xref: /haiku/src/libs/compat/freebsd_wlan/net80211/ieee80211.c (revision 2b76973fa2401f7a5edf68e6470f3d3210cbcff3)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ethernet.h>
46 
47 #include <net80211/ieee80211_var.h>
48 #include <net80211/ieee80211_regdomain.h>
49 #ifdef IEEE80211_SUPPORT_SUPERG
50 #include <net80211/ieee80211_superg.h>
51 #endif
52 #include <net80211/ieee80211_ratectl.h>
53 
54 #include <net/bpf.h>
55 
56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
57 	[IEEE80211_MODE_AUTO]	  = "auto",
58 	[IEEE80211_MODE_11A]	  = "11a",
59 	[IEEE80211_MODE_11B]	  = "11b",
60 	[IEEE80211_MODE_11G]	  = "11g",
61 	[IEEE80211_MODE_FH]	  = "FH",
62 	[IEEE80211_MODE_TURBO_A]  = "turboA",
63 	[IEEE80211_MODE_TURBO_G]  = "turboG",
64 	[IEEE80211_MODE_STURBO_A] = "sturboA",
65 	[IEEE80211_MODE_HALF]	  = "half",
66 	[IEEE80211_MODE_QUARTER]  = "quarter",
67 	[IEEE80211_MODE_11NA]	  = "11na",
68 	[IEEE80211_MODE_11NG]	  = "11ng",
69 };
70 /* map ieee80211_opmode to the corresponding capability bit */
71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
72 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
73 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
74 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
75 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
76 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
77 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
78 #ifdef IEEE80211_SUPPORT_MESH
79 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
80 #endif
81 };
82 
83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
84 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
85 
86 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
87 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
88 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
89 static	int ieee80211_media_setup(struct ieee80211com *ic,
90 		struct ifmedia *media, int caps, int addsta,
91 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
92 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
93 static	int ieee80211com_media_change(struct ifnet *);
94 static	int media_status(enum ieee80211_opmode,
95 		const struct ieee80211_channel *);
96 
97 /*
98  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
99  */
100 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
101 static const struct ieee80211_rateset ieee80211_rateset_11a =
102 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
103 static const struct ieee80211_rateset ieee80211_rateset_half =
104 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
105 static const struct ieee80211_rateset ieee80211_rateset_quarter =
106 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
107 static const struct ieee80211_rateset ieee80211_rateset_11b =
108 	{ 4, { B(2), B(4), B(11), B(22) } };
109 /* NB: OFDM rates are handled specially based on mode */
110 static const struct ieee80211_rateset ieee80211_rateset_11g =
111 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
112 #undef B
113 
114 /*
115  * Fill in 802.11 available channel set, mark
116  * all available channels as active, and pick
117  * a default channel if not already specified.
118  */
119 static void
120 ieee80211_chan_init(struct ieee80211com *ic)
121 {
122 #define	DEFAULTRATES(m, def) do { \
123 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
124 		ic->ic_sup_rates[m] = def; \
125 } while (0)
126 	struct ieee80211_channel *c;
127 	int i;
128 
129 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
130 		("invalid number of channels specified: %u", ic->ic_nchans));
131 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
132 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
133 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
134 	for (i = 0; i < ic->ic_nchans; i++) {
135 		c = &ic->ic_channels[i];
136 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
137 		/*
138 		 * Help drivers that work only with frequencies by filling
139 		 * in IEEE channel #'s if not already calculated.  Note this
140 		 * mimics similar work done in ieee80211_setregdomain when
141 		 * changing regulatory state.
142 		 */
143 		if (c->ic_ieee == 0)
144 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
145 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
146 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
147 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
148 			    c->ic_flags);
149 		/* default max tx power to max regulatory */
150 		if (c->ic_maxpower == 0)
151 			c->ic_maxpower = 2*c->ic_maxregpower;
152 		setbit(ic->ic_chan_avail, c->ic_ieee);
153 		/*
154 		 * Identify mode capabilities.
155 		 */
156 		if (IEEE80211_IS_CHAN_A(c))
157 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
158 		if (IEEE80211_IS_CHAN_B(c))
159 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
160 		if (IEEE80211_IS_CHAN_ANYG(c))
161 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
162 		if (IEEE80211_IS_CHAN_FHSS(c))
163 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
164 		if (IEEE80211_IS_CHAN_108A(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
166 		if (IEEE80211_IS_CHAN_108G(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
168 		if (IEEE80211_IS_CHAN_ST(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
170 		if (IEEE80211_IS_CHAN_HALF(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
172 		if (IEEE80211_IS_CHAN_QUARTER(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
174 		if (IEEE80211_IS_CHAN_HTA(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
176 		if (IEEE80211_IS_CHAN_HTG(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
178 	}
179 	/* initialize candidate channels to all available */
180 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
181 		sizeof(ic->ic_chan_avail));
182 
183 	/* sort channel table to allow lookup optimizations */
184 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
185 
186 	/* invalidate any previous state */
187 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
188 	ic->ic_prevchan = NULL;
189 	ic->ic_csa_newchan = NULL;
190 	/* arbitrarily pick the first channel */
191 	ic->ic_curchan = &ic->ic_channels[0];
192 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
193 
194 	/* fillin well-known rate sets if driver has not specified */
195 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
196 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
197 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
198 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
199 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
200 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
201 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
202 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
203 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
204 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
205 
206 	/*
207 	 * Setup required information to fill the mcsset field, if driver did
208 	 * not. Assume a 2T2R setup for historic reasons.
209 	 */
210 	if (ic->ic_rxstream == 0)
211 		ic->ic_rxstream = 2;
212 	if (ic->ic_txstream == 0)
213 		ic->ic_txstream = 2;
214 
215 	/*
216 	 * Set auto mode to reset active channel state and any desired channel.
217 	 */
218 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
219 #undef DEFAULTRATES
220 }
221 
222 static void
223 null_update_mcast(struct ifnet *ifp)
224 {
225 	if_printf(ifp, "need multicast update callback\n");
226 }
227 
228 static void
229 null_update_promisc(struct ifnet *ifp)
230 {
231 	if_printf(ifp, "need promiscuous mode update callback\n");
232 }
233 
234 static int
235 null_transmit(struct ifnet *ifp, struct mbuf *m)
236 {
237 	m_freem(m);
238 	ifp->if_oerrors++;
239 	return EACCES;		/* XXX EIO/EPERM? */
240 }
241 
242 static int
243 null_output(struct ifnet *ifp, struct mbuf *m,
244 	struct sockaddr *dst, struct route *ro)
245 {
246 	if_printf(ifp, "discard raw packet\n");
247 	return null_transmit(ifp, m);
248 }
249 
250 static void
251 null_input(struct ifnet *ifp, struct mbuf *m)
252 {
253 	if_printf(ifp, "if_input should not be called\n");
254 	m_freem(m);
255 }
256 
257 /*
258  * Attach/setup the common net80211 state.  Called by
259  * the driver on attach to prior to creating any vap's.
