1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 generic handler 32 */ 33 #include "opt_wlan.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 #include <net/if_types.h> 45 #include <net/ethernet.h> 46 47 #include <net80211/ieee80211_var.h> 48 #include <net80211/ieee80211_regdomain.h> 49 #ifdef IEEE80211_SUPPORT_SUPERG 50 #include <net80211/ieee80211_superg.h> 51 #endif 52 #include <net80211/ieee80211_ratectl.h> 53 54 #include <net/bpf.h> 55 56 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { 57 [IEEE80211_MODE_AUTO] = "auto", 58 [IEEE80211_MODE_11A] = "11a", 59 [IEEE80211_MODE_11B] = "11b", 60 [IEEE80211_MODE_11G] = "11g", 61 [IEEE80211_MODE_FH] = "FH", 62 [IEEE80211_MODE_TURBO_A] = "turboA", 63 [IEEE80211_MODE_TURBO_G] = "turboG", 64 [IEEE80211_MODE_STURBO_A] = "sturboA", 65 [IEEE80211_MODE_HALF] = "half", 66 [IEEE80211_MODE_QUARTER] = "quarter", 67 [IEEE80211_MODE_11NA] = "11na", 68 [IEEE80211_MODE_11NG] = "11ng", 69 }; 70 /* map ieee80211_opmode to the corresponding capability bit */ 71 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { 72 [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, 73 [IEEE80211_M_WDS] = IEEE80211_C_WDS, 74 [IEEE80211_M_STA] = IEEE80211_C_STA, 75 [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, 76 [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, 77 [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, 78 #ifdef IEEE80211_SUPPORT_MESH 79 [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, 80 #endif 81 }; 82 83 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = 84 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 85 86 static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); 87 static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); 88 static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); 89 static int ieee80211_media_setup(struct ieee80211com *ic, 90 struct ifmedia *media, int caps, int addsta, 91 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); 92 static void ieee80211com_media_status(struct ifnet *, struct ifmediareq *); 93 static int ieee80211com_media_change(struct ifnet *); 94 static int media_status(enum ieee80211_opmode, 95 const struct ieee80211_channel *); 96 97 /* 98 * Default supported rates for 802.11 operation (in IEEE .5Mb units). 99 */ 100 #define B(r) ((r) | IEEE80211_RATE_BASIC) 101 static const struct ieee80211_rateset ieee80211_rateset_11a = 102 { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; 103 static const struct ieee80211_rateset ieee80211_rateset_half = 104 { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; 105 static const struct ieee80211_rateset ieee80211_rateset_quarter = 106 { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; 107 static const struct ieee80211_rateset ieee80211_rateset_11b = 108 { 4, { B(2), B(4), B(11), B(22) } }; 109 /* NB: OFDM rates are handled specially based on mode */ 110 static const struct ieee80211_rateset ieee80211_rateset_11g = 111 { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; 112 #undef B 113 114 /* 115 * Fill in 802.11 available channel set, mark 116 * all available channels as active, and pick 117 * a default channel if not already specified. 118 */ 119 static void 120 ieee80211_chan_init(struct ieee80211com *ic) 121 { 122 #define DEFAULTRATES(m, def) do { \ 123 if (ic->ic_sup_rates[m].rs_nrates == 0) \ 124 ic->ic_sup_rates[m] = def; \ 125 } while (0) 126 struct ieee80211_channel *c; 127 int i; 128 129 KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, 130 ("invalid number of channels specified: %u", ic->ic_nchans)); 131 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 132 memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); 133 setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); 134 for (i = 0; i < ic->ic_nchans; i++) { 135 c = &ic->ic_channels[i]; 136 KASSERT(c->ic_flags != 0, ("channel with no flags")); 137 /* 138 * Help drivers that work only with frequencies by filling 139 * in IEEE channel #'s if not already calculated. Note this 140 * mimics similar work done in ieee80211_setregdomain when 141 * changing regulatory state. 142 */ 143 if (c->ic_ieee == 0) 144 c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); 145 if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) 146 c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + 147 (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), 148 c->ic_flags); 149 /* default max tx power to max regulatory */ 150 if (c->ic_maxpower == 0) 151 c->ic_maxpower = 2*c->ic_maxregpower; 152 setbit(ic->ic_chan_avail, c->ic_ieee); 153 /* 154 * Identify mode capabilities. 155 */ 156 if (IEEE80211_IS_CHAN_A(c)) 157 setbit(ic->ic_modecaps, IEEE80211_MODE_11A); 158 if (IEEE80211_IS_CHAN_B(c)) 159 setbit(ic->ic_modecaps, IEEE80211_MODE_11B); 160 if (IEEE80211_IS_CHAN_ANYG(c)) 161 setbit(ic->ic_modecaps, IEEE80211_MODE_11G); 162 if (IEEE80211_IS_CHAN_FHSS(c)) 163 setbit(ic->ic_modecaps, IEEE80211_MODE_FH); 164 if (IEEE80211_IS_CHAN_108A(c)) 165 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); 166 if (IEEE80211_IS_CHAN_108G(c)) 167 setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); 168 if (IEEE80211_IS_CHAN_ST(c)) 169 setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); 170 if (IEEE80211_IS_CHAN_HALF(c)) 171 setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); 172 if (IEEE80211_IS_CHAN_QUARTER(c)) 173 setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); 174 if (IEEE80211_IS_CHAN_HTA(c)) 175 setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); 176 if (IEEE80211_IS_CHAN_HTG(c)) 177 setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); 178 } 179 /* initialize candidate channels to all available */ 180 memcpy(ic->ic_chan_active, ic->ic_chan_avail, 181 sizeof(ic->ic_chan_avail)); 182 183 /* sort channel table to allow lookup optimizations */ 184 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 185 186 /* invalidate any previous state */ 187 ic->ic_bsschan = IEEE80211_CHAN_ANYC; 188 ic->ic_prevchan = NULL; 189 ic->ic_csa_newchan = NULL; 190 /* arbitrarily pick the first channel */ 191 ic->ic_curchan = &ic->ic_channels[0]; 192 ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); 193 194 /* fillin well-known rate sets if driver has not specified */ 195 DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); 196 DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); 197 DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); 198 DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); 199 DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); 200 DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); 201 DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); 202 DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); 203 DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); 204 DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); 205 206 /* 207 * Setup required information to fill the mcsset field, if driver did 208 * not. Assume a 2T2R setup for historic reasons. 