xref: /haiku/src/build/libgnuregex/regex.c (revision ed24eb5ff12640d052171c6a7feba37fab8a75d1)
1 /* Extended regular expression matching and search library,
2    version 0.12.
3    (Implements POSIX draft P10003.2/D11.2, except for
4    internationalization features.)
5 
6    Copyright (C) 1993 Free Software Foundation, Inc.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2, or (at your option)
11    any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
21 
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24   #pragma alloca
25 #endif
26 
27 #define _GNU_SOURCE
28 
29 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
30 #include <sys/types.h>
31 
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35 
36 /* The `emacs' switch turns on certain matching commands
37    that make sense only in Emacs. */
38 #ifdef emacs
39 
40 #include "lisp.h"
41 #include "buffer.h"
42 #include "syntax.h"
43 
44 /* Emacs uses `NULL' as a predicate.  */
45 #undef NULL
46 
47 #else  /* not emacs */
48 
49 /* We used to test for `BSTRING' here, but only GCC and Emacs define
50    `BSTRING', as far as I know, and neither of them use this code.  */
51 #if HAVE_STRING_H || STDC_HEADERS
52 #include <string.h>
53 #ifndef bcmp
54 #define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
55 #endif
56 #ifndef bcopy
57 #define bcopy(s, d, n)	memcpy ((d), (s), (n))
58 #endif
59 #ifndef bzero
60 #define bzero(s, n)	memset ((s), 0, (n))
61 #endif
62 #else
63 #include <strings.h>
64 #endif
65 
66 #include <stdlib.h>
67 
68 /* Define the syntax stuff for \<, \>, etc.  */
69 
70 /* This must be nonzero for the wordchar and notwordchar pattern
71    commands in re_match_2.  */
72 #ifndef Sword
73 #define Sword 1
74 #endif
75 
76 #ifdef SYNTAX_TABLE
77 
78 extern char *re_syntax_table;
79 
80 #else /* not SYNTAX_TABLE */
81 
82 /* How many characters in the character set.  */
83 #define CHAR_SET_SIZE 256
84 
85 static char re_syntax_table[CHAR_SET_SIZE];
86 
87 static void
88 init_syntax_once ()
89 {
90    register int c;
91    static int done = 0;
92 
93    if (done)
94      return;
95 
96    bzero (re_syntax_table, sizeof re_syntax_table);
97 
98    for (c = 'a'; c <= 'z'; c++)
99      re_syntax_table[c] = Sword;
100 
101    for (c = 'A'; c <= 'Z'; c++)
102      re_syntax_table[c] = Sword;
103 
104    for (c = '0'; c <= '9'; c++)
105      re_syntax_table[c] = Sword;
106 
107    re_syntax_table['_'] = Sword;
108 
109    done = 1;
110 }
111 
112 #endif /* not SYNTAX_TABLE */
113 
114 #define SYNTAX(c) re_syntax_table[c]
115 
116 #endif /* not emacs */
117 
118 /* Get the interface, including the syntax bits.  */
119 #include "regex.h"
120 
121 /* isalpha etc. are used for the character classes.  */
122 #include <ctype.h>
123 
124 #ifndef isascii
125 #define isascii(c) 1
126 #endif
127 
128 #ifdef isblank
129 #define ISBLANK(c) (isascii (c) && isblank (c))
130 #else
131 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
132 #endif
133 #ifdef isgraph
134 #define ISGRAPH(c) (isascii (c) && isgraph (c))
135 #else
136 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
137 #endif
138 
139 #define ISPRINT(c) (isascii (c) && isprint (c))
140 #define ISDIGIT(c) (isascii (c) && isdigit (c))
141 #define ISALNUM(c) (isascii (c) && isalnum (c))
142 #define ISALPHA(c) (isascii (c) && isalpha (c))
143 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
144 #define ISLOWER(c) (isascii (c) && islower (c))
145 #define ISPUNCT(c) (isascii (c) && ispunct (c))
146 #define ISSPACE(c) (isascii (c) && isspace (c))
147 #define ISUPPER(c) (isascii (c) && isupper (c))
148 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
149 
150 #ifndef NULL
151 #define NULL 0
152 #endif
153 
154 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
155    since ours (we hope) works properly with all combinations of
156    machines, compilers, `char' and `unsigned char' argument types.
157    (Per Bothner suggested the basic approach.)  */
158 #undef SIGN_EXTEND_CHAR
159 #if __STDC__
160 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
161 #else  /* not __STDC__ */
162 /* As in Harbison and Steele.  */
163 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
164 #endif
165 
166 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
167    use `alloca' instead of `malloc'.  This is because using malloc in
168    re_search* or re_match* could cause memory leaks when C-g is used in
169    Emacs; also, malloc is slower and causes storage fragmentation.  On
170    the other hand, malloc is more portable, and easier to debug.
171 
172    Because we sometimes use alloca, some routines have to be macros,
173    not functions -- `alloca'-allocated space disappears at the end of the
174    function it is called in.  */
175 
176 #ifdef REGEX_MALLOC
177 
178 #define REGEX_ALLOCATE malloc
179 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
180 
181 #else /* not REGEX_MALLOC  */
182 
183 /* Emacs already defines alloca, sometimes.  */
184 #ifndef alloca
185 
186 /* Make alloca work the best possible way.  */
187 #ifdef __GNUC__
188 #define alloca __builtin_alloca
189 #else /* not __GNUC__ */
190 #if HAVE_ALLOCA_H
191 #include <alloca.h>
192 #else /* not __GNUC__ or HAVE_ALLOCA_H */
193 #ifndef _AIX /* Already did AIX, up at the top.  */
194 char *alloca ();
195 #endif /* not _AIX */
196 #endif /* not HAVE_ALLOCA_H */
197 #endif /* not __GNUC__ */
198 
199 #endif /* not alloca */
200 
201 #define REGEX_ALLOCATE alloca
202 
203 /* Assumes a `char *destination' variable.  */
204 #define REGEX_REALLOCATE(source, osize, nsize)				\
205   (destination = (char *) alloca (nsize),				\
206    bcopy (source, destination, osize),					\
207    destination)
208 
209 #endif /* not REGEX_MALLOC */
210 
211 
212 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
213    `string1' or just past its end.  This works if PTR is NULL, which is
214    a good thing.  */
215 #define FIRST_STRING_P(ptr) 					\
216   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
217 
218 /* (Re)Allocate N items of type T using malloc, or fail.  */
219 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
220 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
221 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
222 
223 #define BYTEWIDTH 8 /* In bits.  */
224 
225 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
226 
227 #define MAX(a, b) ((a) > (b) ? (a) : (b))
228 #define MIN(a, b) ((a) < (b) ? (a) : (b))
229 
230 typedef char boolean;
231 #define false 0
232 #define true 1
233 
234 /* These are the command codes that appear in compiled regular
235    expressions.  Some opcodes are followed by argument bytes.  A
236    command code can specify any interpretation whatsoever for its
237    arguments.  Zero bytes may appear in the compiled regular expression.
238 
239    The value of `exactn' is needed in search.c (search_buffer) in Emacs.
240    So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
241    `exactn' we use here must also be 1.  */
242 
243 typedef enum
244 {
245   no_op = 0,
246 
247         /* Followed by one byte giving n, then by n literal bytes.  */
248   exactn = 1,
249 
250         /* Matches any (more or less) character.  */
251   anychar,
252 
253         /* Matches any one char belonging to specified set.  First
254            following byte is number of bitmap bytes.  Then come bytes
255            for a bitmap saying which chars are in.  Bits in each byte
256            are ordered low-bit-first.  A character is in the set if its
257            bit is 1.  A character too large to have a bit in the map is
258            automatically not in the set.  */
259   charset,
260 
261         /* Same parameters as charset, but match any character that is
262            not one of those specified.  */
263   charset_not,
264 
265         /* Start remembering the text that is matched, for storing in a
266            register.  Followed by one byte with the register number, in
267            the range 0 to one less than the pattern buffer's re_nsub
268            field.  Then followed by one byte with the number of groups
269            inner to this one.  (This last has to be part of the
270            start_memory only because we need it in the on_failure_jump
271            of re_match_2.)  */
272   start_memory,
273 
274         /* Stop remembering the text that is matched and store it in a
275            memory register.  Followed by one byte with the register
276            number, in the range 0 to one less than `re_nsub' in the
277            pattern buffer, and one byte with the number of inner groups,
278            just like `start_memory'.  (We need the number of inner
279            groups here because we don't have any easy way of finding the
280            corresponding start_memory when we're at a stop_memory.)  */
281   stop_memory,
282 
283         /* Match a duplicate of something remembered. Followed by one
284            byte containing the register number.  */
285   duplicate,
286 
287         /* Fail unless at beginning of line.  */
288   begline,
289 
290         /* Fail unless at end of line.  */
291   endline,
292 
293         /* Succeeds if at beginning of buffer (if emacs) or at beginning
294            of string to be matched (if not).  */
295   begbuf,
296 
297         /* Analogously, for end of buffer/string.  */
298   endbuf,
299 
300         /* Followed by two byte relative address to which to jump.  */
301   jump,
302 
303 	/* Same as jump, but marks the end of an alternative.  */
304   jump_past_alt,
305 
306         /* Followed by two-byte relative address of place to resume at
307            in case of failure.  */
308   on_failure_jump,
309 
310         /* Like on_failure_jump, but pushes a placeholder instead of the
311            current string position when executed.  */
312   on_failure_keep_string_jump,
313 
314         /* Throw away latest failure point and then jump to following
315            two-byte relative address.  */
316   pop_failure_jump,
317 
318         /* Change to pop_failure_jump if know won't have to backtrack to
319            match; otherwise change to jump.  This is used to jump
320            back to the beginning of a repeat.  If what follows this jump
321            clearly won't match what the repeat does, such that we can be
322            sure that there is no use backtracking out of repetitions
323            already matched, then we change it to a pop_failure_jump.
324            Followed by two-byte address.  */
325   maybe_pop_jump,
326 
327         /* Jump to following two-byte address, and push a dummy failure
328            point. This failure point will be thrown away if an attempt
329            is made to use it for a failure.  A `+' construct makes this
330            before the first repeat.  Also used as an intermediary kind
331            of jump when compiling an alternative.  */
332   dummy_failure_jump,
333 
334 	/* Push a dummy failure point and continue.  Used at the end of
335 	   alternatives.  */
336   push_dummy_failure,
337 
338         /* Followed by two-byte relative address and two-byte number n.
339            After matching N times, jump to the address upon failure.  */
340   succeed_n,
341 
342         /* Followed by two-byte relative address, and two-byte number n.
