xref: /haiku/src/libs/compat/freebsd_wlan/net80211/ieee80211.c (revision 899e0ef82b5624ace2ccfa5f5a58c8ebee54aaef)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211.c 336184 2018-07-10 23:30:19Z kevans $");
31 
32 /*
33  * IEEE 802.11 generic handler
34  */
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/socket.h>
42 #include <sys/sbuf.h>
43 
44 #include <machine/stdarg.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/ethernet.h>
52 #include <net/vnet.h>
53 
54 #include <net80211/ieee80211_var.h>
55 #include <net80211/ieee80211_regdomain.h>
56 #ifdef IEEE80211_SUPPORT_SUPERG
57 #include <net80211/ieee80211_superg.h>
58 #endif
59 #include <net80211/ieee80211_ratectl.h>
60 #include <net80211/ieee80211_vht.h>
61 
62 #include <net/bpf.h>
63 
64 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
65 	[IEEE80211_MODE_AUTO]	  = "auto",
66 	[IEEE80211_MODE_11A]	  = "11a",
67 	[IEEE80211_MODE_11B]	  = "11b",
68 	[IEEE80211_MODE_11G]	  = "11g",
69 	[IEEE80211_MODE_FH]	  = "FH",
70 	[IEEE80211_MODE_TURBO_A]  = "turboA",
71 	[IEEE80211_MODE_TURBO_G]  = "turboG",
72 	[IEEE80211_MODE_STURBO_A] = "sturboA",
73 	[IEEE80211_MODE_HALF]	  = "half",
74 	[IEEE80211_MODE_QUARTER]  = "quarter",
75 	[IEEE80211_MODE_11NA]	  = "11na",
76 	[IEEE80211_MODE_11NG]	  = "11ng",
77 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
78 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
79 };
80 /* map ieee80211_opmode to the corresponding capability bit */
81 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
82 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
83 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
84 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
85 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
86 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
87 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
88 #ifdef IEEE80211_SUPPORT_MESH
89 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
90 #endif
91 };
92 
93 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
94 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
95 
96 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
98 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
99 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
100 static	int ieee80211_media_setup(struct ieee80211com *ic,
101 		struct ifmedia *media, int caps, int addsta,
102 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
103 static	int media_status(enum ieee80211_opmode,
104 		const struct ieee80211_channel *);
105 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
106 
107 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
108 
109 /*
110  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
111  */
112 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
113 static const struct ieee80211_rateset ieee80211_rateset_11a =
114 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
115 static const struct ieee80211_rateset ieee80211_rateset_half =
116 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
117 static const struct ieee80211_rateset ieee80211_rateset_quarter =
118 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
119 static const struct ieee80211_rateset ieee80211_rateset_11b =
120 	{ 4, { B(2), B(4), B(11), B(22) } };
121 /* NB: OFDM rates are handled specially based on mode */
122 static const struct ieee80211_rateset ieee80211_rateset_11g =
123 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
124 #undef B
125 
126 static int set_vht_extchan(struct ieee80211_channel *c);
127 
128 /*
129  * Fill in 802.11 available channel set, mark
130  * all available channels as active, and pick
131  * a default channel if not already specified.
132  */
133 void
134 ieee80211_chan_init(struct ieee80211com *ic)
135 {
136 #define	DEFAULTRATES(m, def) do { \
137 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
138 		ic->ic_sup_rates[m] = def; \
139 } while (0)
140 	struct ieee80211_channel *c;
141 	int i;
142 
143 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
144 		("invalid number of channels specified: %u", ic->ic_nchans));
145 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
146 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
147 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
148 	for (i = 0; i < ic->ic_nchans; i++) {
149 		c = &ic->ic_channels[i];
150 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
151 		/*
152 		 * Help drivers that work only with frequencies by filling
153 		 * in IEEE channel #'s if not already calculated.  Note this
154 		 * mimics similar work done in ieee80211_setregdomain when
155 		 * changing regulatory state.
156 		 */
157 		if (c->ic_ieee == 0)
158 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
159 
160 		/*
161 		 * Setup the HT40/VHT40 upper/lower bits.
162 		 * The VHT80/... math is done elsewhere.
163 		 */
164 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
165 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
166 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
167 			    c->ic_flags);
168 
169 		/* Update VHT math */
170 		/*
171 		 * XXX VHT again, note that this assumes VHT80/... channels
172 		 * are legit already.
173 		 */
174 		set_vht_extchan(c);
175 
176 		/* default max tx power to max regulatory */
177 		if (c->ic_maxpower == 0)
178 			c->ic_maxpower = 2*c->ic_maxregpower;
179 		setbit(ic->ic_chan_avail, c->ic_ieee);
180 		/*
181 		 * Identify mode capabilities.
182 		 */
183 		if (IEEE80211_IS_CHAN_A(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
185 		if (IEEE80211_IS_CHAN_B(c))
186 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
187 		if (IEEE80211_IS_CHAN_ANYG(c))
188 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
189 		if (IEEE80211_IS_CHAN_FHSS(c))
190 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
191 		if (IEEE80211_IS_CHAN_108A(c))
192 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
193 		if (IEEE80211_IS_CHAN_108G(c))
194 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
195 		if (IEEE80211_IS_CHAN_ST(c))
196 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
197 		if (IEEE80211_IS_CHAN_HALF(c))
198 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
199 		if (IEEE80211_IS_CHAN_QUARTER(c))
200 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
201 		if (IEEE80211_IS_CHAN_HTA(c))
202 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
203 		if (IEEE80211_IS_CHAN_HTG(c))
204 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
205 		if (IEEE80211_IS_CHAN_VHTA(c))
206 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
207 		if (IEEE80211_IS_CHAN_VHTG(c))
208 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
209 	}
210 	/* initialize candidate channels to all available */
211 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
212 		sizeof(ic->ic_chan_avail));
213 
214 	/* sort channel table to allow lookup optimizations */
215 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
216 
217 	/* invalidate any previous state */
218 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
219 	ic->ic_prevchan = NULL;
220 	ic->ic_csa_newchan = NULL;
221 	/* arbitrarily pick the first channel */
222 	ic->ic_curchan = &ic->ic_channels[0];
223 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
224 
225 	/* fillin well-known rate sets if driver has not specified */
226 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
227 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
228 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
229 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
230 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
231 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
232 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
233 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
234 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
235 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
236 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
237 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
238 
239 	/*
240 	 * Setup required information to fill the mcsset field, if driver did
241 	 * not. Assume a 2T2R setup for historic reasons.
242 	 */
243 	if (ic->ic_rxstream == 0)
244 		ic->ic_rxstream = 2;
245 	if (ic->ic_txstream == 0)
246 		ic->ic_txstream = 2;
247 
248 	ieee80211_init_suphtrates(ic);
249 
250 	/*
251 	 * Set auto mode to reset active channel state and any desired channel.
252 	 */
253 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
254 #undef DEFAULTRATES
255 }
256 
257 static void
258 null_update_mcast(struct ieee80211com *ic)
259 {
260 
261 	ic_printf(ic, "need multicast update callback\n");
262 }
263 
264 static void
265 null_update_promisc(struct ieee80211com *ic)
266 {
267 
268 	ic_printf(ic, "need promiscuous mode update callback\n");
269 }
270 
271 static void
272 null_update_chw(struct ieee80211com *ic)
273 {
274 
275 	ic_printf(ic, "%s: need callback\n", __func__);
276 }
277 
278 int
279 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
280 {
281 	va_list ap;
282 	int retval;
283 
284 	retval = printf("%s: ", ic->ic_name);
285 	va_start(ap, fmt);
286 	retval += vprintf(fmt, ap);
287 	va_end(ap);
288 	return (retval);
289 }
290 
291 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
292 static struct mtx ic_list_mtx;
293 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
294 
295 static int
296 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
297 {
298 	struct ieee80211com *ic;
299 	struct sbuf sb;
300 	char *sp;
301 	int error;
302 
303 	error = sysctl_wire_old_buffer(req, 0);
304 	if (error)
305 		return (error);
306 #ifndef __HAIKU__
307 	// sysctl not used in Haiku, no need to fill the reply
308 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
309 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
310 	sp = "";
311 	mtx_lock(&ic_list_mtx);
312 	LIST_FOREACH(ic, &ic_head, ic_next) {
313 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
314 		sp = " ";
315 	}
316 	mtx_unlock(&ic_list_mtx);
317 	error = sbuf_finish(&sb);
318 	sbuf_delete(&sb);
319 #endif
320 	return (error);
321 }
322 
323 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
324     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
325     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
326 
327 /*
328  * Attach/setup the common net80211 state.  Called by
329  * the driver on attach to prior to creating any vap's.
330  */
331 void
332 ieee80211_ifattach(struct ieee80211com *ic)
333 {
334 
335 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
336 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
337 	TAILQ_INIT(&ic->ic_vaps);
338 
339 	/* Create a taskqueue for all state changes */
340 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
341 	    taskqueue_thread_enqueue, &ic->ic_tq);
342 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
343 	    ic->ic_name);
344 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
345 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
346 	/*
347 	 * Fill in 802.11 available channel set, mark all
348 	 * available channels as active, and pick a default
349 	 * channel if not already specified.
350 	 */
351 	ieee80211_chan_init(ic);
352 
353 	ic->ic_update_mcast = null_update_mcast;
354 	ic->ic_update_promisc = null_update_promisc;
355 	ic->ic_update_chw = null_update_chw;
356 
357 	ic->ic_hash_key = arc4random();
358 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
359 	ic->ic_lintval = ic->ic_bintval;
360 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
361 
362 	ieee80211_crypto_attach(ic);
363 	ieee80211_node_attach(ic);
364 	ieee80211_power_attach(ic);
365 	ieee80211_proto_attach(ic);
366 #ifdef IEEE80211_SUPPORT_SUPERG
367 	ieee80211_superg_attach(ic);
368 #endif
369 	ieee80211_ht_attach(ic);
370 	ieee80211_vht_attach(ic);
371 	ieee80211_scan_attach(ic);
372 	ieee80211_regdomain_attach(ic);
373 	ieee80211_dfs_attach(ic);
374 
375 	ieee80211_sysctl_attach(ic);
376 
377 	mtx_lock(&ic_list_mtx);
378 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
379 	mtx_unlock(&ic_list_mtx);
380 }
381 
382 /*
383  * Detach net80211 state on device detach.  Tear down
384  * all vap's and reclaim all common state prior to the
385  * device state going away.  Note we may call back into
386  * driver; it must be prepared for this.
