xref: /haiku/src/libs/compat/freebsd_wlan/net80211/ieee80211.c (revision 5ac9b506412b11afb993bb52d161efe7666958a5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211.c 336184 2018-07-10 23:30:19Z kevans $");
31 
32 /*
33  * IEEE 802.11 generic handler
34  */
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/socket.h>
42 #include <sys/sbuf.h>
43 
44 #include <machine/stdarg.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/ethernet.h>
52 #include <net/vnet.h>
53 
54 #include <net80211/ieee80211_var.h>
55 #include <net80211/ieee80211_regdomain.h>
56 #ifdef IEEE80211_SUPPORT_SUPERG
57 #include <net80211/ieee80211_superg.h>
58 #endif
59 #include <net80211/ieee80211_ratectl.h>
60 #include <net80211/ieee80211_vht.h>
61 
62 #include <net/bpf.h>
63 
64 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
65 	[IEEE80211_MODE_AUTO]	  = "auto",
66 	[IEEE80211_MODE_11A]	  = "11a",
67 	[IEEE80211_MODE_11B]	  = "11b",
68 	[IEEE80211_MODE_11G]	  = "11g",
69 	[IEEE80211_MODE_FH]	  = "FH",
70 	[IEEE80211_MODE_TURBO_A]  = "turboA",
71 	[IEEE80211_MODE_TURBO_G]  = "turboG",
72 	[IEEE80211_MODE_STURBO_A] = "sturboA",
73 	[IEEE80211_MODE_HALF]	  = "half",
74 	[IEEE80211_MODE_QUARTER]  = "quarter",
75 	[IEEE80211_MODE_11NA]	  = "11na",
76 	[IEEE80211_MODE_11NG]	  = "11ng",
77 	[IEEE80211_MODE_VHT_2GHZ]	  = "11acg",
78 	[IEEE80211_MODE_VHT_5GHZ]	  = "11ac",
79 };
80 /* map ieee80211_opmode to the corresponding capability bit */
81 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
82 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
83 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
84 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
85 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
86 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
87 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
88 #ifdef IEEE80211_SUPPORT_MESH
89 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
90 #endif
91 };
92 
93 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
94 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
95 
96 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
97 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
98 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
99 static	void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
100 static	int ieee80211_media_setup(struct ieee80211com *ic,
101 		struct ifmedia *media, int caps, int addsta,
102 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
103 static	int media_status(enum ieee80211_opmode,
104 		const struct ieee80211_channel *);
105 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
106 
107 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
108 
109 /*
110  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
111  */
112 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
113 static const struct ieee80211_rateset ieee80211_rateset_11a =
114 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
115 static const struct ieee80211_rateset ieee80211_rateset_half =
116 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
117 static const struct ieee80211_rateset ieee80211_rateset_quarter =
118 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
119 static const struct ieee80211_rateset ieee80211_rateset_11b =
120 	{ 4, { B(2), B(4), B(11), B(22) } };
121 /* NB: OFDM rates are handled specially based on mode */
122 static const struct ieee80211_rateset ieee80211_rateset_11g =
123 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
124 #undef B
125 
126 static int set_vht_extchan(struct ieee80211_channel *c);
127 
128 /*
129  * Fill in 802.11 available channel set, mark
130  * all available channels as active, and pick
131  * a default channel if not already specified.
132  */
133 void
134 ieee80211_chan_init(struct ieee80211com *ic)
135 {
136 #define	DEFAULTRATES(m, def) do { \
137 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
138 		ic->ic_sup_rates[m] = def; \
139 } while (0)
140 	struct ieee80211_channel *c;
141 	int i;
142 
143 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
144 		("invalid number of channels specified: %u", ic->ic_nchans));
145 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
146 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
147 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
148 	for (i = 0; i < ic->ic_nchans; i++) {
149 		c = &ic->ic_channels[i];
150 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
151 		/*
152 		 * Help drivers that work only with frequencies by filling
153 		 * in IEEE channel #'s if not already calculated.  Note this
154 		 * mimics similar work done in ieee80211_setregdomain when
155 		 * changing regulatory state.
156 		 */
157 		if (c->ic_ieee == 0)
158 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
159 
160 		/*
161 		 * Setup the HT40/VHT40 upper/lower bits.
162 		 * The VHT80 math is done elsewhere.
163 		 */
164 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
165 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
166 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
167 			    c->ic_flags);
168 
169 		/* Update VHT math */
170 		/*
171 		 * XXX VHT again, note that this assumes VHT80 channels
172 		 * are legit already
173 		 */
174 		set_vht_extchan(c);
175 
176 		/* default max tx power to max regulatory */
177 		if (c->ic_maxpower == 0)
178 			c->ic_maxpower = 2*c->ic_maxregpower;
179 		setbit(ic->ic_chan_avail, c->ic_ieee);
180 		/*
181 		 * Identify mode capabilities.
182 		 */
183 		if (IEEE80211_IS_CHAN_A(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
185 		if (IEEE80211_IS_CHAN_B(c))
186 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
187 		if (IEEE80211_IS_CHAN_ANYG(c))
188 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
189 		if (IEEE80211_IS_CHAN_FHSS(c))
190 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
191 		if (IEEE80211_IS_CHAN_108A(c))
192 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
193 		if (IEEE80211_IS_CHAN_108G(c))
194 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
195 		if (IEEE80211_IS_CHAN_ST(c))
196 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
197 		if (IEEE80211_IS_CHAN_HALF(c))
198 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
199 		if (IEEE80211_IS_CHAN_QUARTER(c))
200 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
201 		if (IEEE80211_IS_CHAN_HTA(c))
202 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
203 		if (IEEE80211_IS_CHAN_HTG(c))
204 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
205 		if (IEEE80211_IS_CHAN_VHTA(c))
206 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
207 		if (IEEE80211_IS_CHAN_VHTG(c))
208 			setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
209 	}
210 	/* initialize candidate channels to all available */
211 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
212 		sizeof(ic->ic_chan_avail));
213 
214 	/* sort channel table to allow lookup optimizations */
215 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
216 
217 	/* invalidate any previous state */
218 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
219 	ic->ic_prevchan = NULL;
220 	ic->ic_csa_newchan = NULL;
221 	/* arbitrarily pick the first channel */
222 	ic->ic_curchan = &ic->ic_channels[0];
223 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
224 
225 	/* fillin well-known rate sets if driver has not specified */
226 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
227 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
228 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
229 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
230 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
231 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
232 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
233 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
234 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
235 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
236 	DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ,	 ieee80211_rateset_11g);
237 	DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ,	 ieee80211_rateset_11a);
238 
239 	/*
240 	 * Setup required information to fill the mcsset field, if driver did
241 	 * not. Assume a 2T2R setup for historic reasons.
242 	 */
243 	if (ic->ic_rxstream == 0)
244 		ic->ic_rxstream = 2;
245 	if (ic->ic_txstream == 0)
246 		ic->ic_txstream = 2;
247 
248 	ieee80211_init_suphtrates(ic);
249 
250 	/*
251 	 * Set auto mode to reset active channel state and any desired channel.
252 	 */
253 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
254 #undef DEFAULTRATES
255 }
256 
257 static void
258 null_update_mcast(struct ieee80211com *ic)
259 {
260 
261 	ic_printf(ic, "need multicast update callback\n");
262 }
263 
264 static void
265 null_update_promisc(struct ieee80211com *ic)
266 {
267 
268 	ic_printf(ic, "need promiscuous mode update callback\n");
269 }
270 
271 static void
272 null_update_chw(struct ieee80211com *ic)
273 {
274 
275 	ic_printf(ic, "%s: need callback\n", __func__);
276 }
277 
278 int
279 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
280 {
281 	va_list ap;
282 	int retval;
283 
284 	retval = printf("%s: ", ic->ic_name);
285 	va_start(ap, fmt);
286 	retval += vprintf(fmt, ap);
287 	va_end(ap);
288 	return (retval);
289 }
290 
291 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
292 static struct mtx ic_list_mtx;
293 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
294 
295 static int
296 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
297 {
298 	struct ieee80211com *ic;
299 	struct sbuf sb;
300 	char *sp;
301 	int error;
302 
303 	error = sysctl_wire_old_buffer(req, 0);
304 	if (error)
305 		return (error);
306 #ifndef __HAIKU__
307 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
308 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
309 	sp = "";
310 	mtx_lock(&ic_list_mtx);
311 	LIST_FOREACH(ic, &ic_head, ic_next) {
312 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
313 		sp = " ";
314 	}
315 	mtx_unlock(&ic_list_mtx);
316 	error = sbuf_finish(&sb);
317 	sbuf_delete(&sb);
318 #endif
319 	return (error);
320 }
321 
322 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
323     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
324     sysctl_ieee80211coms, "A", "names of available 802.11 devices");
325 
326 /*
327  * Attach/setup the common net80211 state.  Called by
328  * the driver on attach to prior to creating any vap's.
329  */
330 void
331 ieee80211_ifattach(struct ieee80211com *ic)
332 {
333 
334 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
335 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
336 	TAILQ_INIT(&ic->ic_vaps);
337 
338 	/* Create a taskqueue for all state changes */
339 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
340 	    taskqueue_thread_enqueue, &ic->ic_tq);
341 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
342 	    ic->ic_name);
343 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
344 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
345 	/*
346 	 * Fill in 802.11 available channel set, mark all
347 	 * available channels as active, and pick a default
348 	 * channel if not already specified.
349 	 */
350 	ieee80211_chan_init(ic);
351 
352 	ic->ic_update_mcast = null_update_mcast;
353 	ic->ic_update_promisc = null_update_promisc;
354 	ic->ic_update_chw = null_update_chw;
355 
356 	ic->ic_hash_key = arc4random();
357 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
358 	ic->ic_lintval = ic->ic_bintval;
359 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
360 
361 	ieee80211_crypto_attach(ic);
362 	ieee80211_node_attach(ic);
363 	ieee80211_power_attach(ic);
364 	ieee80211_proto_attach(ic);
365 #ifdef IEEE80211_SUPPORT_SUPERG
366 	ieee80211_superg_attach(ic);
367 #endif
368 	ieee80211_ht_attach(ic);
369 	ieee80211_vht_attach(ic);
370 	ieee80211_scan_attach(ic);
371 	ieee80211_regdomain_attach(ic);
372 	ieee80211_dfs_attach(ic);
373 
374 	ieee80211_sysctl_attach(ic);
375 
376 	mtx_lock(&ic_list_mtx);
377 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
378 	mtx_unlock(&ic_list_mtx);
379 }
380 
381 /*
382  * Detach net80211 state on device detach.  Tear down
383  * all vap's and reclaim all common state prior to the
384  * device state going away.  Note we may call back into
385  * driver; it must be prepared for this.