343            Jump to the address N times, then fail.  */
344   jump_n,
345 
346         /* Set the following two-byte relative address to the
347            subsequent two-byte number.  The address *includes* the two
348            bytes of number.  */
349   set_number_at,
350 
351   wordchar,	/* Matches any word-constituent character.  */
352   notwordchar,	/* Matches any char that is not a word-constituent.  */
353 
354   wordbeg,	/* Succeeds if at word beginning.  */
355   wordend,	/* Succeeds if at word end.  */
356 
357   wordbound,	/* Succeeds if at a word boundary.  */
358   notwordbound	/* Succeeds if not at a word boundary.  */
359 
360 #ifdef emacs
361   ,before_dot,	/* Succeeds if before point.  */
362   at_dot,	/* Succeeds if at point.  */
363   after_dot,	/* Succeeds if after point.  */
364 
365 	/* Matches any character whose syntax is specified.  Followed by
366            a byte which contains a syntax code, e.g., Sword.  */
367   syntaxspec,
368 
369 	/* Matches any character whose syntax is not that specified.  */
370   notsyntaxspec
371 #endif /* emacs */
372 } re_opcode_t;
373 
374 /* Common operations on the compiled pattern.  */
375 
376 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
377 
378 #define STORE_NUMBER(destination, number)				\
379   do {									\
380     (destination)[0] = (number) & 0377;					\
381     (destination)[1] = (number) >> 8;					\
382   } while (0)
383 
384 /* Same as STORE_NUMBER, except increment DESTINATION to
385    the byte after where the number is stored.  Therefore, DESTINATION
386    must be an lvalue.  */
387 
388 #define STORE_NUMBER_AND_INCR(destination, number)			\
389   do {									\
390     STORE_NUMBER (destination, number);					\
391     (destination) += 2;							\
392   } while (0)
393 
394 /* Put into DESTINATION a number stored in two contiguous bytes starting
395    at SOURCE.  */
396 
397 #define EXTRACT_NUMBER(destination, source)				\
398   do {									\
399     (destination) = *(source) & 0377;					\
400     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
401   } while (0)
402 
403 #ifdef DEBUG
404 static void
405 extract_number (dest, source)
406     int *dest;
407     unsigned char *source;
408 {
409   int temp = SIGN_EXTEND_CHAR (*(source + 1));
410   *dest = *source & 0377;
411   *dest += temp << 8;
412 }
413 
414 #ifndef EXTRACT_MACROS /* To debug the macros.  */
415 #undef EXTRACT_NUMBER
416 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
417 #endif /* not EXTRACT_MACROS */
418 
419 #endif /* DEBUG */
420 
421 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
422    SOURCE must be an lvalue.  */
423 
424 #define EXTRACT_NUMBER_AND_INCR(destination, source)			\
425   do {									\
426     EXTRACT_NUMBER (destination, source);				\
427     (source) += 2; 							\
428   } while (0)
429 
430 #ifdef DEBUG
431 static void
432 extract_number_and_incr (destination, source)
433     int *destination;
434     unsigned char **source;
435 {
436   extract_number (destination, *source);
437   *source += 2;
438 }
439 
440 #ifndef EXTRACT_MACROS
441 #undef EXTRACT_NUMBER_AND_INCR
442 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
443   extract_number_and_incr (&dest, &src)
444 #endif /* not EXTRACT_MACROS */
445 
446 #endif /* DEBUG */
447 
448 /* If DEBUG is defined, Regex prints many voluminous messages about what
449    it is doing (if the variable `debug' is nonzero).  If linked with the
450    main program in `iregex.c', you can enter patterns and strings
451    interactively.  And if linked with the main program in `main.c' and
452    the other test files, you can run the already-written tests.  */
453 
454 #ifdef DEBUG
455 
456 /* We use standard I/O for debugging.  */
457 #include <stdio.h>
458 
459 /* It is useful to test things that ``must'' be true when debugging.  */
460 #include <assert.h>
461 
462 static int debug = 0;
463 
464 #define DEBUG_STATEMENT(e) e
465 #define DEBUG_PRINT1(x) if (debug) printf (x)
466 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
467 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
468 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
469 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
470   if (debug) print_partial_compiled_pattern (s, e)
471 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
472   if (debug) print_double_string (w, s1, sz1, s2, sz2)
473 
474 
475 extern void printchar ();
476 
477 /* Print the fastmap in human-readable form.  */
478 
479 void
480 print_fastmap (fastmap)
481     char *fastmap;
482 {
483   unsigned was_a_range = 0;
484   unsigned i = 0;
485 
486   while (i < (1 << BYTEWIDTH))
487     {
488       if (fastmap[i++])
489 	{
490 	  was_a_range = 0;
491           printchar (i - 1);
492           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
493             {
494               was_a_range = 1;
495               i++;
496             }
497 	  if (was_a_range)
498             {
499               printf ("-");
500               printchar (i - 1);
501             }
502         }
503     }
504   putchar ('\n');
505 }
506 
507 
508 /* Print a compiled pattern string in human-readable form, starting at
509    the START pointer into it and ending just before the pointer END.  */
510 
511 void
512 print_partial_compiled_pattern (start, end)
513     unsigned char *start;
514     unsigned char *end;
515 {
516   int mcnt, mcnt2;
517   unsigned char *p = start;
518   unsigned char *pend = end;
519 
520   if (start == NULL)
521     {
522       printf ("(null)\n");
523       return;
524     }
525 
526   /* Loop over pattern commands.  */
527   while (p < pend)
528     {
529       switch ((re_opcode_t) *p++)
530 	{
531         case no_op:
532           printf ("/no_op");
533           break;
534 
535 	case exactn:
536 	  mcnt = *p++;
537           printf ("/exactn/%d", mcnt);
538           do
539 	    {
540               putchar ('/');
541 	      printchar (*p++);
542             }
543           while (--mcnt);
544           break;
545 
546 	case start_memory:
547           mcnt = *p++;
548           printf ("/start_memory/%d/%d", mcnt, *p++);
549           break;
550 
551 	case stop_memory:
552           mcnt = *p++;
553 	  printf ("/stop_memory/%d/%d", mcnt, *p++);
554           break;
555 
556 	case duplicate:
557 	  printf ("/duplicate/%d", *p++);
558 	  break;
559 
560 	case anychar:
561 	  printf ("/anychar");
562 	  break;
563 
564 	case charset:
565         case charset_not:
566           {
567             register int c;
568 
569             printf ("/charset%s",
570 	            (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
571 
572             assert (p + *p < pend);
573 
574             for (c = 0; c < *p; c++)
575               {
576                 unsigned bit;
577                 unsigned char map_byte = p[1 + c];
578 
579                 putchar ('/');
580 
581 		for (bit = 0; bit < BYTEWIDTH; bit++)
582                   if (map_byte & (1 << bit))
583                     printchar (c * BYTEWIDTH + bit);
584               }
585 	    p += 1 + *p;
586 	    break;
587 	  }
588 
589 	case begline:
590 	  printf ("/begline");
591           break;
592 
593 	case endline:
594           printf ("/endline");
595           break;
596 
597 	case on_failure_jump:
598           extract_number_and_incr (&mcnt, &p);
599   	  printf ("/on_failure_jump/0/%d", mcnt);
600           break;
601 
602 	case on_failure_keep_string_jump:
603           extract_number_and_incr (&mcnt, &p);
604   	  printf ("/on_failure_keep_string_jump/0/%d", mcnt);
605           break;
606 
607 	case dummy_failure_jump:
608           extract_number_and_incr (&mcnt, &p);
609   	  printf ("/dummy_failure_jump/0/%d", mcnt);
610           break;
611 
612 	case push_dummy_failure:
613           printf ("/push_dummy_failure");
614           break;
615 
616         case maybe_pop_jump:
617           extract_number_and_incr (&mcnt, &p);
618   	  printf ("/maybe_pop_jump/0/%d", mcnt);
619 	  break;
620 
621         case pop_failure_jump:
622 	  extract_number_and_incr (&mcnt, &p);
623   	  printf ("/pop_failure_jump/0/%d", mcnt);
624 	  break;
625 
626         case jump_past_alt:
627 	  extract_number_and_incr (&mcnt, &p);
628   	  printf ("/jump_past_alt/0/%d", mcnt);
629 	  break;
630 
631         case jump:
632 	  extract_number_and_incr (&mcnt, &p);
633   	  printf ("/jump/0/%d", mcnt);
634 	  break;
635 
636         case succeed_n:
637           extract_number_and_incr (&mcnt, &p);
638           extract_number_and_incr (&mcnt2, &p);
639  	  printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
640           break;
641 
642         case jump_n:
643           extract_number_and_incr (&mcnt, &p);
644           extract_number_and_incr (&mcnt2, &p);
645  	  printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
646           break;
647 
648         case set_number_at:
649           extract_number_and_incr (&mcnt, &p);
650           extract_number_and_incr (&mcnt2, &p);
651  	  printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
652           break;
653 
654         case wordbound:
655 	  printf ("/wordbound");
656 	  break;
657 
658 	case notwordbound:
659 	  printf ("/notwordbound");
660           break;
661 
662 	case wordbeg:
663 	  printf ("/wordbeg");
664 	  break;
665 
666 	case wordend:
667 	  printf ("/wordend");
668 
669 #ifdef emacs
670 	case before_dot:
671 	  printf ("/before_dot");
672           break;
673 
674 	case at_dot:
675 	  printf ("/at_dot");
676           break;
677 
678 	case after_dot:
679 	  printf ("/after_dot");
680           break;
681 
682 	case syntaxspec:
683           printf ("/syntaxspec");
684 	  mcnt = *p++;
685 	  printf ("/%d", mcnt);
686           break;
687 
688 	case notsyntaxspec:
689           printf ("/notsyntaxspec");
690 	  mcnt = *p++;
691 	  printf ("/%d", mcnt);
692 	  break;
693 #endif /* emacs */
694 
695 	case wordchar:
696 	  printf ("/wordchar");
697           break;
698 
699 	case notwordchar:
700 	  printf ("/notwordchar");
701           break;
702 
703 	case begbuf:
704 	  printf ("/begbuf");
705           break;
706 
707 	case endbuf:
708 	  printf ("/endbuf");
709           break;
710 
711         default:
712           printf ("?%d", *(p-1));
713 	}
714     }
715   printf ("/\n");
716 }
717 
718 
719 void
720 print_compiled_pattern (bufp)
721     struct re_pattern_buffer *bufp;
722 {
723   unsigned char *buffer = bufp->buffer;
724 
725   print_partial_compiled_pattern (buffer, buffer + bufp->used);
726   printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
727 
728   if (bufp->fastmap_accurate && bufp->fastmap)
729     {
730       printf ("fastmap: ");
731       print_fastmap (bufp->fastmap);
732     }
733 
734   printf ("re_nsub: %d\t", bufp->re_nsub);
735   printf ("regs_alloc: %d\t", bufp->regs_allocated);
736   printf ("can_be_null: %d\t", bufp->can_be_null);
737   printf ("newline_anchor: %d\n", bufp->newline_anchor);
738   printf ("no_sub: %d\t", bufp->no_sub);
739   printf ("not_bol: %d\t", bufp->not_bol);
740   printf ("not_eol: %d\t", bufp->not_eol);
741   printf ("syntax: %d\n", bufp->syntax);
742   /* Perhaps we should print the translate table?  */
743 }
744 
745 
746 void
747 print_double_string (where, string1, size1, string2, size2)
748     const char *where;
749     const char *string1;
750     const char *string2;
751     int size1;
752     int size2;
753 {
754   unsigned this_char;
755 
756   if (where == NULL)
757     printf ("(null)");
758   else
759     {
760       if (FIRST_STRING_P (where))
761         {
762           for (this_char = where - string1; this_char < size1; this_char++)
763             printchar (string1[this_char]);
764 
765           where = string2;
766         }
767 
768       for (this_char = where - string2; this_char < size2; this_char++)
769         printchar (string2[this_char]);
770     }
771 }
772 
773 #else /* not DEBUG */
774 
775 #undef assert
776 #define assert(e)
777 
778 #define DEBUG_STATEMENT(e)
779 #define DEBUG_PRINT1(x)
780 #define DEBUG_PRINT2(x1, x2)
781 #define DEBUG_PRINT3(x1, x2, x3)
782 #define DEBUG_PRINT4(x1, x2, x3, x4)
783 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
784 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
785 
786 #endif /* not DEBUG */
787 
788 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
789    also be assigned to arbitrarily: each pattern buffer stores its own
790    syntax, so it can be changed between regex compilations.  */
791 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
792 
793 
794 /* Specify the precise syntax of regexps for compilation.  This provides
795    for compatibility for various utilities which historically have
796    different, incompatible syntaxes.