387  */
388 void
389 ieee80211_ifdetach(struct ieee80211com *ic)
390 {
391 	struct ieee80211vap *vap;
392 
393 	/*
394 	 * We use this as an indicator that ifattach never had a chance to be
395 	 * called, e.g. early driver attach failed and ifdetach was called
396 	 * during subsequent detach.  Never fear, for we have nothing to do
397 	 * here.
398 	 */
399 	if (ic->ic_tq == NULL)
400 		return;
401 
402 	mtx_lock(&ic_list_mtx);
403 	LIST_REMOVE(ic, ic_next);
404 	mtx_unlock(&ic_list_mtx);
405 
406 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
407 
408 	/*
409 	 * The VAP is responsible for setting and clearing
410 	 * the VIMAGE context.
411 	 */
412 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
413 		ieee80211_com_vdetach(vap);
414 		ieee80211_vap_destroy(vap);
415 	}
416 	ieee80211_waitfor_parent(ic);
417 
418 	ieee80211_sysctl_detach(ic);
419 	ieee80211_dfs_detach(ic);
420 	ieee80211_regdomain_detach(ic);
421 	ieee80211_scan_detach(ic);
422 #ifdef IEEE80211_SUPPORT_SUPERG
423 	ieee80211_superg_detach(ic);
424 #endif
425 	ieee80211_vht_detach(ic);
426 	ieee80211_ht_detach(ic);
427 	/* NB: must be called before ieee80211_node_detach */
428 	ieee80211_proto_detach(ic);
429 	ieee80211_crypto_detach(ic);
430 	ieee80211_power_detach(ic);
431 	ieee80211_node_detach(ic);
432 
433 	counter_u64_free(ic->ic_ierrors);
434 	counter_u64_free(ic->ic_oerrors);
435 
436 	taskqueue_free(ic->ic_tq);
437 	IEEE80211_TX_LOCK_DESTROY(ic);
438 	IEEE80211_LOCK_DESTROY(ic);
439 }
440 
441 struct ieee80211com *
442 ieee80211_find_com(const char *name)
443 {
444 	struct ieee80211com *ic;
445 
446 	mtx_lock(&ic_list_mtx);
447 	LIST_FOREACH(ic, &ic_head, ic_next)
448 		if (strcmp(ic->ic_name, name) == 0)
449 			break;
450 	mtx_unlock(&ic_list_mtx);
451 
452 	return (ic);
453 }
454 
455 void
456 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
457 {
458 	struct ieee80211com *ic;
459 
460 	mtx_lock(&ic_list_mtx);
461 	LIST_FOREACH(ic, &ic_head, ic_next)
462 		(*f)(arg, ic);
463 	mtx_unlock(&ic_list_mtx);
464 }
465 
466 /*
467  * Default reset method for use with the ioctl support.  This
468  * method is invoked after any state change in the 802.11
469  * layer that should be propagated to the hardware but not
470  * require re-initialization of the 802.11 state machine (e.g
471  * rescanning for an ap).  We always return ENETRESET which
472  * should cause the driver to re-initialize the device. Drivers
473  * can override this method to implement more optimized support.
474  */
475 static int
476 default_reset(struct ieee80211vap *vap, u_long cmd)
477 {
478 	return ENETRESET;
479 }
480 
481 /*
482  * Default for updating the VAP default TX key index.
483  *
484  * Drivers that support TX offload as well as hardware encryption offload
485  * may need to be informed of key index changes separate from the key
486  * update.
487  */
488 static void
489 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
490 {
491 
492 	/* XXX assert validity */
493 	/* XXX assert we're in a key update block */
494 	vap->iv_def_txkey = kid;
495 }
496 
497 /*
498  * Add underlying device errors to vap errors.
499  */
500 static uint64_t
501 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
502 {
503 	struct ieee80211vap *vap = ifp->if_softc;
504 	struct ieee80211com *ic = vap->iv_ic;
505 	uint64_t rv;
506 
507 	rv = if_get_counter_default(ifp, cnt);
508 	switch (cnt) {
509 	case IFCOUNTER_OERRORS:
510 		rv += counter_u64_fetch(ic->ic_oerrors);
511 		break;
512 	case IFCOUNTER_IERRORS:
513 		rv += counter_u64_fetch(ic->ic_ierrors);
514 		break;
515 	default:
516 		break;
517 	}
518 
519 	return (rv);
520 }
521 
522 /*
523  * Prepare a vap for use.  Drivers use this call to
524  * setup net80211 state in new vap's prior attaching
525  * them with ieee80211_vap_attach (below).
526  */
527 int
528 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
529     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
530     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
531 {
532 	struct ifnet *ifp;
533 
534 	ifp = if_alloc(IFT_ETHER);
535 	if (ifp == NULL) {
536 		ic_printf(ic, "%s: unable to allocate ifnet\n", __func__);
537 		return ENOMEM;
538 	}
539 	if_initname(ifp, name, unit);
540 	ifp->if_softc = vap;			/* back pointer */
541 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
542 	ifp->if_transmit = ieee80211_vap_transmit;
543 	ifp->if_qflush = ieee80211_vap_qflush;
544 	ifp->if_ioctl = ieee80211_ioctl;
545 	ifp->if_init = ieee80211_init;
546 	ifp->if_get_counter = ieee80211_get_counter;
547 
548 	vap->iv_ifp = ifp;
549 	vap->iv_ic = ic;
550 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
551 	vap->iv_flags_ext = ic->ic_flags_ext;
552 	vap->iv_flags_ven = ic->ic_flags_ven;
553 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
554 
555 	/* 11n capabilities - XXX methodize */
556 	vap->iv_htcaps = ic->ic_htcaps;
557 	vap->iv_htextcaps = ic->ic_htextcaps;
558 
559 	/* 11ac capabilities - XXX methodize */
560 	vap->iv_vhtcaps = ic->ic_vhtcaps;
561 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
562 
563 	vap->iv_opmode = opmode;
564 	vap->iv_caps |= ieee80211_opcap[opmode];
565 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
566 	switch (opmode) {
567 	case IEEE80211_M_WDS:
568 		/*
569 		 * WDS links must specify the bssid of the far end.
570 		 * For legacy operation this is a static relationship.
571 		 * For non-legacy operation the station must associate
572 		 * and be authorized to pass traffic.  Plumbing the
573 		 * vap to the proper node happens when the vap
574 		 * transitions to RUN state.
575 		 */
576 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
577 		vap->iv_flags |= IEEE80211_F_DESBSSID;
578 		if (flags & IEEE80211_CLONE_WDSLEGACY)
579 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
580 		break;
581 #ifdef IEEE80211_SUPPORT_TDMA
582 	case IEEE80211_M_AHDEMO:
583 		if (flags & IEEE80211_CLONE_TDMA) {
584 			/* NB: checked before clone operation allowed */
585 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
586 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
587 			/*
588 			 * Propagate TDMA capability to mark vap; this
589 			 * cannot be removed and is used to distinguish
590 			 * regular ahdemo operation from ahdemo+tdma.
591 			 */
592 			vap->iv_caps |= IEEE80211_C_TDMA;
593 		}
594 		break;
595 #endif
596 	default:
597 		break;
598 	}
599 	/* auto-enable s/w beacon miss support */
600 	if (flags & IEEE80211_CLONE_NOBEACONS)
601 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
602 	/* auto-generated or user supplied MAC address */
603 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
604 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
605 	/*
606 	 * Enable various functionality by default if we're
607 	 * capable; the driver can override us if it knows better.
608 	 */
609 	if (vap->iv_caps & IEEE80211_C_WME)
610 		vap->iv_flags |= IEEE80211_F_WME;
611 	if (vap->iv_caps & IEEE80211_C_BURST)
612 		vap->iv_flags |= IEEE80211_F_BURST;
613 	/* NB: bg scanning only makes sense for station mode right now */
614 	if (vap->iv_opmode == IEEE80211_M_STA &&
615 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
616 		vap->iv_flags |= IEEE80211_F_BGSCAN;
617 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
618 	/* NB: DFS support only makes sense for ap mode right now */
619 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
620 	    (vap->iv_caps & IEEE80211_C_DFS))
621 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
622 	/* NB: only flip on U-APSD for hostap/sta for now */
623 	if ((vap->iv_opmode == IEEE80211_M_STA)
624 	    || (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
625 		if (vap->iv_caps & IEEE80211_C_UAPSD)
626 			vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
627 	}
628 
629 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
630 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
631 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
632 	/*
633 	 * Install a default reset method for the ioctl support;
634 	 * the driver can override this.
635 	 */
636 	vap->iv_reset = default_reset;
637 
638 	/*
639 	 * Install a default crypto key update method, the driver
640 	 * can override this.
641 	 */
642 	vap->iv_update_deftxkey = default_update_deftxkey;
643 
644 	ieee80211_sysctl_vattach(vap);
645 	ieee80211_crypto_vattach(vap);
646 	ieee80211_node_vattach(vap);
647 	ieee80211_power_vattach(vap);
648 	ieee80211_proto_vattach(vap);
649 #ifdef IEEE80211_SUPPORT_SUPERG
650 	ieee80211_superg_vattach(vap);
651 #endif
652 	ieee80211_ht_vattach(vap);
653 	ieee80211_vht_vattach(vap);
654 	ieee80211_scan_vattach(vap);
655 	ieee80211_regdomain_vattach(vap);
656 	ieee80211_radiotap_vattach(vap);
657 	ieee80211_vap_reset_erp(vap);
658 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
659 
660 	return 0;
661 }
662 
663 /*
664  * Activate a vap.  State should have been prepared with a
665  * call to ieee80211_vap_setup and by the driver.  On return
666  * from this call the vap is ready for use.
667  */
668 int
669 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
670     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
671 {
672 	struct ifnet *ifp = vap->iv_ifp;
673 	struct ieee80211com *ic = vap->iv_ic;
674 	struct ifmediareq imr;
675 	int maxrate;
676 
677 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
678 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
679 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
680 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
681 
682 	/*
683 	 * Do late attach work that cannot happen until after
684 	 * the driver has had a chance to override defaults.
