1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * Copyright (c) 2014 Jeff Roberson 4 * Copyright (c) 2016 Matthew Macy 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #ifndef __HAIKU__ 36 #include <sys/cpuset.h> 37 #include <sys/interrupt.h> 38 #endif 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/libkern.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/proc.h> 47 #ifndef __HAIKU__ 48 #include <sys/sched.h> 49 #endif 50 #include <sys/smp.h> 51 #include <sys/gtaskqueue.h> 52 #ifndef __HAIKU__ 53 #include <sys/unistd.h> 54 #endif 55 #include <machine/stdarg.h> 56 57 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues"); 58 static void gtaskqueue_thread_enqueue(void *); 59 static void gtaskqueue_thread_loop(void *arg); 60 static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask); 61 static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask); 62 63 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1); 64 TASKQGROUP_DEFINE(config, 1, 1); 65 66 struct gtaskqueue_busy { 67 struct gtask *tb_running; 68 TAILQ_ENTRY(gtaskqueue_busy) tb_link; 69 }; 70 71 static struct gtask * const TB_DRAIN_WAITER = (struct gtask *)0x1; 72 73 struct gtaskqueue { 74 STAILQ_HEAD(, gtask) tq_queue; 75 gtaskqueue_enqueue_fn tq_enqueue; 76 void *tq_context; 77 char *tq_name; 78 TAILQ_HEAD(, gtaskqueue_busy) tq_active; 79 struct mtx tq_mutex; 80 #ifdef __HAIKU__ 81 sem_id tq_sem; 82 #endif 83 struct thread **tq_threads; 84 int tq_tcount; 85 int tq_spin; 86 int tq_flags; 87 int tq_callouts; 88 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 89 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 90 }; 91 92 #define TQ_FLAGS_ACTIVE (1 << 0) 93 #define TQ_FLAGS_BLOCKED (1 << 1) 94 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 95 96 #define DT_CALLOUT_ARMED (1 << 0) 97 98 #define TQ_LOCK(tq) \ 99 do { \ 100 if ((tq)->tq_spin) \ 101 mtx_lock_spin(&(tq)->tq_mutex); \ 102 else \ 103 mtx_lock(&(tq)->tq_mutex); \ 104 } while (0) 105 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 106 107 #define TQ_UNLOCK(tq) \ 108 do { \ 109 if ((tq)->tq_spin) \ 110 mtx_unlock_spin(&(tq)->tq_mutex); \ 111 else \ 112 mtx_unlock(&(tq)->tq_mutex); \ 113 } while (0) 114 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 115 116 #ifdef INVARIANTS 117 static void 118 gtask_dump(struct gtask *gtask) 119 { 120 printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n", 121 gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context); 122 } 123 #endif 124 125 static __inline int 126 TQ_SLEEP(struct gtaskqueue *tq, void *p, struct mtx *m, int pri, const char *wm, 127 int t) 128 { 129 if (tq->tq_spin) 130 return (msleep_spin(p, m, wm, t)); 131 return (msleep(p, m, pri, wm, t)); 132 } 133 134 static struct gtaskqueue * 135 _gtaskqueue_create(const char *name, int mflags, 136 taskqueue_enqueue_fn enqueue, void *context, 137 int mtxflags, const char *mtxname __unused) 138 { 139 struct gtaskqueue *queue; 140 char *tq_name; 141 142 tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO); 143 if (!tq_name) 144 return (NULL); 145 146 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 147 148 queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO); 149 if (!queue) { 150 free(tq_name, M_GTASKQUEUE); 151 return (NULL); 152 } 153 154 STAILQ_INIT(&queue->tq_queue); 155 TAILQ_INIT(&queue->tq_active); 156 queue->tq_enqueue = enqueue; 157 queue->tq_context = context; 158 queue->tq_name = tq_name; 159 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 160 queue->tq_flags |= TQ_FLAGS_ACTIVE; 161 if (enqueue == gtaskqueue_thread_enqueue) 162 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 163 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 164 #ifdef __HAIKU__ 165 queue->tq_sem = create_sem(0, tq_name); 166 #endif 167 168 return (queue); 169 } 170 171 172 /* 173 * Signal a taskqueue thread to terminate. 