260  */
261 void
262 ieee80211_ifattach(struct ieee80211com *ic,
263 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
264 {
265 	struct ifnet *ifp = ic->ic_ifp;
266 	struct sockaddr_dl *sdl;
267 	struct ifaddr *ifa;
268 
269 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
270 
271 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
272 	TAILQ_INIT(&ic->ic_vaps);
273 
274 	/* Create a taskqueue for all state changes */
275 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
276 	    taskqueue_thread_enqueue, &ic->ic_tq);
277 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq",
278 	    ifp->if_xname);
279 	/*
280 	 * Fill in 802.11 available channel set, mark all
281 	 * available channels as active, and pick a default
282 	 * channel if not already specified.
283 	 */
284 	ieee80211_media_init(ic);
285 
286 	ic->ic_update_mcast = null_update_mcast;
287 	ic->ic_update_promisc = null_update_promisc;
288 
289 	ic->ic_hash_key = arc4random();
290 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
291 	ic->ic_lintval = ic->ic_bintval;
292 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
293 
294 	ieee80211_crypto_attach(ic);
295 	ieee80211_node_attach(ic);
296 	ieee80211_power_attach(ic);
297 	ieee80211_proto_attach(ic);
298 #ifdef IEEE80211_SUPPORT_SUPERG
299 	ieee80211_superg_attach(ic);
300 #endif
301 	ieee80211_ht_attach(ic);
302 	ieee80211_scan_attach(ic);
303 	ieee80211_regdomain_attach(ic);
304 	ieee80211_dfs_attach(ic);
305 #if defined(__HAIKU__)
306 	ieee80211_ratectl_attach(ic);
307 #endif
308 
309 	ieee80211_sysctl_attach(ic);
310 
311 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
312 	ifp->if_hdrlen = 0;
313 	if_attach(ifp);
314 	ifp->if_mtu = IEEE80211_MTU_MAX;
315 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
316 	ifp->if_output = null_output;
317 	ifp->if_input = null_input;	/* just in case */
318 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
319 
320 #ifndef __HAIKU__
321 	ifa = ifaddr_byindex(ifp->if_index);
322 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
323 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;;
324 #else
325 	sdl = &ifp->if_lladdr;
326 #endif
327 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
328 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
329 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
330 	ifa_free(ifa);
331 }
332 
333 /*
334  * Detach net80211 state on device detach.  Tear down
335  * all vap's and reclaim all common state prior to the
336  * device state going away.  Note we may call back into
337  * driver; it must be prepared for this.
338  */
339 void
340 ieee80211_ifdetach(struct ieee80211com *ic)
341 {
342 	struct ifnet *ifp = ic->ic_ifp;
343 	struct ieee80211vap *vap;
344 
345 	if_detach(ifp);
346 
347 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
348 		ieee80211_vap_destroy(vap);
349 	ieee80211_waitfor_parent(ic);
350 
351 	ieee80211_sysctl_detach(ic);
352 #if defined(__HAIKU__)
353 	ieee80211_ratectl_detach(ic);
354 #endif
355 	ieee80211_dfs_detach(ic);
356 	ieee80211_regdomain_detach(ic);
357 	ieee80211_scan_detach(ic);
358 #ifdef IEEE80211_SUPPORT_SUPERG
359 	ieee80211_superg_detach(ic);
360 #endif
361 	ieee80211_ht_detach(ic);
362 	/* NB: must be called before ieee80211_node_detach */
363 	ieee80211_proto_detach(ic);
364 	ieee80211_crypto_detach(ic);
365 	ieee80211_power_detach(ic);
366 	ieee80211_node_detach(ic);
367 
368 	ifmedia_removeall(&ic->ic_media);
369 	taskqueue_free(ic->ic_tq);
370 	IEEE80211_LOCK_DESTROY(ic);
371 }
372 
373 /*
374  * Default reset method for use with the ioctl support.  This
375  * method is invoked after any state change in the 802.11
376  * layer that should be propagated to the hardware but not
377  * require re-initialization of the 802.11 state machine (e.g
378  * rescanning for an ap).  We always return ENETRESET which
379  * should cause the driver to re-initialize the device. Drivers
380  * can override this method to implement more optimized support.
381  */
382 static int
383 default_reset(struct ieee80211vap *vap, u_long cmd)
384 {
385 	return ENETRESET;
386 }
387 
388 /*
389  * Prepare a vap for use.  Drivers use this call to
390  * setup net80211 state in new vap's prior attaching
391  * them with ieee80211_vap_attach (below).
392  */
393 int
394 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
395 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
396 	const uint8_t bssid[IEEE80211_ADDR_LEN],
397 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
398 {
399 	struct ifnet *ifp;
400 
401 	ifp = if_alloc(IFT_ETHER);
402 	if (ifp == NULL) {
403 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
404 		    __func__);
405 		return ENOMEM;
406 	}
407 	if_initname(ifp, name, unit);
408 	ifp->if_softc = vap;			/* back pointer */
409 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
410 	ifp->if_start = ieee80211_start;
411 	ifp->if_ioctl = ieee80211_ioctl;
412 	ifp->if_init = ieee80211_init;
413 	/* NB: input+output filled in by ether_ifattach */
414 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
415 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
416 	IFQ_SET_READY(&ifp->if_snd);
417 
418 	vap->iv_ifp = ifp;
419 	vap->iv_ic = ic;
420 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
421 	vap->iv_flags_ext = ic->ic_flags_ext;
422 	vap->iv_flags_ven = ic->ic_flags_ven;
423 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
424 	vap->iv_htcaps = ic->ic_htcaps;
425 	vap->iv_htextcaps = ic->ic_htextcaps;
426 	vap->iv_opmode = opmode;
427 	vap->iv_caps |= ieee80211_opcap[opmode];
428 	switch (opmode) {
429 	case IEEE80211_M_WDS:
430 		/*
431 		 * WDS links must specify the bssid of the far end.
432 		 * For legacy operation this is a static relationship.
433 		 * For non-legacy operation the station must associate
434 		 * and be authorized to pass traffic.  Plumbing the
435 		 * vap to the proper node happens when the vap
436 		 * transitions to RUN state.
437 		 */
438 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
439 		vap->iv_flags |= IEEE80211_F_DESBSSID;
440 		if (flags & IEEE80211_CLONE_WDSLEGACY)
441 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
442 		break;
443 #ifdef IEEE80211_SUPPORT_TDMA
444 	case IEEE80211_M_AHDEMO:
445 		if (flags & IEEE80211_CLONE_TDMA) {
446 			/* NB: checked before clone operation allowed */
447 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
448 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
449 			/*
450 			 * Propagate TDMA capability to mark vap; this
451 			 * cannot be removed and is used to distinguish
452 			 * regular ahdemo operation from ahdemo+tdma.
453 			 */
454 			vap->iv_caps |= IEEE80211_C_TDMA;
455 		}
456 		break;
457 #endif
458 	}
459 	/* auto-enable s/w beacon miss support */
460 	if (flags & IEEE80211_CLONE_NOBEACONS)
461 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
462 	/* auto-generated or user supplied MAC address */
463 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
464 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
465 	/*
466 	 * Enable various functionality by default if we're
467 	 * capable; the driver can override us if it knows better.