685 	 */
686 	ieee80211_node_latevattach(vap);
687 	ieee80211_power_latevattach(vap);
688 
689 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
690 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
691 	ieee80211_media_status(ifp, &imr);
692 	/* NB: strip explicit mode; we're actually in autoselect */
693 	ifmedia_set(&vap->iv_media,
694 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
695 	if (maxrate)
696 		ifp->if_baudrate = IF_Mbps(maxrate);
697 
698 	ether_ifattach(ifp, macaddr);
699 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
700 	/* hook output method setup by ether_ifattach */
701 	vap->iv_output = ifp->if_output;
702 	ifp->if_output = ieee80211_output;
703 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
704 
705 	IEEE80211_LOCK(ic);
706 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
707 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
708 #ifdef IEEE80211_SUPPORT_SUPERG
709 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
710 #endif
711 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
712 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
713 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
714 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
715 
716 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
717 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
718 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
719 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
720 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
721 	IEEE80211_UNLOCK(ic);
722 
723 	return 1;
724 }
725 
726 /*
727  * Tear down vap state and reclaim the ifnet.
728  * The driver is assumed to have prepared for
729  * this; e.g. by turning off interrupts for the
730  * underlying device.
731  */
732 void
733 ieee80211_vap_detach(struct ieee80211vap *vap)
734 {
735 	struct ieee80211com *ic = vap->iv_ic;
736 	struct ifnet *ifp = vap->iv_ifp;
737 
738 	CURVNET_SET(ifp->if_vnet);
739 
740 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
741 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
742 
743 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
744 	ether_ifdetach(ifp);
745 
746 	ieee80211_stop(vap);
747 
748 	/*
749 	 * Flush any deferred vap tasks.
750 	 */
751 	ieee80211_draintask(ic, &vap->iv_nstate_task);
752 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
753 	ieee80211_draintask(ic, &vap->iv_wme_task);
754 	ieee80211_draintask(ic, &ic->ic_parent_task);
755 
756 	/* XXX band-aid until ifnet handles this for us */
757 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
758 
759 	IEEE80211_LOCK(ic);
760 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
761 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
762 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
763 #ifdef IEEE80211_SUPPORT_SUPERG
764 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
765 #endif
766 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
767 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
768 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
769 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
770 
771 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
772 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
773 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
774 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
775 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
776 
777 	/* NB: this handles the bpfdetach done below */
778 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
779 	if (vap->iv_ifflags & IFF_PROMISC)
780 		ieee80211_promisc(vap, false);
781 	if (vap->iv_ifflags & IFF_ALLMULTI)
782 		ieee80211_allmulti(vap, false);
783 	IEEE80211_UNLOCK(ic);
784 
785 	ifmedia_removeall(&vap->iv_media);
786 
787 	ieee80211_radiotap_vdetach(vap);
788 	ieee80211_regdomain_vdetach(vap);
789 	ieee80211_scan_vdetach(vap);
790 #ifdef IEEE80211_SUPPORT_SUPERG
791 	ieee80211_superg_vdetach(vap);
792 #endif
793 	ieee80211_vht_vdetach(vap);
794 	ieee80211_ht_vdetach(vap);
795 	/* NB: must be before ieee80211_node_vdetach */
796 	ieee80211_proto_vdetach(vap);
797 	ieee80211_crypto_vdetach(vap);
798 	ieee80211_power_vdetach(vap);
799 	ieee80211_node_vdetach(vap);
800 	ieee80211_sysctl_vdetach(vap);
801 
802 	if_free(ifp);
803 
804 	CURVNET_RESTORE();
805 }
806 
807 /*
808  * Count number of vaps in promisc, and issue promisc on
809  * parent respectively.
810  */
811 void
812 ieee80211_promisc(struct ieee80211vap *vap, bool on)
813 {
814 	struct ieee80211com *ic = vap->iv_ic;
815 
816 	IEEE80211_LOCK_ASSERT(ic);
817 
818 	if (on) {
819 		if (++ic->ic_promisc == 1)
820 			ieee80211_runtask(ic, &ic->ic_promisc_task);
821 	} else {
822 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
823 		    __func__, ic));
824 		if (--ic->ic_promisc == 0)
825 			ieee80211_runtask(ic, &ic->ic_promisc_task);
826 	}
827 }
828 
829 /*
830  * Count number of vaps in allmulti, and issue allmulti on
831  * parent respectively.
832  */
833 void
834 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
835 {
836 	struct ieee80211com *ic = vap->iv_ic;
837 
838 	IEEE80211_LOCK_ASSERT(ic);
839 
840 	if (on) {
841 		if (++ic->ic_allmulti == 1)
842 			ieee80211_runtask(ic, &ic->ic_mcast_task);
843 	} else {
844 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
845 		    __func__, ic));
846 		if (--ic->ic_allmulti == 0)
847 			ieee80211_runtask(ic, &ic->ic_mcast_task);
848 	}
849 }
850 
851 /*
852  * Synchronize flag bit state in the com structure
853  * according to the state of all vap's.  This is used,
854  * for example, to handle state changes via ioctls.
855  */
856 static void
857 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
858 {
859 	struct ieee80211vap *vap;
860 	int bit;
861 
862 	IEEE80211_LOCK_ASSERT(ic);
863 
864 	bit = 0;
865 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
866 		if (vap->iv_flags & flag) {
867 			bit = 1;
868 			break;
869 		}
870 	if (bit)
871 		ic->ic_flags |= flag;
872 	else
873 		ic->ic_flags &= ~flag;
874 }
875 
876 void
877 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
878 {
879 	struct ieee80211com *ic = vap->iv_ic;
880 
881 	IEEE80211_LOCK(ic);
882 	if (flag < 0) {
883 		flag = -flag;
884 		vap->iv_flags &= ~flag;
885 	} else
886 		vap->iv_flags |= flag;
887 	ieee80211_syncflag_locked(ic, flag);
888 	IEEE80211_UNLOCK(ic);
889 }
890 
891 /*
892  * Synchronize flags_ht bit state in the com structure
893  * according to the state of all vap's.  This is used,
894  * for example, to handle state changes via ioctls.
895  */
896 static void
897 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
898 {
899 	struct ieee80211vap *vap;
900 	int bit;
901 
902 	IEEE80211_LOCK_ASSERT(ic);
903 
904 	bit = 0;
905 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
906 		if (vap->iv_flags_ht & flag) {
907 			bit = 1;
908 			break;
909 		}
910 	if (bit)
911 		ic->ic_flags_ht |= flag;
912 	else
913 		ic->ic_flags_ht &= ~flag;
914 }
915 
916 void
917 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
918 {
919 	struct ieee80211com *ic = vap->iv_ic;
920 
921 	IEEE80211_LOCK(ic);
922 	if (flag < 0) {
923 		flag = -flag;
924 		vap->iv_flags_ht &= ~flag;
925 	} else
926 		vap->iv_flags_ht |= flag;
927 	ieee80211_syncflag_ht_locked(ic, flag);
928 	IEEE80211_UNLOCK(ic);
929 }
930 
931 /*
932  * Synchronize flags_vht bit state in the com structure
933  * according to the state of all vap's.  This is used,
934  * for example, to handle state changes via ioctls.
935  */
936 static void
937 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
938 {
939 	struct ieee80211vap *vap;
940 	int bit;
941 
942 	IEEE80211_LOCK_ASSERT(ic);
943 
944 	bit = 0;
945 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
946 		if (vap->iv_flags_vht & flag) {
947 			bit = 1;
948 			break;
949 		}
950 	if (bit)
951 		ic->ic_flags_vht |= flag;
952 	else
953 		ic->ic_flags_vht &= ~flag;
954 }
955 
956 void
957 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
958 {
959 	struct ieee80211com *ic = vap->iv_ic;
960 
961 	IEEE80211_LOCK(ic);
962 	if (flag < 0) {
963 		flag = -flag;
964 		vap->iv_flags_vht &= ~flag;
965 	} else
966 		vap->iv_flags_vht |= flag;
967 	ieee80211_syncflag_vht_locked(ic, flag);
968 	IEEE80211_UNLOCK(ic);
969 }
970 
971 /*
972  * Synchronize flags_ext bit state in the com structure
973  * according to the state of all vap's.  This is used,
974  * for example, to handle state changes via ioctls.
975  */
976 static void
977 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
978 {
979 	struct ieee80211vap *vap;
980 	int bit;
981 
982 	IEEE80211_LOCK_ASSERT(ic);
983 
984 	bit = 0;
985 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
986 		if (vap->iv_flags_ext & flag) {
987 			bit = 1;
988 			break;
989 		}
990 	if (bit)
991 		ic->ic_flags_ext |= flag;
992 	else
993 		ic->ic_flags_ext &= ~flag;
994 }
995 
996 void
997 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
998 {
999 	struct ieee80211com *ic = vap->iv_ic;
1000 
1001 	IEEE80211_LOCK(ic);
1002 	if (flag < 0) {
1003 		flag = -flag;
1004 		vap->iv_flags_ext &= ~flag;
1005 	} else
1006 		vap->iv_flags_ext |= flag;
1007 	ieee80211_syncflag_ext_locked(ic, flag);
1008 	IEEE80211_UNLOCK(ic);
1009 }
1010 
1011 static __inline int
1012 mapgsm(u_int freq, u_int flags)
1013 {
1014 	freq *= 10;
1015 	if (flags & IEEE80211_CHAN_QUARTER)
1016 		freq += 5;
1017 	else if (flags & IEEE80211_CHAN_HALF)
1018 		freq += 10;
1019 	else
1020 		freq += 20;
1021 	/* NB: there is no 907/20 wide but leave room */
1022 	return (freq - 906*10) / 5;
1023 }
1024 
1025 static __inline int
1026 mappsb(u_int freq, u_int flags)
1027 {
1028 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1029 }
1030 
1031 /*
1032  * Convert MHz frequency to IEEE channel number.
1033  */
1034 int
1035 ieee80211_mhz2ieee(u_int freq, u_int flags)
1036 {
1037 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1038 	if (flags & IEEE80211_CHAN_GSM)
1039 		return mapgsm(freq, flags);
1040 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1041 		if (freq == 2484)
1042 			return 14;
1043 		if (freq < 2484)
1044 			return ((int) freq - 2407) / 5;
1045 		else
1046 			return 15 + ((freq - 2512) / 20);
1047 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1048 		if (freq <= 5000) {
1049 			/* XXX check regdomain? */
1050 			if (IS_FREQ_IN_PSB(freq))
1051 				return mappsb(freq, flags);
1052 			return (freq - 4000) / 5;
1053 		} else
1054 			return (freq - 5000) / 5;
1055 	} else {				/* either, guess */
1056 		if (freq == 2484)
1057 			return 14;
1058 		if (freq < 2484) {
1059 			if (907 <= freq && freq <= 922)
1060 				return mapgsm(freq, flags);
1061 			return ((int) freq - 2407) / 5;
1062 		}
1063 		if (freq < 5000) {
1064 			if (IS_FREQ_IN_PSB(freq))
1065 				return mappsb(freq, flags);
1066 			else if (freq > 4900)
1067 				return (freq - 4000) / 5;
1068 			else
1069 				return 15 + ((freq - 2512) / 20);
1070 		}
1071 		return (freq - 5000) / 5;
1072 	}
1073 #undef IS_FREQ_IN_PSB
1074 }
1075 
1076 /*
1077  * Convert channel to IEEE channel number.