797 
798    The argument SYNTAX is a bit mask comprised of the various bits
799    defined in regex.h.  We return the old syntax.  */
800 
801 reg_syntax_t
802 re_set_syntax (syntax)
803     reg_syntax_t syntax;
804 {
805   reg_syntax_t ret = re_syntax_options;
806 
807   re_syntax_options = syntax;
808   return ret;
809 }
810 
811 /* This table gives an error message for each of the error codes listed
812    in regex.h.  Obviously the order here has to be same as there.  */
813 
814 static const char *re_error_msg[] =
815   { NULL,					/* REG_NOERROR */
816     "No match",					/* REG_NOMATCH */
817     "Invalid regular expression",		/* REG_BADPAT */
818     "Invalid collation character",		/* REG_ECOLLATE */
819     "Invalid character class name",		/* REG_ECTYPE */
820     "Trailing backslash",			/* REG_EESCAPE */
821     "Invalid back reference",			/* REG_ESUBREG */
822     "Unmatched [ or [^",			/* REG_EBRACK */
823     "Unmatched ( or \\(",			/* REG_EPAREN */
824     "Unmatched \\{",				/* REG_EBRACE */
825     "Invalid content of \\{\\}",		/* REG_BADBR */
826     "Invalid range end",			/* REG_ERANGE */
827     "Memory exhausted",				/* REG_ESPACE */
828     "Invalid preceding regular expression",	/* REG_BADRPT */
829     "Premature end of regular expression",	/* REG_EEND */
830     "Regular expression too big",		/* REG_ESIZE */
831     "Unmatched ) or \\)",			/* REG_ERPAREN */
832   };
833 
834 /* Subroutine declarations and macros for regex_compile.  */
835 
836 static void store_op1 (), store_op2 ();
837 static void insert_op1 (), insert_op2 ();
838 static boolean at_begline_loc_p (), at_endline_loc_p ();
839 static boolean group_in_compile_stack ();
840 static reg_errcode_t compile_range ();
841 
842 /* Fetch the next character in the uncompiled pattern---translating it
843    if necessary.  Also cast from a signed character in the constant
844    string passed to us by the user to an unsigned char that we can use
845    as an array index (in, e.g., `translate').  */
846 #define PATFETCH(c)							\
847   do {if (p == pend) return REG_EEND;					\
848     c = (unsigned char) *p++;						\
849     if (translate) c = translate[c]; 					\
850   } while (0)
851 
852 /* Fetch the next character in the uncompiled pattern, with no
853    translation.  */
854 #define PATFETCH_RAW(c)							\
855   do {if (p == pend) return REG_EEND;					\
856     c = (unsigned char) *p++; 						\
857   } while (0)
858 
859 /* Go backwards one character in the pattern.  */
860 #define PATUNFETCH p--
861 
862 
863 /* If `translate' is non-null, return translate[D], else just D.  We
864    cast the subscript to translate because some data is declared as
865    `char *', to avoid warnings when a string constant is passed.  But
866    when we use a character as a subscript we must make it unsigned.  */
867 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
868 
869 
870 /* Macros for outputting the compiled pattern into `buffer'.  */
871 
872 /* If the buffer isn't allocated when it comes in, use this.  */
873 #define INIT_BUF_SIZE  32
874 
875 /* Make sure we have at least N more bytes of space in buffer.  */
876 #define GET_BUFFER_SPACE(n)						\
877     while (b - bufp->buffer + (n) > bufp->allocated)			\
878       EXTEND_BUFFER ()
879 
880 /* Make sure we have one more byte of buffer space and then add C to it.  */
881 #define BUF_PUSH(c)							\
882   do {									\
883     GET_BUFFER_SPACE (1);						\
884     *b++ = (unsigned char) (c);						\
885   } while (0)
886 
887 
888 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
889 #define BUF_PUSH_2(c1, c2)						\
890   do {									\
891     GET_BUFFER_SPACE (2);						\
892     *b++ = (unsigned char) (c1);					\
893     *b++ = (unsigned char) (c2);					\
894   } while (0)
895 
896 
897 /* As with BUF_PUSH_2, except for three bytes.  */
898 #define BUF_PUSH_3(c1, c2, c3)						\
899   do {									\
900     GET_BUFFER_SPACE (3);						\
901     *b++ = (unsigned char) (c1);					\
902     *b++ = (unsigned char) (c2);					\
903     *b++ = (unsigned char) (c3);					\
904   } while (0)
905 
906 
907 /* Store a jump with opcode OP at LOC to location TO.  We store a
908    relative address offset by the three bytes the jump itself occupies.  */
909 #define STORE_JUMP(op, loc, to) \
910   store_op1 (op, loc, (to) - (loc) - 3)
911 
912 /* Likewise, for a two-argument jump.  */
913 #define STORE_JUMP2(op, loc, to, arg) \
914   store_op2 (op, loc, (to) - (loc) - 3, arg)
915 
916 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
917 #define INSERT_JUMP(op, loc, to) \
918   insert_op1 (op, loc, (to) - (loc) - 3, b)
919 
920 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
921 #define INSERT_JUMP2(op, loc, to, arg) \
922   insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
923 
924 
925 /* This is not an arbitrary limit: the arguments which represent offsets
926    into the pattern are two bytes long.  So if 2^16 bytes turns out to
927    be too small, many things would have to change.  */
928 #define MAX_BUF_SIZE (1L << 16)
929 
930 
931 /* Extend the buffer by twice its current size via realloc and
932    reset the pointers that pointed into the old block to point to the
933    correct places in the new one.  If extending the buffer results in it
934    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
935 #define EXTEND_BUFFER()							\
936   do { 									\
937     unsigned char *old_buffer = bufp->buffer;				\
938     if (bufp->allocated == MAX_BUF_SIZE) 				\
939       return REG_ESIZE;							\
940     bufp->allocated <<= 1;						\
941     if (bufp->allocated > MAX_BUF_SIZE)					\
942       bufp->allocated = MAX_BUF_SIZE; 					\
943     bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
944     if (bufp->buffer == NULL)						\
945       return REG_ESPACE;						\
946     /* If the buffer moved, move all the pointers into it.  */		\
947     if (old_buffer != bufp->buffer)					\
948       {									\
949         b = (b - old_buffer) + bufp->buffer;				\
950         begalt = (begalt - old_buffer) + bufp->buffer;			\
951         if (fixup_alt_jump)						\
952           fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
953         if (laststart)							\
954           laststart = (laststart - old_buffer) + bufp->buffer;		\
955         if (pending_exact)						\
956           pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
957       }									\
958   } while (0)
959 
960 
961 /* Since we have one byte reserved for the register number argument to
962    {start,stop}_memory, the maximum number of groups we can report
963    things about is what fits in that byte.  */
964 #define MAX_REGNUM 255
965 
966 /* But patterns can have more than `MAX_REGNUM' registers.  We just
967    ignore the excess.  */
968 typedef unsigned regnum_t;
969 
970 
971 /* Macros for the compile stack.  */
972 
973 /* Since offsets can go either forwards or backwards, this type needs to
974    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
975 typedef int pattern_offset_t;
976 
977 typedef struct
978 {
979   pattern_offset_t begalt_offset;
980   pattern_offset_t fixup_alt_jump;
981   pattern_offset_t inner_group_offset;
982   pattern_offset_t laststart_offset;
983   regnum_t regnum;
984 } compile_stack_elt_t;
985 
986 
987 typedef struct
988 {
989   compile_stack_elt_t *stack;
990   unsigned size;
991   unsigned avail;			/* Offset of next open position.  */
992 } compile_stack_type;
993 
994 
995 #define INIT_COMPILE_STACK_SIZE 32
996 
997 #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
998 #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
999 
1000 /* The next available element.  */
1001 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1002 
1003 
1004 /* Set the bit for character C in a list.  */
1005 #define SET_LIST_BIT(c)                               \
1006   (b[((unsigned char) (c)) / BYTEWIDTH]               \
1007    |= 1 << (((unsigned char) c) % BYTEWIDTH))
1008 
1009 
1010 /* Get the next unsigned number in the uncompiled pattern.  */
1011 #define GET_UNSIGNED_NUMBER(num) 					\
1012   { if (p != pend)							\
1013      {									\
1014        PATFETCH (c); 							\
1015        while (ISDIGIT (c)) 						\
1016          { 								\
1017            if (num < 0)							\
1018               num = 0;							\
1019            num = num * 10 + c - '0'; 					\
1020            if (p == pend) 						\
1021               break; 							\
1022            PATFETCH (c);						\
1023          } 								\
1024        } 								\
1025     }
1026 
1027 #define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
1028 
1029 #define IS_CHAR_CLASS(string)						\
1030    (STREQ (string, "alpha") || STREQ (string, "upper")			\
1031     || STREQ (string, "lower") || STREQ (string, "digit")		\
1032     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
1033     || STREQ (string, "space") || STREQ (string, "print")		\
1034     || STREQ (string, "punct") || STREQ (string, "graph")		\
1035     || STREQ (string, "cntrl") || STREQ (string, "blank"))
1036 
1037 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1038    Returns one of error codes defined in `regex.h', or zero for success.
1039 
1040    Assumes the `allocated' (and perhaps `buffer') and `translate'
1041    fields are set in BUFP on entry.