386  */
387 void
388 ieee80211_ifdetach(struct ieee80211com *ic)
389 {
390 	struct ieee80211vap *vap;
391 
392 	/*
393 	 * We use this as an indicator that ifattach never had a chance to be
394 	 * called, e.g. early driver attach failed and ifdetach was called
395 	 * during subsequent detach.  Never fear, for we have nothing to do
396 	 * here.
397 	 */
398 	if (ic->ic_tq == NULL)
399 		return;
400 
401 	mtx_lock(&ic_list_mtx);
402 	LIST_REMOVE(ic, ic_next);
403 	mtx_unlock(&ic_list_mtx);
404 
405 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
406 
407 	/*
408 	 * The VAP is responsible for setting and clearing
409 	 * the VIMAGE context.
410 	 */
411 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
412 		ieee80211_vap_destroy(vap);
413 	ieee80211_waitfor_parent(ic);
414 
415 	ieee80211_sysctl_detach(ic);
416 	ieee80211_dfs_detach(ic);
417 	ieee80211_regdomain_detach(ic);
418 	ieee80211_scan_detach(ic);
419 #ifdef IEEE80211_SUPPORT_SUPERG
420 	ieee80211_superg_detach(ic);
421 #endif
422 	ieee80211_vht_detach(ic);
423 	ieee80211_ht_detach(ic);
424 	/* NB: must be called before ieee80211_node_detach */
425 	ieee80211_proto_detach(ic);
426 	ieee80211_crypto_detach(ic);
427 	ieee80211_power_detach(ic);
428 	ieee80211_node_detach(ic);
429 
430 	counter_u64_free(ic->ic_ierrors);
431 	counter_u64_free(ic->ic_oerrors);
432 
433 	taskqueue_free(ic->ic_tq);
434 	IEEE80211_TX_LOCK_DESTROY(ic);
435 	IEEE80211_LOCK_DESTROY(ic);
436 }
437 
438 struct ieee80211com *
439 ieee80211_find_com(const char *name)
440 {
441 	struct ieee80211com *ic;
442 
443 	mtx_lock(&ic_list_mtx);
444 	LIST_FOREACH(ic, &ic_head, ic_next)
445 		if (strcmp(ic->ic_name, name) == 0)
446 			break;
447 	mtx_unlock(&ic_list_mtx);
448 
449 	return (ic);
450 }
451 
452 void
453 ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
454 {
455 	struct ieee80211com *ic;
456 
457 	mtx_lock(&ic_list_mtx);
458 	LIST_FOREACH(ic, &ic_head, ic_next)
459 		(*f)(arg, ic);
460 	mtx_unlock(&ic_list_mtx);
461 }
462 
463 /*
464  * Default reset method for use with the ioctl support.  This
465  * method is invoked after any state change in the 802.11
466  * layer that should be propagated to the hardware but not
467  * require re-initialization of the 802.11 state machine (e.g
468  * rescanning for an ap).  We always return ENETRESET which
469  * should cause the driver to re-initialize the device. Drivers
470  * can override this method to implement more optimized support.
471  */
472 static int
473 default_reset(struct ieee80211vap *vap, u_long cmd)
474 {
475 	return ENETRESET;
476 }
477 
478 /*
479  * Default for updating the VAP default TX key index.
480  *
481  * Drivers that support TX offload as well as hardware encryption offload
482  * may need to be informed of key index changes separate from the key
483  * update.
484  */
485 static void
486 default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
487 {
488 
489 	/* XXX assert validity */
490 	/* XXX assert we're in a key update block */
491 	vap->iv_def_txkey = kid;
492 }
493 
494 /*
495  * Add underlying device errors to vap errors.
496  */
497 static uint64_t
498 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
499 {
500 	struct ieee80211vap *vap = ifp->if_softc;
501 	struct ieee80211com *ic = vap->iv_ic;
502 	uint64_t rv;
503 
504 	rv = if_get_counter_default(ifp, cnt);
505 	switch (cnt) {
506 	case IFCOUNTER_OERRORS:
507 		rv += counter_u64_fetch(ic->ic_oerrors);
508 		break;
509 	case IFCOUNTER_IERRORS:
510 		rv += counter_u64_fetch(ic->ic_ierrors);
511 		break;
512 	default:
513 		break;
514 	}
515 
516 	return (rv);
517 }
518 
519 /*
520  * Prepare a vap for use.  Drivers use this call to
521  * setup net80211 state in new vap's prior attaching
522  * them with ieee80211_vap_attach (below).
523  */
524 int
525 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
526     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
527     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
528 {
529 	struct ifnet *ifp;
530 
531 	ifp = if_alloc(IFT_ETHER);
532 	if (ifp == NULL) {
533 		ic_printf(ic, "%s: unable to allocate ifnet\n",
534 		    __func__);
535 		return ENOMEM;
536 	}
537 	if_initname(ifp, name, unit);
538 	ifp->if_softc = vap;			/* back pointer */
539 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
540 	ifp->if_transmit = ieee80211_vap_transmit;
541 	ifp->if_qflush = ieee80211_vap_qflush;
542 	ifp->if_ioctl = ieee80211_ioctl;
543 	ifp->if_init = ieee80211_init;
544 	ifp->if_get_counter = ieee80211_get_counter;
545 
546 	vap->iv_ifp = ifp;
547 	vap->iv_ic = ic;
548 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
549 	vap->iv_flags_ext = ic->ic_flags_ext;
550 	vap->iv_flags_ven = ic->ic_flags_ven;
551 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
552 
553 	/* 11n capabilities - XXX methodize */
554 	vap->iv_htcaps = ic->ic_htcaps;
555 	vap->iv_htextcaps = ic->ic_htextcaps;
556 
557 	/* 11ac capabilities - XXX methodize */
558 	vap->iv_vhtcaps = ic->ic_vhtcaps;
559 	vap->iv_vhtextcaps = ic->ic_vhtextcaps;
560 
561 	vap->iv_opmode = opmode;
562 	vap->iv_caps |= ieee80211_opcap[opmode];
563 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
564 	switch (opmode) {
565 	case IEEE80211_M_WDS:
566 		/*
567 		 * WDS links must specify the bssid of the far end.
568 		 * For legacy operation this is a static relationship.
569 		 * For non-legacy operation the station must associate
570 		 * and be authorized to pass traffic.  Plumbing the
571 		 * vap to the proper node happens when the vap
572 		 * transitions to RUN state.
573 		 */
574 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
575 		vap->iv_flags |= IEEE80211_F_DESBSSID;
576 		if (flags & IEEE80211_CLONE_WDSLEGACY)
577 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
578 		break;
579 #ifdef IEEE80211_SUPPORT_TDMA
580 	case IEEE80211_M_AHDEMO:
581 		if (flags & IEEE80211_CLONE_TDMA) {
582 			/* NB: checked before clone operation allowed */
583 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
584 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
585 			/*
586 			 * Propagate TDMA capability to mark vap; this
587 			 * cannot be removed and is used to distinguish
588 			 * regular ahdemo operation from ahdemo+tdma.
589 			 */
590 			vap->iv_caps |= IEEE80211_C_TDMA;
591 		}
592 		break;
593 #endif
594 	default:
595 		break;
596 	}
597 	/* auto-enable s/w beacon miss support */
598 	if (flags & IEEE80211_CLONE_NOBEACONS)
599 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
600 	/* auto-generated or user supplied MAC address */
601 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
602 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
603 	/*
604 	 * Enable various functionality by default if we're
605 	 * capable; the driver can override us if it knows better.
606 	 */
607 	if (vap->iv_caps & IEEE80211_C_WME)
608 		vap->iv_flags |= IEEE80211_F_WME;
609 	if (vap->iv_caps & IEEE80211_C_BURST)
610 		vap->iv_flags |= IEEE80211_F_BURST;
611 	/* NB: bg scanning only makes sense for station mode right now */
612 	if (vap->iv_opmode == IEEE80211_M_STA &&
613 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
614 		vap->iv_flags |= IEEE80211_F_BGSCAN;
615 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
616 	/* NB: DFS support only makes sense for ap mode right now */
617 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
618 	    (vap->iv_caps & IEEE80211_C_DFS))
619 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
620 
621 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
622 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
623 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
624 	/*
625 	 * Install a default reset method for the ioctl support;
626 	 * the driver can override this.
627 	 */
628 	vap->iv_reset = default_reset;
629 
630 	/*
631 	 * Install a default crypto key update method, the driver
632 	 * can override this.
633 	 */
634 	vap->iv_update_deftxkey = default_update_deftxkey;
635 
636 	ieee80211_sysctl_vattach(vap);
637 	ieee80211_crypto_vattach(vap);
638 	ieee80211_node_vattach(vap);
639 	ieee80211_power_vattach(vap);
640 	ieee80211_proto_vattach(vap);
641 #ifdef IEEE80211_SUPPORT_SUPERG
642 	ieee80211_superg_vattach(vap);
643 #endif
644 	ieee80211_ht_vattach(vap);
645 	ieee80211_vht_vattach(vap);
646 	ieee80211_scan_vattach(vap);
647 	ieee80211_regdomain_vattach(vap);
648 	ieee80211_radiotap_vattach(vap);
649 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
650 
651 	return 0;
652 }
653 
654 /*
655  * Activate a vap.  State should have been prepared with a
656  * call to ieee80211_vap_setup and by the driver.  On return
657  * from this call the vap is ready for use.
