify mode capabilities. 154 */ 155 if (IEEE80211_IS_CHAN_A(c)) 156 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 157 if (IEEE80211_IS_CHAN_B(c)) 158 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 159 if (IEEE80211_IS_CHAN_ANYG(c)) 160 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 161 if (IEEE80211_IS_CHAN_FHSS(c)) 162 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 163 if (IEEE80211_IS_CHAN_108A(c)) 164 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 165 if (IEEE80211_IS_CHAN_108G(c)) 166 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 167 if (IEEE80211_IS_CHAN_ST(c)) 168 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 169 if (IEEE80211_IS_CHAN_HALF(c)) 170 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 171 if (IEEE80211_IS_CHAN_QUARTER(c)) 172 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 173 if (IEEE80211_IS_CHAN_HTA(c)) 174 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 175 if (IEEE80211_IS_CHAN_HTG(c)) 176 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 177 } 178 /* initialize candidate channels to all available */ 179 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 180 sizeof(ic->ic_chan_avail)); 181 182 /* sort channel table to allow lookup optimizations */ 183 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 184 185 /* invalidate any previous state */ 186 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 187 ic->ic_prevchan = NULL; 188 ic->ic_csa_newchan = NULL; 189 /* arbitrarily pick the first channel */ 190 ic->ic_curchan = &ic->ic_channels[0]; 191 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 192 193 /* fillin well-known rate sets if driver has not specified */ 194 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 195 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 196 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 197 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 198 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 199 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 200 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 201 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 202 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 203 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 204 205 /* 206 * Set auto mode to reset active channel state and any desired channel. 207 */ 208 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 209 #undef DEFAULTRATES 210 } 211 212 static void 213 null_update_mcast(struct ifnet *ifp) 214 { 215 if_printf(ifp, "need multicast update callback\n"); 216 } 217 218 static void 219 null_update_promisc(struct ifnet *ifp) 220 { 221 if_printf(ifp, "need promiscuous mode update callback\n"); 222 } 223 224 static int 225 null_transmit(struct ifnet *ifp, struct mbuf *m) 226 { 227 m_freem(m); 228 ifp->if_oerrors++; 229 return EACCES; /* XXX EIO/EPERM? */ 230 } 231 232 static int 233 null_output(struct ifnet *ifp, struct mbuf *m, 234 struct sockaddr *dst, struct route *ro) 235 { 236 if_printf(ifp, "discard raw packet\n"); 237 return null_transmit(ifp, m); 238 } 239 240 static void 241 null_input(struct ifnet *ifp, struct mbuf *m) 242 { 243 if_printf(ifp, "if_input should not be called\n"); 244 m_freem(m); 245 } 246 247 /* 248 * Attach/setup the common net80211 state. Called by 249 * the driver on attach to prior to creating any vap's. 250 */ 251 void 252 ieee80211_ifattach(struct ieee80211com *ic, 253 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 254 { 255 struct ifnet *ifp = ic->ic_ifp; 256 struct sockaddr_dl *sdl; 257 struct ifaddr *ifa; 258 259 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 260 261 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 262 TAILQ_INIT(&ic->ic_vaps); 263 264 /* Create a taskqueue for all state changes */ 265 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 266 taskqueue_thread_enqueue, &ic->ic_tq); 267 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq", 268 ifp->if_xname); 269 /* 270 * Fill in 802.11 available channel set, mark all 271 * available channels as active, and pick a default 272 * channel if not already specified. 273 */ 274 ieee80211_media_init(ic); 275 276 ic->ic_update_mcast = null_update_mcast; 277 ic->ic_update_promisc = null_update_promisc; 278 279 ic->ic_hash_key = arc4random(); 280 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 281 ic->ic_lintval = ic->ic_bintval; 282 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 283 284 ieee80211_crypto_attach(ic); 285 ieee80211_node_attach(ic); 286 ieee80211_power_attach(ic); 287 ieee80211_proto_attach(ic); 288 #ifdef IEEE80211_SUPPORT_SUPERG 289 ieee80211_superg_attach(ic); 290 #endif 291 ieee80211_ht_attach(ic); 292 ieee80211_scan_attach(ic); 293 ieee80211_regdomain_attach(ic); 294 ieee80211_dfs_attach(ic); 295 296 ieee80211_sysctl_attach(ic); 297 298 ifp->if_addrlen = IEEE80211_ADDR_LEN; 299 ifp->if_hdrlen = 0; 300 if_attach(ifp); 301 ifp->if_mtu = IEEE80211_MTU_MAX; 302 ifp->if_broadcastaddr = ieee80211broadcastaddr; 303 ifp->if_output = null_output; 304 ifp->if_input = null_input; /* just in case */ 305 ifp->if_resolvemulti = NULL; /* NB: callers check */ 306 307 #ifndef __HAIKU__ 308 ifa = ifaddr_byindex(ifp->if_index); 309 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 310 sdl = (struct sockaddr_dl *)ifa->ifa_addr;; 311 #else 312 sdl = &ifp->if_lladdr; 313 #endif 314 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 315 sdl->sdl_alen = IEEE80211_ADDR_LEN; 316 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 317 ifa_free(ifa); 318 } 319 320 /* 321 * Detach net80211 state on device detach. Tear down 322 * all vap's and reclaim all common state prior to the 323 * device state going away. Note we may call back into 324 * driver; it must be prepared for this. 325 */ 326 void 327 ieee80211_ifdetach(struct ieee80211com *ic) 328 { 329 struct ifnet *ifp = ic->ic_ifp; 330 struct ieee80211vap *vap; 331 332 if_detach(ifp); 333 334 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 335 ieee80211_vap_destroy(vap); 336 ieee80211_waitfor_parent(ic); 337 338 ieee80211_sysctl_detach(ic); 339 ieee80211_dfs_detach(ic); 340 ieee80211_regdomain_detach(ic); 341 ieee80211_scan_detach(ic); 342 #ifdef IEEE80211_SUPPORT_SUPERG 343 ieee80211_superg_detach(ic); 344 #endif 345 ieee80211_ht_detach(ic); 346 /* NB: must be called before ieee80211_node_detach */ 347 ieee80211_proto_detach(ic); 348 ieee80211_crypto_detach(ic); 349 ieee80211_power_detach(ic); 350 ieee80211_node_detach(ic); 351 352 ifmedia_removeall(&ic->ic_media); 353 taskqueue_free(ic->ic_tq); 354 IEEE80211_LOCK_DESTROY(ic); 355 } 356 357 /* 358 * Default reset method for use with the ioctl support. This 359 * method is invoked after any state change in the 802.11 360 * layer that should be propagated to the hardware but not 361 * require re-initialization of the 802.11 state machine (e.g 362 * rescanning for an ap). We always return ENETRESET which 363 * should cause the driver to re-initialize the device. Drivers 364 * can override this method to implement more optimized support. 365 */ 366 static int 367 default_reset(struct ieee80211vap *vap, u_long cmd) 368 { 369 return ENETRESET; 370 } 371 372 /* 373 * Prepare a vap for use. Drivers use this call to 374 * setup net80211 state in new vap's prior attaching 375 * them with ieee80211_vap_attach (below). 376 */ 377 int 378 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 379 const char name[IFNAMSIZ], int unit, int opmode, int flags, 380 const uint8_t bssid[IEEE80211_ADDR_LEN], 381 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 382 { 383 struct ifnet *ifp; 384 385 ifp = if_alloc(IFT_ETHER); 386 if (ifp == NULL) { 387 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 388 __func__); 389 return ENOMEM; 390 } 391 if_initname(ifp, name, unit); 392 ifp->if_softc = vap; /* back pointer */ 393 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 394 ifp->if_start = ieee80211_start; 395 ifp->if_ioctl = ieee80211_ioctl; 396 ifp->if_watchdog = NULL; /* NB: no watchdog routine */ 397 ifp->if_init = ieee80211_init; 398 /* NB: input+output filled in by ether_ifattach */ 399 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 400 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 401 IFQ_SET_READY(&ifp->if_snd); 402 403 vap->iv_ifp = ifp; 404 vap->iv_ic = ic; 405 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 406 vap->iv_flags_ext = ic->ic_flags_ext; 407 vap->iv_flags_ven = ic->ic_flags_ven; 408 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 409 vap->iv_htcaps = ic->ic_htcaps; 410 vap->iv_opmode = opmode; 411 vap->iv_caps |= ieee80211_opcap[opmode]; 412 switch (opmode) { 413 case IEEE80211_M_WDS: 414 /* 415 * WDS links must specify the bssid of the far end. 416 * For legacy operation this is a static relationship. 417 * For non-legacy operation the station must associate 418 * and be authorized to pass traffic. Plumbing the 419 * vap to the proper node happens when the vap 420 * transitions to RUN state. 421 */ 422 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 423 vap->iv_flags |= IEEE80211_F_DESBSSID; 424 if (flags & IEEE80211_CLONE_WDSLEGACY) 425 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 426 break; 427 #ifdef IEEE80211_SUPPORT_TDMA 428 case IEEE80211_M_AHDEMO: 429 if (flags & IEEE80211_CLONE_TDMA) { 430 /* NB: checked before clone operation allowed */ 431 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 432 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 433 /* 434 * Propagate TDMA capability to mark vap; this 435 * cannot be removed and is used to distinguish 436 * regular ahdemo operation from ahdemo+tdma. 437 */ 438 vap->iv_caps |= IEEE80211_C_TDMA; 439 } 440 break; 441 #endif 442 } 443 /* auto-enable s/w beacon miss support */ 444 if (flags & IEEE80211_CLONE_NOBEACONS) 445 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 446 /* 447 * Enable various functionality by default if we're 448 * capable; the driver can override us if it knows better. 449 */ 450 if (vap->iv_caps & IEEE80211_C_WME) 451 vap->iv_flags |= IEEE80211_F_WME; 452 if (vap->iv_caps & IEEE80211_C_BURST) 453 vap->iv_flags |= IEEE80211_F_BURST; 454 /* NB: bg scanning only makes sense for station mode right now */ 455 #if 0 456 if (vap->iv_opmode == IEEE80211_M_STA && 457 (vap->iv_caps & IEEE80211_C_BGSCAN)) 458 vap->iv_flags |= IEEE80211_F_BGSCAN; 459 #endif 460 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 461 /* NB: DFS support only makes sense for ap mode right now */ 462 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 463 (vap->iv_caps & IEEE80211_C_DFS)) 464 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 465 466 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 467 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 468 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 469 /* 470 * Install a default reset method for the ioctl support; 471 * the driver can override this. 472 */ 473 vap->iv_reset = default_reset; 474 475 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 476 477 ieee80211_sysctl_vattach(vap); 478 ieee80211_crypto_vattach(vap); 479 ieee80211_node_vattach(vap); 480 ieee80211_power_vattach(vap); 481 ieee80211_proto_vattach(vap); 482 #ifdef IEEE80211_SUPPORT_SUPERG 483 ieee80211_superg_vattach(vap); 484 #endif 485 ieee80211_ht_vattach(vap); 486 ieee80211_scan_vattach(vap); 487 ieee80211_regdomain_vattach(vap); 488 ieee80211_radiotap_vattach(vap); 489 490 return 0; 491 } 492 493 /* 494 * Activate a vap. State should have been prepared with a 495 * call to ieee80211_vap_setup and by the driver. On return 496 * from this call the vap is ready for use. 497 */ 498 int 499 ieee80211_vap_attach(struct ieee80211vap *vap, 500 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 501 { 502 struct ifnet *ifp = vap->iv_ifp; 503 struct ieee80211com *ic = vap->iv_ic; 504 struct ifmediareq imr; 505 int maxrate; 506 507 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 508 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 509 __func__, ieee80211_opmode_name[vap->iv_opmode], 510 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 511 512 /* 513 * Do late attach work that cannot happen until after 514 * the driver has had a chance to override defaults. 