1042 
1043    If it succeeds, results are put in BUFP (if it returns an error, the
1044    contents of BUFP are undefined):
1045      `buffer' is the compiled pattern;
1046      `syntax' is set to SYNTAX;
1047      `used' is set to the length of the compiled pattern;
1048      `fastmap_accurate' is zero;
1049      `re_nsub' is the number of subexpressions in PATTERN;
1050      `not_bol' and `not_eol' are zero;
1051 
1052    The `fastmap' and `newline_anchor' fields are neither
1053    examined nor set.  */
1054 
1055 static reg_errcode_t
1056 regex_compile (pattern, size, syntax, bufp)
1057      const char *pattern;
1058      int size;
1059      reg_syntax_t syntax;
1060      struct re_pattern_buffer *bufp;
1061 {
1062   /* We fetch characters from PATTERN here.  Even though PATTERN is
1063      `char *' (i.e., signed), we declare these variables as unsigned, so
1064      they can be reliably used as array indices.  */
1065   register unsigned char c, c1;
1066 
1067   /* A random tempory spot in PATTERN.  */
1068   const char *p1;
1069 
1070   /* Points to the end of the buffer, where we should append.  */
1071   register unsigned char *b;
1072 
1073   /* Keeps track of unclosed groups.  */
1074   compile_stack_type compile_stack;
1075 
1076   /* Points to the current (ending) position in the pattern.  */
1077   const char *p = pattern;
1078   const char *pend = pattern + size;
1079 
1080   /* How to translate the characters in the pattern.  */
1081   char *translate = bufp->translate;
1082 
1083   /* Address of the count-byte of the most recently inserted `exactn'
1084      command.  This makes it possible to tell if a new exact-match
1085      character can be added to that command or if the character requires
1086      a new `exactn' command.  */
1087   unsigned char *pending_exact = 0;
1088 
1089   /* Address of start of the most recently finished expression.
1090      This tells, e.g., postfix * where to find the start of its
1091      operand.  Reset at the beginning of groups and alternatives.  */
1092   unsigned char *laststart = 0;
1093 
1094   /* Address of beginning of regexp, or inside of last group.  */
1095   unsigned char *begalt;
1096 
1097   /* Place in the uncompiled pattern (i.e., the {) to
1098      which to go back if the interval is invalid.  */
1099   const char *beg_interval;
1100 
1101   /* Address of the place where a forward jump should go to the end of
1102      the containing expression.  Each alternative of an `or' -- except the
1103      last -- ends with a forward jump of this sort.  */
1104   unsigned char *fixup_alt_jump = 0;
1105 
1106   /* Counts open-groups as they are encountered.  Remembered for the
1107      matching close-group on the compile stack, so the same register
1108      number is put in the stop_memory as the start_memory.  */
1109   regnum_t regnum = 0;
1110 
1111 #ifdef DEBUG
1112   DEBUG_PRINT1 ("\nCompiling pattern: ");
1113   if (debug)
1114     {
1115       unsigned debug_count;
1116 
1117       for (debug_count = 0; debug_count < size; debug_count++)
1118         printchar (pattern[debug_count]);
1119       putchar ('\n');
1120     }
1121 #endif /* DEBUG */
1122 
1123   /* Initialize the compile stack.  */
1124   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1125   if (compile_stack.stack == NULL)
1126     return REG_ESPACE;
1127 
1128   compile_stack.size = INIT_COMPILE_STACK_SIZE;
1129   compile_stack.avail = 0;
1130 
1131   /* Initialize the pattern buffer.  */
1132   bufp->syntax = syntax;
1133   bufp->fastmap_accurate = 0;
1134   bufp->not_bol = bufp->not_eol = 0;
1135 
1136   /* Set `used' to zero, so that if we return an error, the pattern
1137      printer (for debugging) will think there's no pattern.  We reset it
1138      at the end.  */
1139   bufp->used = 0;
1140 
1141   /* Always count groups, whether or not bufp->no_sub is set.  */
1142   bufp->re_nsub = 0;
1143 
1144 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1145   /* Initialize the syntax table.  */
1146    init_syntax_once ();
1147 #endif
1148 
1149   if (bufp->allocated == 0)
1150     {
1151       if (bufp->buffer)
1152 	{ /* If zero allocated, but buffer is non-null, try to realloc
1153              enough space.  This loses if buffer's address is bogus, but
1154              that is the user's responsibility.  */
1155           RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1156         }
1157       else
1158         { /* Caller did not allocate a buffer.  Do it for them.  */
1159           bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1160         }
1161       if (!bufp->buffer) return REG_ESPACE;
1162 
1163       bufp->allocated = INIT_BUF_SIZE;
1164     }
1165 
1166   begalt = b = bufp->buffer;
1167 
1168   /* Loop through the uncompiled pattern until we're at the end.  */
1169   while (p != pend)
1170     {
1171       PATFETCH (c);
1172 
1173       switch (c)
1174         {
1175         case '^':
1176           {
1177             if (   /* If at start of pattern, it's an operator.  */
1178                    p == pattern + 1
1179                    /* If context independent, it's an operator.  */
1180                 || syntax & RE_CONTEXT_INDEP_ANCHORS
1181                    /* Otherwise, depends on what's come before.  */
1182                 || at_begline_loc_p (pattern, p, syntax))
1183               BUF_PUSH (begline);
1184             else
1185               goto normal_char;
1186           }
1187           break;
1188 
1189 
1190         case '$':
1191           {
1192             if (   /* If at end of pattern, it's an operator.  */
1193                    p == pend
1194                    /* If context independent, it's an operator.  */
1195                 || syntax & RE_CONTEXT_INDEP_ANCHORS
1196                    /* Otherwise, depends on what's next.  */
1197                 || at_endline_loc_p (p, pend, syntax))
1198                BUF_PUSH (endline);
1199              else
1200                goto normal_char;
1201            }
1202            break;
1203 
1204 
1205 	case '+':
1206         case '?':
1207           if ((syntax & RE_BK_PLUS_QM)
1208               || (syntax & RE_LIMITED_OPS))
1209             goto normal_char;
1210         handle_plus:
1211         case '*':
1212           /* If there is no previous pattern... */
1213           if (!laststart)
1214             {
1215               if (syntax & RE_CONTEXT_INVALID_OPS)
1216                 return REG_BADRPT;
1217               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1218                 goto normal_char;
1219             }
1220 
1221           {
1222             /* Are we optimizing this jump?  */
1223             boolean keep_string_p = false;
1224 
1225             /* 1 means zero (many) matches is allowed.  */
1226             char zero_times_ok = 0, many_times_ok = 0;
1227 
1228             /* If there is a sequence of repetition chars, collapse it
1229                down to just one (the right one).  We can't combine
1230                interval operators with these because of, e.g., `a{2}*',
1231                which should only match an even number of `a's.  */
1232 
1233             for (;;)
1234               {
1235                 zero_times_ok |= c != '+';
1236                 many_times_ok |= c != '?';
1237 
1238                 if (p == pend)
1239                   break;
1240 
1241                 PATFETCH (c);
1242 
1243                 if (c == '*'
1244                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1245                   ;
1246 
1247                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
1248                   {
1249                     if (p == pend) return REG_EESCAPE;
1250 
1251                     PATFETCH (c1);
1252                     if (!(c1 == '+' || c1 == '?'))
1253                       {
1254                         PATUNFETCH;
1255                         PATUNFETCH;
1256                         break;
1257                       }
1258 
1259                     c = c1;
1260                   }
1261                 else
1262                   {
1263                     PATUNFETCH;
1264                     break;
1265                   }
1266 
1267                 /* If we get here, we found another repeat character.  */
1268                }
1269 
1270             /* Star, etc. applied to an empty pattern is equivalent
1271                to an empty pattern.  */
1272             if (!laststart)
1273               break;
1274 
1275             /* Now we know whether or not zero matches is allowed
1276                and also whether or not two or more matches is allowed.  */
1277             if (many_times_ok)
1278               { /* More than one repetition is allowed, so put in at the
1279                    end a backward relative jump from `b' to before the next
1280                    jump we're going to put in below (which jumps from
1281                    laststart to after this jump).