209 */ 210 if (ic->ic_rxstream == 0) 211 ic->ic_rxstream = 2; 212 if (ic->ic_txstream == 0) 213 ic->ic_txstream = 2; 214 215 /* 216 * Set auto mode to reset active channel state and any desired channel. 217 */ 218 (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 219 #undef DEFAULTRATES 220 } 221 222 static void 223 null_update_mcast(struct ifnet *ifp) 224 { 225 if_printf(ifp, "need multicast update callback\n"); 226 } 227 228 static void 229 null_update_promisc(struct ifnet *ifp) 230 { 231 if_printf(ifp, "need promiscuous mode update callback\n"); 232 } 233 234 static int 235 null_transmit(struct ifnet *ifp, struct mbuf *m) 236 { 237 m_freem(m); 238 ifp->if_oerrors++; 239 return EACCES; /* XXX EIO/EPERM? */ 240 } 241 242 static int 243 null_output(struct ifnet *ifp, struct mbuf *m, 244 struct sockaddr *dst, struct route *ro) 245 { 246 if_printf(ifp, "discard raw packet\n"); 247 return null_transmit(ifp, m); 248 } 249 250 static void 251 null_input(struct ifnet *ifp, struct mbuf *m) 252 { 253 if_printf(ifp, "if_input should not be called\n"); 254 m_freem(m); 255 } 256 257 /* 258 * Attach/setup the common net80211 state. Called by 259 * the driver on attach to prior to creating any vap's. 260 */ 261 void 262 ieee80211_ifattach(struct ieee80211com *ic, 263 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 264 { 265 struct ifnet *ifp = ic->ic_ifp; 266 struct sockaddr_dl *sdl; 267 struct ifaddr *ifa; 268 269 KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type)); 270 271 IEEE80211_LOCK_INIT(ic, ifp->if_xname); 272 TAILQ_INIT(&ic->ic_vaps); 273 274 /* Create a taskqueue for all state changes */ 275 ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO, 276 taskqueue_thread_enqueue, &ic->ic_tq); 277 taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s taskq", 278 ifp->if_xname); 279 /* 280 * Fill in 802.11 available channel set, mark all 281 * available channels as active, and pick a default 282 * channel if not already specified. 283 */ 284 ieee80211_media_init(ic); 285 286 ic->ic_update_mcast = null_update_mcast; 287 ic->ic_update_promisc = null_update_promisc; 288 289 ic->ic_hash_key = arc4random(); 290 ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; 291 ic->ic_lintval = ic->ic_bintval; 292 ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; 293 294 ieee80211_crypto_attach(ic); 295 ieee80211_node_attach(ic); 296 ieee80211_power_attach(ic); 297 ieee80211_proto_attach(ic); 298 #ifdef IEEE80211_SUPPORT_SUPERG 299 ieee80211_superg_attach(ic); 300 #endif 301 ieee80211_ht_attach(ic); 302 ieee80211_scan_attach(ic); 303 ieee80211_regdomain_attach(ic); 304 ieee80211_dfs_attach(ic); 305 #if defined(__HAIKU__) 306 ieee80211_ratectl_attach(ic); 307 #endif 308 309 ieee80211_sysctl_attach(ic); 310 311 ifp->if_addrlen = IEEE80211_ADDR_LEN; 312 ifp->if_hdrlen = 0; 313 if_attach(ifp); 314 ifp->if_mtu = IEEE80211_MTU_MAX; 315 ifp->if_broadcastaddr = ieee80211broadcastaddr; 316 ifp->if_output = null_output; 317 ifp->if_input = null_input; /* just in case */ 318 ifp->if_resolvemulti = NULL; /* NB: callers check */ 319 320 #ifndef __HAIKU__ 321 ifa = ifaddr_byindex(ifp->if_index); 322 KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); 323 sdl = (struct sockaddr_dl *)ifa->ifa_addr;; 324 #else 325 sdl = &ifp->if_lladdr; 326 #endif 327 sdl->sdl_type = IFT_ETHER; /* XXX IFT_IEEE80211? */ 328 sdl->sdl_alen = IEEE80211_ADDR_LEN; 329 IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr); 330 ifa_free(ifa); 331 } 332 333 /* 334 * Detach net80211 state on device detach. Tear down 335 * all vap's and reclaim all common state prior to the 336 * device state going away. Note we may call back into 337 * driver; it must be prepared for this. 338 */ 339 void 340 ieee80211_ifdetach(struct ieee80211com *ic) 341 { 342 struct ifnet *ifp = ic->ic_ifp; 343 struct ieee80211vap *vap; 344 345 if_detach(ifp); 346 347 while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) 348 ieee80211_vap_destroy(vap); 349 ieee80211_waitfor_parent(ic); 350 351 ieee80211_sysctl_detach(ic); 352 #if defined(__HAIKU__) 353 ieee80211_ratectl_detach(ic); 354 #endif 355 ieee80211_dfs_detach(ic); 356 ieee80211_regdomain_detach(ic); 357 ieee80211_scan_detach(ic); 358 #ifdef IEEE80211_SUPPORT_SUPERG 359 ieee80211_superg_detach(ic); 360 #endif 361 ieee80211_ht_detach(ic); 362 /* NB: must be called before ieee80211_node_detach */ 363 ieee80211_proto_detach(ic); 364 ieee80211_crypto_detach(ic); 365 ieee80211_power_detach(ic); 366 ieee80211_node_detach(ic); 367 368 ifmedia_removeall(&ic->ic_media); 369 taskqueue_free(ic->ic_tq); 370 IEEE80211_LOCK_DESTROY(ic); 371 } 372 373 /* 374 * Default reset method for use with the ioctl support. This 375 * method is invoked after any state change in the 802.11 376 * layer that should be propagated to the hardware but not 377 * require re-initialization of the 802.11 state machine (e.g 378 * rescanning for an ap). We always return ENETRESET which 379 * should cause the driver to re-initialize the device. Drivers 380 * can override this method to implement more optimized support. 381 */ 382 static int 383 default_reset(struct ieee80211vap *vap, u_long cmd) 384 { 385 return ENETRESET; 386 } 387 388 /* 389 * Prepare a vap for use. Drivers use this call to 390 * setup net80211 state in new vap's prior attaching 391 * them with ieee80211_vap_attach (below). 392 */ 393 int 394 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, 395 const char name[IFNAMSIZ], int unit, int opmode, int flags, 396 const uint8_t bssid[IEEE80211_ADDR_LEN], 397 const uint8_t macaddr[IEEE80211_ADDR_LEN]) 398 { 399 struct ifnet *ifp; 400 401 ifp = if_alloc(IFT_ETHER); 402 if (ifp == NULL) { 403 if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n", 404 __func__); 405 return ENOMEM; 406 } 407 if_initname(ifp, name, unit); 408 ifp->if_softc = vap; /* back pointer */ 409 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 410 ifp->if_start = ieee80211_start; 411 ifp->if_ioctl = ieee80211_ioctl; 412 ifp->if_init = ieee80211_init; 413 /* NB: input+output filled in by ether_ifattach */ 414 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 415 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 416 IFQ_SET_READY(&ifp->if_snd); 417 418 vap->iv_ifp = ifp; 419 vap->iv_ic = ic; 420 vap->iv_flags = ic->ic_flags; /* propagate common flags */ 421 vap->iv_flags_ext = ic->ic_flags_ext; 422 vap->iv_flags_ven = ic->ic_flags_ven; 423 vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; 424 vap->iv_htcaps = ic->ic_htcaps; 425 vap->iv_htextcaps = ic->ic_htextcaps; 426 vap->iv_opmode = opmode; 427 vap->iv_caps |= ieee80211_opcap[opmode]; 428 switch (opmode) { 429 case IEEE80211_M_WDS: 430 /* 431 * WDS links must specify the bssid of the far end. 432 * For legacy operation this is a static relationship. 