1 /* 2 Open Tracker License 3 4 Terms and Conditions 5 6 Copyright (c) 1991-2000, Be Incorporated. All rights reserved. 7 8 Permission is hereby granted, free of charge, to any person obtaining a copy of 9 this software and associated documentation files (the "Software"), to deal in 10 the Software without restriction, including without limitation the rights to 11 use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies 12 of the Software, and to permit persons to whom the Software is furnished to do 13 so, subject to the following conditions: 14 15 The above copyright notice and this permission notice applies to all licensees 16 and shall be included in all copies or substantial portions of the Software. 17 18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF TITLE, MERCHANTABILITY, 20 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 BE INCORPORATED BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN 22 AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION 23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 24 25 Except as contained in this notice, the name of Be Incorporated shall not be 26 used in advertising or otherwise to promote the sale, use or other dealings in 27 this Software without prior written authorization from Be Incorporated. 28 29 Tracker(TM), Be(R), BeOS(R), and BeIA(TM) are trademarks or registered trademarks 30 of Be Incorporated in the United States and other countries. Other brand product 31 names are registered trademarks or trademarks of their respective holders. 32 All rights reserved. 33 */ 34 35 #include <Debug.h> 36 #include <InterfaceDefs.h> 37 38 #include "AutoLock.h" 39 #include "TaskLoop.h" 40 41 42 DelayedTask::DelayedTask(bigtime_t delay) 43 : fRunAfter(system_time() + delay) 44 { 45 } 46 47 DelayedTask::~DelayedTask() 48 { 49 } 50 51 OneShotDelayedTask::OneShotDelayedTask(FunctionObject *functor, bigtime_t delay) 52 : DelayedTask(delay), 53 fFunctor(functor) 54 { 55 } 56 57 58 OneShotDelayedTask::~OneShotDelayedTask() 59 { 60 delete fFunctor; 61 } 62 63 64 bool 65 OneShotDelayedTask::RunIfNeeded(bigtime_t currentTime) 66 { 67 if (currentTime < fRunAfter) 68 return false; 69 70 (*fFunctor)(); 71 return true; 72 } 73 74 75 PeriodicDelayedTask::PeriodicDelayedTask(FunctionObjectWithResult<bool> *functor, 76 bigtime_t initialDelay, bigtime_t period) 77 : DelayedTask(initialDelay), 78 fPeriod(period), 79 fFunctor(functor) 80 { 81 } 82 83 84 PeriodicDelayedTask::~PeriodicDelayedTask() 85 { 86 delete fFunctor; 87 } 88 89 90 bool 91 PeriodicDelayedTask::RunIfNeeded(bigtime_t currentTime) 92 { 93 if (!currentTime < fRunAfter) 94 return false; 95 96 fRunAfter = currentTime + fPeriod; 97 (*fFunctor)(); 98 return fFunctor->Result(); 99 } 100 101 102 PeriodicDelayedTaskWithTimeout::PeriodicDelayedTaskWithTimeout( 103 FunctionObjectWithResult<bool> *functor, bigtime_t initialDelay, 104 bigtime_t period, bigtime_t timeout) 105 : PeriodicDelayedTask(functor, initialDelay, period), 106 fTimeoutAfter(system_time() + timeout) 107 { 108 } 109 110 111 bool 112 PeriodicDelayedTaskWithTimeout::RunIfNeeded(bigtime_t currentTime) 113 { 114 if (currentTime < fRunAfter) 115 return false; 116 117 fRunAfter = currentTime + fPeriod; 118 (*fFunctor)(); 119 if (fFunctor->Result()) 120 return true; 121 122 // if call didn't terminate the task yet, check if timeout is due 123 return currentTime > fTimeoutAfter; 124 } 125 126 127 RunWhenIdleTask::RunWhenIdleTask(FunctionObjectWithResult<bool> *functor, bigtime_t 128 initialDelay, bigtime_t idleFor, bigtime_t heartBeat) 129 : PeriodicDelayedTask(functor, initialDelay, heartBeat), 130 fIdleFor(idleFor), 131 