515 */ 516 ieee80211_node_latevattach(vap); 517 ieee80211_power_latevattach(vap); 518 519 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 520 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 521 ieee80211_media_status(ifp, &imr); 522 /* NB: strip explicit mode; we're actually in autoselect */ 523 ifmedia_set(&vap->iv_media, 524 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 525 if (maxrate) 526 ifp->if_baudrate = IF_Mbps(maxrate); 527 528 ether_ifattach(ifp, vap->iv_myaddr); 529 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 530 /* NB: disallow transmit */ 531 ifp->if_transmit = null_transmit; 532 ifp->if_output = null_output; 533 } else { 534 /* hook output method setup by ether_ifattach */ 535 vap->iv_output = ifp->if_output; 536 ifp->if_output = ieee80211_output; 537 } 538 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 539 540 IEEE80211_LOCK(ic); 541 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 542 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 543 #ifdef IEEE80211_SUPPORT_SUPERG 544 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 545 #endif 546 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 547 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 548 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 549 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 550 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 551 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 552 IEEE80211_UNLOCK(ic); 553 554 return 1; 555 } 556 557 /* 558 * Tear down vap state and reclaim the ifnet. 559 * The driver is assumed to have prepared for 560 * this; e.g. by turning off interrupts for the 561 * underlying device. 562 */ 563 void 564 ieee80211_vap_detach(struct ieee80211vap *vap) 565 { 566 struct ieee80211com *ic = vap->iv_ic; 567 struct ifnet *ifp = vap->iv_ifp; 568 569 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 570 __func__, ieee80211_opmode_name[vap->iv_opmode], 571 ic->ic_ifp->if_xname); 572 573 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 574 ether_ifdetach(ifp); 575 576 ieee80211_stop(vap); 577 578 /* 579 * Flush any deferred vap tasks. 580 */ 581 ieee80211_draintask(ic, &vap->iv_nstate_task); 582 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 583 584 IEEE80211_LOCK(ic); 585 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 586 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 587 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 588 #ifdef IEEE80211_SUPPORT_SUPERG 589 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 590 #endif 591 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 592 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 593 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 594 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 595 /* NB: this handles the bpfdetach done below */ 596 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 597 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 598 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 599 IEEE80211_UNLOCK(ic); 600 601 ifmedia_removeall(&vap->iv_media); 602 603 ieee80211_radiotap_vdetach(vap); 604 ieee80211_regdomain_vdetach(vap); 605 ieee80211_scan_vdetach(vap); 606 #ifdef IEEE80211_SUPPORT_SUPERG 607 ieee80211_superg_vdetach(vap); 608 #endif 609 ieee80211_ht_vdetach(vap); 610 /* NB: must be before ieee80211_node_vdetach */ 611 ieee80211_proto_vdetach(vap); 612 ieee80211_crypto_vdetach(vap); 613 ieee80211_power_vdetach(vap); 614 ieee80211_node_vdetach(vap); 615 ieee80211_sysctl_vdetach(vap); 616 617 if_free(ifp); 618 } 619 620 /* 621 * Synchronize flag bit state in the parent ifnet structure 622 * according to the state of all vap ifnet's. This is used, 623 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 624 */ 625 void 626 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 627 { 628 struct ifnet *ifp = ic->ic_ifp; 629 struct ieee80211vap *vap; 630 int bit, oflags; 631 632 IEEE80211_LOCK_ASSERT(ic); 633 634 bit = 0; 635 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 636 if (vap->iv_ifp->if_flags & flag) { 637 /* 638 * XXX the bridge sets PROMISC but we don't want to 639 * enable it on the device, discard here so all the 640 * drivers don't need to special-case it 641 */ 642 if (flag == IFF_PROMISC && 643 !(vap->iv_opmode == IEEE80211_M_MONITOR || 644 (vap->iv_opmode == IEEE80211_M_AHDEMO && 645 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 646 continue; 647 bit = 1; 648 break; 649 } 650 oflags = ifp->if_flags; 651 if (bit) 652 ifp->if_flags |= flag; 653 else 654 ifp->if_flags &= ~flag; 655 if ((ifp->if_flags ^ oflags) & flag) { 656 /* XXX should we return 1/0 and let caller do this? */ 657 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 658 if (flag == IFF_PROMISC) 659 ieee80211_runtask(ic, &ic->ic_promisc_task); 660 else if (flag == IFF_ALLMULTI) 661 ieee80211_runtask(ic, &ic->ic_mcast_task); 662 } 663 } 664 } 665 666 /* 667 * Synchronize flag bit state in the com structure 668 * according to the state of all vap's. This is used, 669 * for example, to handle state changes via ioctls. 