433 * For non-legacy operation the station must associate 434 * and be authorized to pass traffic. Plumbing the 435 * vap to the proper node happens when the vap 436 * transitions to RUN state. 437 */ 438 IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); 439 vap->iv_flags |= IEEE80211_F_DESBSSID; 440 if (flags & IEEE80211_CLONE_WDSLEGACY) 441 vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; 442 break; 443 #ifdef IEEE80211_SUPPORT_TDMA 444 case IEEE80211_M_AHDEMO: 445 if (flags & IEEE80211_CLONE_TDMA) { 446 /* NB: checked before clone operation allowed */ 447 KASSERT(ic->ic_caps & IEEE80211_C_TDMA, 448 ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); 449 /* 450 * Propagate TDMA capability to mark vap; this 451 * cannot be removed and is used to distinguish 452 * regular ahdemo operation from ahdemo+tdma. 453 */ 454 vap->iv_caps |= IEEE80211_C_TDMA; 455 } 456 break; 457 #endif 458 } 459 /* auto-enable s/w beacon miss support */ 460 if (flags & IEEE80211_CLONE_NOBEACONS) 461 vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; 462 /* auto-generated or user supplied MAC address */ 463 if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) 464 vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; 465 /* 466 * Enable various functionality by default if we're 467 * capable; the driver can override us if it knows better. 468 */ 469 if (vap->iv_caps & IEEE80211_C_WME) 470 vap->iv_flags |= IEEE80211_F_WME; 471 if (vap->iv_caps & IEEE80211_C_BURST) 472 vap->iv_flags |= IEEE80211_F_BURST; 473 /* NB: bg scanning only makes sense for station mode right now */ 474 #if 0 475 if (vap->iv_opmode == IEEE80211_M_STA && 476 (vap->iv_caps & IEEE80211_C_BGSCAN)) 477 vap->iv_flags |= IEEE80211_F_BGSCAN; 478 #endif 479 vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ 480 /* NB: DFS support only makes sense for ap mode right now */ 481 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 482 (vap->iv_caps & IEEE80211_C_DFS)) 483 vap->iv_flags_ext |= IEEE80211_FEXT_DFS; 484 485 vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 486 vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; 487 vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; 488 /* 489 * Install a default reset method for the ioctl support; 490 * the driver can override this. 491 */ 492 vap->iv_reset = default_reset; 493 494 IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr); 495 496 ieee80211_sysctl_vattach(vap); 497 ieee80211_crypto_vattach(vap); 498 ieee80211_node_vattach(vap); 499 ieee80211_power_vattach(vap); 500 ieee80211_proto_vattach(vap); 501 #ifdef IEEE80211_SUPPORT_SUPERG 502 ieee80211_superg_vattach(vap); 503 #endif 504 ieee80211_ht_vattach(vap); 505 ieee80211_scan_vattach(vap); 506 ieee80211_regdomain_vattach(vap); 507 ieee80211_radiotap_vattach(vap); 508 ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); 509 510 return 0; 511 } 512 513 /* 514 * Activate a vap. State should have been prepared with a 515 * call to ieee80211_vap_setup and by the driver. On return 516 * from this call the vap is ready for use. 517 */ 518 int 519 ieee80211_vap_attach(struct ieee80211vap *vap, 520 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 521 { 522 struct ifnet *ifp = vap->iv_ifp; 523 struct ieee80211com *ic = vap->iv_ic; 524 struct ifmediareq imr; 525 int maxrate; 526 527 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 528 "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", 529 __func__, ieee80211_opmode_name[vap->iv_opmode], 530 ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext); 531 532 /* 533 * Do late attach work that cannot happen until after 534 * the driver has had a chance to override defaults. 535 */ 536 ieee80211_node_latevattach(vap); 537 ieee80211_power_latevattach(vap); 538 539 maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, 540 vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); 541 ieee80211_media_status(ifp, &imr); 542 /* NB: strip explicit mode; we're actually in autoselect */ 543 ifmedia_set(&vap->iv_media, 544 imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); 545 if (maxrate) 546 ifp->if_baudrate = IF_Mbps(maxrate); 547 548 ether_ifattach(ifp, vap->iv_myaddr); 549 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 550 /* NB: disallow transmit */ 551 ifp->if_transmit = null_transmit; 552 ifp->if_output = null_output; 553 } else { 554 /* hook output method setup by ether_ifattach */ 555 vap->iv_output = ifp->if_output; 556 ifp->if_output = ieee80211_output; 557 } 558 /* NB: if_mtu set by ether_ifattach to ETHERMTU */ 559 560 IEEE80211_LOCK(ic); 561 TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); 562 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 563 #ifdef IEEE80211_SUPPORT_SUPERG 564 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 565 #endif 566 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 567 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 568 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 569 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 570 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 571 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 572 IEEE80211_UNLOCK(ic); 573 574 return 1; 575 } 576 577 /* 578 * Tear down vap state and reclaim the ifnet. 579 * The driver is assumed to have prepared for 580 * this; e.g. by turning off interrupts for the 581 * underlying device. 582 */ 583 void 584 ieee80211_vap_detach(struct ieee80211vap *vap) 585 { 586 struct ieee80211com *ic = vap->iv_ic; 587 struct ifnet *ifp = vap->iv_ifp; 588 589 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", 590 __func__, ieee80211_opmode_name[vap->iv_opmode], 591 ic->ic_ifp->if_xname); 592 593 /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ 594 ether_ifdetach(ifp); 595 596 ieee80211_stop(vap); 597 598 /* 599 * Flush any deferred vap tasks. 