1282 
1283                    But if we are at the `*' in the exact sequence `.*\n',
1284                    insert an unconditional jump backwards to the .,
1285                    instead of the beginning of the loop.  This way we only
1286                    push a failure point once, instead of every time
1287                    through the loop.  */
1288                 assert (p - 1 > pattern);
1289 
1290                 /* Allocate the space for the jump.  */
1291                 GET_BUFFER_SPACE (3);
1292 
1293                 /* We know we are not at the first character of the pattern,
1294                    because laststart was nonzero.  And we've already
1295                    incremented `p', by the way, to be the character after
1296                    the `*'.  Do we have to do something analogous here
1297                    for null bytes, because of RE_DOT_NOT_NULL?  */
1298                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1299 		    && zero_times_ok
1300                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1301                     && !(syntax & RE_DOT_NEWLINE))
1302                   { /* We have .*\n.  */
1303                     STORE_JUMP (jump, b, laststart);
1304                     keep_string_p = true;
1305                   }
1306                 else
1307                   /* Anything else.  */
1308                   STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1309 
1310                 /* We've added more stuff to the buffer.  */
1311                 b += 3;
1312               }
1313 
1314             /* On failure, jump from laststart to b + 3, which will be the
1315                end of the buffer after this jump is inserted.  */
1316             GET_BUFFER_SPACE (3);
1317             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1318                                        : on_failure_jump,
1319                          laststart, b + 3);
1320             pending_exact = 0;
1321             b += 3;
1322 
1323             if (!zero_times_ok)
1324               {
1325                 /* At least one repetition is required, so insert a
1326                    `dummy_failure_jump' before the initial
1327                    `on_failure_jump' instruction of the loop. This
1328                    effects a skip over that instruction the first time
1329                    we hit that loop.  */
1330                 GET_BUFFER_SPACE (3);
1331                 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1332                 b += 3;
1333               }
1334             }
1335 	  break;
1336 
1337 
1338 	case '.':
1339           laststart = b;
1340           BUF_PUSH (anychar);
1341           break;
1342 
1343 
1344         case '[':
1345           {
1346             boolean had_char_class = false;
1347 
1348             if (p == pend) return REG_EBRACK;
1349 
1350             /* Ensure that we have enough space to push a charset: the
1351                opcode, the length count, and the bitset; 34 bytes in all.  */
1352 	    GET_BUFFER_SPACE (34);
1353 
1354             laststart = b;
1355 
1356             /* We test `*p == '^' twice, instead of using an if
1357                statement, so we only need one BUF_PUSH.  */
1358             BUF_PUSH (*p == '^' ? charset_not : charset);
1359             if (*p == '^')
1360               p++;
1361 
1362             /* Remember the first position in the bracket expression.  */
1363             p1 = p;
1364 
1365             /* Push the number of bytes in the bitmap.  */
1366             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1367 
1368             /* Clear the whole map.  */
1369             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1370 
1371             /* charset_not matches newline according to a syntax bit.  */
1372             if ((re_opcode_t) b[-2] == charset_not
1373                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1374               SET_LIST_BIT ('\n');
1375 
1376             /* Read in characters and ranges, setting map bits.  */
1377             for (;;)
1378               {
1379                 if (p == pend) return REG_EBRACK;
1380 
1381                 PATFETCH (c);
1382 
1383                 /* \ might escape characters inside [...] and [^...].  */
1384                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1385                   {
1386                     if (p == pend) return REG_EESCAPE;
1387 
1388                     PATFETCH (c1);
1389                     SET_LIST_BIT (c1);
1390                     continue;
1391                   }
1392 
1393                 /* Could be the end of the bracket expression.  If it's
1394                    not (i.e., when the bracket expression is `[]' so
1395                    far), the ']' character bit gets set way below.  */
1396                 if (c == ']' && p != p1 + 1)
1397                   break;
1398 
1399                 /* Look ahead to see if it's a range when the last thing
1400                    was a character class.  */
1401                 if (had_char_class && c == '-' && *p != ']')
1402                   return REG_ERANGE;
1403 
1404                 /* Look ahead to see if it's a range when the last thing
1405                    was a character: if this is a hyphen not at the
1406                    beginning or the end of a list, then it's the range
1407                    operator.  */
1408                 if (c == '-'
1409                     && !(p - 2 >= pattern && p[-2] == '[')
1410                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1411                     && *p != ']')
1412                   {
1413                     reg_errcode_t ret
1414                       = compile_range (&p, pend, translate, syntax, b);
1415                     if (ret != REG_NOERROR) return ret;
1416                   }
1417 
1418                 else if (p[0] == '-' && p[1] != ']')
1419                   { /* This handles ranges made up of characters only.  */
1420                     reg_errcode_t ret;
1421 
1422 		    /* Move past the `-'.  */
1423                     PATFETCH (c1);
1424 
1425                     ret = compile_range (&p, pend, translate, syntax, b);
1426                     if (ret != REG_NOERROR) return ret;
1427                   }
1428 
1429                 /* See if we're at the beginning of a possible character
1430                    class.  */
1431 
1432                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1433                   { /* Leave room for the null.  */
1434                     char str[CHAR_CLASS_MAX_LENGTH + 1];
1435 
1436                     PATFETCH (c);
1437                     c1 = 0;
1438 
1439                     /* If pattern is `[[:'.  */
1440                     if (p == pend) return REG_EBRACK;
1441 
1442                     for (;;)
1443                       {
1444                         PATFETCH (c);
1445                         if (c == ':' || c == ']' || p == pend
1446                             || c1 == CHAR_CLASS_MAX_LENGTH)
1447                           break;
1448                         str[c1++] = c;
1449                       }
1450                     str[c1] = '\0';
1451 
1452                     /* If isn't a word bracketed by `[:' and:`]':
1453                        undo the ending character, the letters, and leave
1454                        the leading `:' and `[' (but set bits for them).  */
1455                     if (c == ':' && *p == ']')
1456                       {
1457                         int ch;
1458                         boolean is_alnum = STREQ (str, "alnum");
1459                         boolean is_alpha = STREQ (str, "alpha");
1460                         boolean is_blank = STREQ (str, "blank");
1461                         boolean is_cntrl = STREQ (str, "cntrl");
1462                         boolean is_digit = STREQ (str, "digit");
1463                         boolean is_graph = STREQ (str, "graph");
1464                         boolean is_lower = STREQ (str, "lower");
1465                         boolean is_print = STREQ (str, "print");
1466                         boolean is_punct = STREQ (str, "punct");
1467                         boolean is_space = STREQ (str, "space");
1468                         boolean is_upper = STREQ (str, "upper");
1469                         boolean is_xdigit = STREQ (str, "xdigit");
1470 
1471                         if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1472 
1473                         /* Throw away the ] at the end of the character
1474                            class.  */
1475                         PATFETCH (c);
1476 
1477                         if (p == pend) return REG_EBRACK;
1478 
1479                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1480                           {
1481                             if (   (is_alnum  && ISALNUM (ch))
1482                                 || (is_alpha  && ISALPHA (ch))
1483                                 || (is_blank  && ISBLANK (ch))
1484                                 || (is_cntrl  && ISCNTRL (ch))
1485                                 || (is_digit  && ISDIGIT (ch))
1486                                 || (is_graph  && ISGRAPH (ch))
1487                                 || (is_lower  && ISLOWER (ch))
1488                                 || (is_print  && ISPRINT (ch))
1489                                 || (is_punct  && ISPUNCT (ch))
1490                                 || (is_space  && ISSPACE (ch))
1491                                 || (is_upper  && ISUPPER (ch))
1492                                 || (is_xdigit && ISXDIGIT (ch)))
1493                             SET_LIST_BIT (ch);
1494                           }
1495                         had_char_class = true;
1496                       }
1497                     else
1498                       {
1499                         c1++;
1500                         while (c1--)
1501                           PATUNFETCH;
1502                         SET_LIST_BIT ('[');
1503                         SET_LIST_BIT (':');
1504                         had_char_class = false;
1505                       }
1506                   }
1507                 else
1508                   {
1509                     had_char_class = false;
1510                     SET_LIST_BIT (c);
1511                   }
1512               }
1513 
1514             /* Discard any (non)matching list bytes that are all 0 at the
1515                end of the map.  Decrease the map-length byte too.  */
1516             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1517               b[-1]--;
1518             b += b[-1];
1519           }
1520           break;
1521 
1522 
1523 	case '(':
1524           if (syntax & RE_NO_BK_PARENS)
1525             goto handle_open;
1526           else
1527             goto normal_char;
1528 
1529 
1530         case ')':
1531           if (syntax & RE_NO_BK_PARENS)
1532             goto handle_close;
1533           else
1534             goto normal_char;
1535 
1536 
1537         case '\n':
1538           if (syntax & RE_NEWLINE_ALT)
1539             goto handle_alt;
1540           else
1541             goto normal_char;
1542 
1543 
1544 	case '|':
1545           if (syntax & RE_NO_BK_VBAR)
1546             goto handle_alt;
1547           else
1548             goto normal_char;
1549 
1550 
1551         case '{':
1552            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1553              goto handle_interval;
1554            else
1555              goto normal_char;
1556 
1557 
1558         case '\\':
1559           if (p == pend) return REG_EESCAPE;
1560 
1561           /* Do not translate the character after the \, so that we can
1562              distinguish, e.g., \B from \b, even if we normally would
1563              translate, e.g., B to b.  */
1564           PATFETCH_RAW (c);
1565 
1566           switch (c)
1567             {
1568             case '(':
1569               if (syntax & RE_NO_BK_PARENS)
1570                 goto normal_backslash;
1571 
1572             handle_open:
1573               bufp->re_nsub++;
1574               regnum++;
1575 
1576               if (COMPILE_STACK_FULL)
1577                 {
1578                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
1579                             compile_stack_elt_t);
1580                   if (compile_stack.stack == NULL) return REG_ESPACE;
1581 
1582                   compile_stack.size <<= 1;
1583                 }
1584 
1585               /* These are the values to restore when we hit end of this
1586                  group.  They are all relative offsets, so that if the
1587                  whole pattern moves because of realloc, they will still
1588                  be valid.  */
1589               COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1590               COMPILE_STACK_TOP.fixup_alt_jump
1591                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1592               COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1593               COMPILE_STACK_TOP.regnum = regnum;
1594 
1595               /* We will eventually replace the 0 with the number of
1596                  groups inner to this one.  But do not push a
1597                  start_memory for groups beyond the last one we can
1598                  represent in the compiled pattern.  */
1599               if (regnum <= MAX_REGNUM)
1600                 {
1601                   COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1602                   BUF_PUSH_3 (start_memory, regnum, 0);
1603                 }
1604 
1605               compile_stack.avail++;
1606 
1607               fixup_alt_jump = 0;
1608               laststart = 0;
1609               begalt = b;
1610 	      /* If we've reached MAX_REGNUM groups, then this open
1611 		 won't actually generate any code, so we'll have to
1612 		 clear pending_exact explicitly.  */
1613 	      pending_exact = 0;
1614               break;
1615 
1616 
1617             case ')':
1618               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1619 
1620               if (COMPILE_STACK_EMPTY)
1621                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1622                   goto normal_backslash;
1623                 else
1624                   return REG_ERPAREN;
1625 
1626             handle_close:
1627               if (fixup_alt_jump)
1628                 { /* Push a dummy failure point at the end of the
1629                      alternative for a possible future
1630                      `pop_failure_jump' to pop.  See comments at
1631                      `push_dummy_failure' in `re_match_2'.  */
1632                   BUF_PUSH (push_dummy_failure);
1633 
1634                   /* We allocated space for this jump when we assigned
1635                      to `fixup_alt_jump', in the `handle_alt' case below.  */
1636                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1637                 }
1638 
1639               /* See similar code for backslashed left paren above.  */
1640               if (COMPILE_STACK_EMPTY)
1641                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1642                   goto normal_char;