658  */
659 int
660 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
661     ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
662 {
663 	struct ifnet *ifp = vap->iv_ifp;
664 	struct ieee80211com *ic = vap->iv_ic;
665 	struct ifmediareq imr;
666 	int maxrate;
667 
668 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
669 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
670 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
671 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
672 
673 	/*
674 	 * Do late attach work that cannot happen until after
675 	 * the driver has had a chance to override defaults.
676 	 */
677 	ieee80211_node_latevattach(vap);
678 	ieee80211_power_latevattach(vap);
679 
680 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
681 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
682 	ieee80211_media_status(ifp, &imr);
683 	/* NB: strip explicit mode; we're actually in autoselect */
684 	ifmedia_set(&vap->iv_media,
685 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
686 	if (maxrate)
687 		ifp->if_baudrate = IF_Mbps(maxrate);
688 
689 	ether_ifattach(ifp, macaddr);
690 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
691 	/* hook output method setup by ether_ifattach */
692 	vap->iv_output = ifp->if_output;
693 	ifp->if_output = ieee80211_output;
694 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
695 
696 	IEEE80211_LOCK(ic);
697 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
698 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
699 #ifdef IEEE80211_SUPPORT_SUPERG
700 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
701 #endif
702 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
703 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
704 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
705 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
706 
707 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
708 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
709 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
710 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
711 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
712 	IEEE80211_UNLOCK(ic);
713 
714 	return 1;
715 }
716 
717 /*
718  * Tear down vap state and reclaim the ifnet.
719  * The driver is assumed to have prepared for
720  * this; e.g. by turning off interrupts for the
721  * underlying device.
722  */
723 void
724 ieee80211_vap_detach(struct ieee80211vap *vap)
725 {
726 	struct ieee80211com *ic = vap->iv_ic;
727 	struct ifnet *ifp = vap->iv_ifp;
728 
729 	CURVNET_SET(ifp->if_vnet);
730 
731 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
732 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
733 
734 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
735 	ether_ifdetach(ifp);
736 
737 	ieee80211_stop(vap);
738 
739 	/*
740 	 * Flush any deferred vap tasks.
741 	 */
742 	ieee80211_draintask(ic, &vap->iv_nstate_task);
743 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
744 	ieee80211_draintask(ic, &vap->iv_wme_task);
745 	ieee80211_draintask(ic, &ic->ic_parent_task);
746 
747 	/* XXX band-aid until ifnet handles this for us */
748 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
749 
750 	IEEE80211_LOCK(ic);
751 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
752 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
753 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
754 #ifdef IEEE80211_SUPPORT_SUPERG
755 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
756 #endif
757 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
758 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
759 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
760 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
761 
762 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
763 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
764 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
765 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
766 	ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
767 
768 	/* NB: this handles the bpfdetach done below */
769 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
770 	if (vap->iv_ifflags & IFF_PROMISC)
771 		ieee80211_promisc(vap, false);
772 	if (vap->iv_ifflags & IFF_ALLMULTI)
773 		ieee80211_allmulti(vap, false);
774 	IEEE80211_UNLOCK(ic);
775 
776 	ifmedia_removeall(&vap->iv_media);
777 
778 	ieee80211_radiotap_vdetach(vap);
779 	ieee80211_regdomain_vdetach(vap);
780 	ieee80211_scan_vdetach(vap);
781 #ifdef IEEE80211_SUPPORT_SUPERG
782 	ieee80211_superg_vdetach(vap);
783 #endif
784 	ieee80211_vht_vdetach(vap);
785 	ieee80211_ht_vdetach(vap);
786 	/* NB: must be before ieee80211_node_vdetach */
787 	ieee80211_proto_vdetach(vap);
788 	ieee80211_crypto_vdetach(vap);
789 	ieee80211_power_vdetach(vap);
790 	ieee80211_node_vdetach(vap);
791 	ieee80211_sysctl_vdetach(vap);
792 
793 	if_free(ifp);
794 
795 	CURVNET_RESTORE();
796 }
797 
798 /*
799  * Count number of vaps in promisc, and issue promisc on
800  * parent respectively.
801  */
802 void
803 ieee80211_promisc(struct ieee80211vap *vap, bool on)
804 {
805 	struct ieee80211com *ic = vap->iv_ic;
806 
807 	IEEE80211_LOCK_ASSERT(ic);
808 
809 	if (on) {
810 		if (++ic->ic_promisc == 1)
811 			ieee80211_runtask(ic, &ic->ic_promisc_task);
812 	} else {
813 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
814 		    __func__, ic));
815 		if (--ic->ic_promisc == 0)
816 			ieee80211_runtask(ic, &ic->ic_promisc_task);
817 	}
818 }
819 
820 /*
821  * Count number of vaps in allmulti, and issue allmulti on
822  * parent respectively.
823  */
824 void
825 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
826 {
827 	struct ieee80211com *ic = vap->iv_ic;
828 
829 	IEEE80211_LOCK_ASSERT(ic);
830 
831 	if (on) {
832 		if (++ic->ic_allmulti == 1)
833 			ieee80211_runtask(ic, &ic->ic_mcast_task);
834 	} else {
835 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
836 		    __func__, ic));
837 		if (--ic->ic_allmulti == 0)
838 			ieee80211_runtask(ic, &ic->ic_mcast_task);
839 	}
840 }
841 
842 /*
843  * Synchronize flag bit state in the com structure
844  * according to the state of all vap's.  This is used,
845  * for example, to handle state changes via ioctls.
846  */
847 static void
848 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
849 {
850 	struct ieee80211vap *vap;
851 	int bit;
852 
853 	IEEE80211_LOCK_ASSERT(ic);
854 
855 	bit = 0;
856 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
857 		if (vap->iv_flags & flag) {
858 			bit = 1;
859 			break;
860 		}
861 	if (bit)
862 		ic->ic_flags |= flag;
863 	else
864 		ic->ic_flags &= ~flag;
865 }
866 
867 void
868 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
869 {
870 	struct ieee80211com *ic = vap->iv_ic;
871 
872 	IEEE80211_LOCK(ic);
873 	if (flag < 0) {
874 		flag = -flag;
875 		vap->iv_flags &= ~flag;
876 	} else
877 		vap->iv_flags |= flag;
878 	ieee80211_syncflag_locked(ic, flag);
879 	IEEE80211_UNLOCK(ic);
880 }
881 
882 /*
883  * Synchronize flags_ht bit state in the com structure
884  * according to the state of all vap's.  This is used,
885  * for example, to handle state changes via ioctls.
886  */
887 static void
888 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
889 {
890 	struct ieee80211vap *vap;
891 	int bit;
892 
893 	IEEE80211_LOCK_ASSERT(ic);
894 
895 	bit = 0;
896 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
897 		if (vap->iv_flags_ht & flag) {
898 			bit = 1;
899 			break;
900 		}
901 	if (bit)
902 		ic->ic_flags_ht |= flag;
903 	else
904 		ic->ic_flags_ht &= ~flag;
905 }
906 
907 void
908 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
909 {
910 	struct ieee80211com *ic = vap->iv_ic;
911 
912 	IEEE80211_LOCK(ic);
913 	if (flag < 0) {
914 		flag = -flag;
915 		vap->iv_flags_ht &= ~flag;
916 	} else
917 		vap->iv_flags_ht |= flag;
918 	ieee80211_syncflag_ht_locked(ic, flag);
919 	IEEE80211_UNLOCK(ic);
920 }
921 
922 /*
923  * Synchronize flags_vht bit state in the com structure
924  * according to the state of all vap's.  This is used,
925  * for example, to handle state changes via ioctls.
926  */
927 static void
928 ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
929 {
930 	struct ieee80211vap *vap;
931 	int bit;
932 
933 	IEEE80211_LOCK_ASSERT(ic);
934 
935 	bit = 0;
936 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
937 		if (vap->iv_flags_vht & flag) {
938 			bit = 1;
939 			break;
940 		}
941 	if (bit)
942 		ic->ic_flags_vht |= flag;
943 	else
944 		ic->ic_flags_vht &= ~flag;
945 }
946 
947 void
948 ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
949 {
950 	struct ieee80211com *ic = vap->iv_ic;
951 
952 	IEEE80211_LOCK(ic);
953 	if (flag < 0) {
954 		flag = -flag;
955 		vap->iv_flags_vht &= ~flag;
956 	} else
957 		vap->iv_flags_vht |= flag;
958 	ieee80211_syncflag_vht_locked(ic, flag);
959 	IEEE80211_UNLOCK(ic);
960 }
961 
962 /*
963  * Synchronize flags_ext bit state in the com structure
964  * according to the state of all vap's.  This is used,
965  * for example, to handle state changes via ioctls.
966  */
967 static void
968 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
969 {
970 	struct ieee80211vap *vap;
971 	int bit;
972 
973 	IEEE80211_LOCK_ASSERT(ic);
974 
975 	bit = 0;
976 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
977 		if (vap->iv_flags_ext & flag) {
978 			bit = 1;
979 			break;
980 		}
981 	if (bit)
982 		ic->ic_flags_ext |= flag;
983 	else
984 		ic->ic_flags_ext &= ~flag;
985 }
986 
987 void
988 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
989 {
990 	struct ieee80211com *ic = vap->iv_ic;
991 
992 	IEEE80211_LOCK(ic);
993 	if (flag < 0) {
994 		flag = -flag;
995 		vap->iv_flags_ext &= ~flag;
996 	} else
997 		vap->iv_flags_ext |= flag;
998 	ieee80211_syncflag_ext_locked(ic, flag);
999 	IEEE80211_UNLOCK(ic);
1000 }
1001 
1002 static __inline int
1003 mapgsm(u_int freq, u_int flags)
1004 {
1005 	freq *= 10;
1006 	if (flags & IEEE80211_CHAN_QUARTER)
1007 		freq += 5;
1008 	else if (flags & IEEE80211_CHAN_HALF)
1009 		freq += 10;
1010 	else
1011 		freq += 20;
1012 	/* NB: there is no 907/20 wide but leave room */
1013 	return (freq - 906*10) / 5;
1014 }
1015 
1016 static __inline int
1017 mappsb(u_int freq, u_int flags)
1018 {
1019 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1020 }
1021 
1022 /*
1023  * Convert MHz frequency to IEEE channel number.