468 	 */
469 	if (vap->iv_caps & IEEE80211_C_WME)
470 		vap->iv_flags |= IEEE80211_F_WME;
471 	if (vap->iv_caps & IEEE80211_C_BURST)
472 		vap->iv_flags |= IEEE80211_F_BURST;
473 	/* NB: bg scanning only makes sense for station mode right now */
474 #if 0
475 	if (vap->iv_opmode == IEEE80211_M_STA &&
476 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
477 		vap->iv_flags |= IEEE80211_F_BGSCAN;
478 #endif
479 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
480 	/* NB: DFS support only makes sense for ap mode right now */
481 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
482 	    (vap->iv_caps & IEEE80211_C_DFS))
483 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
484 
485 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
486 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
487 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
488 	/*
489 	 * Install a default reset method for the ioctl support;
490 	 * the driver can override this.
491 	 */
492 	vap->iv_reset = default_reset;
493 
494 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
495 
496 	ieee80211_sysctl_vattach(vap);
497 	ieee80211_crypto_vattach(vap);
498 	ieee80211_node_vattach(vap);
499 	ieee80211_power_vattach(vap);
500 	ieee80211_proto_vattach(vap);
501 #ifdef IEEE80211_SUPPORT_SUPERG
502 	ieee80211_superg_vattach(vap);
503 #endif
504 	ieee80211_ht_vattach(vap);
505 	ieee80211_scan_vattach(vap);
506 	ieee80211_regdomain_vattach(vap);
507 	ieee80211_radiotap_vattach(vap);
508 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
509 
510 	return 0;
511 }
512 
513 /*
514  * Activate a vap.  State should have been prepared with a
515  * call to ieee80211_vap_setup and by the driver.  On return
516  * from this call the vap is ready for use.
517  */
518 int
519 ieee80211_vap_attach(struct ieee80211vap *vap,
520 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
521 {
522 	struct ifnet *ifp = vap->iv_ifp;
523 	struct ieee80211com *ic = vap->iv_ic;
524 	struct ifmediareq imr;
525 	int maxrate;
526 
527 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
528 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
529 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
530 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
531 
532 	/*
533 	 * Do late attach work that cannot happen until after
534 	 * the driver has had a chance to override defaults.
535 	 */
536 	ieee80211_node_latevattach(vap);
537 	ieee80211_power_latevattach(vap);
538 
539 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
540 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
541 	ieee80211_media_status(ifp, &imr);
542 	/* NB: strip explicit mode; we're actually in autoselect */
543 	ifmedia_set(&vap->iv_media,
544 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
545 	if (maxrate)
546 		ifp->if_baudrate = IF_Mbps(maxrate);
547 
548 	ether_ifattach(ifp, vap->iv_myaddr);
549 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
550 		/* NB: disallow transmit */
551 		ifp->if_transmit = null_transmit;
552 		ifp->if_output = null_output;
553 	} else {
554 		/* hook output method setup by ether_ifattach */
555 		vap->iv_output = ifp->if_output;
556 		ifp->if_output = ieee80211_output;
557 	}
558 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
559 
560 	IEEE80211_LOCK(ic);
561 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
562 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
563 #ifdef IEEE80211_SUPPORT_SUPERG
564 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
565 #endif
566 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
567 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
568 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
569 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
570 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
571 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
572 	IEEE80211_UNLOCK(ic);
573 
574 	return 1;
575 }
576 
577 /*
578  * Tear down vap state and reclaim the ifnet.
579  * The driver is assumed to have prepared for
580  * this; e.g. by turning off interrupts for the
581  * underlying device.
582  */
583 void
584 ieee80211_vap_detach(struct ieee80211vap *vap)
585 {
586 	struct ieee80211com *ic = vap->iv_ic;
587 	struct ifnet *ifp = vap->iv_ifp;
588 
589 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
590 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
591 	    ic->ic_ifp->if_xname);
592 
593 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
594 	ether_ifdetach(ifp);
595 
596 	ieee80211_stop(vap);
597 
598 	/*
599 	 * Flush any deferred vap tasks.
600 	 */
601 	ieee80211_draintask(ic, &vap->iv_nstate_task);
602 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
603 
604 	IEEE80211_LOCK(ic);
605 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
606 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
607 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
608 #ifdef IEEE80211_SUPPORT_SUPERG
609 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
610 #endif
611 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
612 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
613 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
614 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
615 	/* NB: this handles the bpfdetach done below */
616 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
617 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
618 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
619 	IEEE80211_UNLOCK(ic);
620 
621 	ifmedia_removeall(&vap->iv_media);
622 
623 	ieee80211_radiotap_vdetach(vap);
624 	ieee80211_regdomain_vdetach(vap);
625 	ieee80211_scan_vdetach(vap);
626 #ifdef IEEE80211_SUPPORT_SUPERG
627 	ieee80211_superg_vdetach(vap);
628 #endif
629 	ieee80211_ht_vdetach(vap);
630 	/* NB: must be before ieee80211_node_vdetach */
631 	ieee80211_proto_vdetach(vap);
632 	ieee80211_crypto_vdetach(vap);
633 	ieee80211_power_vdetach(vap);
634 	ieee80211_node_vdetach(vap);
635 	ieee80211_sysctl_vdetach(vap);
636 
637 	if_free(ifp);
638 }
639 
640 /*
641  * Synchronize flag bit state in the parent ifnet structure
642  * according to the state of all vap ifnet's.  This is used,
643  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
644  */
645 void
646 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
647 {
648 	struct ifnet *ifp = ic->ic_ifp;
649 	struct ieee80211vap *vap;
650 	int bit, oflags;
651 
652 	IEEE80211_LOCK_ASSERT(ic);
653 
654 	bit = 0;
655 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
656 		if (vap->iv_ifp->if_flags & flag) {
657 			/*
658 			 * XXX the bridge sets PROMISC but we don't want to
659 			 * enable it on the device, discard here so all the
660 			 * drivers don't need to special-case it
661 			 */
662 			if (flag == IFF_PROMISC &&
663 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
664 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
665 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
666 				continue;
667 			bit = 1;
668 			break;
669 		}
670 	oflags = ifp->if_flags;
671 	if (bit)
672 		ifp->if_flags |= flag;
673 	else
674 		ifp->if_flags &= ~flag;
675 	if ((ifp->if_flags ^ oflags) & flag) {
676 		/* XXX should we return 1/0 and let caller do this? */
677 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
678 			if (flag == IFF_PROMISC)
679 				ieee80211_runtask(ic, &ic->ic_promisc_task);
680 			else if (flag == IFF_ALLMULTI)
681 				ieee80211_runtask(ic, &ic->ic_mcast_task);
682 		}
683 	}
684 }
685 
686 /*
687  * Synchronize flag bit state in the com structure
688  * according to the state of all vap's.  This is used,
689  * for example, to handle state changes via ioctls.