670 */ 671 static void 672 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 673 { 674 struct ieee80211vap *vap; 675 int bit; 676 677 IEEE80211_LOCK_ASSERT(ic); 678 679 bit = 0; 680 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 681 if (vap->iv_flags & flag) { 682 bit = 1; 683 break; 684 } 685 if (bit) 686 ic->ic_flags |= flag; 687 else 688 ic->ic_flags &= ~flag; 689 } 690 691 void 692 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 693 { 694 struct ieee80211com *ic = vap->iv_ic; 695 696 IEEE80211_LOCK(ic); 697 if (flag < 0) { 698 flag = -flag; 699 vap->iv_flags &= ~flag; 700 } else 701 vap->iv_flags |= flag; 702 ieee80211_syncflag_locked(ic, flag); 703 IEEE80211_UNLOCK(ic); 704 } 705 706 /* 707 * Synchronize flags_ht bit state in the com structure 708 * according to the state of all vap's. This is used, 709 * for example, to handle state changes via ioctls. 710 */ 711 static void 712 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 713 { 714 struct ieee80211vap *vap; 715 int bit; 716 717 IEEE80211_LOCK_ASSERT(ic); 718 719 bit = 0; 720 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 721 if (vap->iv_flags_ht & flag) { 722 bit = 1; 723 break; 724 } 725 if (bit) 726 ic->ic_flags_ht |= flag; 727 else 728 ic->ic_flags_ht &= ~flag; 729 } 730 731 void 732 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 733 { 734 struct ieee80211com *ic = vap->iv_ic; 735 736 IEEE80211_LOCK(ic); 737 if (flag < 0) { 738 flag = -flag; 739 vap->iv_flags_ht &= ~flag; 740 } else 741 vap->iv_flags_ht |= flag; 742 ieee80211_syncflag_ht_locked(ic, flag); 743 IEEE80211_UNLOCK(ic); 744 } 745 746 /* 747 * Synchronize flags_ext bit state in the com structure 748 * according to the state of all vap's. This is used, 749 * for example, to handle state changes via ioctls. 750 */ 751 static void 752 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 753 { 754 struct ieee80211vap *vap; 755 int bit; 756 757 IEEE80211_LOCK_ASSERT(ic); 758 759 bit = 0; 760 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 761 if (vap->iv_flags_ext & flag) { 762 bit = 1; 763 break; 764 } 765 if (bit) 766 ic->ic_flags_ext |= flag; 767 else 768 ic->ic_flags_ext &= ~flag; 769 } 770 771 void 772 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 773 { 774 struct ieee80211com *ic = vap->iv_ic; 775 776 IEEE80211_LOCK(ic); 777 if (flag < 0) { 778 flag = -flag; 779 vap->iv_flags_ext &= ~flag; 780 } else 781 vap->iv_flags_ext |= flag; 782 ieee80211_syncflag_ext_locked(ic, flag); 783 IEEE80211_UNLOCK(ic); 784 } 785 786 static __inline int 787 mapgsm(u_int freq, u_int flags) 788 { 789 freq *= 10; 790 if (flags & IEEE80211_CHAN_QUARTER) 791 freq += 5; 792 else if (flags & IEEE80211_CHAN_HALF) 793 freq += 10; 794 else 795 freq += 20; 796 /* NB: there is no 907/20 wide but leave room */ 797 return (freq - 906*10) / 5; 798 } 799 800 static __inline int 801 mappsb(u_int freq, u_int flags) 802 { 803 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 804 } 805 806 /* 807 * Convert MHz frequency to IEEE channel number. 808 */ 809 int 810 ieee80211_mhz2ieee(u_int freq, u_int flags) 811 { 812 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 813 if (flags & IEEE80211_CHAN_GSM) 814 return mapgsm(freq, flags); 815 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 816 if (freq == 2484) 817 return 14; 818 if (freq < 2484) 819 return ((int) freq - 2407) / 5; 820 else 821 return 15 + ((freq - 2512) / 20); 822 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 823 if (freq <= 5000) { 824 /* XXX check regdomain? */ 825 if (IS_FREQ_IN_PSB(freq)) 826 return mappsb(freq, flags); 827 return (freq - 4000) / 5; 828 } else 829 return (freq - 5000) / 5; 830 } else { /* either, guess */ 831 if (freq == 2484) 832 return 14; 833 if (freq < 2484) { 834 if (907 <= freq && freq <= 922) 835 return mapgsm(freq, flags); 836 return ((int) freq - 2407) / 5; 837 } 838 if (freq < 5000) { 839 if (IS_FREQ_IN_PSB(freq)) 840 return mappsb(freq, flags); 841 else if (freq > 4900) 842 return (freq - 4000) / 5; 843 else 844 return 15 + ((freq - 2512) / 20); 845 } 846 return (freq - 5000) / 5; 847 } 848 #undef IS_FREQ_IN_PSB 849 } 850 851 /* 852 * Convert channel to IEEE channel number. 853 */ 854 int 855 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 856 { 857 if (c == NULL) { 858 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 859 return 0; /* XXX */ 860 } 861 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 862 } 863 864 /* 865 * Convert IEEE channel number to MHz frequency. 866 */ 867 u_int 868 ieee80211_ieee2mhz(u_int chan, u_int flags) 869 { 870 if (flags & IEEE80211_CHAN_GSM) 871 return 907 + 5 * (chan / 10); 872 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 873 if (chan == 14) 874 return 2484; 875 if (chan < 14) 876 return 2407 + chan*5; 877 else 878 return 2512 + ((chan-15)*20); 879 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 880 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 881 chan -= 37; 882 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 883 } 884 return 5000 + (chan*5); 885 } else { /* either, guess */ 886 /* XXX can't distinguish PSB+GSM channels */ 887 if (chan == 14) 888 return 2484; 889 if (chan < 14) /* 0-13 */ 890 return 2407 + chan*5; 891 if (chan < 27) /* 15-26 */ 892 return 2512 + ((chan-15)*20); 893 return 5000 + (chan*5); 894 } 895 } 896 897 /* 898 * Locate a channel given a frequency+flags. We cache 899 * the previous lookup to optimize switching between two 900 * channels--as happens with dynamic turbo. 