1024  */
1025 int
1026 ieee80211_mhz2ieee(u_int freq, u_int flags)
1027 {
1028 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1029 	if (flags & IEEE80211_CHAN_GSM)
1030 		return mapgsm(freq, flags);
1031 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1032 		if (freq == 2484)
1033 			return 14;
1034 		if (freq < 2484)
1035 			return ((int) freq - 2407) / 5;
1036 		else
1037 			return 15 + ((freq - 2512) / 20);
1038 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1039 		if (freq <= 5000) {
1040 			/* XXX check regdomain? */
1041 			if (IS_FREQ_IN_PSB(freq))
1042 				return mappsb(freq, flags);
1043 			return (freq - 4000) / 5;
1044 		} else
1045 			return (freq - 5000) / 5;
1046 	} else {				/* either, guess */
1047 		if (freq == 2484)
1048 			return 14;
1049 		if (freq < 2484) {
1050 			if (907 <= freq && freq <= 922)
1051 				return mapgsm(freq, flags);
1052 			return ((int) freq - 2407) / 5;
1053 		}
1054 		if (freq < 5000) {
1055 			if (IS_FREQ_IN_PSB(freq))
1056 				return mappsb(freq, flags);
1057 			else if (freq > 4900)
1058 				return (freq - 4000) / 5;
1059 			else
1060 				return 15 + ((freq - 2512) / 20);
1061 		}
1062 		return (freq - 5000) / 5;
1063 	}
1064 #undef IS_FREQ_IN_PSB
1065 }
1066 
1067 /*
1068  * Convert channel to IEEE channel number.
1069  */
1070 int
1071 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1072 {
1073 	if (c == NULL) {
1074 		ic_printf(ic, "invalid channel (NULL)\n");
1075 		return 0;		/* XXX */
1076 	}
1077 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1078 }
1079 
1080 /*
1081  * Convert IEEE channel number to MHz frequency.
1082  */
1083 u_int
1084 ieee80211_ieee2mhz(u_int chan, u_int flags)
1085 {
1086 	if (flags & IEEE80211_CHAN_GSM)
1087 		return 907 + 5 * (chan / 10);
1088 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1089 		if (chan == 14)
1090 			return 2484;
1091 		if (chan < 14)
1092 			return 2407 + chan*5;
1093 		else
1094 			return 2512 + ((chan-15)*20);
1095 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1096 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1097 			chan -= 37;
1098 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1099 		}
1100 		return 5000 + (chan*5);
1101 	} else {				/* either, guess */
1102 		/* XXX can't distinguish PSB+GSM channels */
1103 		if (chan == 14)
1104 			return 2484;
1105 		if (chan < 14)			/* 0-13 */
1106 			return 2407 + chan*5;
1107 		if (chan < 27)			/* 15-26 */
1108 			return 2512 + ((chan-15)*20);
1109 		return 5000 + (chan*5);
1110 	}
1111 }
1112 
1113 static __inline void
1114 set_extchan(struct ieee80211_channel *c)
1115 {
1116 
1117 	/*
1118 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1119 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1120 	 */
1121 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1122 		c->ic_extieee = c->ic_ieee + 4;
1123 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1124 		c->ic_extieee = c->ic_ieee - 4;
1125 	else
1126 		c->ic_extieee = 0;
1127 }
1128 
1129 /*
1130  * Populate the freq1/freq2 fields as appropriate for VHT channels.
1131  *
1132  * This for now uses a hard-coded list of 80MHz wide channels.
1133  *
1134  * For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1135  * wide channel we've already decided upon.
1136  *
1137  * For VHT80 and VHT160, there are only a small number of fixed
1138  * 80/160MHz wide channels, so we just use those.
1139  *
1140  * This is all likely very very wrong - both the regulatory code
1141  * and this code needs to ensure that all four channels are
1142  * available and valid before the VHT80 (and eight for VHT160) channel
1143  * is created.
1144  */
1145 
1146 struct vht_chan_range {
1147 	uint16_t freq_start;
1148 	uint16_t freq_end;
1149 };
1150 
1151 struct vht_chan_range vht80_chan_ranges[] = {
1152 	{ 5170, 5250 },
1153 	{ 5250, 5330 },
1154 	{ 5490, 5570 },
1155 	{ 5570, 5650 },
1156 	{ 5650, 5730 },
1157 	{ 5735, 5815 },
1158 	{ 0, 0, }
1159 };
1160 
1161 static int
1162 set_vht_extchan(struct ieee80211_channel *c)
1163 {
1164 	int i;
1165 
1166 	if (! IEEE80211_IS_CHAN_VHT(c)) {
1167 		return (0);
1168 	}
1169 
1170 	if (IEEE80211_IS_CHAN_VHT20(c)) {
1171 		c->ic_vht_ch_freq1 = c->ic_ieee;
1172 		return (1);
1173 	}
1174 
1175 	if (IEEE80211_IS_CHAN_VHT40(c)) {
1176 		if (IEEE80211_IS_CHAN_HT40U(c))
1177 			c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1178 		else if (IEEE80211_IS_CHAN_HT40D(c))
1179 			c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1180 		else
1181 			return (0);
1182 		return (1);
1183 	}
1184 
1185 	if (IEEE80211_IS_CHAN_VHT80(c)) {
1186 		for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1187 			if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1188 			    c->ic_freq < vht80_chan_ranges[i].freq_end) {
1189 				int midpoint;
1190 
1191 				midpoint = vht80_chan_ranges[i].freq_start + 40;
1192 				c->ic_vht_ch_freq1 =
1193 				    ieee80211_mhz2ieee(midpoint, c->ic_flags);
1194 				c->ic_vht_ch_freq2 = 0;
1195 #if 0
1196 				printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1197 				    __func__, c->ic_ieee, c->ic_freq, midpoint,
1198 				    c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1199 #endif
1200 				return (1);
1201 			}
1202 		}
1203 		return (0);
1204 	}
1205 
1206 	printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1207 	    __func__,
1208 	    c->ic_ieee,
1209 	    c->ic_flags);
1210 
1211 	return (0);
1212 }
1213 
1214 /*
1215  * Return whether the current channel could possibly be a part of
1216  * a VHT80 channel.
1217  *
1218  * This doesn't check that the whole range is in the allowed list
1219  * according to regulatory.
1220  */
1221 static int
1222 is_vht80_valid_freq(uint16_t freq)
1223 {
1224 	int i;
1225 	for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1226 		if (freq >= vht80_chan_ranges[i].freq_start &&
1227 		    freq < vht80_chan_ranges[i].freq_end)
1228 			return (1);
1229 	}
1230 	return (0);
1231 }
1232 
1233 static int
1234 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1235     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1236 {
1237 	struct ieee80211_channel *c;
1238 
1239 	if (*nchans >= maxchans)
1240 		return (ENOBUFS);
1241 
1242 #if 0
1243 	printf("%s: %d: ieee=%d, freq=%d, flags=0x%08x\n",
1244 	    __func__,
1245 	    *nchans,
1246 	    ieee,
1247 	    freq,
1248 	    flags);
1249 #endif
1250 
1251 	c = &chans[(*nchans)++];
1252 	c->ic_ieee = ieee;
1253 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1254 	c->ic_maxregpower = maxregpower;
1255 	c->ic_maxpower = 2 * maxregpower;
1256 	c->ic_flags = flags;
1257 	c->ic_vht_ch_freq1 = 0;
1258 	c->ic_vht_ch_freq2 = 0;
1259 	set_extchan(c);
1260 	set_vht_extchan(c);
1261 
1262 	return (0);
1263 }
1264 
1265 static int
1266 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1267     uint32_t flags)
1268 {
1269 	struct ieee80211_channel *c;
1270 
1271 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1272 
1273 	if (*nchans >= maxchans)
1274 		return (ENOBUFS);
1275 
1276 #if 0
1277 	printf("%s: %d: flags=0x%08x\n",
1278 	    __func__,
1279 	    *nchans,
1280 	    flags);
1281 #endif
1282 
1283 	c = &chans[(*nchans)++];
1284 	c[0] = c[-1];
1285 	c->ic_flags = flags;
1286 	c->ic_vht_ch_freq1 = 0;
1287 	c->ic_vht_ch_freq2 = 0;
1288 	set_extchan(c);
1289 	set_vht_extchan(c);
1290 
1291 	return (0);
1292 }
1293 
1294 /*
1295  * XXX VHT-2GHz
1296  */
1297 static void
1298 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1299 {
1300 	int nmodes;
1301 
1302 	nmodes = 0;
1303 	if (isset(bands, IEEE80211_MODE_11B))
1304 		flags[nmodes++] = IEEE80211_CHAN_B;
1305 	if (isset(bands, IEEE80211_MODE_11G))
1306 		flags[nmodes++] = IEEE80211_CHAN_G;
1307 	if (isset(bands, IEEE80211_MODE_11NG))
1308 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1309 	if (ht40) {
1310 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1311 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1312 	}
1313 	flags[nmodes] = 0;
1314 }
1315 
1316 static void
1317 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1318 {
1319 	int nmodes;
1320 
1321 	/*
1322 	 * the addchan_list function seems to expect the flags array to
1323 	 * be in channel width order, so the VHT bits are interspersed
1324 	 * as appropriate to maintain said order.
1325 	 *
1326 	 * It also assumes HT40U is before HT40D.