174 */ 175 static void 176 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq) 177 { 178 179 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 180 wakeup(tq); 181 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0); 182 } 183 } 184 185 static void 186 gtaskqueue_free(struct gtaskqueue *queue) 187 { 188 189 TQ_LOCK(queue); 190 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 191 gtaskqueue_terminate(queue->tq_threads, queue); 192 KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?")); 193 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 194 mtx_destroy(&queue->tq_mutex); 195 #ifdef __HAIKU__ 196 delete_sem(queue->tq_sem); 197 #endif 198 free(queue->tq_threads, M_GTASKQUEUE); 199 free(queue->tq_name, M_GTASKQUEUE); 200 free(queue, M_GTASKQUEUE); 201 } 202 203 /* 204 * Wait for all to complete, then prevent it from being enqueued 205 */ 206 void 207 grouptask_block(struct grouptask *grouptask) 208 { 209 struct gtaskqueue *queue = grouptask->gt_taskqueue; 210 struct gtask *gtask = &grouptask->gt_task; 211 212 #ifdef INVARIANTS 213 if (queue == NULL) { 214 gtask_dump(gtask); 215 panic("queue == NULL"); 216 } 217 #endif 218 TQ_LOCK(queue); 219 gtask->ta_flags |= TASK_NOENQUEUE; 220 gtaskqueue_drain_locked(queue, gtask); 221 TQ_UNLOCK(queue); 222 } 223 224 void 225 grouptask_unblock(struct grouptask *grouptask) 226 { 227 struct gtaskqueue *queue = grouptask->gt_taskqueue; 228 struct gtask *gtask = &grouptask->gt_task; 229 230 #ifdef INVARIANTS 231 if (queue == NULL) { 232 gtask_dump(gtask); 233 panic("queue == NULL"); 234 } 235 #endif 236 TQ_LOCK(queue); 237 gtask->ta_flags &= ~TASK_NOENQUEUE; 238 TQ_UNLOCK(queue); 239 } 240 241 int 242 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask) 243 { 244 #ifdef INVARIANTS 245 if (queue == NULL) { 246 gtask_dump(gtask); 247 panic("queue == NULL"); 248 } 249 #endif 250 TQ_LOCK(queue); 251 if (gtask->ta_flags & TASK_ENQUEUED) { 252 TQ_UNLOCK(queue); 253 return (0); 254 } 255 if (gtask->ta_flags & TASK_NOENQUEUE) { 256 TQ_UNLOCK(queue); 257 return (EAGAIN); 258 } 259 STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link); 260 gtask->ta_flags |= TASK_ENQUEUED; 261 TQ_UNLOCK(queue); 262 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 263 queue->tq_enqueue(queue->tq_context); 264 return (0); 265 } 266 267 static void 268 gtaskqueue_task_nop_fn(void *context) 269 { 270 } 271 272 /* 273 * Block until all currently queued tasks in this taskqueue 274 * have begun execution. Tasks queued during execution of 275 * this function are ignored. 276 */ 277 static void 278 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue) 279 { 280 struct gtask t_barrier; 281 282 if (STAILQ_EMPTY(&queue->tq_queue)) 283 return; 284 285 /* 286 * Enqueue our barrier after all current tasks, but with 287 * the highest priority so that newly queued tasks cannot 288 * pass it. Because of the high priority, we can not use 289 * taskqueue_enqueue_locked directly (which drops the lock 290 * anyway) so just insert it at tail while we have the 291 * queue lock. 292 */ 293 GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier); 294 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 295 t_barrier.ta_flags |= TASK_ENQUEUED; 296 297 /* 298 * Once the barrier has executed, all previously queued tasks 299 * have completed or are currently executing. 