1078  */
1079 int
1080 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1081 {
1082 	if (c == NULL) {
1083 		ic_printf(ic, "invalid channel (NULL)\n");
1084 		return 0;		/* XXX */
1085 	}
1086 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1087 }
1088 
1089 /*
1090  * Convert IEEE channel number to MHz frequency.
1091  */
1092 u_int
1093 ieee80211_ieee2mhz(u_int chan, u_int flags)
1094 {
1095 	if (flags & IEEE80211_CHAN_GSM)
1096 		return 907 + 5 * (chan / 10);
1097 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1098 		if (chan == 14)
1099 			return 2484;
1100 		if (chan < 14)
1101 			return 2407 + chan*5;
1102 		else
1103 			return 2512 + ((chan-15)*20);
1104 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1105 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1106 			chan -= 37;
1107 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1108 		}
1109 		return 5000 + (chan*5);
1110 	} else {				/* either, guess */
1111 		/* XXX can't distinguish PSB+GSM channels */
1112 		if (chan == 14)
1113 			return 2484;
1114 		if (chan < 14)			/* 0-13 */
1115 			return 2407 + chan*5;
1116 		if (chan < 27)			/* 15-26 */
1117 			return 2512 + ((chan-15)*20);
1118 		return 5000 + (chan*5);
1119 	}
1120 }
1121 
1122 static __inline void
1123 set_extchan(struct ieee80211_channel *c)
1124 {
1125 
1126 	/*
1127 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1128 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1129 	 */
1130 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1131 		c->ic_extieee = c->ic_ieee + 4;
1132 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1133 		c->ic_extieee = c->ic_ieee - 4;
1134 	else
1135 		c->ic_extieee = 0;
1136 }
1137 
1138 /*
1139  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1140  *
1141  * This for now uses a hard-coded list of 80MHz wide channels.
1142  *
1143  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1144  * wide channel we've already decided upon.
1145  *
1146  * For VHT80 and VHT160, there are only a small number of fixed
1147  * 80/160MHz wide channels, so we just use those.
1148  *
1149  * This is all likely very very wrong - both the regulatory code
1150  * and this code needs to ensure that all four channels are
1151  * available and valid before the VHT80 (and eight for VHT160) channel
1152  * is created.
1153  */
1154 
1155 struct vht_chan_range {
1156 	uint16_t freq_start;
1157 	uint16_t freq_end;
1158 };
1159 
1160 struct vht_chan_range vht80_chan_ranges[] = {
1161 	{ 5170, 5250 },
1162 	{ 5250, 5330 },
1163 	{ 5490, 5570 },
1164 	{ 5570, 5650 },
1165 	{ 5650, 5730 },
1166 	{ 5735, 5815 },
1167 	{ 0, 0 }
1168 };
1169 
1170 struct vht_chan_range vht160_chan_ranges[] = {
1171 	{ 5170, 5330 },
1172 	{ 5490, 5650 },
1173 	{ 0, 0 }
1174 };
1175 
1176 static int
1177 set_vht_extchan(struct ieee80211_channel *c)
1178 {
1179 	int i;
1180 
1181 	if (! IEEE80211_IS_CHAN_VHT(c))
1182 		return (0);
1183 
1184 	if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1185 		printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1186 		    __func__, c->ic_ieee, c->ic_flags);
1187 	}
1188 
1189 	if (IEEE80211_IS_CHAN_VHT160(c)) {
1190 		for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1191 			if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1192 			    c->ic_freq < vht160_chan_ranges[i].freq_end) {
1193 				int midpoint;
1194 
1195 				midpoint = vht160_chan_ranges[i].freq_start + 80;
1196 				c->ic_vht_ch_freq1 =
1197 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1198 				c->ic_vht_ch_freq2 = 0;
1199 #if 0
1200 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1201 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1202 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1203 #endif
1204 				return (1);
1205 			}
1206 		}
1207 		return (0);
1208 	}
1209 
1210 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1211 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1212 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1213 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1214 				int midpoint;
1215 
1216 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1217 				c->ic_vht_ch_freq1 =
1218 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1219 				c->ic_vht_ch_freq2 = 0;
1220 #if 0
1221 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1222 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1223 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1224 #endif
1225 				return (1);
1226 			}
1227 		}
1228 		return (0);
1229 	}
1230 
1231 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1232 		if (IEEE80211_IS_CHAN_HT40U(c))
1233 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1234 		else if (IEEE80211_IS_CHAN_HT40D(c))
1235 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1236 		else
1237 			return (0);
1238 		return (1);
1239 	}
1240 
1241 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1242 		c->ic_vht_ch_freq1 = c->ic_ieee;
1243 		return (1);
1244 	}
1245 
1246 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1247 	    __func__, c->ic_ieee, c->ic_flags);
1248 
1249 	return (0);
1250 }
1251 
1252 /*
1253  * Return whether the current channel could possibly be a part of
1254  * a VHT80/VHT160 channel.
1255  *
1256  * This doesn't check that the whole range is in the allowed list
1257  * according to regulatory.
1258  */
1259 static bool
1260 is_vht160_valid_freq(uint16_t freq)
1261 {
1262 	int i;
1263 
1264 	for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1265 		if (freq >= vht160_chan_ranges[i].freq_start &&
1266 		    freq < vht160_chan_ranges[i].freq_end)
1267 			return (true);
1268 	}
1269 	return (false);
1270 }
1271 
1272 static int
1273 is_vht80_valid_freq(uint16_t freq)
1274 {
1275 	int i;
1276 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1277 		if (freq >= vht80_chan_ranges[i].freq_start &&
1278 		    freq < vht80_chan_ranges[i].freq_end)
1279 			return (1);
1280 	}
1281 	return (0);
1282 }
1283 
1284 static int
1285 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1286     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1287 {
1288 	struct ieee80211_channel *c;
1289 
1290 	if (*nchans >= maxchans)
1291 		return (ENOBUFS);
1292 
1293 #if 0
1294 	printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
1295 	    __func__, *nchans, ieee, freq, flags);
1296 #endif
1297 
1298 	c = &chans[(*nchans)++];
1299 	c->ic_ieee = ieee;
1300 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1301 	c->ic_maxregpower = maxregpower;
1302 	c->ic_maxpower = 2 * maxregpower;
1303 	c->ic_flags = flags;
1304 	c->ic_vht_ch_freq1 = 0;
1305 	c->ic_vht_ch_freq2 = 0;
1306 	set_extchan(c);
1307 	set_vht_extchan(c);
1308 
1309 	return (0);
1310 }
1311 
1312 static int
1313 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1314     uint32_t flags)
1315 {
1316 	struct ieee80211_channel *c;
1317 
1318 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1319 
1320 	if (*nchans >= maxchans)
1321 		return (ENOBUFS);
1322 
1323 #if 0
1324 	printf("%s: %d: flags=0x%08x\n",
1325 	    __func__, *nchans, flags);
1326 #endif
1327 
1328 	c = &chans[(*nchans)++];
1329 	c[0] = c[-1];
1330 	c->ic_flags = flags;
1331 	c->ic_vht_ch_freq1 = 0;
1332 	c->ic_vht_ch_freq2 = 0;
1333 	set_extchan(c);
1334 	set_vht_extchan(c);
1335 
1336 	return (0);
1337 }
1338 
1339 /*
1340  * XXX VHT-2GHz
1341  */
1342 static void
1343 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1344 {
1345 	int nmodes;
1346 
1347 	nmodes = 0;
1348 	if (isset(bands, IEEE80211_MODE_11B))
1349 		flags[nmodes++] = IEEE80211_CHAN_B;
1350 	if (isset(bands, IEEE80211_MODE_11G))
1351 		flags[nmodes++] = IEEE80211_CHAN_G;
1352 	if (isset(bands, IEEE80211_MODE_11NG))
1353 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1354 	if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1355 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1356 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1357 	}
1358 	flags[nmodes] = 0;
1359 }
1360 
1361 static void
1362 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1363 {
1364 	int nmodes;
1365 
1366 	/*
1367 	 * The addchan_list() function seems to expect the flags array to
1368 	 * be in channel width order, so the VHT bits are interspersed
1369 	 * as appropriate to maintain said order.
1370 	 *
1371 	 * It also assumes HT40U is before HT40D.
1372 	 */
1373 	nmodes = 0;
1374 
1375 	/* 20MHz */
1376 	if (isset(bands, IEEE80211_MODE_11A))
1377 		flags[nmodes++] = IEEE80211_CHAN_A;
1378 	if (isset(bands, IEEE80211_MODE_11NA))
1379 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1380 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1381 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1382 		    IEEE80211_CHAN_VHT20;
1383 	}
1384 
1385 	/* 40MHz */
1386 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1387 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1388 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1389 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1390 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1391 		    IEEE80211_CHAN_VHT40U;
1392 	if (cbw_flags & NET80211_CBW_FLAG_HT40)
1393 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1394 	if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1395 	    isset(bands, IEEE80211_MODE_VHT_5GHZ))
1396 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1397 		    IEEE80211_CHAN_VHT40D;
1398 
1399 	/* 80MHz */
1400 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1401 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1402 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1403 		    IEEE80211_CHAN_VHT80;
1404 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1405 		    IEEE80211_CHAN_VHT80;
1406 	}
1407 
1408 	/* VHT160 */
1409 	if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1410 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1411 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1412 		    IEEE80211_CHAN_VHT160;
1413 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1414 		    IEEE80211_CHAN_VHT160;
1415 	}
1416 
1417 	/* VHT80+80 */
1418 	if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1419 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1420 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1421 		    IEEE80211_CHAN_VHT80P80;
1422 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1423 		    IEEE80211_CHAN_VHT80P80;
1424 	}
1425 
1426 	flags[nmodes] = 0;
1427 }
1428 
1429 static void
1430 getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1431 {
1432 
1433 	flags[0] = 0;
1434 	if (isset(bands, IEEE80211_MODE_11A) ||
1435 	    isset(bands, IEEE80211_MODE_11NA) ||
1436 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1437 		if (isset(bands, IEEE80211_MODE_11B) ||
1438 		    isset(bands, IEEE80211_MODE_11G) ||
1439 		    isset(bands, IEEE80211_MODE_11NG) ||
1440 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1441 			return;
1442 
1443 		getflags_5ghz(bands, flags, cbw_flags);
1444 	} else
1445 		getflags_2ghz(bands, flags, cbw_flags);
1446 }
1447 
1448 /*
1449  * Add one 20 MHz channel into specified channel list.