690  */
691 static void
692 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
693 {
694 	struct ieee80211vap *vap;
695 	int bit;
696 
697 	IEEE80211_LOCK_ASSERT(ic);
698 
699 	bit = 0;
700 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
701 		if (vap->iv_flags & flag) {
702 			bit = 1;
703 			break;
704 		}
705 	if (bit)
706 		ic->ic_flags |= flag;
707 	else
708 		ic->ic_flags &= ~flag;
709 }
710 
711 void
712 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
713 {
714 	struct ieee80211com *ic = vap->iv_ic;
715 
716 	IEEE80211_LOCK(ic);
717 	if (flag < 0) {
718 		flag = -flag;
719 		vap->iv_flags &= ~flag;
720 	} else
721 		vap->iv_flags |= flag;
722 	ieee80211_syncflag_locked(ic, flag);
723 	IEEE80211_UNLOCK(ic);
724 }
725 
726 /*
727  * Synchronize flags_ht bit state in the com structure
728  * according to the state of all vap's.  This is used,
729  * for example, to handle state changes via ioctls.
730  */
731 static void
732 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
733 {
734 	struct ieee80211vap *vap;
735 	int bit;
736 
737 	IEEE80211_LOCK_ASSERT(ic);
738 
739 	bit = 0;
740 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
741 		if (vap->iv_flags_ht & flag) {
742 			bit = 1;
743 			break;
744 		}
745 	if (bit)
746 		ic->ic_flags_ht |= flag;
747 	else
748 		ic->ic_flags_ht &= ~flag;
749 }
750 
751 void
752 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
753 {
754 	struct ieee80211com *ic = vap->iv_ic;
755 
756 	IEEE80211_LOCK(ic);
757 	if (flag < 0) {
758 		flag = -flag;
759 		vap->iv_flags_ht &= ~flag;
760 	} else
761 		vap->iv_flags_ht |= flag;
762 	ieee80211_syncflag_ht_locked(ic, flag);
763 	IEEE80211_UNLOCK(ic);
764 }
765 
766 /*
767  * Synchronize flags_ext bit state in the com structure
768  * according to the state of all vap's.  This is used,
769  * for example, to handle state changes via ioctls.
770  */
771 static void
772 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
773 {
774 	struct ieee80211vap *vap;
775 	int bit;
776 
777 	IEEE80211_LOCK_ASSERT(ic);
778 
779 	bit = 0;
780 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
781 		if (vap->iv_flags_ext & flag) {
782 			bit = 1;
783 			break;
784 		}
785 	if (bit)
786 		ic->ic_flags_ext |= flag;
787 	else
788 		ic->ic_flags_ext &= ~flag;
789 }
790 
791 void
792 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
793 {
794 	struct ieee80211com *ic = vap->iv_ic;
795 
796 	IEEE80211_LOCK(ic);
797 	if (flag < 0) {
798 		flag = -flag;
799 		vap->iv_flags_ext &= ~flag;
800 	} else
801 		vap->iv_flags_ext |= flag;
802 	ieee80211_syncflag_ext_locked(ic, flag);
803 	IEEE80211_UNLOCK(ic);
804 }
805 
806 static __inline int
807 mapgsm(u_int freq, u_int flags)
808 {
809 	freq *= 10;
810 	if (flags & IEEE80211_CHAN_QUARTER)
811 		freq += 5;
812 	else if (flags & IEEE80211_CHAN_HALF)
813 		freq += 10;
814 	else
815 		freq += 20;
816 	/* NB: there is no 907/20 wide but leave room */
817 	return (freq - 906*10) / 5;
818 }
819 
820 static __inline int
821 mappsb(u_int freq, u_int flags)
822 {
823 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
824 }
825 
826 /*
827  * Convert MHz frequency to IEEE channel number.
828  */
829 int
830 ieee80211_mhz2ieee(u_int freq, u_int flags)
831 {
832 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
833 	if (flags & IEEE80211_CHAN_GSM)
834 		return mapgsm(freq, flags);
835 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
836 		if (freq == 2484)
837 			return 14;
838 		if (freq < 2484)
839 			return ((int) freq - 2407) / 5;
840 		else
841 			return 15 + ((freq - 2512) / 20);
842 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
843 		if (freq <= 5000) {
844 			/* XXX check regdomain? */
845 			if (IS_FREQ_IN_PSB(freq))
846 				return mappsb(freq, flags);
847 			return (freq - 4000) / 5;
848 		} else
849 			return (freq - 5000) / 5;
850 	} else {				/* either, guess */
851 		if (freq == 2484)
852 			return 14;
853 		if (freq < 2484) {
854 			if (907 <= freq && freq <= 922)
855 				return mapgsm(freq, flags);
856 			return ((int) freq - 2407) / 5;
857 		}
858 		if (freq < 5000) {
859 			if (IS_FREQ_IN_PSB(freq))
860 				return mappsb(freq, flags);
861 			else if (freq > 4900)
862 				return (freq - 4000) / 5;
863 			else
864 				return 15 + ((freq - 2512) / 20);
865 		}
866 		return (freq - 5000) / 5;
867 	}
868 #undef IS_FREQ_IN_PSB
869 }
870 
871 /*
872  * Convert channel to IEEE channel number.
873  */
874 int
875 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
876 {
877 	if (c == NULL) {
878 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
879 		return 0;		/* XXX */
880 	}
881 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
882 }
883 
884 /*
885  * Convert IEEE channel number to MHz frequency.
886  */
887 u_int
888 ieee80211_ieee2mhz(u_int chan, u_int flags)
889 {
890 	if (flags & IEEE80211_CHAN_GSM)
891 		return 907 + 5 * (chan / 10);
892 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
893 		if (chan == 14)
894 			return 2484;
895 		if (chan < 14)
896 			return 2407 + chan*5;
897 		else
898 			return 2512 + ((chan-15)*20);
899 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
900 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
901 			chan -= 37;
902 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
903 		}
904 		return 5000 + (chan*5);
905 	} else {				/* either, guess */
906 		/* XXX can't distinguish PSB+GSM channels */
907 		if (chan == 14)
908 			return 2484;
909 		if (chan < 14)			/* 0-13 */
910 			return 2407 + chan*5;
911 		if (chan < 27)			/* 15-26 */
912 			return 2512 + ((chan-15)*20);
913 		return 5000 + (chan*5);
914 	}
915 }
916 
917 /*
918  * Locate a channel given a frequency+flags.  We cache
919  * the previous lookup to optimize switching between two
920  * channels--as happens with dynamic turbo.
921  */
922 struct ieee80211_channel *
923 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
924 {
925 	struct ieee80211_channel *c;
926 	int i;
927 
928 	flags &= IEEE80211_CHAN_ALLTURBO;
929 	c = ic->ic_prevchan;
930 	if (c != NULL && c->ic_freq == freq &&
931 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
932 		return c;
933 	/* brute force search */
934 	for (i = 0; i < ic->ic_nchans; i++) {
935 		c = &ic->ic_channels[i];
936 		if (c->ic_freq == freq &&
937 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
938 			return c;
939 	}
940 	return NULL;
941 }
942 
943 /*
944  * Locate a channel given a channel number+flags.  We cache
945  * the previous lookup to optimize switching between two
946  * channels--as happens with dynamic turbo.