1643                 else
1644                   return REG_ERPAREN;
1645 
1646               /* Since we just checked for an empty stack above, this
1647                  ``can't happen''.  */
1648               assert (compile_stack.avail != 0);
1649               {
1650                 /* We don't just want to restore into `regnum', because
1651                    later groups should continue to be numbered higher,
1652                    as in `(ab)c(de)' -- the second group is #2.  */
1653                 regnum_t this_group_regnum;
1654 
1655                 compile_stack.avail--;
1656                 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1657                 fixup_alt_jump
1658                   = COMPILE_STACK_TOP.fixup_alt_jump
1659                     ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1660                     : 0;
1661                 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1662                 this_group_regnum = COMPILE_STACK_TOP.regnum;
1663 		/* If we've reached MAX_REGNUM groups, then this open
1664 		   won't actually generate any code, so we'll have to
1665 		   clear pending_exact explicitly.  */
1666 		pending_exact = 0;
1667 
1668                 /* We're at the end of the group, so now we know how many
1669                    groups were inside this one.  */
1670                 if (this_group_regnum <= MAX_REGNUM)
1671                   {
1672                     unsigned char *inner_group_loc
1673                       = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1674 
1675                     *inner_group_loc = regnum - this_group_regnum;
1676                     BUF_PUSH_3 (stop_memory, this_group_regnum,
1677                                 regnum - this_group_regnum);
1678                   }
1679               }
1680               break;
1681 
1682 
1683             case '|':					/* `\|'.  */
1684               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1685                 goto normal_backslash;
1686             handle_alt:
1687               if (syntax & RE_LIMITED_OPS)
1688                 goto normal_char;
1689 
1690               /* Insert before the previous alternative a jump which
1691                  jumps to this alternative if the former fails.  */
1692               GET_BUFFER_SPACE (3);
1693               INSERT_JUMP (on_failure_jump, begalt, b + 6);
1694               pending_exact = 0;
1695               b += 3;
1696 
1697               /* The alternative before this one has a jump after it
1698                  which gets executed if it gets matched.  Adjust that
1699                  jump so it will jump to this alternative's analogous
1700                  jump (put in below, which in turn will jump to the next
1701                  (if any) alternative's such jump, etc.).  The last such
1702                  jump jumps to the correct final destination.  A picture:
1703                           _____ _____
1704                           |   | |   |
1705                           |   v |   v
1706                          a | b   | c
1707 
1708                  If we are at `b', then fixup_alt_jump right now points to a
1709                  three-byte space after `a'.  We'll put in the jump, set
1710                  fixup_alt_jump to right after `b', and leave behind three
1711                  bytes which we'll fill in when we get to after `c'.  */
1712 
1713               if (fixup_alt_jump)
1714                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1715 
1716               /* Mark and leave space for a jump after this alternative,
1717                  to be filled in later either by next alternative or
1718                  when know we're at the end of a series of alternatives.  */
1719               fixup_alt_jump = b;
1720               GET_BUFFER_SPACE (3);
1721               b += 3;
1722 
1723               laststart = 0;
1724               begalt = b;
1725               break;
1726 
1727 
1728             case '{':
1729               /* If \{ is a literal.  */
1730               if (!(syntax & RE_INTERVALS)
1731                      /* If we're at `\{' and it's not the open-interval
1732                         operator.  */
1733                   || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1734                   || (p - 2 == pattern  &&  p == pend))
1735                 goto normal_backslash;
1736 
1737             handle_interval:
1738               {
1739                 /* If got here, then the syntax allows intervals.  */
1740 
1741                 /* At least (most) this many matches must be made.  */
1742                 int lower_bound = -1, upper_bound = -1;
1743 
1744                 beg_interval = p - 1;
1745 
1746                 if (p == pend)
1747                   {
1748                     if (syntax & RE_NO_BK_BRACES)
1749                       goto unfetch_interval;
1750                     else
1751                       return REG_EBRACE;
1752                   }
1753 
1754                 GET_UNSIGNED_NUMBER (lower_bound);
1755 
1756                 if (c == ',')
1757                   {
1758                     GET_UNSIGNED_NUMBER (upper_bound);
1759                     if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1760                   }
1761                 else
1762                   /* Interval such as `{1}' => match exactly once. */
1763                   upper_bound = lower_bound;
1764 
1765                 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1766                     || lower_bound > upper_bound)
1767                   {
1768                     if (syntax & RE_NO_BK_BRACES)
1769                       goto unfetch_interval;
1770                     else
1771                       return REG_BADBR;
1772                   }
1773 
1774                 if (!(syntax & RE_NO_BK_BRACES))
1775                   {
1776                     if (c != '\\') return REG_EBRACE;
1777 
1778                     PATFETCH (c);
1779                   }
1780 
1781                 if (c != '}')
1782                   {
1783                     if (syntax & RE_NO_BK_BRACES)
1784                       goto unfetch_interval;
1785                     else
1786                       return REG_BADBR;
1787                   }
1788 
1789                 /* We just parsed a valid interval.  */
1790 
1791                 /* If it's invalid to have no preceding re.  */
1792                 if (!laststart)
1793                   {
1794                     if (syntax & RE_CONTEXT_INVALID_OPS)
1795                       return REG_BADRPT;
1796                     else if (syntax & RE_CONTEXT_INDEP_OPS)
1797                       laststart = b;
1798                     else
1799                       goto unfetch_interval;
1800                   }
1801 
1802                 /* If the upper bound is zero, don't want to succeed at
1803                    all; jump from `laststart' to `b + 3', which will be
1804                    the end of the buffer after we insert the jump.  */
1805                  if (upper_bound == 0)
1806                    {
1807                      GET_BUFFER_SPACE (3);
1808                      INSERT_JUMP (jump, laststart, b + 3);
1809                      b += 3;
1810                    }
1811 
1812                  /* Otherwise, we have a nontrivial interval.  When
1813                     we're all done, the pattern will look like:
1814                       set_number_at <jump count> <upper bound>
1815                       set_number_at <succeed_n count> <lower bound>
1816                       succeed_n <after jump addr> <succed_n count>
1817                       <body of loop>
1818                       jump_n <succeed_n addr> <jump count>
1819                     (The upper bound and `jump_n' are omitted if
1820                     `upper_bound' is 1, though.)  */
1821                  else
1822                    { /* If the upper bound is > 1, we need to insert
1823                         more at the end of the loop.  */
1824                      unsigned nbytes = 10 + (upper_bound > 1) * 10;
1825 
1826                      GET_BUFFER_SPACE (nbytes);
1827 
1828                      /* Initialize lower bound of the `succeed_n', even
1829                         though it will be set during matching by its
1830                         attendant `set_number_at' (inserted next),
1831                         because `re_compile_fastmap' needs to know.
1832                         Jump to the `jump_n' we might insert below.  */
1833                      INSERT_JUMP2 (succeed_n, laststart,
1834                                    b + 5 + (upper_bound > 1) * 5,
1835                                    lower_bound);
1836                      b += 5;
1837 
1838                      /* Code to initialize the lower bound.  Insert
1839                         before the `succeed_n'.  The `5' is the last two
1840                         bytes of this `set_number_at', plus 3 bytes of
1841                         the following `succeed_n'.  */
1842                      insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1843                      b += 5;
1844 
1845                      if (upper_bound > 1)
1846                        { /* More than one repetition is allowed, so
1847                             append a backward jump to the `succeed_n'
1848                             that starts this interval.
1849 
1850                             When we've reached this during matching,
1851                             we'll have matched the interval once, so
1852                             jump back only `upper_bound - 1' times.  */
1853                          STORE_JUMP2 (jump_n, b, laststart + 5,
1854                                       upper_bound - 1);
1855                          b += 5;
1856 
1857                          /* The location we want to set is the second
1858                             parameter of the `jump_n'; that is `b-2' as
1859                             an absolute address.  `laststart' will be
1860                             the `set_number_at' we're about to insert;
1861                             `laststart+3' the number to set, the source
1862                             for the relative address.  But we are
1863                             inserting into the middle of the pattern --
1864                             so everything is getting moved up by 5.
1865                             Conclusion: (b - 2) - (laststart + 3) + 5,
1866                             i.e., b - laststart.
1867 
1868                             We insert this at the beginning of the loop
1869                             so that if we fail during matching, we'll
1870                             reinitialize the bounds.  */
1871                          insert_op2 (set_number_at, laststart, b - laststart,
1872                                      upper_bound - 1, b);
1873                          b += 5;
1874                        }
1875                    }
1876                 pending_exact = 0;
1877                 beg_interval = NULL;
1878               }
1879               break;
1880 
1881             unfetch_interval:
1882               /* If an invalid interval, match the characters as literals.  */
1883                assert (beg_interval);
1884                p = beg_interval;
1885                beg_interval = NULL;
1886 
1887                /* normal_char and normal_backslash need `c'.  */
1888                PATFETCH (c);
1889 
1890                if (!(syntax & RE_NO_BK_BRACES))
1891                  {
1892                    if (p > pattern  &&  p[-1] == '\\')
1893                      goto normal_backslash;
1894                  }
1895                goto normal_char;
1896 
1897 #ifdef emacs
1898             /* There is no way to specify the before_dot and after_dot
1899                operators.  rms says this is ok.  --karl  */
1900             case '=':
1901               BUF_PUSH (at_dot);
1902               break;
1903 
1904             case 's':
1905               laststart = b;
1906               PATFETCH (c);
1907               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1908               break;
1909 
1910             case 'S':
1911               laststart = b;
1912               PATFETCH (c);
1913               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1914               break;
1915 #endif /* emacs */
1916 
1917 
1918             case 'w':
1919               laststart = b;
1920               BUF_PUSH (wordchar);
1921               break;
1922 
1923 
1924             case 'W':
1925               laststart = b;
1926               BUF_PUSH (notwordchar);
1927               break;
1928 
1929 
1930             case '<':
1931               BUF_PUSH (wordbeg);
1932               break;
1933 
1934             case '>':
1935               BUF_PUSH (wordend);
1936               break;
1937 
1938             case 'b':
1939               BUF_PUSH (wordbound);
1940               break;
1941 
1942             case 'B':
1943               BUF_PUSH (notwordbound);
1944               break;
1945 
1946             case '`':
1947               BUF_PUSH (begbuf);
1948               break;
1949 
1950             case '\'':
1951               BUF_PUSH (endbuf);
1952               break;
1953 
1954             case '1': case '2': case '3': case '4': case '5':
1955             case '6': case '7': case '8': case '9':
1956               if (syntax & RE_NO_BK_REFS)
1957                 goto normal_char;
1958 
1959               c1 = c - '0';
1960 
1961               if (c1 > regnum)
1962                 return REG_ESUBREG;
1963 
1964               /* Can't back reference to a subexpression if inside of it.  */
1965               if (group_in_compile_stack (compile_stack, c1))
1966                 goto normal_char;
1967 
1968               laststart = b;
1969               BUF_PUSH_2 (duplicate, c1);
1970               break;
1971 
1972 
1973             case '+':
1974             case '?':
1975               if (syntax & RE_BK_PLUS_QM)
1976                 goto handle_plus;
1977               else
1978                 goto normal_backslash;
1979 
1980             default:
1981             normal_backslash:
1982               /* You might think it would be useful for \ to mean
1983                  not to translate; but if we don't translate it
1984                  it will never match anything.  */
1985               c = TRANSLATE (c);
1986               goto normal_char;
1987             }
1988           break;
1989 
1990 
1991 	default:
1992         /* Expects the character in `c'.  */
1993 	normal_char:
1994 	      /* If no exactn currently being built.  */
1995           if (!pending_exact
1996 
1997               /* If last exactn not at current position.  */
1998               || pending_exact + *pending_exact + 1 != b
1999 
2000               /* We have only one byte following the exactn for the count.  */
2001 	      || *pending_exact == (1 << BYTEWIDTH) - 1
2002 
2003               /* If followed by a repetition operator.  */
2004               || *p == '*' || *p == '^'
2005 	      || ((syntax & RE_BK_PLUS_QM)
2006 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2007 		  : (*p == '+' || *p == '?'))