1327 	 */
1328 	nmodes = 0;
1329 
1330 	/* 20MHz */
1331 	if (isset(bands, IEEE80211_MODE_11A))
1332 		flags[nmodes++] = IEEE80211_CHAN_A;
1333 	if (isset(bands, IEEE80211_MODE_11NA))
1334 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1335 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1336 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1337 		    IEEE80211_CHAN_VHT20;
1338 	}
1339 
1340 	/* 40MHz */
1341 	if (ht40) {
1342 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1343 	}
1344 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1345 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U
1346 		    | IEEE80211_CHAN_VHT40U;
1347 	}
1348 	if (ht40) {
1349 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1350 	}
1351 	if (ht40 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1352 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D
1353 		    | IEEE80211_CHAN_VHT40D;
1354 	}
1355 
1356 	/* 80MHz */
1357 	if (vht80 && isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1358 		flags[nmodes++] = IEEE80211_CHAN_A |
1359 		    IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80;
1360 		flags[nmodes++] = IEEE80211_CHAN_A |
1361 		    IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80;
1362 	}
1363 
1364 	/* XXX VHT80+80 */
1365 	/* XXX VHT160 */
1366 	flags[nmodes] = 0;
1367 }
1368 
1369 static void
1370 getflags(const uint8_t bands[], uint32_t flags[], int ht40, int vht80)
1371 {
1372 
1373 	flags[0] = 0;
1374 	if (isset(bands, IEEE80211_MODE_11A) ||
1375 	    isset(bands, IEEE80211_MODE_11NA) ||
1376 	    isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1377 		if (isset(bands, IEEE80211_MODE_11B) ||
1378 		    isset(bands, IEEE80211_MODE_11G) ||
1379 		    isset(bands, IEEE80211_MODE_11NG) ||
1380 		    isset(bands, IEEE80211_MODE_VHT_2GHZ))
1381 			return;
1382 
1383 		getflags_5ghz(bands, flags, ht40, vht80);
1384 	} else
1385 		getflags_2ghz(bands, flags, ht40);
1386 }
1387 
1388 /*
1389  * Add one 20 MHz channel into specified channel list.
1390  */
1391 /* XXX VHT */
1392 int
1393 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1394     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1395     uint32_t chan_flags, const uint8_t bands[])
1396 {
1397 	uint32_t flags[IEEE80211_MODE_MAX];
1398 	int i, error;
1399 
1400 	getflags(bands, flags, 0, 0);
1401 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1402 
1403 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1404 	    flags[0] | chan_flags);
1405 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1406 		error = copychan_prev(chans, maxchans, nchans,
1407 		    flags[i] | chan_flags);
1408 	}
1409 
1410 	return (error);
1411 }
1412 
1413 static struct ieee80211_channel *
1414 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1415     uint32_t flags)
1416 {
1417 	struct ieee80211_channel *c;
1418 	int i;
1419 
1420 	flags &= IEEE80211_CHAN_ALLTURBO;
1421 	/* brute force search */
1422 	for (i = 0; i < nchans; i++) {
1423 		c = &chans[i];
1424 		if (c->ic_freq == freq &&
1425 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1426 			return c;
1427 	}
1428 	return NULL;
1429 }
1430 
1431 /*
1432  * Add 40 MHz channel pair into specified channel list.
1433  */
1434 /* XXX VHT */
1435 int
1436 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1437     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1438 {
1439 	struct ieee80211_channel *cent, *extc;
1440 	uint16_t freq;
1441 	int error;
1442 
1443 	freq = ieee80211_ieee2mhz(ieee, flags);
1444 
1445 	/*
1446 	 * Each entry defines an HT40 channel pair; find the
1447 	 * center channel, then the extension channel above.
1448 	 */
1449 	flags |= IEEE80211_CHAN_HT20;
1450 	cent = findchannel(chans, *nchans, freq, flags);
1451 	if (cent == NULL)
1452 		return (EINVAL);
1453 
1454 	extc = findchannel(chans, *nchans, freq + 20, flags);
1455 	if (extc == NULL)
1456 		return (ENOENT);
1457 
1458 	flags &= ~IEEE80211_CHAN_HT;
1459 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1460 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1461 	if (error != 0)
1462 		return (error);
1463 
1464 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1465 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1466 
1467 	return (error);
1468 }
1469 
1470 /*
1471  * Fetch the center frequency for the primary channel.
1472  */
1473 uint32_t
1474 ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1475 {
1476 
1477 	return (c->ic_freq);
1478 }
1479 
1480 /*
1481  * Fetch the center frequency for the primary BAND channel.
1482  *
1483  * For 5, 10, 20MHz channels it'll be the normally configured channel
1484  * frequency.
1485  *
1486  * For 40MHz, 80MHz, 160Mhz channels it'll the the centre of the
1487  * wide channel, not the centre of the primary channel (that's ic_freq).
1488  *
1489  * For 80+80MHz channels this will be the centre of the primary
1490  * 80MHz channel; the secondary 80MHz channel will be center_freq2().
1491  */
1492 uint32_t
1493 ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1494 {
1495 
1496 	/*
1497 	 * VHT - use the pre-calculated centre frequency
1498 	 * of the given channel.
1499 	 */
1500 	if (IEEE80211_IS_CHAN_VHT(c))
1501 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1502 
1503 	if (IEEE80211_IS_CHAN_HT40U(c)) {
1504 		return (c->ic_freq + 10);
1505 	}
1506 	if (IEEE80211_IS_CHAN_HT40D(c)) {
1507 		return (c->ic_freq - 10);
1508 	}
1509 
1510 	return (c->ic_freq);
1511 }
1512 
1513 /*
1514  * For now, no 80+80 support; it will likely always return 0.
1515  */
1516 uint32_t
1517 ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1518 {
1519 
1520 	if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1521 		return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1522 
1523 	return (0);
1524 }
1525 
1526 /*
1527  * Adds channels into specified channel list (ieee[] array must be sorted).
1528  * Channels are already sorted.
1529  */
1530 static int
1531 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1532     const uint8_t ieee[], int nieee, uint32_t flags[])
1533 {
1534 	uint16_t freq;
1535 	int i, j, error;
1536 	int is_vht;
1537 
1538 	for (i = 0; i < nieee; i++) {
1539 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1540 		for (j = 0; flags[j] != 0; j++) {
1541 			/*
1542 			 * Notes:
1543 			 * + HT40 and VHT40 channels occur together, so
1544 			 *   we need to be careful that we actually allow that.
1545 			 * + VHT80, VHT160 will coexist with HT40/VHT40, so
1546 			 *   make sure it's not skipped because of the overlap
1547 			 *   check used for (V)HT40.
1548 			 */
1549 			is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1550 
1551 			/*
1552 			 * Test for VHT80.
1553 			 * XXX This is all very broken right now.
1554 			 * What we /should/ do is:
1555 			 *
1556 			 * + check that the frequency is in the list of
1557 			 *   allowed VHT80 ranges; and
1558 			 * + the other 3 channels in the list are actually
1559 			 *   also available.
1560 			 */
1561 			if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1562 				if (! is_vht80_valid_freq(freq))
1563 					continue;
1564 
1565 			/*
1566 			 * Test for (V)HT40.
1567 			 *
1568 			 * This is also a fall through from VHT80; as we only
1569 			 * allow a VHT80 channel if the VHT40 combination is
1570 			 * also valid.  If the VHT40 form is not valid then
1571 			 * we certainly can't do VHT80..
1572 			 */
1573 			if (flags[j] & IEEE80211_CHAN_HT40D)
1574 				/*
1575 				 * Can't have a "lower" channel if we are the
1576 				 * first channel.
1577 				 *
1578 				 * Can't have a "lower" channel if it's below/
1579 				 * within 20MHz of the first channel.
1580 				 *
1581 				 * Can't have a "lower" channel if the channel
1582 				 * below it is not 20MHz away.
1583 				 */
1584 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1585 				    freq - 20 !=
1586 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1587 					continue;
1588 			if (flags[j] & IEEE80211_CHAN_HT40U)
1589 				/*
1590 				 * Can't have an "upper" channel if we are
1591 				 * the last channel.
1592 				 *
1593 				 * Can't have an "upper" channel be above the
1594 				 * last channel in the list.
1595 				 *
1596 				 * Can't have an "upper" channel if the next
1597 				 * channel according to the math isn't 20MHz
1598 				 * away.  (Likely for channel 13/14.)
1599 				 */
1600 				if (i == nieee - 1 ||
1601 				    ieee[i] + 4 > ieee[nieee - 1] ||
1602 				    freq + 20 !=
1603 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1604 					continue;
1605 
1606 			if (j == 0) {
1607 				error = addchan(chans, maxchans, nchans,
1608 				    ieee[i], freq, 0, flags[j]);
1609 			} else {
1610 				error = copychan_prev(chans, maxchans, nchans,
1611 				    flags[j]);
1612 			}
1613 			if (error != 0)
1614 				return (error);
1615 		}
1616 	}
1617 
1618 	return (0);
1619 }
1620 
1621 int
1622 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1623     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1624     int ht40)
1625 {
1626 	uint32_t flags[IEEE80211_MODE_MAX];
1627 
1628 	/* XXX no VHT for now */
1629 	getflags_2ghz(bands, flags, ht40);
1630 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1631 
1632 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1633 }
1634 
1635 int
1636 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1637     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1638     int ht40)
1639 {
1640 	uint32_t flags[IEEE80211_MODE_MAX];
1641 	int vht80 = 0;
1642 
1643 	/*
1644 	 * For now, assume VHT == VHT80 support as a minimum.
1645 	 */
1646 	if (isset(bands, IEEE80211_MODE_VHT_5GHZ))
1647 		vht80 = 1;
1648 
1649 	getflags_5ghz(bands, flags, ht40, vht80);
1650 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1651 
1652 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1653 }
1654 
1655 /*
1656  * Locate a channel given a frequency+flags.  We cache
1657  * the previous lookup to optimize switching between two
1658  * channels--as happens with dynamic turbo.
1659  */
1660 struct ieee80211_channel *
1661 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1662 {
1663 	struct ieee80211_channel *c;
1664 
1665 	flags &= IEEE80211_CHAN_ALLTURBO;
1666 	c = ic->ic_prevchan;
1667 	if (c != NULL && c->ic_freq == freq &&
1668 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1669 		return c;
1670 	/* brute force search */
1671 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1672 }
1673 
1674 /*
1675  * Locate a channel given a channel number+flags.  We cache
1676  * the previous lookup to optimize switching between two
1677  * channels--as happens with dynamic turbo.
1678  */
1679 struct ieee80211_channel *
1680 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1681 {
1682 	struct ieee80211_channel *c;
1683 	int i;
1684 
1685 	flags &= IEEE80211_CHAN_ALLTURBO;
1686 	c = ic->ic_prevchan;
1687 	if (c != NULL && c->ic_ieee == ieee &&
1688 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1689 		return c;
1690 	/* brute force search */
1691 	for (i = 0; i < ic->ic_nchans; i++) {
1692 		c = &ic->ic_channels[i];
1693 		if (c->ic_ieee == ieee &&
1694 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1695 			return c;
1696 	}
1697 	return NULL;
1698 }
1699 
1700 /*
1701  * Lookup a channel suitable for the given rx status.