fState(kInitialDelay) 132 { 133 } 134 135 136 RunWhenIdleTask::~RunWhenIdleTask() 137 { 138 } 139 140 141 bool 142 RunWhenIdleTask::RunIfNeeded(bigtime_t currentTime) 143 { 144 if (currentTime < fRunAfter) 145 return false; 146 147 fRunAfter = currentTime + fPeriod; 148 // PRINT(("runWhenIdle: runAfter %Ld, current time %Ld, period %Ld\n", 149 // fRunAfter, currentTime, fPeriod)); 150 151 if (fState == kInitialDelay) { 152 // PRINT(("run when idle task - past intial delay\n")); 153 ResetIdleTimer(currentTime); 154 } else if (fState == kInIdleState && !StillIdle(currentTime)) { 155 fState = kInitialIdleWait; 156 ResetIdleTimer(currentTime); 157 } else if (fState != kInitialIdleWait || IdleTimerExpired(currentTime)) { 158 fState = kInIdleState; 159 (*fFunctor)(); 160 return fFunctor->Result(); 161 } 162 return false; 163 } 164 165 166 static bigtime_t 167 ActivityLevel() 168 { 169 // stolen from roster server 170 bigtime_t time = 0; 171 system_info sinfo; 172 get_system_info(&sinfo); 173 for (int32 index = 0; index < sinfo.cpu_count; index++) 174 time += sinfo.cpu_infos[index].active_time; 175 return time / ((bigtime_t) sinfo.cpu_count); 176 } 177 178 179 void 180 RunWhenIdleTask::ResetIdleTimer(bigtime_t currentTime) 181 { 182 fActivityLevel = ActivityLevel(); 183 fActivityLevelStart = currentTime; 184 fLastCPUTooBusyTime = currentTime; 185 fState = kInitialIdleWait; 186 } 187 188 const float kTaskOverhead = 0.01f; 189 // this should really be specified by the task itself 190 const float kIdleTreshold = 0.15f; 191 192 bool 193 RunWhenIdleTask::IsIdle(bigtime_t currentTime, float taskOverhead) 194 { 195 bigtime_t currentActivityLevel = ActivityLevel(); 196 float load = (float)(currentActivityLevel - fActivityLevel) 197 / (float)(currentTime - fActivityLevelStart); 198 199 fActivityLevel = currentActivityLevel; 200 fActivityLevelStart = currentTime; 201 202 load -= taskOverhead; 203 204 bool idle = true; 205 206 if (load > kIdleTreshold) { 207 // PRINT(("not idle enough %f\n", load)); 208 idle = false; 209 } else if ((currentTime - fLastCPUTooBusyTime) < fIdleFor 210 || idle_time() < fIdleFor) { 211 // PRINT(("load %f, not idle long enough %Ld, %Ld\n", load, 212 // currentTime - fLastCPUTooBusyTime, 213 // idle_time())); 214 idle = false; 215 } 216 217 #if xDEBUG 218 else 219 PRINT(("load %f, idle for %Ld sec, go\n", load, 220 (currentTime - fLastCPUTooBusyTime) / 1000000)); 221 #endif 222 223 return idle; 224 } 225 226 227 bool 228 RunWhenIdleTask::IdleTimerExpired(bigtime_t currentTime) 229 { 230 return IsIdle(currentTime, 0); 231 } 232 233 234 bool 235 RunWhenIdleTask::StillIdle(bigtime_t currentTime) 236 { 237 return IsIdle(currentTime, kIdleTreshold); 238 } 239 240 241 TaskLoop::TaskLoop(bigtime_t heartBeat) 242 : fTaskList(10, true), 243 fHeartBeat(heartBeat) 244 { 245 } 246 247 248 TaskLoop::~TaskLoop() 249 { 250 } 251 252 253 void 254 TaskLoop::RunLater(DelayedTask *task) 255 { 256 AddTask(task); 257 } 258 259 260 void 261 TaskLoop::RunLater(FunctionObject *functor, bigtime_t delay) 262 { 263 RunLater(new OneShotDelayedTask(functor, delay)); 264 } 265 266 267 void 268 TaskLoop::RunLater(FunctionObjectWithResult<bool> *functor, 269 bigtime_t delay, bigtime_t period) 270 { 271 RunLater(new PeriodicDelayedTask(functor, delay, period)); 272 } 273 274 275 void 276 TaskLoop::RunLater(FunctionObjectWithResult<bool> *functor, bigtime_t delay, 277 bigtime_t period, bigtime_t timeout) 278 { 279 RunLater(new PeriodicDelayedTaskWithTimeout(functor, delay, period, timeout)); 280 } 281 282 283 void 284 TaskLoop::RunWhenIdle(FunctionObjectWithResult<bool> *functor, bigtime_t initialDelay, 285 