xref: /haiku/src/kits/media/RealtimeAlloc.cpp (revision 7d6915b4d08ffe728cd38af02843d5e98ddfe0db)
1 /*
2  * Copyright 2009, Axel Dörfler, axeld@pinc-software.de.
3  * Distributed under the terms of the MIT License.
4  */
5 
6 
7 /*!	A simple allocator that works directly on an area, based on the boot
8 	loader's heap. See there for more information about its inner workings.
9 */
10 
11 
12 #include <RealtimeAlloc.h>
13 
14 #include <pthread.h>
15 #include <stdlib.h>
16 #include <stdio.h>
17 #include <string.h>
18 
19 #include <OS.h>
20 
21 #include <locks.h>
22 #include <kernel/util/DoublyLinkedList.h>
23 
24 
25 //#define TRACE_RTM
26 #ifdef TRACE_RTM
27 #	define TRACE(x...) printf(x);
28 #else
29 #	define TRACE(x...) ;
30 #endif
31 
32 
33 class FreeChunk {
34 public:
35 			void				SetTo(size_t size, FreeChunk* next);
36 
37 			uint32				Size() const;
38 			uint32				CompleteSize() const { return fSize; }
39 
40 			FreeChunk*			Next() const { return fNext; }
41 			void				SetNext(FreeChunk* next) { fNext = next; }
42 
43 			FreeChunk*			Split(uint32 splitSize);
44 			bool				IsTouching(FreeChunk* link);
45 			FreeChunk*			Join(FreeChunk* link);
46 			void				Remove(rtm_pool* pool,
47 									FreeChunk* previous = NULL);
48 			void				Enqueue(rtm_pool* pool);
49 
50 			void*				AllocatedAddress() const;
51 	static	FreeChunk*			SetToAllocated(void* allocated);
52 	static	addr_t				NextOffset() { return sizeof(size_t); }
53 
54 private:
55 			size_t				fSize;
56 			FreeChunk*			fNext;
57 };
58 
59 
60 struct rtm_pool : DoublyLinkedListLinkImpl<rtm_pool> {
61 	area_id		area;
62 	void*		heap_base;
63 	size_t		max_size;
64 	size_t		available;
65 	FreeChunk	free_anchor;
66 	mutex		lock;
67 
68 	bool Contains(void* buffer) const;
69 	void Free(void* buffer);
70 };
71 
72 typedef DoublyLinkedList<rtm_pool> PoolList;
73 
74 
75 const static uint32 kAlignment = 256;
76 	// all memory chunks will be a multiple of this
77 
78 static mutex sPoolsLock = MUTEX_INITIALIZER("rtm pools");
79 static PoolList sPools;
80 
81 
82 void
83 FreeChunk::SetTo(size_t size, FreeChunk* next)
84 {
85 	fSize = size;
86 	fNext = next;
87 }
88 
89 
90 /*!	Returns the amount of bytes that can be allocated
91 	in this chunk.
92 */
93 uint32
94 FreeChunk::Size() const
95 {
96 	return fSize - FreeChunk::NextOffset();
97 }
98 
99 
100 /*!	Splits the upper half at the requested location
101 	and returns it.
102 */
103 FreeChunk*
104 FreeChunk::Split(uint32 splitSize)
105 {
106 	splitSize = (splitSize - 1 + kAlignment) & ~(kAlignment - 1);
107 
108 	FreeChunk* chunk
109 		= (FreeChunk*)((uint8*)this + FreeChunk::NextOffset() + splitSize);
110 	chunk->fSize = fSize - splitSize - FreeChunk::NextOffset();
111 	chunk->fNext = fNext;
112 
113 	fSize = splitSize + FreeChunk::NextOffset();
114 
115 	return chunk;
116 }
117 
118 
119 /*!	Checks if the specified chunk touches this chunk, so
120 	that they could be joined.
121 */
122 bool
123 FreeChunk::IsTouching(FreeChunk* chunk)
124 {
125 	return chunk
126 		&& (((uint8*)this + fSize == (uint8*)chunk)
127 			|| (uint8*)chunk + chunk->fSize == (uint8*)this);
128 }
129 
130 
131 /*!	Joins the chunk to this chunk and returns the pointer
132 	to the new chunk - which will either be one of the
133 	two chunks.