1450  * You MUST NOT mix bands when calling this.  It will not add 5ghz
1451  * channels if you have any B/G/N band bit set.
1452  * The _cbw() variant does also support HT40/VHT80/160/80+80.
1453  */
1454 int
1455 ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1456     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1457     uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1458 {
1459 	uint32_t flags[IEEE80211_MODE_MAX];
1460 	int i, error;
1461 
1462 	getflags(bands, flags, cbw_flags);
1463 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1464 
1465 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1466 	    flags[0] | chan_flags);
1467 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1468 		error = copychan_prev(chans, maxchans, nchans,
1469 		    flags[i] | chan_flags);
1470 	}
1471 
1472 	return (error);
1473 }
1474 
1475 int
1476 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1477     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1478     uint32_t chan_flags, const uint8_t bands[])
1479 {
1480 
1481 	return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1482 	    maxregpower, chan_flags, bands, 0));
1483 }
1484 
1485 static struct ieee80211_channel *
1486 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1487     uint32_t flags)
1488 {
1489 	struct ieee80211_channel *c;
1490 	int i;
1491 
1492 	flags &= IEEE80211_CHAN_ALLTURBO;
1493 	/* brute force search */
1494 	for (i = 0; i < nchans; i++) {
1495 		c = &chans[i];
1496 		if (c->ic_freq == freq &&
1497 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1498 			return c;
1499 	}
1500 	return NULL;
1501 }
1502 
1503 /*
1504  * Add 40 MHz channel pair into specified channel list.
1505  */
1506 /* XXX VHT */
1507 int
1508 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1509     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1510 {
1511 	struct ieee80211_channel *cent, *extc;
1512 	uint16_t freq;
1513 	int error;
1514 
1515 	freq = ieee80211_ieee2mhz(ieee, flags);
1516 
1517 	/*
1518 	 * Each entry defines an HT40 channel pair; find the
1519 	 * center channel, then the extension channel above.
1520 	 */
1521 	flags |= IEEE80211_CHAN_HT20;
1522 	cent = findchannel(chans, *nchans, freq, flags);
1523 	if (cent == NULL)
1524 		return (EINVAL);
1525 
1526 	extc = findchannel(chans, *nchans, freq + 20, flags);
1527 	if (extc == NULL)
1528 		return (ENOENT);
1529 
1530 	flags &= ~IEEE80211_CHAN_HT;
1531 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1532 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1533 	if (error != 0)
1534 		return (error);
1535 
1536 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1537 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1538 
1539 	return (error);
1540 }
1541 
1542 /*
1543  * Fetch the center frequency for the primary channel.
1544  */
1545 uint32_t
1546 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1547 {
1548 
1549 	return (c->ic_freq);
1550 }
1551 
1552 /*
1553  * Fetch the center frequency for the primary BAND channel.
1554  *
1555  * For 5, 10, 20MHz channels it'll be the normally configured channel
1556  * frequency.
1557  *
1558  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1559  * wide channel, not the centre of the primary channel (that's ic_freq).
1560  *
1561  * For 80+80MHz channels this will be the centre of the primary
1562  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1563  */
1564 uint32_t
1565 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1566 {
1567 
1568 	/*
1569 	 * VHT - use the pre-calculated centre frequency
1570 	 * of the given channel.
1571 	 */
1572 	if (IEEE80211_IS_CHAN_VHT(c))
1573 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1574 
1575 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1576 		return (c->ic_freq + 10);
1577 	}
1578 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1579 		return (c->ic_freq - 10);
1580 	}
1581 
1582 	return (c->ic_freq);
1583 }
1584 
1585 /*
1586  * For now, no 80+80 support; it will likely always return 0.
1587  */
1588 uint32_t
1589 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1590 {
1591 
1592 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1593 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1594 
1595 	return (0);
1596 }
1597 
1598 /*
1599  * Adds channels into specified channel list (ieee[] array must be sorted).
1600  * Channels are already sorted.
1601  */
1602 static int
1603 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1604     const uint8_t ieee[], int nieee, uint32_t flags[])
1605 {
1606 	uint16_t freq;
1607 	int i, j, error;
1608 	int is_vht;
1609 
1610 	for (i = 0; i < nieee; i++) {
1611 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1612 		for (j = 0; flags[j] != 0; j++) {
1613 			/*
1614 			 * Notes:
1615 			 * + HT40 and VHT40 channels occur together, so
1616 			 *   we need to be careful that we actually allow that.
1617 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1618 			 *   make sure it's not skipped because of the overlap
1619 			 *   check used for (V)HT40.
1620 			 */
1621 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1622 
1623 			/* XXX TODO FIXME VHT80P80. */
1624 
1625 			/* Test for VHT160 analogue to the VHT80 below. */
1626 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1627 				if (! is_vht160_valid_freq(freq))
1628 					continue;
1629 
1630 			/*
1631 			 * Test for VHT80.
1632 			 * XXX This is all very broken right now.
1633 			 * What we /should/ do is:
1634 			 *
1635 			 * + check that the frequency is in the list of
1636 			 *   allowed VHT80 ranges; and
1637 			 * + the other 3 channels in the list are actually
1638 			 *   also available.
1639 			 */
1640 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1641 				if (! is_vht80_valid_freq(freq))
1642 					continue;
1643 
1644 			/*
1645 			 * Test for (V)HT40.
1646 			 *
1647 			 * This is also a fall through from VHT80; as we only
1648 			 * allow a VHT80 channel if the VHT40 combination is
1649 			 * also valid.  If the VHT40 form is not valid then
1650 			 * we certainly can't do VHT80..
1651 			 */
1652 			if (flags[j] & IEEE80211_CHAN_HT40D)
1653 				/*
1654 				 * Can't have a "lower" channel if we are the
1655 				 * first channel.
1656 				 *
1657 				 * Can't have a "lower" channel if it's below/
1658 				 * within 20MHz of the first channel.
1659 				 *
1660 				 * Can't have a "lower" channel if the channel
1661 				 * below it is not 20MHz away.
1662 				 */
1663 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1664 				    freq - 20 !=
1665 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1666 					continue;
1667 			if (flags[j] & IEEE80211_CHAN_HT40U)
1668 				/*
1669 				 * Can't have an "upper" channel if we are
1670 				 * the last channel.
1671 				 *
1672 				 * Can't have an "upper" channel be above the
1673 				 * last channel in the list.
1674 				 *
1675 				 * Can't have an "upper" channel if the next
1676 				 * channel according to the math isn't 20MHz
1677 				 * away.  (Likely for channel 13/14.)
1678 				 */
1679 				if (i == nieee - 1 ||
1680 				    ieee[i] + 4 > ieee[nieee - 1] ||
1681 				    freq + 20 !=
1682 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1683 					continue;
1684 
1685 			if (j == 0) {
1686 				error = addchan(chans, maxchans, nchans,
1687 				    ieee[i], freq, 0, flags[j]);
1688 			} else {
1689 				error = copychan_prev(chans, maxchans, nchans,
1690 				    flags[j]);
1691 			}
1692 			if (error != 0)
1693 				return (error);
1694 		}
1695 	}
1696 
1697 	return (0);
1698 }
1699 
1700 int
1701 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1702     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1703     int cbw_flags)
1704 {
1705 	uint32_t flags[IEEE80211_MODE_MAX];
1706 
1707 	/* XXX no VHT for now */
1708 	getflags_2ghz(bands, flags, cbw_flags);
1709 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1710 
1711 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1712 }
1713 
1714 int
1715 ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1716     int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1717 {
1718 	const uint8_t default_chan_list[] =
1719 	    { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1720 
1721 	return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1722 	    default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1723 }
1724 
1725 int
1726 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1727     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1728     int cbw_flags)
1729 {
1730 	/*
1731 	 * XXX-BZ with HT and VHT there is no 1:1 mapping anymore.  Review all
1732 	 * uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1733 	 */
1734 	uint32_t flags[2 * IEEE80211_MODE_MAX];
1735 
1736 	getflags_5ghz(bands, flags, cbw_flags);
1737 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1738 
1739 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1740 }
1741 
1742 /*
1743  * Locate a channel given a frequency+flags.  We cache
1744  * the previous lookup to optimize switching between two
1745  * channels--as happens with dynamic turbo.
1746  */
1747 struct ieee80211_channel *
1748 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1749 {
1750 	struct ieee80211_channel *c;
1751 
1752 	flags &= IEEE80211_CHAN_ALLTURBO;
1753 	c = ic->ic_prevchan;
1754 	if (c != NULL && c->ic_freq == freq &&
1755 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1756 		return c;
1757 	/* brute force search */
1758 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1759 }
1760 
1761 /*
1762  * Locate a channel given a channel number+flags.  We cache
1763  * the previous lookup to optimize switching between two
1764  * channels--as happens with dynamic turbo.
1765  */
1766 struct ieee80211_channel *
1767 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1768 {
1769 	struct ieee80211_channel *c;
1770 	int i;
1771 
1772 	flags &= IEEE80211_CHAN_ALLTURBO;
1773 	c = ic->ic_prevchan;
1774 	if (c != NULL && c->ic_ieee == ieee &&
1775 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1776 		return c;
1777 	/* brute force search */
1778 	for (i = 0; i < ic->ic_nchans; i++) {
1779 		c = &ic->ic_channels[i];
1780 		if (c->ic_ieee == ieee &&
1781 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1782 			return c;
1783 	}
1784 	return NULL;
1785 }
1786 
1787 /*
1788  * Lookup a channel suitable for the given rx status.
1789  *
1790  * This is used to find a channel for a frame (eg beacon, probe
1791  * response) based purely on the received PHY information.