2008 	      || ((syntax & RE_INTERVALS)
2009                   && ((syntax & RE_NO_BK_BRACES)
2010 		      ? *p == '{'
2011                       : (p[0] == '\\' && p[1] == '{'))))
2012 	    {
2013 	      /* Start building a new exactn.  */
2014 
2015               laststart = b;
2016 
2017 	      BUF_PUSH_2 (exactn, 0);
2018 	      pending_exact = b - 1;
2019             }
2020 
2021 	  BUF_PUSH (c);
2022           (*pending_exact)++;
2023 	  break;
2024         } /* switch (c) */
2025     } /* while p != pend */
2026 
2027 
2028   /* Through the pattern now.  */
2029 
2030   if (fixup_alt_jump)
2031     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2032 
2033   if (!COMPILE_STACK_EMPTY)
2034     return REG_EPAREN;
2035 
2036   free (compile_stack.stack);
2037 
2038   /* We have succeeded; set the length of the buffer.  */
2039   bufp->used = b - bufp->buffer;
2040 
2041 #ifdef DEBUG
2042   if (debug)
2043     {
2044       DEBUG_PRINT1 ("\nCompiled pattern: ");
2045       print_compiled_pattern (bufp);
2046     }
2047 #endif /* DEBUG */
2048 
2049   return REG_NOERROR;
2050 } /* regex_compile */
2051 
2052 /* Subroutines for `regex_compile'.  */
2053 
2054 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
2055 
2056 static void
2057 store_op1 (op, loc, arg)
2058     re_opcode_t op;
2059     unsigned char *loc;
2060     int arg;
2061 {
2062   *loc = (unsigned char) op;
2063   STORE_NUMBER (loc + 1, arg);
2064 }
2065 
2066 
2067 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
2068 
2069 static void
2070 store_op2 (op, loc, arg1, arg2)
2071     re_opcode_t op;
2072     unsigned char *loc;
2073     int arg1, arg2;
2074 {
2075   *loc = (unsigned char) op;
2076   STORE_NUMBER (loc + 1, arg1);
2077   STORE_NUMBER (loc + 3, arg2);
2078 }
2079 
2080 
2081 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2082    for OP followed by two-byte integer parameter ARG.  */
2083 
2084 static void
2085 insert_op1 (op, loc, arg, end)
2086     re_opcode_t op;
2087     unsigned char *loc;
2088     int arg;
2089     unsigned char *end;
2090 {
2091   register unsigned char *pfrom = end;
2092   register unsigned char *pto = end + 3;
2093 
2094   while (pfrom != loc)
2095     *--pto = *--pfrom;
2096 
2097   store_op1 (op, loc, arg);
2098 }
2099 
2100 
2101 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
2102 
2103 static void
2104 insert_op2 (op, loc, arg1, arg2, end)
2105     re_opcode_t op;
2106     unsigned char *loc;
2107     int arg1, arg2;
2108     unsigned char *end;
2109 {
2110   register unsigned char *pfrom = end;
2111   register unsigned char *pto = end + 5;
2112 
2113   while (pfrom != loc)
2114     *--pto = *--pfrom;
2115 
2116   store_op2 (op, loc, arg1, arg2);
2117 }
2118 
2119 
2120 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
2121    after an alternative or a begin-subexpression.  We assume there is at
2122    least one character before the ^.  */
2123 
2124 static boolean
2125 at_begline_loc_p (pattern, p, syntax)
2126     const char *pattern, *p;
2127     reg_syntax_t syntax;
2128 {
2129   const char *prev = p - 2;
2130   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2131 
2132   return
2133        /* After a subexpression?  */
2134        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2135        /* After an alternative?  */
2136     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2137 }
2138 
2139 
2140 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
2141    at least one character after the $, i.e., `P < PEND'.  */
2142 
2143 static boolean
2144 at_endline_loc_p (p, pend, syntax)
2145     const char *p, *pend;
2146     int syntax;
2147 {
2148   const char *next = p;
2149   boolean next_backslash = *next == '\\';
2150   const char *next_next = p + 1 < pend ? p + 1 : NULL;
2151 
2152   return
2153        /* Before a subexpression?  */
2154        (syntax & RE_NO_BK_PARENS ? *next == ')'
2155         : next_backslash && next_next && *next_next == ')')
2156        /* Before an alternative?  */
2157     || (syntax & RE_NO_BK_VBAR ? *next == '|'
2158         : next_backslash && next_next && *next_next == '|');
2159 }
2160 
2161 
2162 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2163    false if it's not.  */
2164 
2165 static boolean
2166 group_in_compile_stack (compile_stack, regnum)
2167     compile_stack_type compile_stack;
2168     regnum_t regnum;
2169 {
2170   int this_element;
2171 
2172   for (this_element = compile_stack.avail - 1;
2173        this_element >= 0;
2174        this_element--)
2175     if (compile_stack.stack[this_element].regnum == regnum)
2176       return true;
2177 
2178   return false;
2179 }
2180 
2181 
2182 /* Read the ending character of a range (in a bracket expression) from the
2183    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
2184    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
2185    Then we set the translation of all bits between the starting and
2186    ending characters (inclusive) in the compiled pattern B.
2187 
2188    Return an error code.
2189 
2190    We use these short variable names so we can use the same macros as
2191    `regex_compile' itself.  */
2192 
2193 static reg_errcode_t
2194 compile_range (p_ptr, pend, translate, syntax, b)
2195     const char **p_ptr, *pend;
2196     char *translate;
2197     reg_syntax_t syntax;
2198     unsigned char *b;
2199 {
2200   unsigned this_char;
2201 
2202   const char *p = *p_ptr;
2203   int range_start, range_end;
2204 
2205   if (p == pend)
2206     return REG_ERANGE;
2207 
2208   /* Even though the pattern is a signed `char *', we need to fetch
2209      with unsigned char *'s; if the high bit of the pattern character
2210      is set, the range endpoints will be negative if we fetch using a
2211      signed char *.
2212 
2213      We also want to fetch the endpoints without translating them; the
2214      appropriate translation is done in the bit-setting loop below.  */
2215   range_start = ((unsigned char *) p)[-2];
2216   range_end   = ((unsigned char *) p)[0];
2217 
2218   /* Have to increment the pointer into the pattern string, so the
2219      caller isn't still at the ending character.  */
2220   (*p_ptr)++;
2221 
2222   /* If the start is after the end, the range is empty.  */
2223   if (range_start > range_end)
2224     return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2225 
2226   /* Here we see why `this_char' has to be larger than an `unsigned
2227      char' -- the range is inclusive, so if `range_end' == 0xff
2228      (assuming 8-bit characters), we would otherwise go into an infinite
2229      loop, since all characters <= 0xff.  */
2230   for (this_char = range_start; this_char <= range_end; this_char++)
2231     {
2232       SET_LIST_BIT (TRANSLATE (this_char));
2233     }
2234 
2235   return REG_NOERROR;
2236 }
2237 
2238 /* Failure stack declarations and macros; both re_compile_fastmap and
2239    re_match_2 use a failure stack.  These have to be macros because of
2240    REGEX_ALLOCATE.  */
2241 
2242 
2243 /* Number of failure points for which to initially allocate space
2244    when matching.  If this number is exceeded, we allocate more
2245    space, so it is not a hard limit.  */
2246 #ifndef INIT_FAILURE_ALLOC
2247 #define INIT_FAILURE_ALLOC 5
2248 #endif
2249 
2250 /* Roughly the maximum number of failure points on the stack.  Would be
2251    exactly that if always used MAX_FAILURE_SPACE each time we failed.
2252    This is a variable only so users of regex can assign to it; we never
2253    change it ourselves.  */
2254 int re_max_failures = 2000;
2255 
2256 typedef const unsigned char *fail_stack_elt_t;
2257 
2258 typedef struct
2259 {
2260   fail_stack_elt_t *stack;
2261   unsigned size;
2262   unsigned avail;			/* Offset of next open position.  */
2263 } fail_stack_type;
2264 
2265 #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
2266 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2267 #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
2268 #define FAIL_STACK_TOP()       (fail_stack.stack[fail_stack.avail])
2269 
2270 
2271 /* Initialize `fail_stack'.  Do `return -2' if the alloc fails.  */
2272 
2273 #define INIT_FAIL_STACK()						\
2274   do {									\
2275     fail_stack.stack = (fail_stack_elt_t *)				\
2276       REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));	\
2277 									\
2278     if (fail_stack.stack == NULL)					\
2279       return -2;							\
2280 									\
2281     fail_stack.size = INIT_FAILURE_ALLOC;				\
2282     fail_stack.avail = 0;						\
2283   } while (0)
2284 
2285 
2286 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2287 
2288    Return 1 if succeeds, and 0 if either ran out of memory
2289    allocating space for it or it was already too large.
2290 
2291    REGEX_REALLOCATE requires `destination' be declared.   */
2292 
2293 #define DOUBLE_FAIL_STACK(fail_stack)					\
2294   ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS		\
2295    ? 0									\
2296    : ((fail_stack).stack = (fail_stack_elt_t *)				\
2297         REGEX_REALLOCATE ((fail_stack).stack, 				\
2298           (fail_stack).size * sizeof (fail_stack_elt_t),		\
2299           ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
2300 									\
2301       (fail_stack).stack == NULL					\
2302       ? 0								\
2303       : ((fail_stack).size <<= 1, 					\
2304          1)))
2305 
2306 
2307 /* Push PATTERN_OP on FAIL_STACK.
2308 
2309    Return 1 if was able to do so and 0 if ran out of memory allocating
2310    space to do so.  */
2311 #define PUSH_PATTERN_OP(pattern_op, fail_stack)				\
2312   ((FAIL_STACK_FULL ()							\
2313     && !DOUBLE_FAIL_STACK (fail_stack))					\
2314     ? 0									\
2315     : ((fail_stack).stack[(fail_stack).avail++] = pattern_op,		\
2316        1))
2317 
2318 /* This pushes an item onto the failure stack.  Must be a four-byte
2319    value.  Assumes the variable `fail_stack'.  Probably should only
2320    be called from within `PUSH_FAILURE_POINT'.  */
2321 #define PUSH_FAILURE_ITEM(item)						\
2322   fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2323 
2324 /* The complement operation.  Assumes `fail_stack' is nonempty.  */
2325 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2326 
2327 /* Used to omit pushing failure point id's when we're not debugging.  */
2328 #ifdef DEBUG
2329 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2330 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2331 #else
2332 #define DEBUG_PUSH(item)
2333 #define DEBUG_POP(item_addr)
2334 #endif
2335 
2336 
2337 /* Push the information about the state we will need
2338    if we ever fail back to it.
2339 
2340    Requires variables fail_stack, regstart, regend, reg_info, and
2341    num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
2342    declared.