134 	Note, the chunks must be joinable, or else this method
135 	doesn't work correctly. Use FreeChunk::IsTouching()
136 	to check if this method can be applied.
137 */
138 FreeChunk*
139 FreeChunk::Join(FreeChunk* chunk)
140 {
141 	if (chunk < this) {
142 		chunk->fSize += fSize;
143 		chunk->fNext = fNext;
144 
145 		return chunk;
146 	}
147 
148 	fSize += chunk->fSize;
149 	fNext = chunk->fNext;
150 
151 	return this;
152 }
153 
154 
155 void
156 FreeChunk::Remove(rtm_pool* pool, FreeChunk* previous)
157 {
158 	if (previous == NULL) {
159 		// find the previous chunk in the list
160 		FreeChunk* chunk = pool->free_anchor.fNext;
161 
162 		while (chunk != NULL && chunk != this) {
163 			previous = chunk;
164 			chunk = chunk->fNext;
165 		}
166 
167 		if (chunk == NULL)
168 			return;
169 	}
170 
171 	previous->fNext = fNext;
172 	fNext = NULL;
173 }
174 
175 
176 void
177 FreeChunk::Enqueue(rtm_pool* pool)
178 {
179 	FreeChunk* chunk = pool->free_anchor.fNext;
180 	FreeChunk* last = &pool->free_anchor;
181 	while (chunk && chunk->Size() < fSize) {
182 		last = chunk;
183 		chunk = chunk->fNext;
184 	}
185 
186 	fNext = chunk;
187 	last->fNext = this;
188 }
189 
190 
191 void*
192 FreeChunk::AllocatedAddress() const
193 {
194 	return (void*)&fNext;
195 }
196 
197 
198 FreeChunk*
199 FreeChunk::SetToAllocated(void* allocated)
200 {
201 	return (FreeChunk*)((addr_t)allocated - FreeChunk::NextOffset());
202 }
203 
204 
205 // #pragma mark - rtm_pool
206 
207 
208 bool
209 rtm_pool::Contains(void* buffer) const
210 {
211 	return (addr_t)heap_base <= (addr_t)buffer
212 		&& (addr_t)heap_base - 1 + max_size >= (addr_t)buffer;
213 }
214 
215 
216 void
217 rtm_pool::Free(void* allocated)
218 {
219 	FreeChunk* freedChunk = FreeChunk::SetToAllocated(allocated);
220 	available += freedChunk->CompleteSize();
221 
222 	// try to join the new free chunk with an existing one
223 	// it may be joined with up to two chunks
224 
225 	FreeChunk* chunk = free_anchor.Next();
226 	FreeChunk* last = &free_anchor;
227 	int32 joinCount = 0;
228 
229 	while (chunk) {
230 		if (chunk->IsTouching(freedChunk)) {
231 			// almost "insert" it into the list before joining
232 			// because the next pointer is inherited by the chunk
233 			freedChunk->SetNext(chunk->Next());
234 			freedChunk = chunk->Join(freedChunk);
235 
236 			// remove the joined chunk from the list
237 			last->SetNext(freedChunk->Next());
238 			chunk = last;
239 
240 			if (++joinCount == 2)
241 				break;
242 		}
243 
244 		last = chunk;
245 		chunk = chunk->Next();
246 	}
247 
248 	// enqueue the link at the right position; the
249 	// free link queue is ordered by size
250 
251 	freedChunk->Enqueue(this);
252 }
253 
254 
255 // #pragma mark -
256 
257 
258 static rtm_pool*
259 pool_for(void* buffer)
260 {
261 	MutexLocker _(&sPoolsLock);
262 