300 */ 301 while (t_barrier.ta_flags & TASK_ENQUEUED) 302 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0); 303 } 304 305 /* 306 * Block until all currently executing tasks for this taskqueue 307 * complete. Tasks that begin execution during the execution 308 * of this function are ignored. 309 */ 310 static void 311 gtaskqueue_drain_tq_active(struct gtaskqueue *queue) 312 { 313 struct gtaskqueue_busy tb_marker, *tb_first; 314 315 if (TAILQ_EMPTY(&queue->tq_active)) 316 return; 317 318 /* Block taskq_terminate().*/ 319 queue->tq_callouts++; 320 321 /* 322 * Wait for all currently executing taskqueue threads 323 * to go idle. 324 */ 325 tb_marker.tb_running = TB_DRAIN_WAITER; 326 TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link); 327 while (TAILQ_FIRST(&queue->tq_active) != &tb_marker) 328 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0); 329 TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link); 330 331 /* 332 * Wakeup any other drain waiter that happened to queue up 333 * without any intervening active thread. 334 */ 335 tb_first = TAILQ_FIRST(&queue->tq_active); 336 if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER) 337 wakeup(tb_first); 338 339 /* Release taskqueue_terminate(). */ 340 queue->tq_callouts--; 341 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 342 wakeup_one(queue->tq_threads); 343 } 344 345 void 346 gtaskqueue_block(struct gtaskqueue *queue) 347 { 348 349 TQ_LOCK(queue); 350 queue->tq_flags |= TQ_FLAGS_BLOCKED; 351 TQ_UNLOCK(queue); 352 } 353 354 void 355 gtaskqueue_unblock(struct gtaskqueue *queue) 356 { 357 358 TQ_LOCK(queue); 359 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 360 if (!STAILQ_EMPTY(&queue->tq_queue)) 361 queue->tq_enqueue(queue->tq_context); 362 TQ_UNLOCK(queue); 363 } 364 365 static void 366 gtaskqueue_run_locked(struct gtaskqueue *queue) 367 { 368 struct gtaskqueue_busy tb; 369 struct gtaskqueue_busy *tb_first; 370 struct gtask *gtask; 371 372 KASSERT(queue != NULL, ("tq is NULL")); 373 TQ_ASSERT_LOCKED(queue); 374 tb.tb_running = NULL; 375 376 while (STAILQ_FIRST(&queue->tq_queue)) { 377 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link); 378 379 /* 380 * Carefully remove the first task from the queue and 381 * clear its TASK_ENQUEUED flag 382 */ 383 gtask = STAILQ_FIRST(&queue->tq_queue); 384 KASSERT(gtask != NULL, ("task is NULL")); 385 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 386 gtask->ta_flags &= ~TASK_ENQUEUED; 387 tb.tb_running = gtask; 388 TQ_UNLOCK(queue); 389 390 KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL")); 391 gtask->ta_func(gtask->ta_context); 392 393 TQ_LOCK(queue); 394 tb.tb_running = NULL; 395 wakeup(gtask); 396 397 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link); 398 tb_first = TAILQ_FIRST(&queue->tq_active); 399 if (tb_first != NULL && 400 tb_first->tb_running == TB_DRAIN_WAITER) 401 wakeup(tb_first); 402 } 403 } 404 405 static int 406 task_is_running(struct gtaskqueue *queue, struct gtask *gtask) 407 { 408 struct gtaskqueue_busy *tb; 409 410 TQ_ASSERT_LOCKED(queue); 411 TAILQ_FOREACH(tb, &queue->tq_active, tb_link) { 412 if (tb->tb_running == gtask) 413 return (1); 414 } 415 return (0); 416 } 417 418 static int 419 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask) 420 { 421 422 if (gtask->ta_flags & TASK_ENQUEUED) 423 STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link); 424 gtask->ta_flags &= ~TASK_ENQUEUED; 425 return (task_is_running(queue, gtask) ? EBUSY : 0); 426 } 427 428 int 429 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask) 430 { 431 int error; 432 433 TQ_LOCK(queue); 434 error = gtaskqueue_cancel_locked(queue, gtask); 435 TQ_UNLOCK(queue); 436 437 return (error); 438 } 439 440 static void 441 