600 */ 601 ieee80211_draintask(ic, &vap->iv_nstate_task); 602 ieee80211_draintask(ic, &vap->iv_swbmiss_task); 603 604 IEEE80211_LOCK(ic); 605 KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); 606 TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); 607 ieee80211_syncflag_locked(ic, IEEE80211_F_WME); 608 #ifdef IEEE80211_SUPPORT_SUPERG 609 ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); 610 #endif 611 ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); 612 ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); 613 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); 614 ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); 615 /* NB: this handles the bpfdetach done below */ 616 ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); 617 ieee80211_syncifflag_locked(ic, IFF_PROMISC); 618 ieee80211_syncifflag_locked(ic, IFF_ALLMULTI); 619 IEEE80211_UNLOCK(ic); 620 621 ifmedia_removeall(&vap->iv_media); 622 623 ieee80211_radiotap_vdetach(vap); 624 ieee80211_regdomain_vdetach(vap); 625 ieee80211_scan_vdetach(vap); 626 #ifdef IEEE80211_SUPPORT_SUPERG 627 ieee80211_superg_vdetach(vap); 628 #endif 629 ieee80211_ht_vdetach(vap); 630 /* NB: must be before ieee80211_node_vdetach */ 631 ieee80211_proto_vdetach(vap); 632 ieee80211_crypto_vdetach(vap); 633 ieee80211_power_vdetach(vap); 634 ieee80211_node_vdetach(vap); 635 ieee80211_sysctl_vdetach(vap); 636 637 if_free(ifp); 638 } 639 640 /* 641 * Synchronize flag bit state in the parent ifnet structure 642 * according to the state of all vap ifnet's. This is used, 643 * for example, to handle IFF_PROMISC and IFF_ALLMULTI. 644 */ 645 void 646 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag) 647 { 648 struct ifnet *ifp = ic->ic_ifp; 649 struct ieee80211vap *vap; 650 int bit, oflags; 651 652 IEEE80211_LOCK_ASSERT(ic); 653 654 bit = 0; 655 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 656 if (vap->iv_ifp->if_flags & flag) { 657 /* 658 * XXX the bridge sets PROMISC but we don't want to 659 * enable it on the device, discard here so all the 660 * drivers don't need to special-case it 661 */ 662 if (flag == IFF_PROMISC && 663 !(vap->iv_opmode == IEEE80211_M_MONITOR || 664 (vap->iv_opmode == IEEE80211_M_AHDEMO && 665 (vap->iv_caps & IEEE80211_C_TDMA) == 0))) 666 continue; 667 bit = 1; 668 break; 669 } 670 oflags = ifp->if_flags; 671 if (bit) 672 ifp->if_flags |= flag; 673 else 674 ifp->if_flags &= ~flag; 675 if ((ifp->if_flags ^ oflags) & flag) { 676 /* XXX should we return 1/0 and let caller do this? */ 677 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 678 if (flag == IFF_PROMISC) 679 ieee80211_runtask(ic, &ic->ic_promisc_task); 680 else if (flag == IFF_ALLMULTI) 681 ieee80211_runtask(ic, &ic->ic_mcast_task); 682 } 683 } 684 } 685 686 /* 687 * Synchronize flag bit state in the com structure 688 * according to the state of all vap's. This is used, 689 * for example, to handle state changes via ioctls. 690 */ 691 static void 692 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) 693 { 694 struct ieee80211vap *vap; 695 int bit; 696 697 IEEE80211_LOCK_ASSERT(ic); 698 699 bit = 0; 700 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 701 if (vap->iv_flags & flag) { 702 bit = 1; 703 break; 704 } 705 if (bit) 706 ic->ic_flags |= flag; 707 else 708 ic->ic_flags &= ~flag; 709 } 710 711 void 712 ieee80211_syncflag(struct ieee80211vap *vap, int flag) 713 { 714 struct ieee80211com *ic = vap->iv_ic; 715 716 IEEE80211_LOCK(ic); 717 if (flag < 0) { 718 flag = -flag; 719 vap->iv_flags &= ~flag; 720 } else 721 vap->iv_flags |= flag; 722 ieee80211_syncflag_locked(ic, flag); 723 IEEE80211_UNLOCK(ic); 724 } 725 726 /* 727 * Synchronize flags_ht bit state in the com structure 728 * according to the state of all vap's. This is used, 729 * for example, to handle state changes via ioctls. 730 */ 731 static void 732 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) 733 { 734 struct ieee80211vap *vap; 735 int bit; 736 737 IEEE80211_LOCK_ASSERT(ic); 738 739 bit = 0; 740 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 741 if (vap->iv_flags_ht & flag) { 742 bit = 1; 743 break; 744 } 745 if (bit) 746 ic->ic_flags_ht |= flag; 747 else 748 ic->ic_flags_ht &= ~flag; 749 } 750 751 void 752 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) 753 { 754 struct ieee80211com *ic = vap->iv_ic; 755 756 IEEE80211_LOCK(ic); 757 if (flag < 0) { 758 flag = -flag; 759 vap->iv_flags_ht &= ~flag; 760 } else 761 vap->iv_flags_ht |= flag; 762 ieee80211_syncflag_ht_locked(ic, flag); 763 IEEE80211_UNLOCK(ic); 764 } 765 766 /* 767 * Synchronize flags_ext bit state in the com structure 768 * according to the state of all vap's. This is used, 769 * for example, to handle state changes via ioctls. 770 */ 771 static void 772 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) 773 { 774 struct ieee80211vap *vap; 775 int bit; 776 777 IEEE80211_LOCK_ASSERT(ic); 778 779 bit = 0; 780 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 781 if (vap->iv_flags_ext & flag) { 782 bit = 1; 783 break; 784 } 785 if (bit) 786 ic->ic_flags_ext |= flag; 787 else 788 ic->ic_flags_ext &= ~flag; 789 } 790 791 void 792 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) 793 { 794 struct ieee80211com *ic = vap->iv_ic; 795 796 IEEE80211_LOCK(ic); 797 if (flag < 0) { 798 flag = -flag; 799 vap->iv_flags_ext &= ~flag; 800 } else 801 vap->iv_flags_ext |= flag; 802 ieee80211_syncflag_ext_locked(ic, flag); 803 IEEE80211_UNLOCK(ic); 804 } 805 806 static __inline int 807 mapgsm(u_int freq, u_int flags) 808 { 809 freq *= 10; 810 if (flags & IEEE80211_CHAN_QUARTER) 811 freq += 5; 812 else if (flags & IEEE80211_CHAN_HALF) 813 freq += 10; 814 else 815 freq += 20; 816 /* NB: there is no 907/20 wide but leave room */ 817 return (freq - 906*10) / 5; 818 } 819 820 static __inline int 821 mappsb(u_int freq, u_int flags) 822 { 823 return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; 824 } 825 826 /* 827 * Convert MHz frequency to IEEE channel number. 828 */ 829 int 830 ieee80211_mhz2ieee(u_int freq, u_int flags) 831 { 832 #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) 833 if (flags & IEEE80211_CHAN_GSM) 834 return mapgsm(freq, flags); 835 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 836 if (freq == 2484) 837 return 14; 838 if (freq < 2484) 839 return ((int) freq - 2407) / 5; 840 else 841 return 15 + ((freq - 2512) / 20); 842 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ 843 if (freq <= 5000) { 844 /* XXX check regdomain? */ 845 if (IS_FREQ_IN_PSB(freq)) 846 return mappsb(freq, flags); 847 return (freq - 4000) / 5; 848 } else 849 return (freq - 5000) / 5; 850 } else { /* either, guess */ 851 if (freq == 2484) 852 return 14; 853 if (freq < 2484) { 854 if (907 <= freq && freq <= 922) 855 return mapgsm(freq, flags); 856 return ((int) freq - 2407) / 5; 857 } 858 if (freq < 5000) { 859 if (IS_FREQ_IN_PSB(freq)) 860 return mappsb(freq, flags); 861 else if (freq > 4900) 862 return (freq - 4000) / 5; 863 else 864 return 15 + ((freq - 2512) / 20); 865 } 866 return (freq - 5000) / 5; 867 } 868 #undef IS_FREQ_IN_PSB 869 } 870 871 /* 872 * Convert channel to IEEE channel number. 