bigtime_t idleTime, bigtime_t heartBeat) 286 { 287 RunLater(new RunWhenIdleTask(functor, initialDelay, idleTime, heartBeat)); 288 } 289 290 291 class AccumulatedOneShotDelayedTask : public OneShotDelayedTask { 292 // supports accumulating functors 293 public: 294 AccumulatedOneShotDelayedTask(AccumulatingFunctionObject *functor, bigtime_t delay, 295 bigtime_t maxAccumulatingTime = 0, int32 maxAccumulateCount = 0) 296 : OneShotDelayedTask(functor, delay), 297 maxAccumulateCount(maxAccumulateCount), 298 accumulateCount(1), 299 maxAccumulatingTime(maxAccumulatingTime), 300 initialTime(system_time()) 301 {} 302 303 bool CanAccumulate(const AccumulatingFunctionObject *accumulateThis) const 304 { 305 if (maxAccumulateCount && accumulateCount > maxAccumulateCount) 306 // don't accumulate if too may accumulated already 307 return false; 308 309 if (maxAccumulatingTime && system_time() > initialTime + maxAccumulatingTime) 310 // don't accumulate if too late past initial task 311 return false; 312 313 return static_cast<AccumulatingFunctionObject *>(fFunctor)->CanAccumulate(accumulateThis); 314 } 315 316 virtual void Accumulate(AccumulatingFunctionObject *accumulateThis, bigtime_t delay) 317 { 318 fRunAfter = system_time() + delay; 319 // reset fRunAfter 320 accumulateCount++; 321 static_cast<AccumulatingFunctionObject *>(fFunctor)->Accumulate(accumulateThis); 322 } 323 324 private: 325 int32 maxAccumulateCount; 326 int32 accumulateCount; 327 bigtime_t maxAccumulatingTime; 328 bigtime_t initialTime; 329 }; 330 331 void 332 TaskLoop::AccumulatedRunLater(AccumulatingFunctionObject *functor, bigtime_t delay, 333 bigtime_t maxAccumulatingTime, int32 maxAccumulateCount) 334 { 335 AutoLock<BLocker> autoLock(&fLock); 336 if (!autoLock.IsLocked()) { 337 return; 338 } 339 int32 count = fTaskList.CountItems(); 340 for (int32 index = 0; index < count; index++) { 341 AccumulatedOneShotDelayedTask *task = dynamic_cast<AccumulatedOneShotDelayedTask *> 342 (fTaskList.ItemAt(index)); 343 if (!task) 344 continue; 345 346 if (task->CanAccumulate(functor)) { 347 task->Accumulate(functor, delay); 348 return; 349 } 350 } 351 RunLater(new AccumulatedOneShotDelayedTask(functor, delay, maxAccumulatingTime, 352 maxAccumulateCount)); 353 } 354 355 356 bool 357 TaskLoop::Pulse() 358 { 359 ASSERT(fLock.IsLocked()); 360 361 int32 count = fTaskList.CountItems(); 362 if (count > 0) { 363 bigtime_t currentTime = system_time(); 364 for (int32 index = 0; index < count; ) { 365 DelayedTask *task = fTaskList.ItemAt(index); 366 // give every task a try 367 if (task->RunIfNeeded(currentTime)) { 368 // if done, remove from list 369 RemoveTask(task); 370 count--; 371 } else 372 index++; 373 } 374 } 375 return count == 0 && !KeepPulsingWhenEmpty(); 376 } 377 378 const bigtime_t kInfinity = B_INFINITE_TIMEOUT; 379 380 bigtime_t 381 TaskLoop::LatestRunTime() const 382 { 383 ASSERT(fLock.IsLocked()); 384 bigtime_t result = kInfinity; 385 386 #if xDEBUG 387 DelayedTask *nextTask = 0; 388 #endif 389 int32 count = fTaskList.CountItems(); 390 for (int32 index = 0; index < count; index++) { 391 bigtime_t runAfter = fTaskList.ItemAt(index)->RunAfterTime(); 392 if (runAfter < result) { 393 result = runAfter; 394 395 #if xDEBUG 396 nextTask = fTaskList.ItemAt(index); 397 #endif 398 } 399 } 400 401 402 #if xDEBUG 403 if (nextTask) 404 PRINT(("latestRunTime : next task %s\n", typeid(*nextTask).name)); 405 else 406 PRINT(("latestRunTime : no next task\n")); 407 #endif 408 409 return result; 410 } 411 412 413 void 414 TaskLoop::RemoveTask(DelayedTask *task) 415 { 416 ASSERT(fLock.IsLocked()); 417 // remove the task 418 fTaskList.RemoveItem(task); 419 } 