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask) 442 { 443 while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask)) 444 TQ_SLEEP(queue, gtask, &queue->tq_mutex, PWAIT, "-", 0); 445 } 446 447 void 448 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask) 449 { 450 #ifndef __HAIKU__ 451 if (!queue->tq_spin) 452 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 453 #endif 454 455 TQ_LOCK(queue); 456 gtaskqueue_drain_locked(queue, gtask); 457 TQ_UNLOCK(queue); 458 } 459 460 void 461 gtaskqueue_drain_all(struct gtaskqueue *queue) 462 { 463 #ifndef __HAIKU__ 464 if (!queue->tq_spin) 465 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 466 #endif 467 468 TQ_LOCK(queue); 469 gtaskqueue_drain_tq_queue(queue); 470 gtaskqueue_drain_tq_active(queue); 471 TQ_UNLOCK(queue); 472 } 473 474 static int 475 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 476 void* mask, const char *name, va_list ap) 477 { 478 char ktname[19 + 1]; 479 struct thread *td; 480 struct gtaskqueue *tq; 481 int i, error; 482 483 if (count <= 0) 484 return (EINVAL); 485 486 vsnprintf(ktname, sizeof(ktname), name, ap); 487 tq = *tqp; 488 489 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE, 490 M_NOWAIT | M_ZERO); 491 if (tq->tq_threads == NULL) { 492 printf("%s: no memory for %s threads\n", __func__, ktname); 493 return (ENOMEM); 494 } 495 496 for (i = 0; i < count; i++) { 497 if (count == 1) 498 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 499 &tq->tq_threads[i], 0, 0, "%s", ktname); 500 else 501 error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, 502 &tq->tq_threads[i], 0, 0, 503 "%s_%d", ktname, i); 504 if (error) { 505 /* should be ok to continue, taskqueue_free will dtrt */ 506 printf("%s: kthread_add(%s): error %d", __func__, 507 ktname, error); 508 tq->tq_threads[i] = NULL; /* paranoid */ 509 } else 510 tq->tq_tcount++; 511 } 512 for (i = 0; i < count; i++) { 513 if (tq->tq_threads[i] == NULL) 514 continue; 515 td = tq->tq_threads[i]; 516 #ifndef __HAIKU__ 517 if (mask) { 518 error = cpuset_setthread(td->td_tid, mask); 519 /* 520 * Failing to pin is rarely an actual fatal error; 521 * it'll just affect performance. 522 */ 523 if (error) 524 printf("%s: curthread=%llu: can't pin; " 525 "error=%d\n", 526 __func__, 527 (unsigned long long) td->td_tid, 528 error); 529 } 530 #endif 531 thread_lock(td); 532 sched_prio(td, pri); 533 sched_add(td, SRQ_BORING); 534 thread_unlock(td); 535 } 536 537 return (0); 538 } 539 540 static int 541 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, 542 const char *name, ...) 543 { 544 va_list ap; 545 int error; 546 547 va_start(ap, name); 548 error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap); 549 va_end(ap); 550 return (error); 551 } 552 553 static inline void 554 gtaskqueue_run_callback(struct gtaskqueue *tq, 555 enum taskqueue_callback_type cb_type) 556 { 557 taskqueue_callback_fn tq_callback; 558 559 TQ_ASSERT_UNLOCKED(tq); 560 tq_callback = tq->tq_callbacks[cb_type]; 561 if (tq_callback != NULL) 562 tq_callback(tq->tq_cb_contexts[cb_type]); 563 } 564 565 566 static void 567 gtaskqueue_thread_loop(void *arg) 568 { 569 struct gtaskqueue **tqp, *tq; 570 571 tqp = arg; 572 tq = *tqp; 573 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 574 TQ_LOCK(tq); 575 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 576 /* XXX ? */ 577 gtaskqueue_run_locked(tq); 578 /* 579 * Because taskqueue_run() can drop tq_mutex, we need to 580 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 581 * meantime, which means we missed a wakeup. 