901 */ 902 struct ieee80211_channel * 903 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 904 { 905 struct ieee80211_channel *c; 906 int i; 907 908 flags &= IEEE80211_CHAN_ALLTURBO; 909 c = ic->ic_prevchan; 910 if (c != NULL && c->ic_freq == freq && 911 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 912 return c; 913 /* brute force search */ 914 for (i = 0; i < ic->ic_nchans; i++) { 915 c = &ic->ic_channels[i]; 916 if (c->ic_freq == freq && 917 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 918 return c; 919 } 920 return NULL; 921 } 922 923 /* 924 * Locate a channel given a channel number+flags. We cache 925 * the previous lookup to optimize switching between two 926 * channels--as happens with dynamic turbo. 927 */ 928 struct ieee80211_channel * 929 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 930 { 931 struct ieee80211_channel *c; 932 int i; 933 934 flags &= IEEE80211_CHAN_ALLTURBO; 935 c = ic->ic_prevchan; 936 if (c != NULL && c->ic_ieee == ieee && 937 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 938 return c; 939 /* brute force search */ 940 for (i = 0; i < ic->ic_nchans; i++) { 941 c = &ic->ic_channels[i]; 942 if (c->ic_ieee == ieee && 943 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 944 return c; 945 } 946 return NULL; 947 } 948 949 static void 950 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 951 { 952 #define ADD(_ic, _s, _o) \ 953 ifmedia_add(media, \ 954 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 955 static const u_int mopts[IEEE80211_MODE_MAX] = { 956 [IEEE80211_MODE_AUTO] = IFM_AUTO, 957 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 958 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 959 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 960 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 961 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 962 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 963 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 964 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 965 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 966 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 967 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 968 }; 969 u_int mopt; 970 971 mopt = mopts[mode]; 972 if (addsta) 973 ADD(ic, mword, mopt); /* STA mode has no cap */ 974 if (caps & IEEE80211_C_IBSS) 975 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 976 if (caps & IEEE80211_C_HOSTAP) 977 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 978 if (caps & IEEE80211_C_AHDEMO) 979 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 980 if (caps & IEEE80211_C_MONITOR) 981 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 982 if (caps & IEEE80211_C_WDS) 983 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 984 if (caps & IEEE80211_C_MBSS) 985 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 986 #undef ADD 987 } 988 989 /* 990 * Setup the media data structures according to the channel and 991 * rate tables. 992 */ 993 static int 994 ieee80211_media_setup(struct ieee80211com *ic, 995 struct ifmedia *media, int caps, int addsta, 996 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 997 { 998 int i, j, mode, rate, maxrate, mword, r; 999 const struct ieee80211_rateset *rs; 1000 struct ieee80211_rateset allrates; 1001 1002 /* 1003 * Fill in media characteristics. 1004 */ 1005 ifmedia_init(media, 0, media_change, media_stat); 1006 maxrate = 0; 1007 /* 1008 * Add media for legacy operating modes. 1009 */ 1010 memset(&allrates, 0, sizeof(allrates)); 1011 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1012 if (isclr(ic->ic_modecaps, mode)) 1013 continue; 1014 addmedia(media, caps, addsta, mode, IFM_AUTO); 1015 if (mode == IEEE80211_MODE_AUTO) 1016 continue; 1017 rs = &ic->ic_sup_rates[mode]; 1018 for (i = 0; i < rs->rs_nrates; i++) { 1019 rate = rs->rs_rates[i]; 1020 mword = ieee80211_rate2media(ic, rate, mode); 1021 if (mword == 0) 1022 continue; 1023 addmedia(media, caps, addsta, mode, mword); 1024 /* 1025 * Add legacy rate to the collection of all rates. 1026 */ 1027 r = rate & IEEE80211_RATE_VAL; 1028 for (j = 0; j < allrates.rs_nrates; j++) 1029 if (allrates.rs_rates[j] == r) 1030 break; 1031 if (j == allrates.rs_nrates) { 1032 /* unique, add to the set */ 1033 allrates.rs_rates[j] = r; 1034 allrates.rs_nrates++; 1035 } 1036 rate = (rate & IEEE80211_RATE_VAL) / 2; 1037 if (rate > maxrate) 1038 maxrate = rate; 1039 } 1040 } 1041 for (i = 0; i < allrates.rs_nrates; i++) { 1042 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1043 IEEE80211_MODE_AUTO); 1044 if (mword == 0) 1045 continue; 1046 /* NB: remove media options from mword */ 1047 addmedia(media, caps, addsta, 1048 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1049 } 1050 /* 1051 * Add HT/11n media. Note that we do not have enough 1052 * bits in the media subtype to express the MCS so we 1053 * use a "placeholder" media subtype and any fixed MCS 1054 * must be specified with a different mechanism. 1055 */ 1056 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1057 if (isclr(ic->ic_modecaps, mode)) 1058 continue; 1059 addmedia(media, caps, addsta, mode, IFM_AUTO); 1060 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1061 } 1062 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1063 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1064 addmedia(media, caps, addsta, 1065 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1066 /* XXX could walk htrates */ 1067 /* XXX known array size */ 1068 if (ieee80211_htrates[15].ht40_rate_400ns > maxrate) 1069 maxrate = ieee80211_htrates[15].ht40_rate_400ns; 1070 } 1071 return maxrate; 1072 } 1073 1074 void 1075 ieee80211_media_init(struct ieee80211com *ic) 1076 { 1077 struct ifnet *ifp = ic->ic_ifp; 1078 int maxrate; 1079 1080 /* NB: this works because the structure is initialized to zero */ 1081 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1082 /* 1083 * We are re-initializing the channel list; clear 1084 * the existing media state as the media routines 1085 * don't suppress duplicates. 