1792  *
1793  * For now it tries to do it based on R_FREQ / R_IEEE.
1794  * This is enough for 11bg and 11a (and thus 11ng/11na)
1795  * but it will not be enough for GSM, PSB channels and the
1796  * like.  It also doesn't know about legacy-turbog and
1797  * legacy-turbo modes, which some offload NICs actually
1798  * support in weird ways.
1799  *
1800  * Takes the ic and rxstatus; returns the channel or NULL
1801  * if not found.
1802  *
1803  * XXX TODO: Add support for that when the need arises.
1804  */
1805 struct ieee80211_channel *
1806 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1807     const struct ieee80211_rx_stats *rxs)
1808 {
1809 	struct ieee80211com *ic = vap->iv_ic;
1810 	uint32_t flags;
1811 	struct ieee80211_channel *c;
1812 
1813 	if (rxs == NULL)
1814 		return (NULL);
1815 
1816 	/*
1817 	 * Strictly speaking we only use freq for now,
1818 	 * however later on we may wish to just store
1819 	 * the ieee for verification.
1820 	 */
1821 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1822 		return (NULL);
1823 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1824 		return (NULL);
1825 
1826 	/*
1827 	 * If the rx status contains a valid ieee/freq, then
1828 	 * ensure we populate the correct channel information
1829 	 * in rxchan before passing it up to the scan infrastructure.
1830 	 * Offload NICs will pass up beacons from all channels
1831 	 * during background scans.
1832 	 */
1833 
1834 	/* Determine a band */
1835 	/* XXX should be done by the driver? */
1836 	if (rxs->c_freq < 3000) {
1837 		flags = IEEE80211_CHAN_G;
1838 	} else {
1839 		flags = IEEE80211_CHAN_A;
1840 	}
1841 
1842 	/* Channel lookup */
1843 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1844 
1845 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1846 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1847 	    __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1848 
1849 	return (c);
1850 }
1851 
1852 static void
1853 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1854 {
1855 #define	ADD(_ic, _s, _o) \
1856 	ifmedia_add(media, \
1857 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1858 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1859 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1860 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1861 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1862 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1863 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1864 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1865 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1866 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1867 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1868 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1869 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1870 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1871 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1872 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1873 	};
1874 	u_int mopt;
1875 
1876 	mopt = mopts[mode];
1877 	if (addsta)
1878 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1879 	if (caps & IEEE80211_C_IBSS)
1880 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1881 	if (caps & IEEE80211_C_HOSTAP)
1882 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1883 	if (caps & IEEE80211_C_AHDEMO)
1884 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1885 	if (caps & IEEE80211_C_MONITOR)
1886 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1887 	if (caps & IEEE80211_C_WDS)
1888 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1889 	if (caps & IEEE80211_C_MBSS)
1890 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1891 #undef ADD
1892 }
1893 
1894 /*
1895  * Setup the media data structures according to the channel and
1896  * rate tables.
1897  */
1898 static int
1899 ieee80211_media_setup(struct ieee80211com *ic,
1900 	struct ifmedia *media, int caps, int addsta,
1901 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1902 {
1903 	int i, j, rate, maxrate, mword, r;
1904 	enum ieee80211_phymode mode;
1905 	const struct ieee80211_rateset *rs;
1906 	struct ieee80211_rateset allrates;
1907 
1908 	/*
1909 	 * Fill in media characteristics.
1910 	 */
1911 	ifmedia_init(media, 0, media_change, media_stat);
1912 	maxrate = 0;
1913 	/*
1914 	 * Add media for legacy operating modes.
1915 	 */
1916 	memset(&allrates, 0, sizeof(allrates));
1917 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1918 		if (isclr(ic->ic_modecaps, mode))
1919 			continue;
1920 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1921 		if (mode == IEEE80211_MODE_AUTO)
1922 			continue;
1923 		rs = &ic->ic_sup_rates[mode];
1924 		for (i = 0; i < rs->rs_nrates; i++) {
1925 			rate = rs->rs_rates[i];
1926 			mword = ieee80211_rate2media(ic, rate, mode);
1927 			if (mword == 0)
1928 				continue;
1929 			addmedia(media, caps, addsta, mode, mword);
1930 			/*
1931 			 * Add legacy rate to the collection of all rates.
1932 			 */
1933 			r = rate & IEEE80211_RATE_VAL;
1934 			for (j = 0; j < allrates.rs_nrates; j++)
1935 				if (allrates.rs_rates[j] == r)
1936 					break;
1937 			if (j == allrates.rs_nrates) {
1938 				/* unique, add to the set */
1939 				allrates.rs_rates[j] = r;
1940 				allrates.rs_nrates++;
1941 			}
1942 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1943 			if (rate > maxrate)
1944 				maxrate = rate;
1945 		}
1946 	}
1947 	for (i = 0; i < allrates.rs_nrates; i++) {
1948 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1949 				IEEE80211_MODE_AUTO);
1950 		if (mword == 0)
1951 			continue;
1952 		/* NB: remove media options from mword */
1953 		addmedia(media, caps, addsta,
1954 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1955 	}
1956 	/*
1957 	 * Add HT/11n media.  Note that we do not have enough
1958 	 * bits in the media subtype to express the MCS so we
1959 	 * use a "placeholder" media subtype and any fixed MCS
1960 	 * must be specified with a different mechanism.
1961 	 */
1962 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1963 		if (isclr(ic->ic_modecaps, mode))
1964 			continue;
1965 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1966 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1967 	}
1968 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1969 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1970 		addmedia(media, caps, addsta,
1971 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1972 		i = ic->ic_txstream * 8 - 1;
1973 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1974 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1975 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1976 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1977 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1978 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1979 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1980 		else
1981 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1982 		if (rate > maxrate)
1983 			maxrate = rate;
1984 	}
1985 
1986 	/*
1987 	 * Add VHT media.
1988 	 * XXX-BZ skip "VHT_2GHZ" for now.
1989 	 */
1990 	for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
1991 	    mode++) {
1992 		if (isclr(ic->ic_modecaps, mode))
1993 			continue;
1994 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1995 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
1996 	}
1997 	if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
1998 	       addmedia(media, caps, addsta,
1999 		   IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2000 
2001 		/* XXX TODO: VHT maxrate */
2002 	}
2003 
2004 	return maxrate;
2005 }
2006 
2007 /* XXX inline or eliminate? */
2008 const struct ieee80211_rateset *
2009 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2010 {
2011 	/* XXX does this work for 11ng basic rates? */
2012 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2013 }
2014 
2015 /* XXX inline or eliminate? */
2016 const struct ieee80211_htrateset *
2017 ieee80211_get_suphtrates(struct ieee80211com *ic,
2018     const struct ieee80211_channel *c)
2019 {
2020 	return &ic->ic_sup_htrates;
2021 }
2022 
2023 void
2024 ieee80211_announce(struct ieee80211com *ic)
2025 {
2026 	int i, rate, mword;
2027 	enum ieee80211_phymode mode;
2028 	const struct ieee80211_rateset *rs;
2029 
2030 	/* NB: skip AUTO since it has no rates */
2031 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2032 		if (isclr(ic->ic_modecaps, mode))
2033 			continue;
2034 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2035 		rs = &ic->ic_sup_rates[mode];
2036 		for (i = 0; i < rs->rs_nrates; i++) {
2037 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
2038 			if (mword == 0)
2039 				continue;
2040 			rate = ieee80211_media2rate(mword);
2041 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
2042 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2043 		}
2044 		printf("\n");
2045 	}
2046 	ieee80211_ht_announce(ic);
2047 	ieee80211_vht_announce(ic);
2048 }
2049 
2050 void
2051 ieee80211_announce_channels(struct ieee80211com *ic)
2052 {
2053 	const struct ieee80211_channel *c;
2054 	char type;
2055 	int i, cw;
2056 
2057 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
2058 	for (i = 0; i < ic->ic_nchans; i++) {
2059 		c = &ic->ic_channels[i];
2060 		if (IEEE80211_IS_CHAN_ST(c))
2061 			type = 'S';
2062 		else if (IEEE80211_IS_CHAN_108A(c))
2063 			type = 'T';
2064 		else if (IEEE80211_IS_CHAN_108G(c))
2065 			type = 'G';
2066 		else if (IEEE80211_IS_CHAN_HT(c))
2067 			type = 'n';
2068 		else if (IEEE80211_IS_CHAN_A(c))
2069 			type = 'a';
2070 		else if (IEEE80211_IS_CHAN_ANYG(c))
2071 			type = 'g';
2072 		else if (IEEE80211_IS_CHAN_B(c))
2073 			type = 'b';
2074 		else
2075 			type = 'f';
2076 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2077 			cw = 40;
2078 		else if (IEEE80211_IS_CHAN_HALF(c))
2079 			cw = 10;
2080 		else if (IEEE80211_IS_CHAN_QUARTER(c))
2081 			cw = 5;
2082 		else
2083 			cw = 20;
2084 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
2085 			, c->ic_ieee, c->ic_freq, type
2086 			, cw
2087 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2088 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2089 			, c->ic_maxregpower
2090 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2091 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2092 		);
2093 	}
2094 }
2095 
2096 static int
2097 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2098 {
2099 	switch (IFM_MODE(ime->ifm_media)) {
2100 	case IFM_IEEE80211_11A:
2101 		*mode = IEEE80211_MODE_11A;
2102 		break;
2103 	case IFM_IEEE80211_11B:
2104 		*mode = IEEE80211_MODE_11B;
2105 		break;
2106 	case IFM_IEEE80211_11G:
2107 		*mode = IEEE80211_MODE_11G;
2108 		break;
2109 	case IFM_IEEE80211_FH:
2110 		*mode = IEEE80211_MODE_FH;
2111 		break;
2112 	case IFM_IEEE80211_11NA:
2113 		*mode = IEEE80211_MODE_11NA;
2114 		break;
2115 	case IFM_IEEE80211_11NG:
2116 		*mode = IEEE80211_MODE_11NG;
2117 		break;
2118 	case IFM_IEEE80211_VHT2G:
2119 		*mode = IEEE80211_MODE_VHT_2GHZ;
2120 		break;
2121 	case IFM_IEEE80211_VHT5G:
2122 		*mode = IEEE80211_MODE_VHT_5GHZ;
2123 		break;
2124 	case IFM_AUTO:
2125 		*mode = IEEE80211_MODE_AUTO;
2126 		break;
2127 	default:
2128 		return 0;
2129 	}
2130 	/*
2131 	 * Turbo mode is an ``option''.