263 	PoolList::Iterator iterator = sPools.GetIterator();
264 	while (rtm_pool* pool = iterator.Next()) {
265 		if (pool->Contains(buffer))
266 			return pool;
267 	}
268 
269 	return NULL;
270 }
271 
272 
273 // #pragma mark - public API
274 
275 
276 status_t
277 rtm_create_pool(rtm_pool** _pool, size_t totalSize, const char* name)
278 {
279 	rtm_pool* pool = (rtm_pool*)malloc(sizeof(rtm_pool));
280 	if (pool == NULL)
281 		return B_NO_MEMORY;
282 
283 	if (name != NULL)
284 		mutex_init_etc(&pool->lock, name, MUTEX_FLAG_CLONE_NAME);
285 	else
286 		mutex_init(&pool->lock, "realtime pool");
287 
288 	// Allocate enough space for at least one allocation over \a totalSize
289 	pool->max_size = (totalSize + sizeof(FreeChunk) - 1 + B_PAGE_SIZE)
290 		& ~(B_PAGE_SIZE - 1);
291 
292 	area_id area = create_area(name, &pool->heap_base, B_ANY_ADDRESS,
293 		pool->max_size, B_LAZY_LOCK, B_READ_AREA | B_WRITE_AREA);
294 	if (area < 0) {
295 		mutex_destroy(&pool->lock);
296 		free(pool);
297 		return area;
298 	}
299 
300 	pool->area = area;
301 	pool->available = pool->max_size - FreeChunk::NextOffset();
302 
303 	// declare the whole heap as one chunk, and add it
304 	// to the free list
305 
306 	FreeChunk* chunk = (FreeChunk*)pool->heap_base;
307 	chunk->SetTo(pool->max_size, NULL);
308 
309 	pool->free_anchor.SetTo(0, chunk);
310 
311 	*_pool = pool;
312 
313 	MutexLocker _(&sPoolsLock);
314 	sPools.Add(pool);
315 	return B_OK;
316 }
317 
318 
319 status_t
320 rtm_delete_pool(rtm_pool* pool)
321 {
322 	if (pool == NULL)
323 		return B_BAD_VALUE;
324 
325 	mutex_lock(&pool->lock);
326 
327 	{
328 		MutexLocker _(&sPoolsLock);
329 		sPools.Remove(pool);
330 	}
331 
332 	delete_area(pool->area);
333 	mutex_destroy(&pool->lock);
334 	free(pool);
335 
336 	return B_OK;
337 }
338 
339 
340 void*
341 rtm_alloc(rtm_pool* pool, size_t size)
342 {
343 	if (pool == NULL)
344 		return malloc(size);
345 
346 	if (pool->heap_base == NULL || size == 0)
347 		return NULL;
348 
349 	MutexLocker _(&pool->lock);
350 
351 	// align the size requirement to a kAlignment bytes boundary
352 	size = (size - 1 + kAlignment) & ~(size_t)(kAlignment - 1);
353 
354 	if (size > pool->available) {
355 		TRACE("malloc(): Out of memory!\n");
356 		return NULL;
357 	}
358 
359 	FreeChunk* chunk = pool->free_anchor.Next();
360 	FreeChunk* last = &pool->free_anchor;
361 	while (chunk && chunk->Size() < size) {
362 		last = chunk;
363 		chunk = chunk->Next();
364 	}
365 
366 	if (chunk == NULL) {
367 		// could not find a free chunk as large as needed
368 		TRACE("malloc(): Out of memory!\n");
369 		return NULL;
370 	}
371 
372 	if (chunk->Size() > size + sizeof(FreeChunk) + kAlignment) {
373 		// if this chunk is bigger than the requested size,
374 		// we split it to form two chunks (with a minimal
375 		// size of kAlignment allocatable bytes).