1086 */ 1087 ifmedia_removeall(&ic->ic_media); 1088 } 1089 ieee80211_chan_init(ic); 1090 1091 /* 1092 * Recalculate media settings in case new channel list changes 1093 * the set of available modes. 1094 */ 1095 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1096 ieee80211com_media_change, ieee80211com_media_status); 1097 /* NB: strip explicit mode; we're actually in autoselect */ 1098 ifmedia_set(&ic->ic_media, 1099 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1100 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1101 if (maxrate) 1102 ifp->if_baudrate = IF_Mbps(maxrate); 1103 1104 /* XXX need to propagate new media settings to vap's */ 1105 } 1106 1107 /* XXX inline or eliminate? */ 1108 const struct ieee80211_rateset * 1109 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1110 { 1111 /* XXX does this work for 11ng basic rates? */ 1112 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1113 } 1114 1115 void 1116 ieee80211_announce(struct ieee80211com *ic) 1117 { 1118 struct ifnet *ifp = ic->ic_ifp; 1119 int i, mode, rate, mword; 1120 const struct ieee80211_rateset *rs; 1121 1122 /* NB: skip AUTO since it has no rates */ 1123 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1124 if (isclr(ic->ic_modecaps, mode)) 1125 continue; 1126 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1127 rs = &ic->ic_sup_rates[mode]; 1128 for (i = 0; i < rs->rs_nrates; i++) { 1129 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1130 if (mword == 0) 1131 continue; 1132 rate = ieee80211_media2rate(mword); 1133 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1134 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1135 } 1136 printf("\n"); 1137 } 1138 ieee80211_ht_announce(ic); 1139 } 1140 1141 void 1142 ieee80211_announce_channels(struct ieee80211com *ic) 1143 { 1144 const struct ieee80211_channel *c; 1145 char type; 1146 int i, cw; 1147 1148 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1149 for (i = 0; i < ic->ic_nchans; i++) { 1150 c = &ic->ic_channels[i]; 1151 if (IEEE80211_IS_CHAN_ST(c)) 1152 type = 'S'; 1153 else if (IEEE80211_IS_CHAN_108A(c)) 1154 type = 'T'; 1155 else if (IEEE80211_IS_CHAN_108G(c)) 1156 type = 'G'; 1157 else if (IEEE80211_IS_CHAN_HT(c)) 1158 type = 'n'; 1159 else if (IEEE80211_IS_CHAN_A(c)) 1160 type = 'a'; 1161 else if (IEEE80211_IS_CHAN_ANYG(c)) 1162 type = 'g'; 1163 else if (IEEE80211_IS_CHAN_B(c)) 1164 type = 'b'; 1165 else 1166 type = 'f'; 1167 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1168 cw = 40; 1169 else if (IEEE80211_IS_CHAN_HALF(c)) 1170 cw = 10; 1171 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1172 cw = 5; 1173 else 1174 cw = 20; 1175 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1176 , c->ic_ieee, c->ic_freq, type 1177 , cw 1178 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1179 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1180 , c->ic_maxregpower 1181 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1182 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1183 ); 1184 } 1185 } 1186 1187 static int 1188 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1189 { 1190 switch (IFM_MODE(ime->ifm_media)) { 1191 case IFM_IEEE80211_11A: 1192 *mode = IEEE80211_MODE_11A; 1193 break; 1194 case IFM_IEEE80211_11B: 1195 *mode = IEEE80211_MODE_11B; 1196 break; 1197 case IFM_IEEE80211_11G: 1198 *mode = IEEE80211_MODE_11G; 1199 break; 1200 case IFM_IEEE80211_FH: 1201 *mode = IEEE80211_MODE_FH; 1202 break; 1203 case IFM_IEEE80211_11NA: 1204 *mode = IEEE80211_MODE_11NA; 1205 break; 1206 case IFM_IEEE80211_11NG: 1207 *mode = IEEE80211_MODE_11NG; 1208 break; 1209 case IFM_AUTO: 1210 *mode = IEEE80211_MODE_AUTO; 1211 break; 1212 default: 1213 return 0; 1214 } 1215 /* 1216 * Turbo mode is an ``option''. 1217 * XXX does not apply to AUTO 1218 */ 1219 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1220 if (*mode == IEEE80211_MODE_11A) { 1221 if (flags & IEEE80211_F_TURBOP) 1222 *mode = IEEE80211_MODE_TURBO_A; 1223 else 1224 *mode = IEEE80211_MODE_STURBO_A; 1225 } else if (*mode == IEEE80211_MODE_11G) 1226 *mode = IEEE80211_MODE_TURBO_G; 1227 else 1228 return 0; 1229 } 1230 /* XXX HT40 +/- */ 1231 return 1; 1232 } 1233 1234 /* 1235 * Handle a media change request on the underlying interface. 1236 */ 1237 int 1238 ieee80211com_media_change(struct ifnet *ifp) 1239 { 1240 return EINVAL; 1241 } 1242 1243 /* 1244 * Handle a media change request on the vap interface. 1245 */ 1246 int 1247 ieee80211_media_change(struct ifnet *ifp) 1248 { 1249 struct ieee80211vap *vap = ifp->if_softc; 1250 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1251 uint16_t newmode; 1252 1253 if (!media2mode(ime, vap->iv_flags, &newmode)) 1254 return EINVAL; 1255 if (vap->iv_des_mode != newmode) { 1256 vap->iv_des_mode = newmode; 1257 /* XXX kick state machine if up+running */ 1258 } 1259 return 0; 1260 } 1261 1262 /* 1263 * Common code to calculate the media status word 1264 * from the operating mode and channel state. 