1 /*
2 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
3 * MD5 Message-Digest Algorithm (RFC 1321).
4 *
5 * Homepage:
6 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
7 *
8 * Author:
9 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
10 *
11 * This software was written by Alexander Peslyak in 2001. No copyright is
12 * claimed, and the software is hereby placed in the public domain.
13 * In case this attempt to disclaim copyright and place the software in the
14 * public domain is deemed null and void, then the software is
15 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
16 * general public under the following terms:
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted.
20 *
21 * There's ABSOLUTELY NO WARRANTY, express or implied.
22 *
23 * (This is a heavily cut-down "BSD license".)
24 *
25 * This differs from Colin Plumb's older public domain implementation in that
26 * no exactly 32-bit integer data type is required (any 32-bit or wider
27 * unsigned integer data type will do), there's no compile-time endianness
28 * configuration, and the function prototypes match OpenSSL's. No code from
29 * Colin Plumb's implementation has been reused; this comment merely compares
30 * the properties of the two independent implementations.
31 *
32 * The primary goals of this implementation are portability and ease of use.
33 * It is meant to be fast, but not as fast as possible. Some known
34 * optimizations are not included to reduce source code size and avoid
35 * compile-time configuration.
36 */
37
38
39 #include "md5.h"
40
41 #include <string.h>
42
43
44 /*
45 * The basic MD5 functions.
46 *
47 * F and G are optimized compared to their RFC 1321 definitions for
48 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
49 * implementation.
50 */
51 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
52 #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
53 #define H(x, y, z) ((x) ^ (y) ^ (z))
54 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
55
56 /*
57 * The MD5 transformation for all four rounds.
58 */
59 #define STEP(f, a, b, c, d, x, t, s) \
60 (a) += f((b), (c), (d)) + (x) + (t); \
61 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
62 (a) += (b);
63
64 /*
65 * SET reads 4 input bytes in little-endian byte order and stores them
66 * in a properly aligned word in host byte order.
67 *
68 * The check for little-endian architectures that tolerate unaligned
69 * memory accesses is just an optimization. Nothing will break if it
70 * doesn't work.
71 */
72 #if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
73 #define SET(n) \
74 (*(MD5_u32plus *)&ptr[(n) * 4])
75 #define GET(n) \
76 SET(n)
77 #else
78 #define SET(n) \
79 (ctx->block[(n)] = \
80 (MD5_u32plus)ptr[(n) * 4] | \
81 ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
82 ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
83 ((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
84 #define GET(n) \
85 (ctx->block[(n)])
86 #endif
87
88
89 namespace BPrivate {
90
91 /*
92 * This processes one or more 64-byte data blocks, but does NOT update
93 * the bit counters. There are no alignment requirements.
94 */
body(MD5_CTX * ctx,const void * data,unsigned long size)95 static const void *body(MD5_CTX *ctx, const void *data, unsigned long size)
96 {
97 const unsigned char *ptr;
98 MD5_u32plus a, b, c, d;
99 MD5_u32plus saved_a, saved_b, saved_c, saved_d;
100
101 ptr = (const unsigned char*)data;
102
103 a = ctx->a;
104 b = ctx->b;
105 c = ctx->c;
106 d = ctx->d;
107
108 do {
109 saved_a = a;
110 saved_b = b;
111 saved_c = c;
112 saved_d = d;
113
114 /* Round 1 */
115 STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
116 STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
117 STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
118 STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
119 STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
120 STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
121 STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
122 STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
123 STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
124 STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
125 STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
126 STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
127 STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
128 STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
129 STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
130 STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
131
132 /* Round 2 */
133 STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
134 STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
135 STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
136 STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
137 STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
138 STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
139 STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