947  */
948 struct ieee80211_channel *
949 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
950 {
951 	struct ieee80211_channel *c;
952 	int i;
953 
954 	flags &= IEEE80211_CHAN_ALLTURBO;
955 	c = ic->ic_prevchan;
956 	if (c != NULL && c->ic_ieee == ieee &&
957 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
958 		return c;
959 	/* brute force search */
960 	for (i = 0; i < ic->ic_nchans; i++) {
961 		c = &ic->ic_channels[i];
962 		if (c->ic_ieee == ieee &&
963 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
964 			return c;
965 	}
966 	return NULL;
967 }
968 
969 static void
970 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
971 {
972 #define	ADD(_ic, _s, _o) \
973 	ifmedia_add(media, \
974 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
975 	static const u_int mopts[IEEE80211_MODE_MAX] = {
976 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
977 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
978 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
979 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
980 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
981 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
982 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
983 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
984 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
985 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
986 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
987 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
988 	};
989 	u_int mopt;
990 
991 	mopt = mopts[mode];
992 	if (addsta)
993 		ADD(ic, mword, mopt);	/* STA mode has no cap */
994 	if (caps & IEEE80211_C_IBSS)
995 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
996 	if (caps & IEEE80211_C_HOSTAP)
997 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
998 	if (caps & IEEE80211_C_AHDEMO)
999 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1000 	if (caps & IEEE80211_C_MONITOR)
1001 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1002 	if (caps & IEEE80211_C_WDS)
1003 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1004 	if (caps & IEEE80211_C_MBSS)
1005 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1006 #undef ADD
1007 }
1008 
1009 /*
1010  * Setup the media data structures according to the channel and
1011  * rate tables.
1012  */
1013 static int
1014 ieee80211_media_setup(struct ieee80211com *ic,
1015 	struct ifmedia *media, int caps, int addsta,
1016 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1017 {
1018 	int i, j, mode, rate, maxrate, mword, r;
1019 	const struct ieee80211_rateset *rs;
1020 	struct ieee80211_rateset allrates;
1021 
1022 	/*
1023 	 * Fill in media characteristics.
1024 	 */
1025 	ifmedia_init(media, 0, media_change, media_stat);
1026 	maxrate = 0;
1027 	/*
1028 	 * Add media for legacy operating modes.
1029 	 */
1030 	memset(&allrates, 0, sizeof(allrates));
1031 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1032 		if (isclr(ic->ic_modecaps, mode))
1033 			continue;
1034 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1035 		if (mode == IEEE80211_MODE_AUTO)
1036 			continue;
1037 		rs = &ic->ic_sup_rates[mode];
1038 		for (i = 0; i < rs->rs_nrates; i++) {
1039 			rate = rs->rs_rates[i];
1040 			mword = ieee80211_rate2media(ic, rate, mode);
1041 			if (mword == 0)
1042 				continue;
1043 			addmedia(media, caps, addsta, mode, mword);
1044 			/*
1045 			 * Add legacy rate to the collection of all rates.
1046 			 */
1047 			r = rate & IEEE80211_RATE_VAL;
1048 			for (j = 0; j < allrates.rs_nrates; j++)
1049 				if (allrates.rs_rates[j] == r)
1050 					break;
1051 			if (j == allrates.rs_nrates) {
1052 				/* unique, add to the set */
1053 				allrates.rs_rates[j] = r;
1054 				allrates.rs_nrates++;
1055 			}
1056 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1057 			if (rate > maxrate)
1058 				maxrate = rate;
1059 		}
1060 	}
1061 	for (i = 0; i < allrates.rs_nrates; i++) {
1062 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1063 				IEEE80211_MODE_AUTO);
1064 		if (mword == 0)
1065 			continue;
1066 		/* NB: remove media options from mword */
1067 		addmedia(media, caps, addsta,
1068 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1069 	}
1070 	/*
1071 	 * Add HT/11n media.  Note that we do not have enough
1072 	 * bits in the media subtype to express the MCS so we
1073 	 * use a "placeholder" media subtype and any fixed MCS
1074 	 * must be specified with a different mechanism.
1075 	 */
1076 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1077 		if (isclr(ic->ic_modecaps, mode))
1078 			continue;
1079 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1080 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1081 	}
1082 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1083 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1084 		addmedia(media, caps, addsta,
1085 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1086 		i = ic->ic_txstream * 8 - 1;
1087 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1088 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1089 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1090 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1091 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1092 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1093 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1094 		else
1095 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1096 		if (rate > maxrate)
1097 			maxrate = rate;
1098 	}
1099 	return maxrate;
1100 }
1101 
1102 void
1103 ieee80211_media_init(struct ieee80211com *ic)
1104 {
1105 	struct ifnet *ifp = ic->ic_ifp;
1106 	int maxrate;
1107 
1108 	/* NB: this works because the structure is initialized to zero */
1109 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1110 		/*
1111 		 * We are re-initializing the channel list; clear
1112 		 * the existing media state as the media routines
1113 		 * don't suppress duplicates.
1114 		 */
1115 		ifmedia_removeall(&ic->ic_media);
1116 	}
1117 	ieee80211_chan_init(ic);
1118 
1119 	/*
1120 	 * Recalculate media settings in case new channel list changes
1121 	 * the set of available modes.