1265 */ 1266 static int 1267 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1268 { 1269 int status; 1270 1271 status = IFM_IEEE80211; 1272 switch (opmode) { 1273 case IEEE80211_M_STA: 1274 break; 1275 case IEEE80211_M_IBSS: 1276 status |= IFM_IEEE80211_ADHOC; 1277 break; 1278 case IEEE80211_M_HOSTAP: 1279 status |= IFM_IEEE80211_HOSTAP; 1280 break; 1281 case IEEE80211_M_MONITOR: 1282 status |= IFM_IEEE80211_MONITOR; 1283 break; 1284 case IEEE80211_M_AHDEMO: 1285 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1286 break; 1287 case IEEE80211_M_WDS: 1288 status |= IFM_IEEE80211_WDS; 1289 break; 1290 case IEEE80211_M_MBSS: 1291 status |= IFM_IEEE80211_MBSS; 1292 break; 1293 } 1294 if (IEEE80211_IS_CHAN_HTA(chan)) { 1295 status |= IFM_IEEE80211_11NA; 1296 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1297 status |= IFM_IEEE80211_11NG; 1298 } else if (IEEE80211_IS_CHAN_A(chan)) { 1299 status |= IFM_IEEE80211_11A; 1300 } else if (IEEE80211_IS_CHAN_B(chan)) { 1301 status |= IFM_IEEE80211_11B; 1302 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1303 status |= IFM_IEEE80211_11G; 1304 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1305 status |= IFM_IEEE80211_FH; 1306 } 1307 /* XXX else complain? */ 1308 1309 if (IEEE80211_IS_CHAN_TURBO(chan)) 1310 status |= IFM_IEEE80211_TURBO; 1311 #if 0 1312 if (IEEE80211_IS_CHAN_HT20(chan)) 1313 status |= IFM_IEEE80211_HT20; 1314 if (IEEE80211_IS_CHAN_HT40(chan)) 1315 status |= IFM_IEEE80211_HT40; 1316 #endif 1317 return status; 1318 } 1319 1320 static void 1321 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1322 { 1323 struct ieee80211com *ic = ifp->if_l2com; 1324 struct ieee80211vap *vap; 1325 1326 imr->ifm_status = IFM_AVALID; 1327 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1328 if (vap->iv_ifp->if_flags & IFF_UP) { 1329 imr->ifm_status |= IFM_ACTIVE; 1330 break; 1331 } 1332 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1333 if (imr->ifm_status & IFM_ACTIVE) 1334 imr->ifm_current = imr->ifm_active; 1335 } 1336 1337 void 1338 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1339 { 1340 struct ieee80211vap *vap = ifp->if_softc; 1341 struct ieee80211com *ic = vap->iv_ic; 1342 enum ieee80211_phymode mode; 1343 1344 imr->ifm_status = IFM_AVALID; 1345 /* 1346 * NB: use the current channel's mode to lock down a xmit 1347 * rate only when running; otherwise we may have a mismatch 1348 * in which case the rate will not be convertible. 1349 */ 1350 if (vap->iv_state == IEEE80211_S_RUN) { 1351 imr->ifm_status |= IFM_ACTIVE; 1352 mode = ieee80211_chan2mode(ic->ic_curchan); 1353 } else 1354 mode = IEEE80211_MODE_AUTO; 1355 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1356 /* 1357 * Calculate a current rate if possible. 1358 */ 1359 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1360 /* 1361 * A fixed rate is set, report that. 1362 */ 1363 imr->ifm_active |= ieee80211_rate2media(ic, 1364 vap->iv_txparms[mode].ucastrate, mode); 1365 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1366 /* 1367 * In station mode report the current transmit rate. 1368 */ 1369 imr->ifm_active |= ieee80211_rate2media(ic, 1370 vap->iv_bss->ni_txrate, mode); 1371 } else 1372 imr->ifm_active |= IFM_AUTO; 1373 if (imr->ifm_status & IFM_ACTIVE) 1374 imr->ifm_current = imr->ifm_active; 1375 } 1376 1377 /* 1378 * Set the current phy mode and recalculate the active channel 1379 * set based on the available channels for this mode. Also 1380 * select a new default/current channel if the current one is 1381 * inappropriate for this mode. 1382 */ 1383 int 1384 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1385 { 1386 /* 1387 * Adjust basic rates in 11b/11g supported rate set. 1388 * Note that if operating on a hal/quarter rate channel 1389 * this is a noop as those rates sets are different 1390 * and used instead. 1391 */ 1392 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1393 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1394 1395 ic->ic_curmode = mode; 1396 ieee80211_reset_erp(ic); /* reset ERP state */ 1397 1398 return 0; 1399 } 1400 1401 /* 1402 * Return the phy mode for with the specified channel. 1403 */ 1404 enum ieee80211_phymode 1405 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1406 { 1407 1408 if (IEEE80211_IS_CHAN_HTA(chan)) 1409 return IEEE80211_MODE_11NA; 1410 else if (IEEE80211_IS_CHAN_HTG(chan)) 1411 return IEEE80211_MODE_11NG; 1412 else if (IEEE80211_IS_CHAN_108G(chan)) 1413 return IEEE80211_MODE_TURBO_G; 1414 else if (IEEE80211_IS_CHAN_ST(chan)) 1415 return IEEE80211_MODE_STURBO_A; 1416 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1417 return IEEE80211_MODE_TURBO_A; 1418 else if (IEEE80211_IS_CHAN_HALF(chan)) 1419 return IEEE80211_MODE_HALF; 1420 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1421 return IEEE80211_MODE_QUARTER; 1422 else if (IEEE80211_IS_CHAN_A(chan)) 1423 return IEEE80211_MODE_11A; 1424 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1425 return IEEE80211_MODE_11G; 1426 else if (IEEE80211_IS_CHAN_B(chan)) 1427 return IEEE80211_MODE_11B; 1428 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1429 return IEEE80211_MODE_FH; 1430 1431 /* NB: should not get here */ 1432 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1433 __func__, chan->ic_freq, chan->ic_flags); 1434 return IEEE80211_MODE_11B; 1435 } 1436 1437 struct ratemedia { 1438 u_int match; /* rate + mode */ 1439 u_int media; /* if_media rate */ 1440 }; 1441 1442 static int 1443 findmedia(const struct ratemedia rates[], int n, u_int match) 1444 { 1445 int i; 1446 1447 for (i = 0; i < n; i++) 1448 if (rates[i].match == match) 1449 return rates[i].media; 1450 return IFM_AUTO; 1451 } 1452 1453 /* 1454 * Convert IEEE80211 rate value to ifmedia subtype. 1455 * Rate is either a legacy rate in units of 0.5Mbps 1456 * or an MCS index. 