420 421 void 422 TaskLoop::AddTask(DelayedTask *task) 423 { 424 AutoLock<BLocker> autoLock(&fLock); 425 if (!autoLock.IsLocked()) { 426 delete task; 427 return; 428 } 429 430 fTaskList.AddItem(task); 431 StartPulsingIfNeeded(); 432 } 433 434 435 StandAloneTaskLoop::StandAloneTaskLoop(bool keepThread, bigtime_t heartBeat) 436 : TaskLoop(heartBeat), 437 fNeedToQuit(false), 438 fScanThread(-1), 439 fKeepThread(keepThread) 440 { 441 } 442 443 444 StandAloneTaskLoop::~StandAloneTaskLoop() 445 { 446 fLock.Lock(); 447 fNeedToQuit = true; 448 bool easyOut = (fScanThread == -1); 449 fLock.Unlock(); 450 451 if (!easyOut) 452 for (int32 timeout = 10000; ; timeout--) { 453 // use a 10 sec timeout value in case the spawned 454 // thread is stuck somewhere 455 456 if (!timeout) { 457 PRINT(("StandAloneTaskLoop timed out, quitting abruptly")); 458 break; 459 } 460 461 bool done; 462 463 fLock.Lock(); 464 done = (fScanThread == -1); 465 fLock.Unlock(); 466 if (done) 467 break; 468 469 snooze(1000); 470 } 471 } 472 473 void 474 StandAloneTaskLoop::StartPulsingIfNeeded() 475 { 476 ASSERT(fLock.IsLocked()); 477 if (fScanThread < 0) { 478 // no loop thread yet, spawn one 479 fScanThread = spawn_thread(StandAloneTaskLoop::RunBinder, "TrackerTaskLoop", 480 B_LOW_PRIORITY, this); 481 resume_thread(fScanThread); 482 } 483 } 484 485 bool 486 StandAloneTaskLoop::KeepPulsingWhenEmpty() const 487 { 488 return fKeepThread; 489 } 490 491 status_t 492 StandAloneTaskLoop::RunBinder(void *castToThis) 493 { 494 StandAloneTaskLoop *self = (StandAloneTaskLoop *)castToThis; 495 self->Run(); 496 return B_OK; 497 } 498 499 void 500 StandAloneTaskLoop::Run() 501 { 502 for(;;) { 503 AutoLock<BLocker> autoLock(&fLock); 504 if (!autoLock) 505 return; 506 507 if (fNeedToQuit) { 508 // task loop being deleted, let go of the thread allowing the 509 // to go through deletion 510 fScanThread = -1; 511 return; 512 } 513 514 if (Pulse()) { 515 fScanThread = -1; 516 return; 517 } 518 519 // figure out when to run next by checking out when the different 520 // tasks wan't to be woken up, snooze until a little bit before that 521 // time 522 bigtime_t now = system_time(); 523 bigtime_t latestRunTime = LatestRunTime() - 1000; 524 bigtime_t afterHeartBeatTime = now + fHeartBeat; 525 bigtime_t snoozeTill = latestRunTime < afterHeartBeatTime ? 526 latestRunTime : afterHeartBeatTime; 527 528 autoLock.Unlock(); 529 530 if (snoozeTill > now) 531 snooze_until(snoozeTill, B_SYSTEM_TIMEBASE); 532 else 533 snooze(1000); 534 } 535 } 536 537 void 538 StandAloneTaskLoop::AddTask(DelayedTask *delayedTask) 539 { 540 _inherited::AddTask(delayedTask); 541 if (fScanThread < 0) 542 return; 543 544 // wake up the loop thread if it is asleep 545 thread_info info; 546 get_thread_info(fScanThread, &info); 547 if (info.state == B_THREAD_ASLEEP) { 548 suspend_thread(fScanThread); 549 snooze(1000); // snooze because BeBook sez so 550 resume_thread(fScanThread); 551 } 552 } 553 554 PiggybackTaskLoop::PiggybackTaskLoop(bigtime_t heartBeat) 555 : TaskLoop(heartBeat), 556 fNextHeartBeatTime(0), 557 fPulseMe(false) 558 { 559 } 560 561 562 PiggybackTaskLoop::~PiggybackTaskLoop() 563 { 564 } 565 566 void 567 PiggybackTaskLoop::PulseMe() 568 { 569 if (!fPulseMe) 570 return; 571 572 bigtime_t time = system_time(); 573 if (fNextHeartBeatTime < time) { 574 AutoLock<BLocker> autoLock(&fLock); 575 if (Pulse()) 576 fPulseMe = false; 577 fNextHeartBeatTime = time + fHeartBeat; 578 } 579 } 580 581 bool 582 PiggybackTaskLoop::KeepPulsingWhenEmpty() const 583 { 584 return false; 585 } 586 587 void 588 PiggybackTaskLoop::StartPulsingIfNeeded() 589 { 590 fPulseMe = true; 591 } 592 593