1702  *
1703  * This is used to find a channel for a frame (eg beacon, probe
1704  * response) based purely on the received PHY information.
1705  *
1706  * For now it tries to do it based on R_FREQ / R_IEEE.
1707  * This is enough for 11bg and 11a (and thus 11ng/11na)
1708  * but it will not be enough for GSM, PSB channels and the
1709  * like.  It also doesn't know about legacy-turbog and
1710  * legacy-turbo modes, which some offload NICs actually
1711  * support in weird ways.
1712  *
1713  * Takes the ic and rxstatus; returns the channel or NULL
1714  * if not found.
1715  *
1716  * XXX TODO: Add support for that when the need arises.
1717  */
1718 struct ieee80211_channel *
1719 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1720     const struct ieee80211_rx_stats *rxs)
1721 {
1722 	struct ieee80211com *ic = vap->iv_ic;
1723 	uint32_t flags;
1724 	struct ieee80211_channel *c;
1725 
1726 	if (rxs == NULL)
1727 		return (NULL);
1728 
1729 	/*
1730 	 * Strictly speaking we only use freq for now,
1731 	 * however later on we may wish to just store
1732 	 * the ieee for verification.
1733 	 */
1734 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1735 		return (NULL);
1736 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1737 		return (NULL);
1738 
1739 	/*
1740 	 * If the rx status contains a valid ieee/freq, then
1741 	 * ensure we populate the correct channel information
1742 	 * in rxchan before passing it up to the scan infrastructure.
1743 	 * Offload NICs will pass up beacons from all channels
1744 	 * during background scans.
1745 	 */
1746 
1747 	/* Determine a band */
1748 	/* XXX should be done by the driver? */
1749 	if (rxs->c_freq < 3000) {
1750 		flags = IEEE80211_CHAN_G;
1751 	} else {
1752 		flags = IEEE80211_CHAN_A;
1753 	}
1754 
1755 	/* Channel lookup */
1756 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1757 
1758 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1759 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1760 	    __func__,
1761 	    (int) rxs->c_freq,
1762 	    (int) rxs->c_ieee,
1763 	    flags,
1764 	    c);
1765 
1766 	return (c);
1767 }
1768 
1769 static void
1770 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1771 {
1772 #define	ADD(_ic, _s, _o) \
1773 	ifmedia_add(media, \
1774 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1775 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1776 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1777 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1778 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1779 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1780 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1781 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1782 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1783 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1784 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1785 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1786 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1787 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1788 	    [IEEE80211_MODE_VHT_2GHZ]	= IFM_IEEE80211_VHT2G,
1789 	    [IEEE80211_MODE_VHT_5GHZ]	= IFM_IEEE80211_VHT5G,
1790 	};
1791 	u_int mopt;
1792 
1793 	mopt = mopts[mode];
1794 	if (addsta)
1795 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1796 	if (caps & IEEE80211_C_IBSS)
1797 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1798 	if (caps & IEEE80211_C_HOSTAP)
1799 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1800 	if (caps & IEEE80211_C_AHDEMO)
1801 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1802 	if (caps & IEEE80211_C_MONITOR)
1803 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1804 	if (caps & IEEE80211_C_WDS)
1805 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1806 	if (caps & IEEE80211_C_MBSS)
1807 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1808 #undef ADD
1809 }
1810 
1811 /*
1812  * Setup the media data structures according to the channel and
1813  * rate tables.
1814  */
1815 static int
1816 ieee80211_media_setup(struct ieee80211com *ic,
1817 	struct ifmedia *media, int caps, int addsta,
1818 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1819 {
1820 	int i, j, rate, maxrate, mword, r;
1821 	enum ieee80211_phymode mode;
1822 	const struct ieee80211_rateset *rs;
1823 	struct ieee80211_rateset allrates;
1824 
1825 	/*
1826 	 * Fill in media characteristics.
1827 	 */
1828 	ifmedia_init(media, 0, media_change, media_stat);
1829 	maxrate = 0;
1830 	/*
1831 	 * Add media for legacy operating modes.
1832 	 */
1833 	memset(&allrates, 0, sizeof(allrates));
1834 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1835 		if (isclr(ic->ic_modecaps, mode))
1836 			continue;
1837 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1838 		if (mode == IEEE80211_MODE_AUTO)
1839 			continue;
1840 		rs = &ic->ic_sup_rates[mode];
1841 		for (i = 0; i < rs->rs_nrates; i++) {
1842 			rate = rs->rs_rates[i];
1843 			mword = ieee80211_rate2media(ic, rate, mode);
1844 			if (mword == 0)
1845 				continue;
1846 			addmedia(media, caps, addsta, mode, mword);
1847 			/*
1848 			 * Add legacy rate to the collection of all rates.
1849 			 */
1850 			r = rate & IEEE80211_RATE_VAL;
1851 			for (j = 0; j < allrates.rs_nrates; j++)
1852 				if (allrates.rs_rates[j] == r)
1853 					break;
1854 			if (j == allrates.rs_nrates) {
1855 				/* unique, add to the set */
1856 				allrates.rs_rates[j] = r;
1857 				allrates.rs_nrates++;
1858 			}
1859 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1860 			if (rate > maxrate)
1861 				maxrate = rate;
1862 		}
1863 	}
1864 	for (i = 0; i < allrates.rs_nrates; i++) {
1865 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1866 				IEEE80211_MODE_AUTO);
1867 		if (mword == 0)
1868 			continue;
1869 		/* NB: remove media options from mword */
1870 		addmedia(media, caps, addsta,
1871 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1872 	}
1873 	/*
1874 	 * Add HT/11n media.  Note that we do not have enough
1875 	 * bits in the media subtype to express the MCS so we
1876 	 * use a "placeholder" media subtype and any fixed MCS
1877 	 * must be specified with a different mechanism.
1878 	 */
1879 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1880 		if (isclr(ic->ic_modecaps, mode))
1881 			continue;
1882 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1883 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1884 	}
1885 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1886 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1887 		addmedia(media, caps, addsta,
1888 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1889 		i = ic->ic_txstream * 8 - 1;
1890 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1891 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1892 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1893 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1894 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1895 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1896 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1897 		else
1898 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1899 		if (rate > maxrate)
1900 			maxrate = rate;
1901 	}
1902 
1903 	/*
1904 	 * Add VHT media.
1905 	 */
1906 	for (; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) {
1907 		if (isclr(ic->ic_modecaps, mode))
1908 			continue;
1909 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1910 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
1911 
1912 		/* XXX TODO: VHT maxrate */
1913 	}
1914 
1915 	return maxrate;
1916 }
1917 
1918 /* XXX inline or eliminate? */
1919 const struct ieee80211_rateset *
1920 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1921 {
1922 	/* XXX does this work for 11ng basic rates? */
1923 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1924 }
1925 
1926 /* XXX inline or eliminate? */
1927 const struct ieee80211_htrateset *
1928 ieee80211_get_suphtrates(struct ieee80211com *ic,
1929     const struct ieee80211_channel *c)
1930 {
1931 	return &ic->ic_sup_htrates;
1932 }
1933 
1934 void
1935 ieee80211_announce(struct ieee80211com *ic)
1936 {
1937 	int i, rate, mword;
1938 	enum ieee80211_phymode mode;
1939 	const struct ieee80211_rateset *rs;
1940 
1941 	/* NB: skip AUTO since it has no rates */
1942 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1943 		if (isclr(ic->ic_modecaps, mode))
1944 			continue;
1945 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1946 		rs = &ic->ic_sup_rates[mode];
1947 		for (i = 0; i < rs->rs_nrates; i++) {
1948 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1949 			if (mword == 0)
1950 				continue;
1951 			rate = ieee80211_media2rate(mword);
1952 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1953 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1954 		}
1955 		printf("\n");
1956 	}
1957 	ieee80211_ht_announce(ic);
1958 	ieee80211_vht_announce(ic);
1959 }
1960 
1961 void
1962 ieee80211_announce_channels(struct ieee80211com *ic)
1963 {
1964 	const struct ieee80211_channel *c;
1965 	char type;
1966 	int i, cw;
1967 
1968 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1969 	for (i = 0; i < ic->ic_nchans; i++) {
1970 		c = &ic->ic_channels[i];
1971 		if (IEEE80211_IS_CHAN_ST(c))
1972 			type = 'S';
1973 		else if (IEEE80211_IS_CHAN_108A(c))
1974 			type = 'T';
1975 		else if (IEEE80211_IS_CHAN_108G(c))
1976 			type = 'G';
1977 		else if (IEEE80211_IS_CHAN_HT(c))
1978 			type = 'n';
1979 		else if (IEEE80211_IS_CHAN_A(c))
1980 			type = 'a';
1981 		else if (IEEE80211_IS_CHAN_ANYG(c))
1982 			type = 'g';
1983 		else if (IEEE80211_IS_CHAN_B(c))
1984 			type = 'b';
1985 		else
1986 			type = 'f';
1987 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1988 			cw = 40;
1989 		else if (IEEE80211_IS_CHAN_HALF(c))
1990 			cw = 10;
1991 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1992 			cw = 5;
1993 		else
1994 			cw = 20;
1995 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1996 			, c->ic_ieee, c->ic_freq, type
1997 			, cw
1998 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1999 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2000 			, c->ic_maxregpower
2001 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2002 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2003 		);
2004 	}
2005 }
2006 
2007 static int
2008 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2009 {
2010 	switch (IFM_MODE(ime->ifm_media)) {
2011 	case IFM_IEEE80211_11A:
2012 		*mode = IEEE80211_MODE_11A;
2013 		break;
2014 	case IFM_IEEE80211_11B:
2015 		*mode = IEEE80211_MODE_11B;
2016 		break;
2017 	case IFM_IEEE80211_11G:
2018 		*mode = IEEE80211_MODE_11G;
2019 		break;
2020 	case IFM_IEEE80211_FH:
2021 		*mode = IEEE80211_MODE_FH;
2022 		break;
2023 	case IFM_IEEE80211_11NA:
2024 		*mode = IEEE80211_MODE_11NA;
2025 		break;
2026 	case IFM_IEEE80211_11NG:
2027 		*mode = IEEE80211_MODE_11NG;
2028 		break;
2029 	case IFM_AUTO:
2030 		*mode = IEEE80211_MODE_AUTO;
2031 		break;
2032 	default:
2033 		return 0;
2034 	}
2035 	/*
2036 	 * Turbo mode is an ``option''.