140 STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
141 STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
142 STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
143 STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
144 STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
145 STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
146 STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
147 STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
148 STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
149
150 /* Round 3 */
151 STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
152 STEP(H, d, a, b, c, GET(8), 0x8771f681, 11)
153 STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
154 STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23)
155 STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
156 STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11)
157 STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
158 STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23)
159 STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
160 STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11)
161 STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
162 STEP(H, b, c, d, a, GET(6), 0x04881d05, 23)
163 STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
164 STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11)
165 STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
166 STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23)
167
168 /* Round 4 */
169 STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
170 STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
171 STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
172 STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
173 STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
174 STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
175 STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
176 STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
177 STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
178 STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
179 STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
180 STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
181 STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
182 STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
183 STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
184 STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
185
186 a += saved_a;
187 b += saved_b;
188 c += saved_c;
189 d += saved_d;
190
191 ptr += 64;
192 } while (size -= 64);
193
194 ctx->a = a;
195 ctx->b = b;
196 ctx->c = c;
197 ctx->d = d;
198
199 return ptr;
200 }
201
MD5_Init(MD5_CTX * ctx)202 void MD5_Init(MD5_CTX *ctx)
203 {
204 ctx->a = 0x67452301;
205 ctx->b = 0xefcdab89;
206 ctx->c = 0x98badcfe;
207 ctx->d = 0x10325476;
208
209 ctx->lo = 0;
210 ctx->hi = 0;
211 }
212
MD5_Update(MD5_CTX * ctx,const void * data,unsigned long size)213 void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size)
214 {
215 MD5_u32plus saved_lo;
216 unsigned long used, free;
217
218 saved_lo = ctx->lo;
219 if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
220 ctx->hi++;
221 ctx->hi += size >> 29;
222
223 used = saved_lo & 0x3f;
224
225 if (used) {
226 free = 64 - used;
227
228 if (size < free) {
229 memcpy(&ctx->buffer[used], data, size);
230 return;
231 }
232
233 memcpy(&ctx->buffer[used], data, free);
234 data = (unsigned char *)data + free;
235 size -= free;
236 body(ctx, ctx->buffer, 64);
237 }
238
239 if (size >= 64) {
240 data = body(ctx, data, size & ~(unsigned long)0x3f);
241 size &= 0x3f;
242 }
243
244 memcpy(ctx->buffer, data, size);
245 }
246
MD5_Final(unsigned char * result,MD5_CTX * ctx)247 void MD5_Final(unsigned char *result, MD5_CTX *ctx)
248 {
249 unsigned long used, free;
250
251 used = ctx->lo & 0x3f;
252
253 ctx->buffer[used++] = 0x80;
254
255 free = 64 - used;
256
257 if (free < 8) {
258 memset(&ctx->buffer[used], 0, free);
259 body(ctx, ctx->buffer, 64);
260 used = 0;
261 free = 64;
262 }
263
264 memset(&ctx->buffer[used], 0, free - 8);
265
266 ctx->lo <<= 3;
267 ctx->buffer[56] = ctx->lo;
268 ctx->buffer[57] = ctx->lo >> 8;
269 ctx->buffer[58] = ctx->lo >> 16;
270 ctx->buffer[59] = ctx->lo >> 24;
271 ctx->buffer[60] = ctx->hi;
272 ctx->buffer[61] = ctx->hi >> 8;
273 ctx->buffer[62] = ctx->hi >> 16;
274 ctx->buffer[63] = ctx->hi >> 24;
275
276 body(ctx, ctx->buffer, 64);
277
278 result[0] = ctx->a;
279 result[1] = ctx->a >> 8;
280 result[2] = ctx->a >> 16;
281 result[3] = ctx->a >> 24;
282 result[4] = ctx->b;
283 result[5] = ctx->b >> 8;
284 result[6] = ctx->b >> 16;
285 result[7] = ctx->b >> 24;
286 result[8] = ctx->c;
287 result[9] = ctx->c >> 8;
288 result[10] = ctx->c >> 16;
289 result[11] = ctx->c >> 24;
290 result[12] = ctx->d;
291 result[13] = ctx->d >> 8;
292 result[14] = ctx->d >> 16;
293 result[15] = ctx->d >> 24;
294
295 memset(ctx, 0, sizeof(*ctx));
296 }
297
298 };
299