376 
377 		FreeChunk* freeChunk = chunk->Split(size);
378 		last->SetNext(freeChunk);
379 
380 		// re-enqueue the free chunk at the correct position
381 		freeChunk->Remove(pool, last);
382 		freeChunk->Enqueue(pool);
383 	} else {
384 		// remove the chunk from the free list
385 
386 		last->SetNext(chunk->Next());
387 	}
388 
389 	pool->available -= size + sizeof(size_t);
390 
391 	TRACE("malloc(%lu) -> %p\n", size, chunk->AllocatedAddress());
392 	return chunk->AllocatedAddress();
393 }
394 
395 
396 status_t
397 rtm_free(void* allocated)
398 {
399 	if (allocated == NULL)
400 		return B_OK;
401 
402 	TRACE("rtm_free(%p)\n", allocated);
403 
404 	// find pool
405 	rtm_pool* pool = pool_for(allocated);
406 	if (pool == NULL) {
407 		free(allocated);
408 		return B_OK;
409 	}
410 
411 	MutexLocker _(&pool->lock);
412 	pool->Free(allocated);
413 	return B_OK;
414 }
415 
416 
417 status_t
418 rtm_realloc(void** _buffer, size_t newSize)
419 {
420 	if (_buffer == NULL)
421 		return B_BAD_VALUE;
422 
423 	TRACE("rtm_realloc(%p, %lu)\n", *_buffer, newSize);
424 
425 	void* oldBuffer = *_buffer;
426 
427 	// find pool
428 	rtm_pool* pool = pool_for(oldBuffer);
429 	if (pool == NULL) {
430 		void* buffer = realloc(oldBuffer, newSize);
431 		if (buffer != NULL) {
432 			*_buffer = buffer;
433 			return B_OK;
434 		}
435 		return B_NO_MEMORY;
436 	}
437 
438 	MutexLocker _(&pool->lock);
439 
440 	if (newSize == 0) {
441 		TRACE("realloc(%p, %lu) -> NULL\n", oldBuffer, newSize);
442 		pool->Free(oldBuffer);
443 		*_buffer = NULL;
444 		return B_OK;
445 	}
446 
447 	size_t copySize = newSize;
448 	if (oldBuffer != NULL) {
449 		FreeChunk* oldChunk = FreeChunk::SetToAllocated(oldBuffer);
450 
451 		// Check if the old buffer still fits, and if it makes sense to keep it
452 		if (oldChunk->Size() >= newSize && newSize > oldChunk->Size() / 3) {
453 			TRACE("realloc(%p, %lu) old buffer is large enough\n",
454 				oldBuffer, newSize);
455 			return B_OK;
456 		}
457 
458 		if (copySize > oldChunk->Size())
459 			copySize = oldChunk->Size();
460 	}
461 
462 	void* newBuffer = rtm_alloc(pool, newSize);
463 	if (newBuffer == NULL)
464 		return B_NO_MEMORY;
465 
466 	if (oldBuffer != NULL) {
467 		memcpy(newBuffer, oldBuffer, copySize);
468 		pool->Free(oldBuffer);
469 	}
470 
471 	TRACE("realloc(%p, %lu) -> %p\n", oldBuffer, newSize, newBuffer);
472 	*_buffer = newBuffer;
473 	return B_OK;
474 }
475 
476 
477 status_t
478 rtm_size_for(void* buffer)
479 {
480 	if (buffer == NULL)
481 		return 0;
482 
483 	FreeChunk* chunk = FreeChunk::SetToAllocated(buffer);
484 	// TODO: we currently always return the actual chunk size, not the allocated
485 	// one
486 	return chunk->Size();
487 }
488 
489 
490 status_t
491 rtm_phys_size_for(void* buffer)
492 {
493 	if (buffer == NULL)
494 		return 0;
495 
496 	FreeChunk* chunk = FreeChunk::SetToAllocated(buffer);
497 	return chunk->Size();
498 }
499 
500 
501 size_t
502 rtm_available(rtm_pool* pool)
503 {
504 	if (pool == NULL) {
505 		// whatever - might want to use system_info instead
506 		return 1024 * 1024;
507 	}
508 
509 	return pool->available;
510 }
511 
512 
513 rtm_pool*
514 rtm_default_pool()
515 {
516 	// We always return NULL - the default pool will just use malloc()/free()
517 	return NULL;
518 }
519 
520 
521 #if 0
522 extern "C" {
523 
524 // undocumented symbols that BeOS exports
525 status_t rtm_create_pool_etc(rtm_pool ** out_pool, size_t total_size, const char * name, int32 param4, int32 param5, ...);
526 void rtm_get_pool(rtm_pool *pool,void *data,int32 param3,int32 param4, ...);
527 
528 }
529 #endif
530