2037 	 * XXX does not apply to AUTO
2038 	 */
2039 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2040 		if (*mode == IEEE80211_MODE_11A) {
2041 			if (flags & IEEE80211_F_TURBOP)
2042 				*mode = IEEE80211_MODE_TURBO_A;
2043 			else
2044 				*mode = IEEE80211_MODE_STURBO_A;
2045 		} else if (*mode == IEEE80211_MODE_11G)
2046 			*mode = IEEE80211_MODE_TURBO_G;
2047 		else
2048 			return 0;
2049 	}
2050 	/* XXX HT40 +/- */
2051 	return 1;
2052 }
2053 
2054 /*
2055  * Handle a media change request on the vap interface.
2056  */
2057 int
2058 ieee80211_media_change(struct ifnet *ifp)
2059 {
2060 	struct ieee80211vap *vap = ifp->if_softc;
2061 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2062 	uint16_t newmode;
2063 
2064 	if (!media2mode(ime, vap->iv_flags, &newmode))
2065 		return EINVAL;
2066 	if (vap->iv_des_mode != newmode) {
2067 		vap->iv_des_mode = newmode;
2068 		/* XXX kick state machine if up+running */
2069 	}
2070 	return 0;
2071 }
2072 
2073 /*
2074  * Common code to calculate the media status word
2075  * from the operating mode and channel state.
2076  */
2077 static int
2078 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2079 {
2080 	int status;
2081 
2082 	status = IFM_IEEE80211;
2083 	switch (opmode) {
2084 	case IEEE80211_M_STA:
2085 		break;
2086 	case IEEE80211_M_IBSS:
2087 		status |= IFM_IEEE80211_ADHOC;
2088 		break;
2089 	case IEEE80211_M_HOSTAP:
2090 		status |= IFM_IEEE80211_HOSTAP;
2091 		break;
2092 	case IEEE80211_M_MONITOR:
2093 		status |= IFM_IEEE80211_MONITOR;
2094 		break;
2095 	case IEEE80211_M_AHDEMO:
2096 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2097 		break;
2098 	case IEEE80211_M_WDS:
2099 		status |= IFM_IEEE80211_WDS;
2100 		break;
2101 	case IEEE80211_M_MBSS:
2102 		status |= IFM_IEEE80211_MBSS;
2103 		break;
2104 	}
2105 	if (IEEE80211_IS_CHAN_HTA(chan)) {
2106 		status |= IFM_IEEE80211_11NA;
2107 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2108 		status |= IFM_IEEE80211_11NG;
2109 	} else if (IEEE80211_IS_CHAN_A(chan)) {
2110 		status |= IFM_IEEE80211_11A;
2111 	} else if (IEEE80211_IS_CHAN_B(chan)) {
2112 		status |= IFM_IEEE80211_11B;
2113 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2114 		status |= IFM_IEEE80211_11G;
2115 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2116 		status |= IFM_IEEE80211_FH;
2117 	}
2118 	/* XXX else complain? */
2119 
2120 	if (IEEE80211_IS_CHAN_TURBO(chan))
2121 		status |= IFM_IEEE80211_TURBO;
2122 #if 0
2123 	if (IEEE80211_IS_CHAN_HT20(chan))
2124 		status |= IFM_IEEE80211_HT20;
2125 	if (IEEE80211_IS_CHAN_HT40(chan))
2126 		status |= IFM_IEEE80211_HT40;
2127 #endif
2128 	return status;
2129 }
2130 
2131 void
2132 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2133 {
2134 	struct ieee80211vap *vap = ifp->if_softc;
2135 	struct ieee80211com *ic = vap->iv_ic;
2136 	enum ieee80211_phymode mode;
2137 
2138 	imr->ifm_status = IFM_AVALID;
2139 	/*
2140 	 * NB: use the current channel's mode to lock down a xmit
2141 	 * rate only when running; otherwise we may have a mismatch
2142 	 * in which case the rate will not be convertible.
2143 	 */
2144 	if (vap->iv_state == IEEE80211_S_RUN ||
2145 	    vap->iv_state == IEEE80211_S_SLEEP) {
2146 		imr->ifm_status |= IFM_ACTIVE;
2147 		mode = ieee80211_chan2mode(ic->ic_curchan);
2148 	} else
2149 		mode = IEEE80211_MODE_AUTO;
2150 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2151 	/*
2152 	 * Calculate a current rate if possible.
2153 	 */
2154 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2155 		/*
2156 		 * A fixed rate is set, report that.
2157 		 */
2158 		imr->ifm_active |= ieee80211_rate2media(ic,
2159 			vap->iv_txparms[mode].ucastrate, mode);
2160 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
2161 		/*
2162 		 * In station mode report the current transmit rate.
2163 		 */
2164 		imr->ifm_active |= ieee80211_rate2media(ic,
2165 			vap->iv_bss->ni_txrate, mode);
2166 	} else
2167 		imr->ifm_active |= IFM_AUTO;
2168 	if (imr->ifm_status & IFM_ACTIVE)
2169 		imr->ifm_current = imr->ifm_active;
2170 }
2171 
2172 /*
2173  * Set the current phy mode and recalculate the active channel
2174  * set based on the available channels for this mode.  Also
2175  * select a new default/current channel if the current one is
2176  * inappropriate for this mode.
2177  */
2178 int
2179 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2180 {
2181 	/*
2182 	 * Adjust basic rates in 11b/11g supported rate set.
2183 	 * Note that if operating on a hal/quarter rate channel
2184 	 * this is a noop as those rates sets are different
2185 	 * and used instead.
2186 	 */
2187 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2188 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2189 
2190 	ic->ic_curmode = mode;
2191 	ieee80211_reset_erp(ic);	/* reset ERP state */
2192 
2193 	return 0;
2194 }
2195 
2196 /*
2197  * Return the phy mode for with the specified channel.
2198  */
2199 enum ieee80211_phymode
2200 ieee80211_chan2mode(const struct ieee80211_channel *chan)
2201 {
2202 
2203 	if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2204 		return IEEE80211_MODE_VHT_2GHZ;
2205 	else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2206 		return IEEE80211_MODE_VHT_5GHZ;
2207 	else if (IEEE80211_IS_CHAN_HTA(chan))
2208 		return IEEE80211_MODE_11NA;
2209 	else if (IEEE80211_IS_CHAN_HTG(chan))
2210 		return IEEE80211_MODE_11NG;
2211 	else if (IEEE80211_IS_CHAN_108G(chan))
2212 		return IEEE80211_MODE_TURBO_G;
2213 	else if (IEEE80211_IS_CHAN_ST(chan))
2214 		return IEEE80211_MODE_STURBO_A;
2215 	else if (IEEE80211_IS_CHAN_TURBO(chan))
2216 		return IEEE80211_MODE_TURBO_A;
2217 	else if (IEEE80211_IS_CHAN_HALF(chan))
2218 		return IEEE80211_MODE_HALF;
2219 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
2220 		return IEEE80211_MODE_QUARTER;
2221 	else if (IEEE80211_IS_CHAN_A(chan))
2222 		return IEEE80211_MODE_11A;
2223 	else if (IEEE80211_IS_CHAN_ANYG(chan))
2224 		return IEEE80211_MODE_11G;
2225 	else if (IEEE80211_IS_CHAN_B(chan))
2226 		return IEEE80211_MODE_11B;
2227 	else if (IEEE80211_IS_CHAN_FHSS(chan))
2228 		return IEEE80211_MODE_FH;
2229 
2230 	/* NB: should not get here */
2231 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2232 		__func__, chan->ic_freq, chan->ic_flags);
2233 	return IEEE80211_MODE_11B;
2234 }
2235 
2236 struct ratemedia {
2237 	u_int	match;	/* rate + mode */
2238 	u_int	media;	/* if_media rate */
2239 };
2240 
2241 static int
2242 findmedia(const struct ratemedia rates[], int n, u_int match)
2243 {
2244 	int i;
2245 
2246 	for (i = 0; i < n; i++)
2247 		if (rates[i].match == match)
2248 			return rates[i].media;
2249 	return IFM_AUTO;
2250 }
2251 
2252 /*
2253  * Convert IEEE80211 rate value to ifmedia subtype.
2254  * Rate is either a legacy rate in units of 0.5Mbps
2255  * or an MCS index.