1122 	 */
1123 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1124 		ieee80211com_media_change, ieee80211com_media_status);
1125 	/* NB: strip explicit mode; we're actually in autoselect */
1126 	ifmedia_set(&ic->ic_media,
1127 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1128 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1129 	if (maxrate)
1130 		ifp->if_baudrate = IF_Mbps(maxrate);
1131 
1132 	/* XXX need to propagate new media settings to vap's */
1133 }
1134 
1135 /* XXX inline or eliminate? */
1136 const struct ieee80211_rateset *
1137 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1138 {
1139 	/* XXX does this work for 11ng basic rates? */
1140 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1141 }
1142 
1143 void
1144 ieee80211_announce(struct ieee80211com *ic)
1145 {
1146 	struct ifnet *ifp = ic->ic_ifp;
1147 	int i, mode, rate, mword;
1148 	const struct ieee80211_rateset *rs;
1149 
1150 	/* NB: skip AUTO since it has no rates */
1151 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1152 		if (isclr(ic->ic_modecaps, mode))
1153 			continue;
1154 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1155 		rs = &ic->ic_sup_rates[mode];
1156 		for (i = 0; i < rs->rs_nrates; i++) {
1157 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1158 			if (mword == 0)
1159 				continue;
1160 			rate = ieee80211_media2rate(mword);
1161 			printf("%s%d%sMbps", (i != 0 ? " " : ""),
1162 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1163 		}
1164 		printf("\n");
1165 	}
1166 	ieee80211_ht_announce(ic);
1167 }
1168 
1169 void
1170 ieee80211_announce_channels(struct ieee80211com *ic)
1171 {
1172 	const struct ieee80211_channel *c;
1173 	char type;
1174 	int i, cw;
1175 
1176 	printf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1177 	for (i = 0; i < ic->ic_nchans; i++) {
1178 		c = &ic->ic_channels[i];
1179 		if (IEEE80211_IS_CHAN_ST(c))
1180 			type = 'S';
1181 		else if (IEEE80211_IS_CHAN_108A(c))
1182 			type = 'T';
1183 		else if (IEEE80211_IS_CHAN_108G(c))
1184 			type = 'G';
1185 		else if (IEEE80211_IS_CHAN_HT(c))
1186 			type = 'n';
1187 		else if (IEEE80211_IS_CHAN_A(c))
1188 			type = 'a';
1189 		else if (IEEE80211_IS_CHAN_ANYG(c))
1190 			type = 'g';
1191 		else if (IEEE80211_IS_CHAN_B(c))
1192 			type = 'b';
1193 		else
1194 			type = 'f';
1195 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1196 			cw = 40;
1197 		else if (IEEE80211_IS_CHAN_HALF(c))
1198 			cw = 10;
1199 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1200 			cw = 5;
1201 		else
1202 			cw = 20;
1203 		printf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1204 			, c->ic_ieee, c->ic_freq, type
1205 			, cw
1206 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1207 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1208 			, c->ic_maxregpower
1209 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1210 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1211 		);
1212 	}
1213 }
1214 
1215 static int
1216 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1217 {
1218 	switch (IFM_MODE(ime->ifm_media)) {
1219 	case IFM_IEEE80211_11A:
1220 		*mode = IEEE80211_MODE_11A;
1221 		break;
1222 	case IFM_IEEE80211_11B:
1223 		*mode = IEEE80211_MODE_11B;
1224 		break;
1225 	case IFM_IEEE80211_11G:
1226 		*mode = IEEE80211_MODE_11G;
1227 		break;
1228 	case IFM_IEEE80211_FH:
1229 		*mode = IEEE80211_MODE_FH;
1230 		break;
1231 	case IFM_IEEE80211_11NA:
1232 		*mode = IEEE80211_MODE_11NA;
1233 		break;
1234 	case IFM_IEEE80211_11NG:
1235 		*mode = IEEE80211_MODE_11NG;
1236 		break;
1237 	case IFM_AUTO:
1238 		*mode = IEEE80211_MODE_AUTO;
1239 		break;
1240 	default:
1241 		return 0;
1242 	}
1243 	/*
1244 	 * Turbo mode is an ``option''.
1245 	 * XXX does not apply to AUTO
1246 	 */
1247 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1248 		if (*mode == IEEE80211_MODE_11A) {
1249 			if (flags & IEEE80211_F_TURBOP)
1250 				*mode = IEEE80211_MODE_TURBO_A;
1251 			else
1252 				*mode = IEEE80211_MODE_STURBO_A;
1253 		} else if (*mode == IEEE80211_MODE_11G)
1254 			*mode = IEEE80211_MODE_TURBO_G;
1255 		else
1256 			return 0;
1257 	}
1258 	/* XXX HT40 +/- */
1259 	return 1;
1260 }
1261 
1262 /*
1263  * Handle a media change request on the underlying interface.
1264  */
1265 int
1266 ieee80211com_media_change(struct ifnet *ifp)
1267 {
1268 	return EINVAL;
1269 }
1270 
1271 /*
1272  * Handle a media change request on the vap interface.
1273  */
1274 int
1275 ieee80211_media_change(struct ifnet *ifp)
1276 {
1277 	struct ieee80211vap *vap = ifp->if_softc;
1278 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1279 	uint16_t newmode;
1280 
1281 	if (!media2mode(ime, vap->iv_flags, &newmode))
1282 		return EINVAL;
1283 	if (vap->iv_des_mode != newmode) {
1284 		vap->iv_des_mode = newmode;
1285 		/* XXX kick state machine if up+running */
1286 	}
1287 	return 0;
1288 }
1289 
1290 /*
1291  * Common code to calculate the media status word
1292  * from the operating mode and channel state.
1293  */
1294 static int
1295 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1296 {
1297 	int status;
1298 
1299 	status = IFM_IEEE80211;
1300 	switch (opmode) {
1301 	case IEEE80211_M_STA:
1302 		break;
1303 	case IEEE80211_M_IBSS:
1304 		status |= IFM_IEEE80211_ADHOC;
1305 		break;
1306 	case IEEE80211_M_HOSTAP:
1307 		status |= IFM_IEEE80211_HOSTAP;
1308 		break;
1309 	case IEEE80211_M_MONITOR:
1310 		status |= IFM_IEEE80211_MONITOR;
1311 		break;
1312 	case IEEE80211_M_AHDEMO:
1313 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1314 		break;
1315 	case IEEE80211_M_WDS:
1316 		status |= IFM_IEEE80211_WDS;
1317 		break;
1318 	case IEEE80211_M_MBSS:
1319 		status |= IFM_IEEE80211_MBSS;
1320 		break;
1321 	}
1322 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1323 		status |= IFM_IEEE80211_11NA;
1324 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1325 		status |= IFM_IEEE80211_11NG;
1326 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1327 		status |= IFM_IEEE80211_11A;
1328 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1329 		status |= IFM_IEEE80211_11B;
1330 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1331 		status |= IFM_IEEE80211_11G;
1332 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1333 		status |= IFM_IEEE80211_FH;
1334 	}
1335 	/* XXX else complain? */
1336 
1337 	if (IEEE80211_IS_CHAN_TURBO(chan))
1338 		status |= IFM_IEEE80211_TURBO;
1339 #if 0
1340 	if (IEEE80211_IS_CHAN_HT20(chan))
1341 		status |= IFM_IEEE80211_HT20;
1342 	if (IEEE80211_IS_CHAN_HT40(chan))
1343 		status |= IFM_IEEE80211_HT40;
1344 #endif
1345 	return status;
1346 }
1347 
1348 static void
1349 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1350 {
1351 	struct ieee80211com *ic = ifp->if_l2com;
1352 	struct ieee80211vap *vap;
1353 
1354 	imr->ifm_status = IFM_AVALID;
1355 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1356 		if (vap->iv_ifp->if_flags & IFF_UP) {
1357 			imr->ifm_status |= IFM_ACTIVE;
1358 			break;
1359 		}
1360 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1361 	if (imr->ifm_status & IFM_ACTIVE)
1362 		imr->ifm_current = imr->ifm_active;
1363 }
1364 
1365 void
1366 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1367 {
1368 	struct ieee80211vap *vap = ifp->if_softc;
1369 	struct ieee80211com *ic = vap->iv_ic;
1370 	enum ieee80211_phymode mode;
1371 
1372 	imr->ifm_status = IFM_AVALID;
1373 	/*
1374 	 * NB: use the current channel's mode to lock down a xmit
1375 	 * rate only when running; otherwise we may have a mismatch
1376 	 * in which case the rate will not be convertible.