582 */ 583 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 584 break; 585 #ifndef __HAIKU__ 586 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0); 587 #else 588 TQ_UNLOCK(tq); 589 acquire_sem(tq->tq_sem); 590 TQ_LOCK(tq); 591 #endif 592 } 593 gtaskqueue_run_locked(tq); 594 /* 595 * This thread is on its way out, so just drop the lock temporarily 596 * in order to call the shutdown callback. This allows the callback 597 * to look at the taskqueue, even just before it dies. 598 */ 599 TQ_UNLOCK(tq); 600 gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 601 TQ_LOCK(tq); 602 603 /* rendezvous with thread that asked us to terminate */ 604 tq->tq_tcount--; 605 wakeup_one(tq->tq_threads); 606 TQ_UNLOCK(tq); 607 kthread_exit(); 608 } 609 610 static void 611 gtaskqueue_thread_enqueue(void *context) 612 { 613 struct gtaskqueue **tqp, *tq; 614 615 tqp = context; 616 tq = *tqp; 617 #ifndef __HAIKU__ 618 wakeup_one(tq); 619 #else 620 release_sem_etc(tq->tq_sem, 1, B_DO_NOT_RESCHEDULE); 621 #endif 622 } 623 624 625 static struct gtaskqueue * 626 gtaskqueue_create_fast(const char *name, int mflags, 627 taskqueue_enqueue_fn enqueue, void *context) 628 { 629 return _gtaskqueue_create(name, mflags, enqueue, context, 630 MTX_SPIN, "fast_taskqueue"); 631 } 632 633 634 struct taskqgroup_cpu { 635 LIST_HEAD(, grouptask) tgc_tasks; 636 struct gtaskqueue *tgc_taskq; 637 int tgc_cnt; 638 int tgc_cpu; 639 }; 640 641 struct taskqgroup { 642 struct taskqgroup_cpu tqg_queue[MAXCPU]; 643 struct mtx tqg_lock; 644 const char * tqg_name; 645 int tqg_adjusting; 646 int tqg_stride; 647 int tqg_cnt; 648 }; 649 650 struct taskq_bind_task { 651 struct gtask bt_task; 652 int bt_cpuid; 653 }; 654 655 static void 656 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu) 657 { 658 struct taskqgroup_cpu *qcpu; 659 660 qcpu = &qgroup->tqg_queue[idx]; 661 LIST_INIT(&qcpu->tgc_tasks); 662 qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK, 663 gtaskqueue_thread_enqueue, &qcpu->tgc_taskq); 664 MPASS(qcpu->tgc_taskq); 665 gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, 666 "%s_%d", qgroup->tqg_name, idx); 667 qcpu->tgc_cpu = cpu; 668 } 669 670 static void 671 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx) 672 { 673 674 gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq); 675 } 676 677 /* 678 * Find the taskq with least # of tasks that doesn't currently have any 679 * other queues from the uniq identifier. 680 */ 681 static int 682 taskqgroup_find(struct taskqgroup *qgroup, void *uniq) 683 { 684 struct grouptask *n; 685 int i, idx, mincnt; 686 int strict; 687 688 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 689 #ifndef __HAIKU__ 690 if (qgroup->tqg_cnt == 0) 691 #else 692 KASSERT(qgroup->tqg_cnt > 0, ("qgroup(%p)->tqg_cnt is %d!", qgroup, qgroup->tqg_cnt)); 693 if (qgroup->tqg_cnt == 1) 694 #endif 695 return (0); 696 idx = -1; 697 mincnt = INT_MAX; 698 /* 699 * Two passes; First scan for a queue with the least tasks that 700 * does not already service this uniq id. If that fails simply find 701 * the queue with the least total tasks; 702 */ 703 for (strict = 1; mincnt == INT_MAX; strict = 0) { 704 for (i = 0; i < qgroup->tqg_cnt; i++) { 705 if (qgroup->tqg_queue[i].tgc_cnt > mincnt) 706 continue; 707 if (strict) { 708 LIST_FOREACH(n, 709 &qgroup->tqg_queue[i].tgc_tasks, gt_list) 710 if (n->gt_uniq == uniq) 711 break; 712 if (n != NULL) 713 continue; 714 } 715 mincnt = qgroup->tqg_queue[i].tgc_cnt; 716 idx = i; 717 } 718 } 719 if (idx == -1) 720 panic("taskqgroup_find: Failed to pick a qid."); 721 722 return (idx); 723 } 724 725 /* 726 * smp_started is unusable since it is not set for UP kernels or even for 727 * SMP kernels when there is 1 CPU. This is usually handled by adding a 728 * (mp_ncpus == 1) test, but that would be broken here since we need to 729 * to synchronize with the SI_SUB_SMP ordering. Even in the pure SMP case 730 * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP. 731 * 732 * So maintain our own flag. It must be set after all CPUs are started 733 * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed 734 * adjustment is properly delayed. SI_ORDER_FOURTH is clearly before 735 * SI_ORDER_ANY and unclearly after the CPUs are started. It would be 736 * simpler for adjustment to pass a flag indicating if it is delayed. 