2132 	 * XXX does not apply to AUTO
2133 	 */
2134 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2135 		if (*mode == IEEE80211_MODE_11A) {
2136 			if (flags & IEEE80211_F_TURBOP)
2137 				*mode = IEEE80211_MODE_TURBO_A;
2138 			else
2139 				*mode = IEEE80211_MODE_STURBO_A;
2140 		} else if (*mode == IEEE80211_MODE_11G)
2141 			*mode = IEEE80211_MODE_TURBO_G;
2142 		else
2143 			return 0;
2144 	}
2145 	/* XXX HT40 +/- */
2146 	return 1;
2147 }
2148 
2149 /*
2150  * Handle a media change request on the vap interface.
2151  */
2152 int
2153 ieee80211_media_change(struct ifnet *ifp)
2154 {
2155 	struct ieee80211vap *vap = ifp->if_softc;
2156 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2157 	uint16_t newmode;
2158 
2159 	if (!media2mode(ime, vap->iv_flags, &newmode))
2160 		return EINVAL;
2161 	if (vap->iv_des_mode != newmode) {
2162 		vap->iv_des_mode = newmode;
2163 		/* XXX kick state machine if up+running */
2164 	}
2165 	return 0;
2166 }
2167 
2168 /*
2169  * Common code to calculate the media status word
2170  * from the operating mode and channel state.
2171  */
2172 static int
2173 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2174 {
2175 	int status;
2176 
2177 	status = IFM_IEEE80211;
2178 	switch (opmode) {
2179 	case IEEE80211_M_STA:
2180 		break;
2181 	case IEEE80211_M_IBSS:
2182 		status |= IFM_IEEE80211_ADHOC;
2183 		break;
2184 	case IEEE80211_M_HOSTAP:
2185 		status |= IFM_IEEE80211_HOSTAP;
2186 		break;
2187 	case IEEE80211_M_MONITOR:
2188 		status |= IFM_IEEE80211_MONITOR;
2189 		break;
2190 	case IEEE80211_M_AHDEMO:
2191 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2192 		break;
2193 	case IEEE80211_M_WDS:
2194 		status |= IFM_IEEE80211_WDS;
2195 		break;
2196 	case IEEE80211_M_MBSS:
2197 		status |= IFM_IEEE80211_MBSS;
2198 		break;
2199 	}
2200 	if (IEEE80211_IS_CHAN_HTA(chan)) {
2201 		status |= IFM_IEEE80211_11NA;
2202 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2203 		status |= IFM_IEEE80211_11NG;
2204 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2205 		status |= IFM_IEEE80211_11A;
2206 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2207 		status |= IFM_IEEE80211_11B;
2208 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2209 		status |= IFM_IEEE80211_11G;
2210 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2211 		status |= IFM_IEEE80211_FH;
2212 	}
2213 	/* XXX else complain? */
2214 
2215 	if (IEEE80211_IS_CHAN_TURBO(chan))
2216 		status |= IFM_IEEE80211_TURBO;
2217 #if 0
2218 	if (IEEE80211_IS_CHAN_HT20(chan))
2219 		status |= IFM_IEEE80211_HT20;
2220 	if (IEEE80211_IS_CHAN_HT40(chan))
2221 		status |= IFM_IEEE80211_HT40;
2222 #endif
2223 	return status;
2224 }
2225 
2226 void
2227 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2228 {
2229 	struct ieee80211vap *vap = ifp->if_softc;
2230 	struct ieee80211com *ic = vap->iv_ic;
2231 	enum ieee80211_phymode mode;
2232 
2233 	imr->ifm_status = IFM_AVALID;
2234 	/*
2235 	 * NB: use the current channel's mode to lock down a xmit
2236 	 * rate only when running; otherwise we may have a mismatch
2237 	 * in which case the rate will not be convertible.
2238 	 */
2239 	if (vap->iv_state == IEEE80211_S_RUN ||
2240 	    vap->iv_state == IEEE80211_S_SLEEP) {
2241 		imr->ifm_status |= IFM_ACTIVE;
2242 		mode = ieee80211_chan2mode(ic->ic_curchan);
2243 	} else
2244 		mode = IEEE80211_MODE_AUTO;
2245 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2246 	/*
2247 	 * Calculate a current rate if possible.
2248 	 */
2249 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2250 		/*
2251 		 * A fixed rate is set, report that.
2252 		 */
2253 		imr->ifm_active |= ieee80211_rate2media(ic,
2254 			vap->iv_txparms[mode].ucastrate, mode);
2255 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2256 		/*
2257 		 * In station mode report the current transmit rate.
2258 		 */
2259 		imr->ifm_active |= ieee80211_rate2media(ic,
2260 			vap->iv_bss->ni_txrate, mode);
2261 	} else
2262 		imr->ifm_active |= IFM_AUTO;
2263 	if (imr->ifm_status & IFM_ACTIVE)
2264 		imr->ifm_current = imr->ifm_active;
2265 }
2266 
2267 /*
2268  * Set the current phy mode and recalculate the active channel
2269  * set based on the available channels for this mode.  Also
2270  * select a new default/current channel if the current one is
2271  * inappropriate for this mode.
2272  */
2273 int
2274 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2275 {
2276 	/*
2277 	 * Adjust basic rates in 11b/11g supported rate set.
2278 	 * Note that if operating on a hal/quarter rate channel
2279 	 * this is a noop as those rates sets are different
2280 	 * and used instead.
2281 	 */
2282 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2283 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2284 
2285 	ic->ic_curmode = mode;
2286 	ieee80211_reset_erp(ic);	/* reset global ERP state */
2287 
2288 	return 0;
2289 }
2290 
2291 /*
2292  * Return the phy mode for with the specified channel.
2293  */
2294 enum ieee80211_phymode
2295 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2296 {
2297 
2298 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2299 		return IEEE80211_MODE_VHT_2GHZ;
2300 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2301 		return IEEE80211_MODE_VHT_5GHZ;
2302 	else if (IEEE80211_IS_CHAN_HTA(chan))
2303 		return IEEE80211_MODE_11NA;
2304 	else if (IEEE80211_IS_CHAN_HTG(chan))
2305 		return IEEE80211_MODE_11NG;
2306 	else if (IEEE80211_IS_CHAN_108G(chan))
2307 		return IEEE80211_MODE_TURBO_G;
2308 	else if (IEEE80211_IS_CHAN_ST(chan))
2309 		return IEEE80211_MODE_STURBO_A;
2310 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2311 		return IEEE80211_MODE_TURBO_A;
2312 	else if (IEEE80211_IS_CHAN_HALF(chan))
2313 		return IEEE80211_MODE_HALF;
2314 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2315 		return IEEE80211_MODE_QUARTER;
2316 	else if (IEEE80211_IS_CHAN_A(chan))
2317 		return IEEE80211_MODE_11A;
2318 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2319 		return IEEE80211_MODE_11G;
2320 	else if (IEEE80211_IS_CHAN_B(chan))
2321 		return IEEE80211_MODE_11B;
2322 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2323 		return IEEE80211_MODE_FH;
2324 
2325 	/* NB: should not get here */
2326 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2327 		__func__, chan->ic_freq, chan->ic_flags);
2328 	return IEEE80211_MODE_11B;
2329 }
2330 
2331 struct ratemedia {
2332 	u_int	match;	/* rate + mode */
2333 	u_int	media;	/* if_media rate */
2334 };
2335 
2336 static int
2337 findmedia(const struct ratemedia rates[], int n, u_int match)
2338 {
2339 	int i;
2340 
2341 	for (i = 0; i < n; i++)
2342 		if (rates[i].match == match)
2343 			return rates[i].media;
2344 	return IFM_AUTO;
2345 }
2346 
2347 /*
2348  * Convert IEEE80211 rate value to ifmedia subtype.
2349  * Rate is either a legacy rate in units of 0.5Mbps
2350  * or an MCS index.