1457 */ 1458 int 1459 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1460 { 1461 #define N(a) (sizeof(a) / sizeof(a[0])) 1462 static const struct ratemedia rates[] = { 1463 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1464 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1465 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1466 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1467 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1468 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1469 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1470 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1471 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1472 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1473 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1474 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1475 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1476 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1477 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1478 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1479 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1480 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1481 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1482 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1483 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1484 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1485 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1486 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1487 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1488 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1489 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1490 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1491 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1492 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1493 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1494 }; 1495 static const struct ratemedia htrates[] = { 1496 { 0, IFM_IEEE80211_MCS }, 1497 { 1, IFM_IEEE80211_MCS }, 1498 { 2, IFM_IEEE80211_MCS }, 1499 { 3, IFM_IEEE80211_MCS }, 1500 { 4, IFM_IEEE80211_MCS }, 1501 { 5, IFM_IEEE80211_MCS }, 1502 { 6, IFM_IEEE80211_MCS }, 1503 { 7, IFM_IEEE80211_MCS }, 1504 { 8, IFM_IEEE80211_MCS }, 1505 { 9, IFM_IEEE80211_MCS }, 1506 { 10, IFM_IEEE80211_MCS }, 1507 { 11, IFM_IEEE80211_MCS }, 1508 { 12, IFM_IEEE80211_MCS }, 1509 { 13, IFM_IEEE80211_MCS }, 1510 { 14, IFM_IEEE80211_MCS }, 1511 { 15, IFM_IEEE80211_MCS }, 1512 }; 1513 int m; 1514 1515 /* 1516 * Check 11n rates first for match as an MCS. 1517 */ 1518 if (mode == IEEE80211_MODE_11NA) { 1519 if (rate & IEEE80211_RATE_MCS) { 1520 rate &= ~IEEE80211_RATE_MCS; 1521 m = findmedia(htrates, N(htrates), rate); 1522 if (m != IFM_AUTO) 1523 return m | IFM_IEEE80211_11NA; 1524 } 1525 } else if (mode == IEEE80211_MODE_11NG) { 1526 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1527 if (rate & IEEE80211_RATE_MCS) { 1528 rate &= ~IEEE80211_RATE_MCS; 1529 m = findmedia(htrates, N(htrates), rate); 1530 if (m != IFM_AUTO) 1531 return m | IFM_IEEE80211_11NG; 1532 } 1533 } 1534 rate &= IEEE80211_RATE_VAL; 1535 switch (mode) { 1536 case IEEE80211_MODE_11A: 1537 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1538 case IEEE80211_MODE_QUARTER: 1539 case IEEE80211_MODE_11NA: 1540 case IEEE80211_MODE_TURBO_A: 1541 case IEEE80211_MODE_STURBO_A: 1542 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1543 case IEEE80211_MODE_11B: 1544 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1545 case IEEE80211_MODE_FH: 1546 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1547 case IEEE80211_MODE_AUTO: 1548 /* NB: ic may be NULL for some drivers */ 1549 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1550 return findmedia(rates, N(rates), 1551 rate | IFM_IEEE80211_FH); 1552 /* NB: hack, 11g matches both 11b+11a rates */ 1553 /* fall thru... */ 1554 case IEEE80211_MODE_11G: 1555 case IEEE80211_MODE_11NG: 1556 case IEEE80211_MODE_TURBO_G: 1557 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1558 } 1559 return IFM_AUTO; 1560 #undef N 1561 } 1562 1563 int 1564 ieee80211_media2rate(int mword) 1565 { 1566 #define N(a) (sizeof(a) / sizeof(a[0])) 1567 static const int ieeerates[] = { 1568 -1, /* IFM_AUTO */ 1569 0, /* IFM_MANUAL */ 1570 0, /* IFM_NONE */ 1571 2, /* IFM_IEEE80211_FH1 */ 1572 4, /* IFM_IEEE80211_FH2 */ 1573 2, /* IFM_IEEE80211_DS1 */ 1574 4, /* IFM_IEEE80211_DS2 */ 1575 11, /* IFM_IEEE80211_DS5 */ 1576 22, /* IFM_IEEE80211_DS11 */ 1577 44, /* IFM_IEEE80211_DS22 */ 1578 12, /* IFM_IEEE80211_OFDM6 */ 1579 18, /* IFM_IEEE80211_OFDM9 */ 1580 24, /* IFM_IEEE80211_OFDM12 */ 1581 36, /* IFM_IEEE80211_OFDM18 */ 1582 48, /* IFM_IEEE80211_OFDM24 */ 1583 72, /* IFM_IEEE80211_OFDM36 */ 1584 96, /* IFM_IEEE80211_OFDM48 */ 1585 108, /* IFM_IEEE80211_OFDM54 */ 1586 144, /* IFM_IEEE80211_OFDM72 */ 1587 0, /* IFM_IEEE80211_DS354k */ 1588 0, /* IFM_IEEE80211_DS512k */ 1589 6, /* IFM_IEEE80211_OFDM3 */ 1590 9, /* IFM_IEEE80211_OFDM4 */ 1591 54, /* IFM_IEEE80211_OFDM27 */ 1592 -1, /* IFM_IEEE80211_MCS */ 1593 }; 1594 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1595 ieeerates[IFM_SUBTYPE(mword)] : 0; 1596 #undef N 1597 } 1598 1599 /* 1600 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1601 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1602 */ 1603 #define mix(a, b, c) \ 1604 do { \ 1605 a -= b; a -= c; a ^= (c >> 13); \ 1606 b -= c; b -= a; b ^= (a << 8); \ 1607 c -= a; c -= b; c ^= (b >> 13); \ 1608 a -= b; a -= c; a ^= (c >> 12); \ 1609 b -= c; b -= a; b ^= (a << 16); \ 1610 c -= a; c -= b; c ^= (b >> 5); \ 1611 a -= b; a -= c; a ^= (c >> 3); \ 1612 b -= c; b -= a; b ^= (a << 10); \ 1613 c -= a; c -= b; c ^= (b >> 15); \ 1614 } while (/*CONSTCOND*/0) 1615 1616 uint32_t 1617 ieee80211_mac_hash(const struct ieee80211com *ic, 1618 const uint8_t addr[IEEE80211_ADDR_LEN]) 1619 { 1620 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1621 1622 b += addr[5] << 8; 1623 b += addr[4]; 1624 a += addr[3] << 24; 1625 a += addr[2] << 16; 1626 a += addr[1] << 8; 1627 a += addr[0]; 1628 1629 mix(a, b, c); 1630 1631 return c; 1632 } 1633 #undef mix 1634