737 */ 738 739 static int tqg_smp_started = 0; 740 741 static void 742 tqg_record_smp_started(void *arg) 743 { 744 tqg_smp_started = 1; 745 } 746 747 SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH, 748 tqg_record_smp_started, NULL); 749 750 void 751 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, 752 void *uniq, int irq, const char *name) 753 { 754 #ifndef __HAIKU__ 755 cpuset_t mask; 756 #endif 757 int qid, error; 758 759 gtask->gt_uniq = uniq; 760 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 761 gtask->gt_irq = irq; 762 gtask->gt_cpu = -1; 763 mtx_lock(&qgroup->tqg_lock); 764 qid = taskqgroup_find(qgroup, uniq); 765 qgroup->tqg_queue[qid].tgc_cnt++; 766 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 767 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 768 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 769 if (irq != -1 && tqg_smp_started) { 770 gtask->gt_cpu = qgroup->tqg_queue[qid].tgc_cpu; 771 #ifndef __HAIKU__ 772 CPU_ZERO(&mask); 773 CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask); 774 #endif 775 mtx_unlock(&qgroup->tqg_lock); 776 #ifndef __HAIKU__ 777 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask); 778 if (error) 779 printf("%s: setaffinity failed for %s: %d\n", __func__, gtask->gt_name, error); 780 #endif 781 } else 782 mtx_unlock(&qgroup->tqg_lock); 783 } 784 785 static void 786 taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) 787 { 788 #ifndef __HAIKU__ 789 cpuset_t mask; 790 #endif 791 int qid, cpu, error; 792 793 mtx_lock(&qgroup->tqg_lock); 794 qid = taskqgroup_find(qgroup, gtask->gt_uniq); 795 cpu = qgroup->tqg_queue[qid].tgc_cpu; 796 #ifndef __HAIKU__ 797 if (gtask->gt_irq != -1) { 798 mtx_unlock(&qgroup->tqg_lock); 799 800 CPU_ZERO(&mask); 801 CPU_SET(cpu, &mask); 802 error = intr_setaffinity(gtask->gt_irq, CPU_WHICH_IRQ, &mask); 803 mtx_lock(&qgroup->tqg_lock); 804 if (error) 805 printf("%s: %s setaffinity failed: %d\n", __func__, gtask->gt_name, error); 806 807 } 808 #endif 809 qgroup->tqg_queue[qid].tgc_cnt++; 810 811 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, 812 gt_list); 813 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 814 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 815 mtx_unlock(&qgroup->tqg_lock); 816 } 817 818 int 819 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, 820 void *uniq, int cpu, int irq, const char *name) 821 { 822 #ifndef __HAIKU__ 823 cpuset_t mask; 824 #endif 825 int i, qid, error; 826 827 qid = -1; 828 gtask->gt_uniq = uniq; 829 snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); 830 gtask->gt_irq = irq; 831 gtask->gt_cpu = cpu; 832 mtx_lock(&qgroup->tqg_lock); 833 if (tqg_smp_started) { 834 for (i = 0; i < qgroup->tqg_cnt; i++) 835 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 836 qid = i; 837 break; 838 } 839 if (qid == -1) { 840 mtx_unlock(&qgroup->tqg_lock); 841 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 842 return (EINVAL); 843 } 844 } else 845 qid = 0; 846 qgroup->tqg_queue[qid].tgc_cnt++; 847 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 848 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 