873 */ 874 int 875 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 876 { 877 if (c == NULL) { 878 if_printf(ic->ic_ifp, "invalid channel (NULL)\n"); 879 return 0; /* XXX */ 880 } 881 return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); 882 } 883 884 /* 885 * Convert IEEE channel number to MHz frequency. 886 */ 887 u_int 888 ieee80211_ieee2mhz(u_int chan, u_int flags) 889 { 890 if (flags & IEEE80211_CHAN_GSM) 891 return 907 + 5 * (chan / 10); 892 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 893 if (chan == 14) 894 return 2484; 895 if (chan < 14) 896 return 2407 + chan*5; 897 else 898 return 2512 + ((chan-15)*20); 899 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ 900 if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { 901 chan -= 37; 902 return 4940 + chan*5 + (chan % 5 ? 2 : 0); 903 } 904 return 5000 + (chan*5); 905 } else { /* either, guess */ 906 /* XXX can't distinguish PSB+GSM channels */ 907 if (chan == 14) 908 return 2484; 909 if (chan < 14) /* 0-13 */ 910 return 2407 + chan*5; 911 if (chan < 27) /* 15-26 */ 912 return 2512 + ((chan-15)*20); 913 return 5000 + (chan*5); 914 } 915 } 916 917 /* 918 * Locate a channel given a frequency+flags. We cache 919 * the previous lookup to optimize switching between two 920 * channels--as happens with dynamic turbo. 921 */ 922 struct ieee80211_channel * 923 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) 924 { 925 struct ieee80211_channel *c; 926 int i; 927 928 flags &= IEEE80211_CHAN_ALLTURBO; 929 c = ic->ic_prevchan; 930 if (c != NULL && c->ic_freq == freq && 931 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 932 return c; 933 /* brute force search */ 934 for (i = 0; i < ic->ic_nchans; i++) { 935 c = &ic->ic_channels[i]; 936 if (c->ic_freq == freq && 937 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 938 return c; 939 } 940 return NULL; 941 } 942 943 /* 944 * Locate a channel given a channel number+flags. We cache 945 * the previous lookup to optimize switching between two 946 * channels--as happens with dynamic turbo. 947 */ 948 struct ieee80211_channel * 949 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) 950 { 951 struct ieee80211_channel *c; 952 int i; 953 954 flags &= IEEE80211_CHAN_ALLTURBO; 955 c = ic->ic_prevchan; 956 if (c != NULL && c->ic_ieee == ieee && 957 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 958 return c; 959 /* brute force search */ 960 for (i = 0; i < ic->ic_nchans; i++) { 961 c = &ic->ic_channels[i]; 962 if (c->ic_ieee == ieee && 963 (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) 964 return c; 965 } 966 return NULL; 967 } 968 969 static void 970 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) 971 { 972 #define ADD(_ic, _s, _o) \ 973 ifmedia_add(media, \ 974 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 975 static const u_int mopts[IEEE80211_MODE_MAX] = { 976 [IEEE80211_MODE_AUTO] = IFM_AUTO, 977 [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, 978 [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, 979 [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, 980 [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, 981 [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 982 [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, 983 [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, 984 [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ 985 [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ 986 [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, 987 [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, 988 }; 989 u_int mopt; 990 991 mopt = mopts[mode]; 992 if (addsta) 993 ADD(ic, mword, mopt); /* STA mode has no cap */ 994 if (caps & IEEE80211_C_IBSS) 995 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); 996 if (caps & IEEE80211_C_HOSTAP) 997 ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); 998 if (caps & IEEE80211_C_AHDEMO) 999 ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); 1000 if (caps & IEEE80211_C_MONITOR) 1001 ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); 1002 if (caps & IEEE80211_C_WDS) 1003 ADD(media, mword, mopt | IFM_IEEE80211_WDS); 1004 if (caps & IEEE80211_C_MBSS) 1005 ADD(media, mword, mopt | IFM_IEEE80211_MBSS); 1006 #undef ADD 1007 } 1008 1009 /* 1010 * Setup the media data structures according to the channel and 1011 * rate tables. 1012 */ 1013 static int 1014 ieee80211_media_setup(struct ieee80211com *ic, 1015 struct ifmedia *media, int caps, int addsta, 1016 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 1017 { 1018 int i, j, mode, rate, maxrate, mword, r; 1019 const struct ieee80211_rateset *rs; 1020 struct ieee80211_rateset allrates; 1021 1022 /* 1023 * Fill in media characteristics. 1024 */ 1025 ifmedia_init(media, 0, media_change, media_stat); 1026 maxrate = 0; 1027 /* 1028 * Add media for legacy operating modes. 1029 */ 1030 memset(&allrates, 0, sizeof(allrates)); 1031 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { 1032 if (isclr(ic->ic_modecaps, mode)) 1033 continue; 1034 addmedia(media, caps, addsta, mode, IFM_AUTO); 1035 if (mode == IEEE80211_MODE_AUTO) 1036 continue; 1037 rs = &ic->ic_sup_rates[mode]; 1038 for (i = 0; i < rs->rs_nrates; i++) { 1039 rate = rs->rs_rates[i]; 1040 mword = ieee80211_rate2media(ic, rate, mode); 1041 if (mword == 0) 1042 continue; 1043 addmedia(media, caps, addsta, mode, mword); 1044 /* 1045 * Add legacy rate to the collection of all rates. 1046 */ 1047 r = rate & IEEE80211_RATE_VAL; 1048 for (j = 0; j < allrates.rs_nrates; j++) 1049 if (allrates.rs_rates[j] == r) 1050 break; 1051 if (j == allrates.rs_nrates) { 1052 /* unique, add to the set */ 1053 allrates.rs_rates[j] = r; 1054 allrates.rs_nrates++; 1055 } 1056 rate = (rate & IEEE80211_RATE_VAL) / 2; 1057 if (rate > maxrate) 1058 maxrate = rate; 1059 } 1060 } 1061 for (i = 0; i < allrates.rs_nrates; i++) { 1062 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 1063 IEEE80211_MODE_AUTO); 1064 if (mword == 0) 1065 continue; 1066 /* NB: remove media options from mword */ 1067 addmedia(media, caps, addsta, 1068 IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); 1069 } 1070 /* 1071 * Add HT/11n media. Note that we do not have enough 1072 * bits in the media subtype to express the MCS so we 1073 * use a "placeholder" media subtype and any fixed MCS 1074 * must be specified with a different mechanism. 