2256  */
2257 int
2258 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
2259 {
2260 	static const struct ratemedia rates[] = {
2261 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2262 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2263 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2264 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2265 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2266 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2267 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2268 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2269 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2270 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2271 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2272 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2273 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2274 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2275 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2276 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2277 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2278 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2279 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2280 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2281 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2282 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2283 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2284 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2285 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2286 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2287 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2288 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2289 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2290 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2291 		/* NB: OFDM72 doesn't really exist so we don't handle it */
2292 	};
2293 	static const struct ratemedia htrates[] = {
2294 		{   0, IFM_IEEE80211_MCS },
2295 		{   1, IFM_IEEE80211_MCS },
2296 		{   2, IFM_IEEE80211_MCS },
2297 		{   3, IFM_IEEE80211_MCS },
2298 		{   4, IFM_IEEE80211_MCS },
2299 		{   5, IFM_IEEE80211_MCS },
2300 		{   6, IFM_IEEE80211_MCS },
2301 		{   7, IFM_IEEE80211_MCS },
2302 		{   8, IFM_IEEE80211_MCS },
2303 		{   9, IFM_IEEE80211_MCS },
2304 		{  10, IFM_IEEE80211_MCS },
2305 		{  11, IFM_IEEE80211_MCS },
2306 		{  12, IFM_IEEE80211_MCS },
2307 		{  13, IFM_IEEE80211_MCS },
2308 		{  14, IFM_IEEE80211_MCS },
2309 		{  15, IFM_IEEE80211_MCS },
2310 		{  16, IFM_IEEE80211_MCS },
2311 		{  17, IFM_IEEE80211_MCS },
2312 		{  18, IFM_IEEE80211_MCS },
2313 		{  19, IFM_IEEE80211_MCS },
2314 		{  20, IFM_IEEE80211_MCS },
2315 		{  21, IFM_IEEE80211_MCS },
2316 		{  22, IFM_IEEE80211_MCS },
2317 		{  23, IFM_IEEE80211_MCS },
2318 		{  24, IFM_IEEE80211_MCS },
2319 		{  25, IFM_IEEE80211_MCS },
2320 		{  26, IFM_IEEE80211_MCS },
2321 		{  27, IFM_IEEE80211_MCS },
2322 		{  28, IFM_IEEE80211_MCS },
2323 		{  29, IFM_IEEE80211_MCS },
2324 		{  30, IFM_IEEE80211_MCS },
2325 		{  31, IFM_IEEE80211_MCS },
2326 		{  32, IFM_IEEE80211_MCS },
2327 		{  33, IFM_IEEE80211_MCS },
2328 		{  34, IFM_IEEE80211_MCS },
2329 		{  35, IFM_IEEE80211_MCS },
2330 		{  36, IFM_IEEE80211_MCS },
2331 		{  37, IFM_IEEE80211_MCS },
2332 		{  38, IFM_IEEE80211_MCS },
2333 		{  39, IFM_IEEE80211_MCS },
2334 		{  40, IFM_IEEE80211_MCS },
2335 		{  41, IFM_IEEE80211_MCS },
2336 		{  42, IFM_IEEE80211_MCS },
2337 		{  43, IFM_IEEE80211_MCS },
2338 		{  44, IFM_IEEE80211_MCS },
2339 		{  45, IFM_IEEE80211_MCS },
2340 		{  46, IFM_IEEE80211_MCS },
2341 		{  47, IFM_IEEE80211_MCS },
2342 		{  48, IFM_IEEE80211_MCS },
2343 		{  49, IFM_IEEE80211_MCS },
2344 		{  50, IFM_IEEE80211_MCS },
2345 		{  51, IFM_IEEE80211_MCS },
2346 		{  52, IFM_IEEE80211_MCS },
2347 		{  53, IFM_IEEE80211_MCS },
2348 		{  54, IFM_IEEE80211_MCS },
2349 		{  55, IFM_IEEE80211_MCS },
2350 		{  56, IFM_IEEE80211_MCS },
2351 		{  57, IFM_IEEE80211_MCS },
2352 		{  58, IFM_IEEE80211_MCS },
2353 		{  59, IFM_IEEE80211_MCS },
2354 		{  60, IFM_IEEE80211_MCS },
2355 		{  61, IFM_IEEE80211_MCS },
2356 		{  62, IFM_IEEE80211_MCS },
2357 		{  63, IFM_IEEE80211_MCS },
2358 		{  64, IFM_IEEE80211_MCS },
2359 		{  65, IFM_IEEE80211_MCS },
2360 		{  66, IFM_IEEE80211_MCS },
2361 		{  67, IFM_IEEE80211_MCS },
2362 		{  68, IFM_IEEE80211_MCS },
2363 		{  69, IFM_IEEE80211_MCS },
2364 		{  70, IFM_IEEE80211_MCS },
2365 		{  71, IFM_IEEE80211_MCS },
2366 		{  72, IFM_IEEE80211_MCS },
2367 		{  73, IFM_IEEE80211_MCS },
2368 		{  74, IFM_IEEE80211_MCS },
2369 		{  75, IFM_IEEE80211_MCS },
2370 		{  76, IFM_IEEE80211_MCS },
2371 	};
2372 	int m;
2373 
2374 	/*
2375 	 * Check 11n rates first for match as an MCS.
2376 	 */
2377 	if (mode == IEEE80211_MODE_11NA) {
2378 		if (rate & IEEE80211_RATE_MCS) {
2379 			rate &= ~IEEE80211_RATE_MCS;
2380 			m = findmedia(htrates, nitems(htrates), rate);
2381 			if (m != IFM_AUTO)
2382 				return m | IFM_IEEE80211_11NA;
2383 		}
2384 	} else if (mode == IEEE80211_MODE_11NG) {
2385 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2386 		if (rate & IEEE80211_RATE_MCS) {
2387 			rate &= ~IEEE80211_RATE_MCS;
2388 			m = findmedia(htrates, nitems(htrates), rate);
2389 			if (m != IFM_AUTO)
2390 				return m | IFM_IEEE80211_11NG;
2391 		}
2392 	}
2393 	rate &= IEEE80211_RATE_VAL;
2394 	switch (mode) {
2395 	case IEEE80211_MODE_11A:
2396 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2397 	case IEEE80211_MODE_QUARTER:
2398 	case IEEE80211_MODE_11NA:
2399 	case IEEE80211_MODE_TURBO_A:
2400 	case IEEE80211_MODE_STURBO_A:
2401 		return findmedia(rates, nitems(rates),
2402 		    rate | IFM_IEEE80211_11A);
2403 	case IEEE80211_MODE_11B:
2404 		return findmedia(rates, nitems(rates),
2405 		    rate | IFM_IEEE80211_11B);
2406 	case IEEE80211_MODE_FH:
2407 		return findmedia(rates, nitems(rates),
2408 		    rate | IFM_IEEE80211_FH);
2409 	case IEEE80211_MODE_AUTO:
2410 		/* NB: ic may be NULL for some drivers */
2411 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2412 			return findmedia(rates, nitems(rates),
2413 			    rate | IFM_IEEE80211_FH);
2414 		/* NB: hack, 11g matches both 11b+11a rates */
2415 		/* fall thru... */
2416 	case IEEE80211_MODE_11G:
2417 	case IEEE80211_MODE_11NG:
2418 	case IEEE80211_MODE_TURBO_G:
2419 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2420 	case IEEE80211_MODE_VHT_2GHZ:
2421 	case IEEE80211_MODE_VHT_5GHZ:
2422 		/* XXX TODO: need to figure out mapping for VHT rates */
2423 		return IFM_AUTO;
2424 	}
2425 	return IFM_AUTO;
2426 }
2427 
2428 int
2429 ieee80211_media2rate(int mword)
2430 {
2431 	static const int ieeerates[] = {
2432 		-1,		/* IFM_AUTO */
2433 		0,		/* IFM_MANUAL */
2434 		0,		/* IFM_NONE */
2435 		2,		/* IFM_IEEE80211_FH1 */
2436 		4,		/* IFM_IEEE80211_FH2 */
2437 		2,		/* IFM_IEEE80211_DS1 */
2438 		4,		/* IFM_IEEE80211_DS2 */
2439 		11,		/* IFM_IEEE80211_DS5 */
2440 		22,		/* IFM_IEEE80211_DS11 */
2441 		44,		/* IFM_IEEE80211_DS22 */
2442 		12,		/* IFM_IEEE80211_OFDM6 */
2443 		18,		/* IFM_IEEE80211_OFDM9 */
2444 		24,		/* IFM_IEEE80211_OFDM12 */
2445 		36,		/* IFM_IEEE80211_OFDM18 */
2446 		48,		/* IFM_IEEE80211_OFDM24 */
2447 		72,		/* IFM_IEEE80211_OFDM36 */
2448 		96,		/* IFM_IEEE80211_OFDM48 */
2449 		108,		/* IFM_IEEE80211_OFDM54 */
2450 		144,		/* IFM_IEEE80211_OFDM72 */
2451 		0,		/* IFM_IEEE80211_DS354k */
2452 		0,		/* IFM_IEEE80211_DS512k */
2453 		6,		/* IFM_IEEE80211_OFDM3 */
2454 		9,		/* IFM_IEEE80211_OFDM4 */
2455 		54,		/* IFM_IEEE80211_OFDM27 */
2456 		-1,		/* IFM_IEEE80211_MCS */
2457 		-1,		/* IFM_IEEE80211_VHT */
2458 	};
2459 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2460 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2461 }
2462 
2463 /*
2464  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2465  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2466  */
2467 #define	mix(a, b, c)							\
2468 do {									\
2469 	a -= b; a -= c; a ^= (c >> 13);					\
2470 	b -= c; b -= a; b ^= (a << 8);					\
2471 	c -= a; c -= b; c ^= (b >> 13);					\
2472 	a -= b; a -= c; a ^= (c >> 12);					\
2473 	b -= c; b -= a; b ^= (a << 16);					\
2474 	c -= a; c -= b; c ^= (b >> 5);					\
2475 	a -= b; a -= c; a ^= (c >> 3);					\
2476 	b -= c; b -= a; b ^= (a << 10);					\
2477 	c -= a; c -= b; c ^= (b >> 15);					\
2478 } while (/*CONSTCOND*/0)
2479 
2480 uint32_t
2481 ieee80211_mac_hash(const struct ieee80211com *ic,
2482 	const uint8_t addr[IEEE80211_ADDR_LEN])
2483 {
2484 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2485 
2486 	b += addr[5] << 8;
2487 	b += addr[4];
2488 	a += addr[3] << 24;
2489 	a += addr[2] << 16;
2490 	a += addr[1] << 8;
2491 	a += addr[0];
2492 
2493 	mix(a, b, c);
2494 
2495 	return c;
2496 }
2497 #undef mix
2498 
2499 char
2500 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2501 {
2502 	if (IEEE80211_IS_CHAN_ST(c))
2503 		return 'S';
2504 	if (IEEE80211_IS_CHAN_108A(c))
2505 		return 'T';
2506 	if (IEEE80211_IS_CHAN_108G(c))
2507 		return 'G';
2508 	if (IEEE80211_IS_CHAN_VHT(c))
2509 		return 'v';
2510 	if (IEEE80211_IS_CHAN_HT(c))
2511 		return 'n';
2512 	if (IEEE80211_IS_CHAN_A(c))
2513 		return 'a';
2514 	if (IEEE80211_IS_CHAN_ANYG(c))
2515 		return 'g';
2516 	if (IEEE80211_IS_CHAN_B(c))
2517 		return 'b';
2518 	return 'f';
2519 }
2520