849 cpu = qgroup->tqg_queue[qid].tgc_cpu; 850 mtx_unlock(&qgroup->tqg_lock); 851 852 #ifndef __HAIKU__ 853 CPU_ZERO(&mask); 854 CPU_SET(cpu, &mask); 855 if (irq != -1 && tqg_smp_started) { 856 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask); 857 if (error) 858 printf("%s: setaffinity failed: %d\n", __func__, error); 859 } 860 #endif 861 return (0); 862 } 863 864 static int 865 taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) 866 { 867 #ifndef __HAIKU__ 868 cpuset_t mask; 869 #endif 870 int i, qid, irq, cpu, error; 871 872 qid = -1; 873 irq = gtask->gt_irq; 874 cpu = gtask->gt_cpu; 875 MPASS(tqg_smp_started); 876 mtx_lock(&qgroup->tqg_lock); 877 for (i = 0; i < qgroup->tqg_cnt; i++) 878 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 879 qid = i; 880 break; 881 } 882 if (qid == -1) { 883 mtx_unlock(&qgroup->tqg_lock); 884 printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); 885 return (EINVAL); 886 } 887 qgroup->tqg_queue[qid].tgc_cnt++; 888 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 889 MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); 890 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 891 mtx_unlock(&qgroup->tqg_lock); 892 893 #ifndef __HAIKU__ 894 CPU_ZERO(&mask); 895 CPU_SET(cpu, &mask); 896 897 if (irq != -1) { 898 error = intr_setaffinity(irq, CPU_WHICH_IRQ, &mask); 899 if (error) 900 printf("%s: setaffinity failed: %d\n", __func__, error); 901 } 902 #endif 903 return (0); 904 } 905 906 void 907 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) 908 { 909 int i; 910 911 grouptask_block(gtask); 912 mtx_lock(&qgroup->tqg_lock); 913 for (i = 0; i < qgroup->tqg_cnt; i++) 914 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) 915 break; 916 if (i == qgroup->tqg_cnt) 917 panic("taskqgroup_detach: task %s not in group\n", gtask->gt_name); 918 qgroup->tqg_queue[i].tgc_cnt--; 919 LIST_REMOVE(gtask, gt_list); 920 mtx_unlock(&qgroup->tqg_lock); 921 gtask->gt_taskqueue = NULL; 922 gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE; 923 } 924 925 static void 926 taskqgroup_binder(void *ctx) 927 { 928 struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx; 929 #ifndef __HAIKU__ 930 cpuset_t mask; 931 int error; 932 933 CPU_ZERO(&mask); 934 CPU_SET(gtask->bt_cpuid, &mask); 935 error = cpuset_setthread(curthread->td_tid, &mask); 936 thread_lock(curthread); 937 sched_bind(curthread, gtask->bt_cpuid); 938 thread_unlock(curthread); 939 940 if (error) 941 printf("%s: setaffinity failed: %d\n", __func__, 942 error); 943 #endif 944 free(gtask, M_DEVBUF); 945 } 946 947 static void 948 taskqgroup_bind(struct taskqgroup *qgroup) 949 { 950 struct taskq_bind_task *gtask; 951 int i; 952 953 /* 954 * Bind taskqueue threads to specific CPUs, if they have been assigned 955 * one. 956 */ 957 if (qgroup->tqg_cnt == 1) 958 return; 959 960 for (i = 0; i < qgroup->tqg_cnt; i++) { 961 gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK); 962 GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask); 963 gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; 964 grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, 965 >ask->bt_task); 966 } 967 } 968 969 static void 970 taskqgroup_config_init(void *arg) 971 { 972 struct taskqgroup *qgroup = qgroup_config; 973 LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); 974 975 LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, 976 grouptask, gt_list); 977 qgroup->tqg_queue[0].tgc_cnt = 0; 978 taskqgroup_cpu_create(qgroup, 0, 0); 979 980 qgroup->tqg_cnt = 1; 981 qgroup->tqg_stride = 1; 982 } 983 984 SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND, 985 taskqgroup_config_init, NULL); 986 987 