1075 */ 1076 for (; mode <= IEEE80211_MODE_11NG; mode++) { 1077 if (isclr(ic->ic_modecaps, mode)) 1078 continue; 1079 addmedia(media, caps, addsta, mode, IFM_AUTO); 1080 addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); 1081 } 1082 if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || 1083 isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { 1084 addmedia(media, caps, addsta, 1085 IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); 1086 i = ic->ic_txstream * 8 - 1; 1087 if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && 1088 (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) 1089 rate = ieee80211_htrates[i].ht40_rate_400ns; 1090 else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) 1091 rate = ieee80211_htrates[i].ht40_rate_800ns; 1092 else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) 1093 rate = ieee80211_htrates[i].ht20_rate_400ns; 1094 else 1095 rate = ieee80211_htrates[i].ht20_rate_800ns; 1096 if (rate > maxrate) 1097 maxrate = rate; 1098 } 1099 return maxrate; 1100 } 1101 1102 void 1103 ieee80211_media_init(struct ieee80211com *ic) 1104 { 1105 struct ifnet *ifp = ic->ic_ifp; 1106 int maxrate; 1107 1108 /* NB: this works because the structure is initialized to zero */ 1109 if (!LIST_EMPTY(&ic->ic_media.ifm_list)) { 1110 /* 1111 * We are re-initializing the channel list; clear 1112 * the existing media state as the media routines 1113 * don't suppress duplicates. 1114 */ 1115 ifmedia_removeall(&ic->ic_media); 1116 } 1117 ieee80211_chan_init(ic); 1118 1119 /* 1120 * Recalculate media settings in case new channel list changes 1121 * the set of available modes. 1122 */ 1123 maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1, 1124 ieee80211com_media_change, ieee80211com_media_status); 1125 /* NB: strip explicit mode; we're actually in autoselect */ 1126 ifmedia_set(&ic->ic_media, 1127 media_status(ic->ic_opmode, ic->ic_curchan) &~ 1128 (IFM_MMASK | IFM_IEEE80211_TURBO)); 1129 if (maxrate) 1130 ifp->if_baudrate = IF_Mbps(maxrate); 1131 1132 /* XXX need to propagate new media settings to vap's */ 1133 } 1134 1135 /* XXX inline or eliminate? */ 1136 const struct ieee80211_rateset * 1137 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) 1138 { 1139 /* XXX does this work for 11ng basic rates? */ 1140 return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; 1141 } 1142 1143 void 1144 ieee80211_announce(struct ieee80211com *ic) 1145 { 1146 struct ifnet *ifp = ic->ic_ifp; 1147 int i, mode, rate, mword; 1148 const struct ieee80211_rateset *rs; 1149 1150 /* NB: skip AUTO since it has no rates */ 1151 for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { 1152 if (isclr(ic->ic_modecaps, mode)) 1153 continue; 1154 if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]); 1155 rs = &ic->ic_sup_rates[mode]; 1156 for (i = 0; i < rs->rs_nrates; i++) { 1157 mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode); 1158 if (mword == 0) 1159 continue; 1160 rate = ieee80211_media2rate(mword); 1161 printf("%s%d%sMbps", (i != 0 ? " " : ""), 1162 rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); 1163 } 1164 printf("\n"); 1165 } 1166 ieee80211_ht_announce(ic); 1167 } 1168 1169 void 1170 ieee80211_announce_channels(struct ieee80211com *ic) 1171 { 1172 const struct ieee80211_channel *c; 1173 char type; 1174 int i, cw; 1175 1176 printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); 1177 for (i = 0; i < ic->ic_nchans; i++) { 1178 c = &ic->ic_channels[i]; 1179 if (IEEE80211_IS_CHAN_ST(c)) 1180 type = 'S'; 1181 else if (IEEE80211_IS_CHAN_108A(c)) 1182 type = 'T'; 1183 else if (IEEE80211_IS_CHAN_108G(c)) 1184 type = 'G'; 1185 else if (IEEE80211_IS_CHAN_HT(c)) 1186 type = 'n'; 1187 else if (IEEE80211_IS_CHAN_A(c)) 1188 type = 'a'; 1189 else if (IEEE80211_IS_CHAN_ANYG(c)) 1190 type = 'g'; 1191 else if (IEEE80211_IS_CHAN_B(c)) 1192 type = 'b'; 1193 else 1194 type = 'f'; 1195 if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) 1196 cw = 40; 1197 else if (IEEE80211_IS_CHAN_HALF(c)) 1198 cw = 10; 1199 else if (IEEE80211_IS_CHAN_QUARTER(c)) 1200 cw = 5; 1201 else 1202 cw = 20; 1203 printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" 1204 , c->ic_ieee, c->ic_freq, type 1205 , cw 1206 , IEEE80211_IS_CHAN_HT40U(c) ? '+' : 1207 IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' 1208 , c->ic_maxregpower 1209 , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 1210 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 1211 ); 1212 } 1213 } 1214 1215 static int 1216 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) 1217 { 1218 switch (IFM_MODE(ime->ifm_media)) { 1219 case IFM_IEEE80211_11A: 1220 *mode = IEEE80211_MODE_11A; 1221 break; 1222 case IFM_IEEE80211_11B: 1223 *mode = IEEE80211_MODE_11B; 1224 break; 1225 case IFM_IEEE80211_11G: 1226 *mode = IEEE80211_MODE_11G; 1227 break; 1228 case IFM_IEEE80211_FH: 1229 *mode = IEEE80211_MODE_FH; 1230 break; 1231 case IFM_IEEE80211_11NA: 1232 *mode = IEEE80211_MODE_11NA; 1233 break; 1234 case IFM_IEEE80211_11NG: 1235 *mode = IEEE80211_MODE_11NG; 1236 break; 1237 case IFM_AUTO: 1238 *mode = IEEE80211_MODE_AUTO; 1239 break; 1240 default: 1241 return 0; 1242 } 1243 /* 1244 * Turbo mode is an ``option''. 1245 * XXX does not apply to AUTO 1246 */ 1247 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 1248 if (*mode == IEEE80211_MODE_11A) { 1249 if (flags & IEEE80211_F_TURBOP) 1250 *mode = IEEE80211_MODE_TURBO_A; 1251 else 1252 *mode = IEEE80211_MODE_STURBO_A; 1253 } else if (*mode == IEEE80211_MODE_11G) 1254 *mode = IEEE80211_MODE_TURBO_G; 1255 else 1256 return 0; 1257 } 1258 /* XXX HT40 +/- */ 1259 return 1; 1260 } 1261 1262 /* 1263 * Handle a media change request on the underlying interface. 1264 */ 1265 int 1266 ieee80211com_media_change(struct ifnet *ifp) 1267 { 1268 return EINVAL; 1269 } 1270 1271 /* 1272 * Handle a media change request on the vap interface. 1273 */ 1274 int 1275 ieee80211_media_change(struct ifnet *ifp) 1276 { 1277 struct ieee80211vap *vap = ifp->if_softc; 1278 struct ifmedia_entry *ime = vap->iv_media.ifm_cur; 1279 uint16_t newmode; 1280 1281 if (!media2mode(ime, vap->iv_flags, &newmode)) 1282 return EINVAL; 1283 if (vap->iv_des_mode != newmode) { 1284 vap->iv_des_mode = newmode; 1285 /* XXX kick state machine if up+running */ 1286 } 1287 return 0; 1288 } 1289 1290 /* 1291 * Common code to calculate the media status word 1292 * from the operating mode and channel state. 