2351  */
2352 int
2353 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2354 {
2355 	static const struct ratemedia rates[] = {
2356 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2357 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2358 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2359 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2360 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2361 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2362 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2363 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2364 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2365 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2366 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2367 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2368 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2369 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2370 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2371 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2372 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2373 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2374 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2375 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2376 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2377 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2378 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2379 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2380 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2381 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2382 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2383 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2384 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2385 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2386 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2387 	};
2388 	static const struct ratemedia htrates[] = {
2389 		{   0, IFM_IEEE80211_MCS },
2390 		{   1, IFM_IEEE80211_MCS },
2391 		{   2, IFM_IEEE80211_MCS },
2392 		{   3, IFM_IEEE80211_MCS },
2393 		{   4, IFM_IEEE80211_MCS },
2394 		{   5, IFM_IEEE80211_MCS },
2395 		{   6, IFM_IEEE80211_MCS },
2396 		{   7, IFM_IEEE80211_MCS },
2397 		{   8, IFM_IEEE80211_MCS },
2398 		{   9, IFM_IEEE80211_MCS },
2399 		{  10, IFM_IEEE80211_MCS },
2400 		{  11, IFM_IEEE80211_MCS },
2401 		{  12, IFM_IEEE80211_MCS },
2402 		{  13, IFM_IEEE80211_MCS },
2403 		{  14, IFM_IEEE80211_MCS },
2404 		{  15, IFM_IEEE80211_MCS },
2405 		{  16, IFM_IEEE80211_MCS },
2406 		{  17, IFM_IEEE80211_MCS },
2407 		{  18, IFM_IEEE80211_MCS },
2408 		{  19, IFM_IEEE80211_MCS },
2409 		{  20, IFM_IEEE80211_MCS },
2410 		{  21, IFM_IEEE80211_MCS },
2411 		{  22, IFM_IEEE80211_MCS },
2412 		{  23, IFM_IEEE80211_MCS },
2413 		{  24, IFM_IEEE80211_MCS },
2414 		{  25, IFM_IEEE80211_MCS },
2415 		{  26, IFM_IEEE80211_MCS },
2416 		{  27, IFM_IEEE80211_MCS },
2417 		{  28, IFM_IEEE80211_MCS },
2418 		{  29, IFM_IEEE80211_MCS },
2419 		{  30, IFM_IEEE80211_MCS },
2420 		{  31, IFM_IEEE80211_MCS },
2421 		{  32, IFM_IEEE80211_MCS },
2422 		{  33, IFM_IEEE80211_MCS },
2423 		{  34, IFM_IEEE80211_MCS },
2424 		{  35, IFM_IEEE80211_MCS },
2425 		{  36, IFM_IEEE80211_MCS },
2426 		{  37, IFM_IEEE80211_MCS },
2427 		{  38, IFM_IEEE80211_MCS },
2428 		{  39, IFM_IEEE80211_MCS },
2429 		{  40, IFM_IEEE80211_MCS },
2430 		{  41, IFM_IEEE80211_MCS },
2431 		{  42, IFM_IEEE80211_MCS },
2432 		{  43, IFM_IEEE80211_MCS },
2433 		{  44, IFM_IEEE80211_MCS },
2434 		{  45, IFM_IEEE80211_MCS },
2435 		{  46, IFM_IEEE80211_MCS },
2436 		{  47, IFM_IEEE80211_MCS },
2437 		{  48, IFM_IEEE80211_MCS },
2438 		{  49, IFM_IEEE80211_MCS },
2439 		{  50, IFM_IEEE80211_MCS },
2440 		{  51, IFM_IEEE80211_MCS },
2441 		{  52, IFM_IEEE80211_MCS },
2442 		{  53, IFM_IEEE80211_MCS },
2443 		{  54, IFM_IEEE80211_MCS },
2444 		{  55, IFM_IEEE80211_MCS },
2445 		{  56, IFM_IEEE80211_MCS },
2446 		{  57, IFM_IEEE80211_MCS },
2447 		{  58, IFM_IEEE80211_MCS },
2448 		{  59, IFM_IEEE80211_MCS },
2449 		{  60, IFM_IEEE80211_MCS },
2450 		{  61, IFM_IEEE80211_MCS },
2451 		{  62, IFM_IEEE80211_MCS },
2452 		{  63, IFM_IEEE80211_MCS },
2453 		{  64, IFM_IEEE80211_MCS },
2454 		{  65, IFM_IEEE80211_MCS },
2455 		{  66, IFM_IEEE80211_MCS },
2456 		{  67, IFM_IEEE80211_MCS },
2457 		{  68, IFM_IEEE80211_MCS },
2458 		{  69, IFM_IEEE80211_MCS },
2459 		{  70, IFM_IEEE80211_MCS },
2460 		{  71, IFM_IEEE80211_MCS },
2461 		{  72, IFM_IEEE80211_MCS },
2462 		{  73, IFM_IEEE80211_MCS },
2463 		{  74, IFM_IEEE80211_MCS },
2464 		{  75, IFM_IEEE80211_MCS },
2465 		{  76, IFM_IEEE80211_MCS },
2466 	};
2467 	static const struct ratemedia vhtrates[] = {
2468 		{   0, IFM_IEEE80211_VHT },
2469 		{   1, IFM_IEEE80211_VHT },
2470 		{   2, IFM_IEEE80211_VHT },
2471 		{   3, IFM_IEEE80211_VHT },
2472 		{   4, IFM_IEEE80211_VHT },
2473 		{   5, IFM_IEEE80211_VHT },
2474 		{   6, IFM_IEEE80211_VHT },
2475 		{   7, IFM_IEEE80211_VHT },
2476 		{   8, IFM_IEEE80211_VHT },	/* Optional. */
2477 		{   9, IFM_IEEE80211_VHT },	/* Optional. */
2478 #if 0
2479 		/* Some QCA and BRCM seem to support this; offspec. */
2480 		{  10, IFM_IEEE80211_VHT },
2481 		{  11, IFM_IEEE80211_VHT },
2482 #endif
2483 	};
2484 	int m;
2485 
2486 	/*
2487 	 * Check 11ac/11n rates first for match as an MCS.
2488 	 */
2489 	if (mode == IEEE80211_MODE_VHT_5GHZ) {
2490 		if (rate & IFM_IEEE80211_VHT) {
2491 			rate &= ~IFM_IEEE80211_VHT;
2492 			m = findmedia(vhtrates, nitems(vhtrates), rate);
2493 			if (m != IFM_AUTO)
2494 				return (m | IFM_IEEE80211_VHT);
2495 		}
2496 	} else if (mode == IEEE80211_MODE_11NA) {
2497 		if (rate & IEEE80211_RATE_MCS) {
2498 			rate &= ~IEEE80211_RATE_MCS;
2499 			m = findmedia(htrates, nitems(htrates), rate);
2500 			if (m != IFM_AUTO)
2501 				return m | IFM_IEEE80211_11NA;
2502 		}
2503 	} else if (mode == IEEE80211_MODE_11NG) {
2504 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2505 		if (rate & IEEE80211_RATE_MCS) {
2506 			rate &= ~IEEE80211_RATE_MCS;
2507 			m = findmedia(htrates, nitems(htrates), rate);
2508 			if (m != IFM_AUTO)
2509 				return m | IFM_IEEE80211_11NG;
2510 		}
2511 	}
2512 	rate &= IEEE80211_RATE_VAL;
2513 	switch (mode) {
2514 	case IEEE80211_MODE_11A:
2515 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2516 	case IEEE80211_MODE_QUARTER:
2517 	case IEEE80211_MODE_11NA:
2518 	case IEEE80211_MODE_TURBO_A:
2519 	case IEEE80211_MODE_STURBO_A:
2520 		return findmedia(rates, nitems(rates),
2521 		    rate | IFM_IEEE80211_11A);
2522 	case IEEE80211_MODE_11B:
2523 		return findmedia(rates, nitems(rates),
2524 		    rate | IFM_IEEE80211_11B);
2525 	case IEEE80211_MODE_FH:
2526 		return findmedia(rates, nitems(rates),
2527 		    rate | IFM_IEEE80211_FH);
2528 	case IEEE80211_MODE_AUTO:
2529 		/* NB: ic may be NULL for some drivers */
2530 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2531 			return findmedia(rates, nitems(rates),
2532 			    rate | IFM_IEEE80211_FH);
2533 		/* NB: hack, 11g matches both 11b+11a rates */
2534 		/* fall thru... */
2535 	case IEEE80211_MODE_11G:
2536 	case IEEE80211_MODE_11NG:
2537 	case IEEE80211_MODE_TURBO_G:
2538 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2539 	case IEEE80211_MODE_VHT_2GHZ:
2540 	case IEEE80211_MODE_VHT_5GHZ:
2541 		/* XXX TODO: need to figure out mapping for VHT rates */
2542 		return IFM_AUTO;
2543 	}
2544 	return IFM_AUTO;
2545 }
2546 
2547 int
2548 ieee80211_media2rate(int mword)
2549 {
2550 	static const int ieeerates[] = {
2551 		-1,		/* IFM_AUTO */
2552 		0,		/* IFM_MANUAL */
2553 		0,		/* IFM_NONE */
2554 		2,		/* IFM_IEEE80211_FH1 */
2555 		4,		/* IFM_IEEE80211_FH2 */
2556 		2,		/* IFM_IEEE80211_DS1 */
2557 		4,		/* IFM_IEEE80211_DS2 */
2558 		11,		/* IFM_IEEE80211_DS5 */
2559 		22,		/* IFM_IEEE80211_DS11 */
2560 		44,		/* IFM_IEEE80211_DS22 */
2561 		12,		/* IFM_IEEE80211_OFDM6 */
2562 		18,		/* IFM_IEEE80211_OFDM9 */
2563 		24,		/* IFM_IEEE80211_OFDM12 */
2564 		36,		/* IFM_IEEE80211_OFDM18 */
2565 		48,		/* IFM_IEEE80211_OFDM24 */
2566 		72,		/* IFM_IEEE80211_OFDM36 */
2567 		96,		/* IFM_IEEE80211_OFDM48 */
2568 		108,		/* IFM_IEEE80211_OFDM54 */
2569 		144,		/* IFM_IEEE80211_OFDM72 */
2570 		0,		/* IFM_IEEE80211_DS354k */
2571 		0,		/* IFM_IEEE80211_DS512k */
2572 		6,		/* IFM_IEEE80211_OFDM3 */
2573 		9,		/* IFM_IEEE80211_OFDM4 */
2574 		54,		/* IFM_IEEE80211_OFDM27 */
2575 		-1,		/* IFM_IEEE80211_MCS */
2576 		-1,		/* IFM_IEEE80211_VHT */
2577 	};
2578 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2579 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2580 }
2581 
2582 /*
2583  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2584  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2585  */
2586 #define	mix(a, b, c)							\
2587 do {									\
2588 	a -= b; a -= c; a ^= (c >> 13);					\
2589 	b -= c; b -= a; b ^= (a << 8);					\
2590 	c -= a; c -= b; c ^= (b >> 13);					\
2591 	a -= b; a -= c; a ^= (c >> 12);					\
2592 	b -= c; b -= a; b ^= (a << 16);					\
2593 	c -= a; c -= b; c ^= (b >> 5);					\
2594 	a -= b; a -= c; a ^= (c >> 3);					\
2595 	b -= c; b -= a; b ^= (a << 10);					\
2596 	c -= a; c -= b; c ^= (b >> 15);					\
2597 } while (/*CONSTCOND*/0)
2598 
2599 uint32_t
2600 ieee80211_mac_hash(const struct ieee80211com *ic,
2601 	const uint8_t addr[IEEE80211_ADDR_LEN])
2602 {
2603 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2604 
2605 	b += addr[5] << 8;
2606 	b += addr[4];
2607 	a += addr[3] << 24;
2608 	a += addr[2] << 16;
2609 	a += addr[1] << 8;
2610 	a += addr[0];
2611 
2612 	mix(a, b, c);
2613 
2614 	return c;
2615 }
2616 #undef mix
2617 
2618 char
2619 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2620 {
2621 	if (IEEE80211_IS_CHAN_ST(c))
2622 		return 'S';
2623 	if (IEEE80211_IS_CHAN_108A(c))
2624 		return 'T';
2625 	if (IEEE80211_IS_CHAN_108G(c))
2626 		return 'G';
2627 	if (IEEE80211_IS_CHAN_VHT(c))
2628 		return 'v';
2629 	if (IEEE80211_IS_CHAN_HT(c))
2630 		return 'n';
2631 	if (IEEE80211_IS_CHAN_A(c))
2632 		return 'a';
2633 	if (IEEE80211_IS_CHAN_ANYG(c))
2634 		return 'g';
2635 	if (IEEE80211_IS_CHAN_B(c))
2636 		return 'b';
2637 	return 'f';
2638 }
2639