1377 	 */
1378 	if (vap->iv_state == IEEE80211_S_RUN) {
1379 		imr->ifm_status |= IFM_ACTIVE;
1380 		mode = ieee80211_chan2mode(ic->ic_curchan);
1381 	} else
1382 		mode = IEEE80211_MODE_AUTO;
1383 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1384 	/*
1385 	 * Calculate a current rate if possible.
1386 	 */
1387 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1388 		/*
1389 		 * A fixed rate is set, report that.
1390 		 */
1391 		imr->ifm_active |= ieee80211_rate2media(ic,
1392 			vap->iv_txparms[mode].ucastrate, mode);
1393 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1394 		/*
1395 		 * In station mode report the current transmit rate.
1396 		 */
1397 		imr->ifm_active |= ieee80211_rate2media(ic,
1398 			vap->iv_bss->ni_txrate, mode);
1399 	} else
1400 		imr->ifm_active |= IFM_AUTO;
1401 	if (imr->ifm_status & IFM_ACTIVE)
1402 		imr->ifm_current = imr->ifm_active;
1403 }
1404 
1405 /*
1406  * Set the current phy mode and recalculate the active channel
1407  * set based on the available channels for this mode.  Also
1408  * select a new default/current channel if the current one is
1409  * inappropriate for this mode.
1410  */
1411 int
1412 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1413 {
1414 	/*
1415 	 * Adjust basic rates in 11b/11g supported rate set.
1416 	 * Note that if operating on a hal/quarter rate channel
1417 	 * this is a noop as those rates sets are different
1418 	 * and used instead.
1419 	 */
1420 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1421 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1422 
1423 	ic->ic_curmode = mode;
1424 	ieee80211_reset_erp(ic);	/* reset ERP state */
1425 
1426 	return 0;
1427 }
1428 
1429 /*
1430  * Return the phy mode for with the specified channel.
1431  */
1432 enum ieee80211_phymode
1433 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1434 {
1435 
1436 	if (IEEE80211_IS_CHAN_HTA(chan))
1437 		return IEEE80211_MODE_11NA;
1438 	else if (IEEE80211_IS_CHAN_HTG(chan))
1439 		return IEEE80211_MODE_11NG;
1440 	else if (IEEE80211_IS_CHAN_108G(chan))
1441 		return IEEE80211_MODE_TURBO_G;
1442 	else if (IEEE80211_IS_CHAN_ST(chan))
1443 		return IEEE80211_MODE_STURBO_A;
1444 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1445 		return IEEE80211_MODE_TURBO_A;
1446 	else if (IEEE80211_IS_CHAN_HALF(chan))
1447 		return IEEE80211_MODE_HALF;
1448 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1449 		return IEEE80211_MODE_QUARTER;
1450 	else if (IEEE80211_IS_CHAN_A(chan))
1451 		return IEEE80211_MODE_11A;
1452 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1453 		return IEEE80211_MODE_11G;
1454 	else if (IEEE80211_IS_CHAN_B(chan))
1455 		return IEEE80211_MODE_11B;
1456 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1457 		return IEEE80211_MODE_FH;
1458 
1459 	/* NB: should not get here */
1460 	printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1461 		__func__, chan->ic_freq, chan->ic_flags);
1462 	return IEEE80211_MODE_11B;
1463 }
1464 
1465 struct ratemedia {
1466 	u_int	match;	/* rate + mode */
1467 	u_int	media;	/* if_media rate */
1468 };
1469 
1470 static int
1471 findmedia(const struct ratemedia rates[], int n, u_int match)
1472 {
1473 	int i;
1474 
1475 	for (i = 0; i < n; i++)
1476 		if (rates[i].match == match)
1477 			return rates[i].media;
1478 	return IFM_AUTO;
1479 }
1480 
1481 /*
1482  * Convert IEEE80211 rate value to ifmedia subtype.
1483  * Rate is either a legacy rate in units of 0.5Mbps
1484  * or an MCS index.
1485  */
1486 int
1487 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1488 {
1489 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1490 	static const struct ratemedia rates[] = {
1491 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1492 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1493 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1494 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1495 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1496 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1497 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1498 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1499 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1500 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1501 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1502 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1503 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1504 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1505 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1506 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1507 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1508 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1509 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1510 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1511 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1512 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1513 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1514 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1515 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1516 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1517 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1518 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1519 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1520 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1521 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1522 	};
1523 	static const struct ratemedia htrates[] = {
1524 		{   0, IFM_IEEE80211_MCS },
1525 		{   1, IFM_IEEE80211_MCS },
1526 		{   2, IFM_IEEE80211_MCS },
1527 		{   3, IFM_IEEE80211_MCS },
1528 		{   4, IFM_IEEE80211_MCS },
1529 		{   5, IFM_IEEE80211_MCS },
1530 		{   6, IFM_IEEE80211_MCS },
1531 		{   7, IFM_IEEE80211_MCS },
1532 		{   8, IFM_IEEE80211_MCS },
1533 		{   9, IFM_IEEE80211_MCS },
1534 		{  10, IFM_IEEE80211_MCS },
1535 		{  11, IFM_IEEE80211_MCS },
1536 		{  12, IFM_IEEE80211_MCS },
1537 		{  13, IFM_IEEE80211_MCS },
1538 		{  14, IFM_IEEE80211_MCS },
1539 		{  15, IFM_IEEE80211_MCS },
1540 		{  16, IFM_IEEE80211_MCS },
1541 		{  17, IFM_IEEE80211_MCS },
1542 		{  18, IFM_IEEE80211_MCS },
1543 		{  19, IFM_IEEE80211_MCS },
1544 		{  20, IFM_IEEE80211_MCS },
1545 		{  21, IFM_IEEE80211_MCS },
1546 		{  22, IFM_IEEE80211_MCS },
1547 		{  23, IFM_IEEE80211_MCS },
1548 		{  24, IFM_IEEE80211_MCS },
1549 		{  25, IFM_IEEE80211_MCS },
1550 		{  26, IFM_IEEE80211_MCS },
1551 		{  27, IFM_IEEE80211_MCS },
1552 		{  28, IFM_IEEE80211_MCS },
1553 		{  29, IFM_IEEE80211_MCS },
1554 		{  30, IFM_IEEE80211_MCS },
1555 		{  31, IFM_IEEE80211_MCS },
1556 		{  32, IFM_IEEE80211_MCS },
1557 		{  33, IFM_IEEE80211_MCS },
1558 		{  34, IFM_IEEE80211_MCS },
1559 		{  35, IFM_IEEE80211_MCS },
1560 		{  36, IFM_IEEE80211_MCS },
1561 		{  37, IFM_IEEE80211_MCS },
1562 		{  38, IFM_IEEE80211_MCS },
1563 		{  39, IFM_IEEE80211_MCS },
1564 		{  40, IFM_IEEE80211_MCS },
1565 		{  41, IFM_IEEE80211_MCS },
1566 		{  42, IFM_IEEE80211_MCS },
1567 		{  43, IFM_IEEE80211_MCS },
1568 		{  44, IFM_IEEE80211_MCS },
1569 		{  45, IFM_IEEE80211_MCS },
1570 		{  46, IFM_IEEE80211_MCS },
1571 		{  47, IFM_IEEE80211_MCS },
1572 		{  48, IFM_IEEE80211_MCS },
1573 		{  49, IFM_IEEE80211_MCS },
1574 		{  50, IFM_IEEE80211_MCS },
1575 		{  51, IFM_IEEE80211_MCS },
1576 		{  52, IFM_IEEE80211_MCS },
1577 		{  53, IFM_IEEE80211_MCS },
1578 		{  54, IFM_IEEE80211_MCS },
1579 		{  55, IFM_IEEE80211_MCS },
1580 		{  56, IFM_IEEE80211_MCS },
1581 		{  57, IFM_IEEE80211_MCS },
1582 		{  58, IFM_IEEE80211_MCS },
1583 		{  59, IFM_IEEE80211_MCS },
1584 		{  60, IFM_IEEE80211_MCS },
1585 		{  61, IFM_IEEE80211_MCS },
1586 		{  62, IFM_IEEE80211_MCS },
1587 		{  63, IFM_IEEE80211_MCS },
1588 		{  64, IFM_IEEE80211_MCS },
1589 		{  65, IFM_IEEE80211_MCS },
1590 		{  66, IFM_IEEE80211_MCS },
1591 		{  67, IFM_IEEE80211_MCS },
1592 		{  68, IFM_IEEE80211_MCS },
1593 		{  69, IFM_IEEE80211_MCS },
1594 		{  70, IFM_IEEE80211_MCS },
1595 		{  71, IFM_IEEE80211_MCS },
1596 		{  72, IFM_IEEE80211_MCS },
1597 		{  73, IFM_IEEE80211_MCS },
1598 		{  74, IFM_IEEE80211_MCS },
1599 		{  75, IFM_IEEE80211_MCS },
1600 		{  76, IFM_IEEE80211_MCS },
1601 	};
1602 	int m;
1603 
1604 	/*
1605 	 * Check 11n rates first for match as an MCS.