1293 */ 1294 static int 1295 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) 1296 { 1297 int status; 1298 1299 status = IFM_IEEE80211; 1300 switch (opmode) { 1301 case IEEE80211_M_STA: 1302 break; 1303 case IEEE80211_M_IBSS: 1304 status |= IFM_IEEE80211_ADHOC; 1305 break; 1306 case IEEE80211_M_HOSTAP: 1307 status |= IFM_IEEE80211_HOSTAP; 1308 break; 1309 case IEEE80211_M_MONITOR: 1310 status |= IFM_IEEE80211_MONITOR; 1311 break; 1312 case IEEE80211_M_AHDEMO: 1313 status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1314 break; 1315 case IEEE80211_M_WDS: 1316 status |= IFM_IEEE80211_WDS; 1317 break; 1318 case IEEE80211_M_MBSS: 1319 status |= IFM_IEEE80211_MBSS; 1320 break; 1321 } 1322 if (IEEE80211_IS_CHAN_HTA(chan)) { 1323 status |= IFM_IEEE80211_11NA; 1324 } else if (IEEE80211_IS_CHAN_HTG(chan)) { 1325 status |= IFM_IEEE80211_11NG; 1326 } else if (IEEE80211_IS_CHAN_A(chan)) { 1327 status |= IFM_IEEE80211_11A; 1328 } else if (IEEE80211_IS_CHAN_B(chan)) { 1329 status |= IFM_IEEE80211_11B; 1330 } else if (IEEE80211_IS_CHAN_ANYG(chan)) { 1331 status |= IFM_IEEE80211_11G; 1332 } else if (IEEE80211_IS_CHAN_FHSS(chan)) { 1333 status |= IFM_IEEE80211_FH; 1334 } 1335 /* XXX else complain? */ 1336 1337 if (IEEE80211_IS_CHAN_TURBO(chan)) 1338 status |= IFM_IEEE80211_TURBO; 1339 #if 0 1340 if (IEEE80211_IS_CHAN_HT20(chan)) 1341 status |= IFM_IEEE80211_HT20; 1342 if (IEEE80211_IS_CHAN_HT40(chan)) 1343 status |= IFM_IEEE80211_HT40; 1344 #endif 1345 return status; 1346 } 1347 1348 static void 1349 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1350 { 1351 struct ieee80211com *ic = ifp->if_l2com; 1352 struct ieee80211vap *vap; 1353 1354 imr->ifm_status = IFM_AVALID; 1355 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1356 if (vap->iv_ifp->if_flags & IFF_UP) { 1357 imr->ifm_status |= IFM_ACTIVE; 1358 break; 1359 } 1360 imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan); 1361 if (imr->ifm_status & IFM_ACTIVE) 1362 imr->ifm_current = imr->ifm_active; 1363 } 1364 1365 void 1366 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1367 { 1368 struct ieee80211vap *vap = ifp->if_softc; 1369 struct ieee80211com *ic = vap->iv_ic; 1370 enum ieee80211_phymode mode; 1371 1372 imr->ifm_status = IFM_AVALID; 1373 /* 1374 * NB: use the current channel's mode to lock down a xmit 1375 * rate only when running; otherwise we may have a mismatch 1376 * in which case the rate will not be convertible. 1377 */ 1378 if (vap->iv_state == IEEE80211_S_RUN) { 1379 imr->ifm_status |= IFM_ACTIVE; 1380 mode = ieee80211_chan2mode(ic->ic_curchan); 1381 } else 1382 mode = IEEE80211_MODE_AUTO; 1383 imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); 1384 /* 1385 * Calculate a current rate if possible. 1386 */ 1387 if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { 1388 /* 1389 * A fixed rate is set, report that. 1390 */ 1391 imr->ifm_active |= ieee80211_rate2media(ic, 1392 vap->iv_txparms[mode].ucastrate, mode); 1393 } else if (vap->iv_opmode == IEEE80211_M_STA) { 1394 /* 1395 * In station mode report the current transmit rate. 1396 */ 1397 imr->ifm_active |= ieee80211_rate2media(ic, 1398 vap->iv_bss->ni_txrate, mode); 1399 } else 1400 imr->ifm_active |= IFM_AUTO; 1401 if (imr->ifm_status & IFM_ACTIVE) 1402 imr->ifm_current = imr->ifm_active; 1403 } 1404 1405 /* 1406 * Set the current phy mode and recalculate the active channel 1407 * set based on the available channels for this mode. Also 1408 * select a new default/current channel if the current one is 1409 * inappropriate for this mode. 1410 */ 1411 int 1412 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1413 { 1414 /* 1415 * Adjust basic rates in 11b/11g supported rate set. 1416 * Note that if operating on a hal/quarter rate channel 1417 * this is a noop as those rates sets are different 1418 * and used instead. 1419 */ 1420 if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) 1421 ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); 1422 1423 ic->ic_curmode = mode; 1424 ieee80211_reset_erp(ic); /* reset ERP state */ 1425 1426 return 0; 1427 } 1428 1429 /* 1430 * Return the phy mode for with the specified channel. 1431 */ 1432 enum ieee80211_phymode 1433 ieee80211_chan2mode(const struct ieee80211_channel *chan) 1434 { 1435 1436 if (IEEE80211_IS_CHAN_HTA(chan)) 1437 return IEEE80211_MODE_11NA; 1438 else if (IEEE80211_IS_CHAN_HTG(chan)) 1439 return IEEE80211_MODE_11NG; 1440 else if (IEEE80211_IS_CHAN_108G(chan)) 1441 return IEEE80211_MODE_TURBO_G; 1442 else if (IEEE80211_IS_CHAN_ST(chan)) 1443 return IEEE80211_MODE_STURBO_A; 1444 else if (IEEE80211_IS_CHAN_TURBO(chan)) 1445 return IEEE80211_MODE_TURBO_A; 1446 else if (IEEE80211_IS_CHAN_HALF(chan)) 1447 return IEEE80211_MODE_HALF; 1448 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1449 return IEEE80211_MODE_QUARTER; 1450 else if (IEEE80211_IS_CHAN_A(chan)) 1451 return IEEE80211_MODE_11A; 1452 else if (IEEE80211_IS_CHAN_ANYG(chan)) 1453 return IEEE80211_MODE_11G; 1454 else if (IEEE80211_IS_CHAN_B(chan)) 1455 return IEEE80211_MODE_11B; 1456 else if (IEEE80211_IS_CHAN_FHSS(chan)) 1457 return IEEE80211_MODE_FH; 1458 1459 /* NB: should not get here */ 1460 printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", 1461 __func__, chan->ic_freq, chan->ic_flags); 1462 return IEEE80211_MODE_11B; 1463 } 1464 1465 struct ratemedia { 1466 u_int match; /* rate + mode */ 1467 u_int media; /* if_media rate */ 1468 }; 1469 1470 static int 1471 findmedia(const struct ratemedia rates[], int n, u_int match) 1472 { 1473 int i; 1474 1475 for (i = 0; i < n; i++) 1476 if (rates[i].match == match) 1477 return rates[i].media; 1478 return IFM_AUTO; 1479 } 1480 1481 /* 1482 * Convert IEEE80211 rate value to ifmedia subtype. 1483 * Rate is either a legacy rate in units of 0.5Mbps 1484 * or an MCS index. 1485 */ 1486 int 1487 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) 1488 { 1489 #define N(a) (sizeof(a) / sizeof(a[0])) 1490 static const struct ratemedia rates[] = { 1491 { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, 1492 { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, 1493 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1494 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1495 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1496 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1497 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1498 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1499 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1500 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1501 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1502 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1503 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1504 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1505 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1506 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1507 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1508 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1509 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1510 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1511 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1512 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1513 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1514 