static int 988 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 989 { 990 LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); 991 struct grouptask *gtask; 992 int i, k, old_cnt, old_cpu, cpu; 993 994 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 995 996 if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) { 997 printf("%s: failed cnt: %d stride: %d " 998 "mp_ncpus: %d tqg_smp_started: %d\n", 999 __func__, cnt, stride, mp_ncpus, tqg_smp_started); 1000 return (EINVAL); 1001 } 1002 if (qgroup->tqg_adjusting) { 1003 printf("%s failed: adjusting\n", __func__); 1004 return (EBUSY); 1005 } 1006 qgroup->tqg_adjusting = 1; 1007 old_cnt = qgroup->tqg_cnt; 1008 old_cpu = 0; 1009 if (old_cnt < cnt) 1010 old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu; 1011 mtx_unlock(&qgroup->tqg_lock); 1012 /* 1013 * Set up queue for tasks added before boot. 1014 */ 1015 if (old_cnt == 0) { 1016 LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, 1017 grouptask, gt_list); 1018 qgroup->tqg_queue[0].tgc_cnt = 0; 1019 } 1020 1021 /* 1022 * If new taskq threads have been added. 1023 */ 1024 cpu = old_cpu; 1025 for (i = old_cnt; i < cnt; i++) { 1026 taskqgroup_cpu_create(qgroup, i, cpu); 1027 1028 for (k = 0; k < stride; k++) 1029 cpu = CPU_NEXT(cpu); 1030 } 1031 mtx_lock(&qgroup->tqg_lock); 1032 qgroup->tqg_cnt = cnt; 1033 qgroup->tqg_stride = stride; 1034 1035 /* 1036 * Adjust drivers to use new taskqs. 1037 */ 1038 for (i = 0; i < old_cnt; i++) { 1039 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) { 1040 LIST_REMOVE(gtask, gt_list); 1041 qgroup->tqg_queue[i].tgc_cnt--; 1042 LIST_INSERT_HEAD(>ask_head, gtask, gt_list); 1043 } 1044 } 1045 mtx_unlock(&qgroup->tqg_lock); 1046 1047 while ((gtask = LIST_FIRST(>ask_head))) { 1048 LIST_REMOVE(gtask, gt_list); 1049 if (gtask->gt_cpu == -1) 1050 taskqgroup_attach_deferred(qgroup, gtask); 1051 else if (taskqgroup_attach_cpu_deferred(qgroup, gtask)) 1052 taskqgroup_attach_deferred(qgroup, gtask); 1053 } 1054 1055 #ifdef INVARIANTS 1056 mtx_lock(&qgroup->tqg_lock); 1057 for (i = 0; i < qgroup->tqg_cnt; i++) { 1058 MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL); 1059 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list) 1060 MPASS(gtask->gt_taskqueue != NULL); 1061 } 1062 mtx_unlock(&qgroup->tqg_lock); 1063 #endif 1064 /* 1065 * If taskq thread count has been reduced. 1066 */ 1067 for (i = cnt; i < old_cnt; i++) 1068 taskqgroup_cpu_remove(qgroup, i); 1069 1070 taskqgroup_bind(qgroup); 1071 1072 mtx_lock(&qgroup->tqg_lock); 1073 qgroup->tqg_adjusting = 0; 1074 1075 return (0); 1076 } 1077 1078 int 1079 taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 1080 { 1081 int error; 1082 1083 mtx_lock(&qgroup->tqg_lock); 1084 error = _taskqgroup_adjust(qgroup, cnt, stride); 1085 mtx_unlock(&qgroup->tqg_lock); 1086 1087 return (error); 1088 } 1089 1090 struct taskqgroup * 1091 taskqgroup_create(const char *name) 1092 { 1093 struct taskqgroup *qgroup; 1094 1095 qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO); 1096 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); 1097 qgroup->tqg_name = name; 1098 LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks); 1099 1100 return (qgroup); 1101 } 1102 1103 void 1104 taskqgroup_destroy(struct taskqgroup *qgroup) 1105 { 1106 1107 } 1108 1109 void 1110 taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn, 1111 const char *name) 1112 { 1113 1114 GROUPTASK_INIT(gtask, 0, fn, ctx); 1115 taskqgroup_attach(qgroup_config, gtask, gtask, -1, name); 1116 } 1117 1118 void 1119 taskqgroup_config_gtask_deinit(struct grouptask *gtask) 1120 { 1121 taskqgroup_detach(qgroup_config, gtask); 1122 } 1123