1606 	 */
1607 	if (mode == IEEE80211_MODE_11NA) {
1608 		if (rate & IEEE80211_RATE_MCS) {
1609 			rate &= ~IEEE80211_RATE_MCS;
1610 			m = findmedia(htrates, N(htrates), rate);
1611 			if (m != IFM_AUTO)
1612 				return m | IFM_IEEE80211_11NA;
1613 		}
1614 	} else if (mode == IEEE80211_MODE_11NG) {
1615 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1616 		if (rate & IEEE80211_RATE_MCS) {
1617 			rate &= ~IEEE80211_RATE_MCS;
1618 			m = findmedia(htrates, N(htrates), rate);
1619 			if (m != IFM_AUTO)
1620 				return m | IFM_IEEE80211_11NG;
1621 		}
1622 	}
1623 	rate &= IEEE80211_RATE_VAL;
1624 	switch (mode) {
1625 	case IEEE80211_MODE_11A:
1626 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1627 	case IEEE80211_MODE_QUARTER:
1628 	case IEEE80211_MODE_11NA:
1629 	case IEEE80211_MODE_TURBO_A:
1630 	case IEEE80211_MODE_STURBO_A:
1631 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A);
1632 	case IEEE80211_MODE_11B:
1633 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B);
1634 	case IEEE80211_MODE_FH:
1635 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH);
1636 	case IEEE80211_MODE_AUTO:
1637 		/* NB: ic may be NULL for some drivers */
1638 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1639 			return findmedia(rates, N(rates),
1640 			    rate | IFM_IEEE80211_FH);
1641 		/* NB: hack, 11g matches both 11b+11a rates */
1642 		/* fall thru... */
1643 	case IEEE80211_MODE_11G:
1644 	case IEEE80211_MODE_11NG:
1645 	case IEEE80211_MODE_TURBO_G:
1646 		return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G);
1647 	}
1648 	return IFM_AUTO;
1649 #undef N
1650 }
1651 
1652 int
1653 ieee80211_media2rate(int mword)
1654 {
1655 #define	N(a)	(sizeof(a) / sizeof(a[0]))
1656 	static const int ieeerates[] = {
1657 		-1,		/* IFM_AUTO */
1658 		0,		/* IFM_MANUAL */
1659 		0,		/* IFM_NONE */
1660 		2,		/* IFM_IEEE80211_FH1 */
1661 		4,		/* IFM_IEEE80211_FH2 */
1662 		2,		/* IFM_IEEE80211_DS1 */
1663 		4,		/* IFM_IEEE80211_DS2 */
1664 		11,		/* IFM_IEEE80211_DS5 */
1665 		22,		/* IFM_IEEE80211_DS11 */
1666 		44,		/* IFM_IEEE80211_DS22 */
1667 		12,		/* IFM_IEEE80211_OFDM6 */
1668 		18,		/* IFM_IEEE80211_OFDM9 */
1669 		24,		/* IFM_IEEE80211_OFDM12 */
1670 		36,		/* IFM_IEEE80211_OFDM18 */
1671 		48,		/* IFM_IEEE80211_OFDM24 */
1672 		72,		/* IFM_IEEE80211_OFDM36 */
1673 		96,		/* IFM_IEEE80211_OFDM48 */
1674 		108,		/* IFM_IEEE80211_OFDM54 */
1675 		144,		/* IFM_IEEE80211_OFDM72 */
1676 		0,		/* IFM_IEEE80211_DS354k */
1677 		0,		/* IFM_IEEE80211_DS512k */
1678 		6,		/* IFM_IEEE80211_OFDM3 */
1679 		9,		/* IFM_IEEE80211_OFDM4 */
1680 		54,		/* IFM_IEEE80211_OFDM27 */
1681 		-1,		/* IFM_IEEE80211_MCS */
1682 	};
1683 	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1684 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1685 #undef N
1686 }
1687 
1688 /*
1689  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1690  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1691  */
1692 #define	mix(a, b, c)							\
1693 do {									\
1694 	a -= b; a -= c; a ^= (c >> 13);					\
1695 	b -= c; b -= a; b ^= (a << 8);					\
1696 	c -= a; c -= b; c ^= (b >> 13);					\
1697 	a -= b; a -= c; a ^= (c >> 12);					\
1698 	b -= c; b -= a; b ^= (a << 16);					\
1699 	c -= a; c -= b; c ^= (b >> 5);					\
1700 	a -= b; a -= c; a ^= (c >> 3);					\
1701 	b -= c; b -= a; b ^= (a << 10);					\
1702 	c -= a; c -= b; c ^= (b >> 15);					\
1703 } while (/*CONSTCOND*/0)
1704 
1705 uint32_t
1706 ieee80211_mac_hash(const struct ieee80211com *ic,
1707 	const uint8_t addr[IEEE80211_ADDR_LEN])
1708 {
1709 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1710 
1711 	b += addr[5] << 8;
1712 	b += addr[4];
1713 	a += addr[3] << 24;
1714 	a += addr[2] << 16;
1715 	a += addr[1] << 8;
1716 	a += addr[0];
1717 
1718 	mix(a, b, c);
1719 
1720 	return c;
1721 }
1722 #undef mix
1723