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1515 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1516 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1517 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1518 { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, 1519 { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, 1520 { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, 1521 /* NB: OFDM72 doesn't realy exist so we don't handle it */ 1522 }; 1523 static const struct ratemedia htrates[] = { 1524 { 0, IFM_IEEE80211_MCS }, 1525 { 1, IFM_IEEE80211_MCS }, 1526 { 2, IFM_IEEE80211_MCS }, 1527 { 3, IFM_IEEE80211_MCS }, 1528 { 4, IFM_IEEE80211_MCS }, 1529 { 5, IFM_IEEE80211_MCS }, 1530 { 6, IFM_IEEE80211_MCS }, 1531 { 7, IFM_IEEE80211_MCS }, 1532 { 8, IFM_IEEE80211_MCS }, 1533 { 9, IFM_IEEE80211_MCS }, 1534 { 10, IFM_IEEE80211_MCS }, 1535 { 11, IFM_IEEE80211_MCS }, 1536 { 12, IFM_IEEE80211_MCS }, 1537 { 13, IFM_IEEE80211_MCS }, 1538 { 14, IFM_IEEE80211_MCS }, 1539 { 15, IFM_IEEE80211_MCS }, 1540 { 16, IFM_IEEE80211_MCS }, 1541 { 17, IFM_IEEE80211_MCS }, 1542 { 18, IFM_IEEE80211_MCS }, 1543 { 19, IFM_IEEE80211_MCS }, 1544 { 20, IFM_IEEE80211_MCS }, 1545 { 21, IFM_IEEE80211_MCS }, 1546 { 22, IFM_IEEE80211_MCS }, 1547 { 23, IFM_IEEE80211_MCS }, 1548 { 24, IFM_IEEE80211_MCS }, 1549 { 25, IFM_IEEE80211_MCS }, 1550 { 26, IFM_IEEE80211_MCS }, 1551 { 27, IFM_IEEE80211_MCS }, 1552 { 28, IFM_IEEE80211_MCS }, 1553 { 29, IFM_IEEE80211_MCS }, 1554 { 30, IFM_IEEE80211_MCS }, 1555 { 31, IFM_IEEE80211_MCS }, 1556 { 32, IFM_IEEE80211_MCS }, 1557 { 33, IFM_IEEE80211_MCS }, 1558 { 34, IFM_IEEE80211_MCS }, 1559 { 35, IFM_IEEE80211_MCS }, 1560 { 36, IFM_IEEE80211_MCS }, 1561 { 37, IFM_IEEE80211_MCS }, 1562 { 38, IFM_IEEE80211_MCS }, 1563 { 39, IFM_IEEE80211_MCS }, 1564 { 40, IFM_IEEE80211_MCS }, 1565 { 41, IFM_IEEE80211_MCS }, 1566 { 42, IFM_IEEE80211_MCS }, 1567 { 43, IFM_IEEE80211_MCS }, 1568 { 44, IFM_IEEE80211_MCS }, 1569 { 45, IFM_IEEE80211_MCS }, 1570 { 46, IFM_IEEE80211_MCS }, 1571 { 47, IFM_IEEE80211_MCS }, 1572 { 48, IFM_IEEE80211_MCS }, 1573 { 49, IFM_IEEE80211_MCS }, 1574 { 50, IFM_IEEE80211_MCS }, 1575 { 51, IFM_IEEE80211_MCS }, 1576 { 52, IFM_IEEE80211_MCS }, 1577 { 53, IFM_IEEE80211_MCS }, 1578 { 54, IFM_IEEE80211_MCS }, 1579 { 55, IFM_IEEE80211_MCS }, 1580 { 56, IFM_IEEE80211_MCS }, 1581 { 57, IFM_IEEE80211_MCS }, 1582 { 58, IFM_IEEE80211_MCS }, 1583 { 59, IFM_IEEE80211_MCS }, 1584 { 60, IFM_IEEE80211_MCS }, 1585 { 61, IFM_IEEE80211_MCS }, 1586 { 62, IFM_IEEE80211_MCS }, 1587 { 63, IFM_IEEE80211_MCS }, 1588 { 64, IFM_IEEE80211_MCS }, 1589 { 65, IFM_IEEE80211_MCS }, 1590 { 66, IFM_IEEE80211_MCS }, 1591 { 67, IFM_IEEE80211_MCS }, 1592 { 68, IFM_IEEE80211_MCS }, 1593 { 69, IFM_IEEE80211_MCS }, 1594 { 70, IFM_IEEE80211_MCS }, 1595 { 71, IFM_IEEE80211_MCS }, 1596 { 72, IFM_IEEE80211_MCS }, 1597 { 73, IFM_IEEE80211_MCS }, 1598 { 74, IFM_IEEE80211_MCS }, 1599 { 75, IFM_IEEE80211_MCS }, 1600 { 76, IFM_IEEE80211_MCS }, 1601 }; 1602 int m; 1603 1604 /* 1605 * Check 11n rates first for match as an MCS. 1606 */ 1607 if (mode == IEEE80211_MODE_11NA) { 1608 if (rate & IEEE80211_RATE_MCS) { 1609 rate &= ~IEEE80211_RATE_MCS; 1610 m = findmedia(htrates, N(htrates), rate); 1611 if (m != IFM_AUTO) 1612 return m | IFM_IEEE80211_11NA; 1613 } 1614 } else if (mode == IEEE80211_MODE_11NG) { 1615 /* NB: 12 is ambiguous, it will be treated as an MCS */ 1616 if (rate & IEEE80211_RATE_MCS) { 1617 rate &= ~IEEE80211_RATE_MCS; 1618 m = findmedia(htrates, N(htrates), rate); 1619 if (m != IFM_AUTO) 1620 return m | IFM_IEEE80211_11NG; 1621 } 1622 } 1623 rate &= IEEE80211_RATE_VAL; 1624 switch (mode) { 1625 case IEEE80211_MODE_11A: 1626 case IEEE80211_MODE_HALF: /* XXX good 'nuf */ 1627 case IEEE80211_MODE_QUARTER: 1628 case IEEE80211_MODE_11NA: 1629 case IEEE80211_MODE_TURBO_A: 1630 case IEEE80211_MODE_STURBO_A: 1631 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11A); 1632 case IEEE80211_MODE_11B: 1633 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11B); 1634 case IEEE80211_MODE_FH: 1635 return findmedia(rates, N(rates), rate | IFM_IEEE80211_FH); 1636 case IEEE80211_MODE_AUTO: 1637 /* NB: ic may be NULL for some drivers */ 1638 if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) 1639 return findmedia(rates, N(rates), 1640 rate | IFM_IEEE80211_FH); 1641 /* NB: hack, 11g matches both 11b+11a rates */ 1642 /* fall thru... */ 1643 case IEEE80211_MODE_11G: 1644 case IEEE80211_MODE_11NG: 1645 case IEEE80211_MODE_TURBO_G: 1646 return findmedia(rates, N(rates), rate | IFM_IEEE80211_11G); 1647 } 1648 return IFM_AUTO; 1649 #undef N 1650 } 1651 1652 int 1653 ieee80211_media2rate(int mword) 1654 { 1655 #define N(a) (sizeof(a) / sizeof(a[0])) 1656 static const int ieeerates[] = { 1657 -1, /* IFM_AUTO */ 1658 0, /* IFM_MANUAL */ 1659 0, /* IFM_NONE */ 1660 2, /* IFM_IEEE80211_FH1 */ 1661 4, /* IFM_IEEE80211_FH2 */ 1662 2, /* IFM_IEEE80211_DS1 */ 1663 4, /* IFM_IEEE80211_DS2 */ 1664 11, /* IFM_IEEE80211_DS5 */ 1665 22, /* IFM_IEEE80211_DS11 */ 1666 44, /* IFM_IEEE80211_DS22 */ 1667 12, /* IFM_IEEE80211_OFDM6 */ 1668 18, /* IFM_IEEE80211_OFDM9 */ 1669 24, /* IFM_IEEE80211_OFDM12 */ 1670 36, /* IFM_IEEE80211_OFDM18 */ 1671 48, /* IFM_IEEE80211_OFDM24 */ 1672 72, /* IFM_IEEE80211_OFDM36 */ 1673 96, /* IFM_IEEE80211_OFDM48 */ 1674 108, /* IFM_IEEE80211_OFDM54 */ 1675 144, /* IFM_IEEE80211_OFDM72 */ 1676 0, /* IFM_IEEE80211_DS354k */ 1677 0, /* IFM_IEEE80211_DS512k */ 1678 6, /* IFM_IEEE80211_OFDM3 */ 1679 9, /* IFM_IEEE80211_OFDM4 */ 1680 54, /* IFM_IEEE80211_OFDM27 */ 1681 -1, /* IFM_IEEE80211_MCS */ 1682 }; 1683 return IFM_SUBTYPE(mword) < N(ieeerates) ? 1684 ieeerates[IFM_SUBTYPE(mword)] : 0; 1685 #undef N 1686 } 1687 1688 /* 1689 * The following hash function is adapted from "Hash Functions" by Bob Jenkins 1690 * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). 1691 */ 1692 #define mix(a, b, c) \ 1693 do { \ 1694 a -= b; a -= c; a ^= (c >> 13); \ 1695 b -= c; b -= a; b ^= (a << 8); \ 1696 c -= a; c -= b; c ^= (b >> 13); \ 1697 a -= b; a -= c; a ^= (c >> 12); \ 1698 b -= c; b -= a; b ^= (a << 16); \ 1699 c -= a; c -= b; c ^= (b >> 5); \ 1700 a -= b; a -= c; a ^= (c >> 3); \ 1701 b -= c; b -= a; b ^= (a << 10); \ 1702 c -= a; c -= b; c ^= (b >> 15); \ 1703 } while (/*CONSTCOND*/0) 1704 1705 uint32_t 1706 ieee80211_mac_hash(const struct ieee80211com *ic, 1707 const uint8_t addr[IEEE80211_ADDR_LEN]) 1708 { 1709 uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; 1710 1711 b += addr[5] << 8; 1712 b += addr[4]; 1713 a += addr[3] << 24; 1714 a += addr[2] << 16; 1715 a += addr[1] << 8; 1716 a += addr[0]; 1717 1718 mix(a, b, c); 1719 1720 return c; 1721 } 1722 #undef mix 1723