2343 
2344    Does `return FAILURE_CODE' if runs out of memory.  */
2345 
2346 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
2347   do {									\
2348     char *destination;							\
2349     /* Must be int, so when we don't save any registers, the arithmetic	\
2350        of 0 + -1 isn't done as unsigned.  */				\
2351     int this_reg;							\
2352     									\
2353     DEBUG_STATEMENT (failure_id++);					\
2354     DEBUG_STATEMENT (nfailure_points_pushed++);				\
2355     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
2356     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
2357     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
2358 									\
2359     DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
2360     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
2361 									\
2362     /* Ensure we have enough space allocated for what we will push.  */	\
2363     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
2364       {									\
2365         if (!DOUBLE_FAIL_STACK (fail_stack))			\
2366           return failure_code;						\
2367 									\
2368         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
2369 		       (fail_stack).size);				\
2370         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2371       }									\
2372 									\
2373     /* Push the info, starting with the registers.  */			\
2374     DEBUG_PRINT1 ("\n");						\
2375 									\
2376     for (this_reg = lowest_active_reg; this_reg <= highest_active_reg;	\
2377          this_reg++)							\
2378       {									\
2379 	DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);			\
2380         DEBUG_STATEMENT (num_regs_pushed++);				\
2381 									\
2382 	DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);		\
2383         PUSH_FAILURE_ITEM (regstart[this_reg]);				\
2384                                                                         \
2385 	DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
2386         PUSH_FAILURE_ITEM (regend[this_reg]);				\
2387 									\
2388 	DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
2389         DEBUG_PRINT2 (" match_null=%d",					\
2390                       REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
2391         DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
2392         DEBUG_PRINT2 (" matched_something=%d",				\
2393                       MATCHED_SOMETHING (reg_info[this_reg]));		\
2394         DEBUG_PRINT2 (" ever_matched=%d",				\
2395                       EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
2396 	DEBUG_PRINT1 ("\n");						\
2397         PUSH_FAILURE_ITEM (reg_info[this_reg].word);			\
2398       }									\
2399 									\
2400     DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
2401     PUSH_FAILURE_ITEM (lowest_active_reg);				\
2402 									\
2403     DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
2404     PUSH_FAILURE_ITEM (highest_active_reg);				\
2405 									\
2406     DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
2407     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
2408     PUSH_FAILURE_ITEM (pattern_place);					\
2409 									\
2410     DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
2411     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
2412 				 size2);				\
2413     DEBUG_PRINT1 ("'\n");						\
2414     PUSH_FAILURE_ITEM (string_place);					\
2415 									\
2416     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
2417     DEBUG_PUSH (failure_id);						\
2418   } while (0)
2419 
2420 /* This is the number of items that are pushed and popped on the stack
2421    for each register.  */
2422 #define NUM_REG_ITEMS  3
2423 
2424 /* Individual items aside from the registers.  */
2425 #ifdef DEBUG
2426 #define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
2427 #else
2428 #define NUM_NONREG_ITEMS 4
2429 #endif
2430 
2431 /* We push at most this many items on the stack.  */
2432 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2433 
2434 /* We actually push this many items.  */
2435 #define NUM_FAILURE_ITEMS						\
2436   ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS 	\
2437     + NUM_NONREG_ITEMS)
2438 
2439 /* How many items can still be added to the stack without overflowing it.  */
2440 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2441 
2442 
2443 /* Pops what PUSH_FAIL_STACK pushes.
2444 
2445    We restore into the parameters, all of which should be lvalues:
2446      STR -- the saved data position.
2447      PAT -- the saved pattern position.
2448      LOW_REG, HIGH_REG -- the highest and lowest active registers.
2449      REGSTART, REGEND -- arrays of string positions.
2450      REG_INFO -- array of information about each subexpression.
2451 
2452    Also assumes the variables `fail_stack' and (if debugging), `bufp',
2453    `pend', `string1', `size1', `string2', and `size2'.  */
2454 
2455 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2456 {									\
2457   DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
2458   int this_reg;								\
2459   const unsigned char *string_temp;					\
2460 									\
2461   assert (!FAIL_STACK_EMPTY ());					\
2462 									\
2463   /* Remove failure points and point to how many regs pushed.  */	\
2464   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
2465   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
2466   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
2467 									\
2468   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
2469 									\
2470   DEBUG_POP (&failure_id);						\
2471   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
2472 									\
2473   /* If the saved string location is NULL, it came from an		\
2474      on_failure_keep_string_jump opcode, and we want to throw away the	\
2475      saved NULL, thus retaining our current position in the string.  */	\
2476   string_temp = POP_FAILURE_ITEM ();					\
2477   if (string_temp != NULL)						\
2478     str = (const char *) string_temp;					\
2479 									\
2480   DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
2481   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
2482   DEBUG_PRINT1 ("'\n");							\
2483 									\
2484   pat = (unsigned char *) POP_FAILURE_ITEM ();				\
2485   DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
2486   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
2487 									\
2488   /* Restore register info.  */						\
2489   high_reg = (unsigned) POP_FAILURE_ITEM ();				\
2490   DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
2491 									\
2492   low_reg = (unsigned) POP_FAILURE_ITEM ();				\
2493   DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
2494 									\
2495   for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
2496     {									\
2497       DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);			\
2498 									\
2499       reg_info[this_reg].word = POP_FAILURE_ITEM ();			\
2500       DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);		\
2501 									\
2502       regend[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
2503       DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);		\
2504 									\
2505       regstart[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
2506       DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);		\
2507     }									\
2508 									\
2509   DEBUG_STATEMENT (nfailure_points_popped++);				\
2510 } /* POP_FAILURE_POINT */
2511 
2512 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2513    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
2514    characters can start a string that matches the pattern.  This fastmap
2515    is used by re_search to skip quickly over impossible starting points.
2516 
2517    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2518    area as BUFP->fastmap.
2519 
2520    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2521    the pattern buffer.
2522 
2523    Returns 0 if we succeed, -2 if an internal error.   */
2524 
2525 int
2526 re_compile_fastmap (bufp)
2527      struct re_pattern_buffer *bufp;
2528 {
2529   int j, k;
2530   fail_stack_type fail_stack;
2531 #ifndef REGEX_MALLOC
2532   char *destination;
2533 #endif
2534   /* We don't push any register information onto the failure stack.  */
2535   unsigned num_regs = 0;
2536 
2537   register char *fastmap = bufp->fastmap;
2538   unsigned char *pattern = bufp->buffer;
2539   unsigned long size = bufp->used;
2540   const unsigned char *p = pattern;
2541   register unsigned char *pend = pattern + size;
2542 
2543   /* Assume that each path through the pattern can be null until
2544      proven otherwise.  We set this false at the bottom of switch
2545      statement, to which we get only if a particular path doesn't
2546      match the empty string.  */
2547   boolean path_can_be_null = true;
2548 
2549   /* We aren't doing a `succeed_n' to begin with.  */
2550   boolean succeed_n_p = false;
2551 
2552   assert (fastmap != NULL && p != NULL);
2553 
2554   INIT_FAIL_STACK ();
2555   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
2556   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
2557   bufp->can_be_null = 0;
2558 
2559   while (p != pend || !FAIL_STACK_EMPTY ())
2560     {
2561       if (p == pend)
2562         {
2563           bufp->can_be_null |= path_can_be_null;
2564 
2565           /* Reset for next path.  */
2566           path_can_be_null = true;
2567 
2568           p = fail_stack.stack[--fail_stack.avail];
2569 	}
2570 
2571       /* We should never be about to go beyond the end of the pattern.  */
2572       assert (p < pend);
2573 
2574 #ifdef SWITCH_ENUM_BUG
2575       switch ((int) ((re_opcode_t) *p++))
2576 #else
2577       switch ((re_opcode_t) *p++)
2578 #endif
2579 	{
2580 
2581         /* I guess the idea here is to simply not bother with a fastmap
2582            if a backreference is used, since it's too hard to figure out
2583            the fastmap for the corresponding group.  Setting
2584            `can_be_null' stops `re_search_2' from using the fastmap, so
2585            that is all we do.  */
2586 	case duplicate:
2587 	  bufp->can_be_null = 1;
2588           return 0;
2589 
2590 
2591       /* Following are the cases which match a character.  These end
2592          with `break'.  */
2593 
2594 	case exactn:
2595           fastmap[p[1]] = 1;
2596 	  break;
2597 
2598 
2599         case charset:
2600           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2601 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2602               fastmap[j] = 1;
2603 	  break;
2604 
2605 
2606 	case charset_not:
2607 	  /* Chars beyond end of map must be allowed.  */
2608 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2609             fastmap[j] = 1;
2610 
2611 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2612 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2613               fastmap[j] = 1;
2614           break;
2615 
2616 
2617 	case wordchar:
2618 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2619 	    if (SYNTAX (j) == Sword)
2620 	      fastmap[j] = 1;
2621 	  break;
2622 
2623 
2624 	case notwordchar:
2625 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2626 	    if (SYNTAX (j) != Sword)
2627 	      fastmap[j] = 1;
2628 	  break;
2629 
2630 
2631         case anychar:
2632           /* `.' matches anything ...  */
2633 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2634             fastmap[j] = 1;
2635 
2636           /* ... except perhaps newline.  */
2637           if (!(bufp->syntax & RE_DOT_NEWLINE))
2638             fastmap['\n'] = 0;
2639 
2640           /* Return if we have already set `can_be_null'; if we have,
2641              then the fastmap is irrelevant.  Something's wrong here.  */
2642 	  else if (bufp->can_be_null)
2643 	    return 0;
2644 
2645           /* Otherwise, have to check alternative paths.  */
2646 	  break;
2647 
2648 
2649 #ifdef emacs
2650         case syntaxspec:
2651 	  k = *p++;
2652 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2653 	    if (SYNTAX (j) == (enum syntaxcode) k)
2654 	      fastmap[j] = 1;
2655 	  break;
2656 
2657 
2658 	case notsyntaxspec:
2659 	  k = *p++;
2660 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
2661 	    if (SYNTAX (j) != (enum syntaxcode) k)
2662 	      fastmap[j] = 1;
2663 	  break;
2664 
2665 
2666       /* All cases after this match the empty string.  These end with
2667          `continue'.  */
2668 
2669 
2670 	case before_dot:
2671 	case at_dot:
2672 	case after_dot:
2673           continue;
2674 #endif /* not emacs */
2675 
2676 
2677         case no_op:
2678         case begline:
2679         case endline:
2680 	case begbuf:
2681 	case endbuf:
2682 	case wordbound:
2683 	case notwordbound:
2684 	case wordbeg:
2685 	case wordend:
2686         case push_dummy_failure:
2687           continue;
2688 
2689 
2690 	case jump_n:
2691         case pop_failure_jump:
2692 	case maybe_pop_jump:
2693 	case jump:
2694         case jump_past_alt:
2695 	case dummy_failure_jump:
2696           EXTRACT_NUMBER_AND_INCR (j, p);
2697 	  p += j;
2698 	  if (j > 0)
2699 	    continue;
2700 
2701           /* Jump backward implies we just went through the body of a
2702              loop and matched nothing.  Opcode jumped to should be
2703              `on_failure_jump' or `succeed_n'.  Just treat it like an
2704              ordinary jump.  For a * loop, it has pushed its failure
2705              point already; if so, discard that as redundant.  */
2706           if ((re_opcode_t) *p != on_failure_jump
2707 	      && (re_opcode_t) *p != succeed_n)
2708 	    continue;
2709 
2710           p++;
2711           EXTRACT_NUMBER_AND_INCR (j, p);
2712           p += j;
2713 
2714           /* If what's on the stack is where we are now, pop it.  */
2715           if (!FAIL_STACK_EMPTY ()
2716 	      && fail_stack.stack[fail_stack.avail - 1] == p)
2717             fail_stack.avail--;
2718 
2719           continue;
2720 
2721 
2722         case on_failure_jump:
2723         case on_failure_keep_string_jump:
2724 	handle_on_failure_jump:
2725           EXTRACT_NUMBER_AND_INCR (j, p);
2726 
2727           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2728              end of the pattern.  We don't want to push such a point,
2729              since when we restore it above, entering the switch will
2730              increment `p' past the end of the pattern.  We don't need
2731              to push such a point since we obviously won't find any more
2732              fastmap entries beyond `pend'.  Such a pattern can match
2733              the null string, though.  */
2734           if (p + j < pend)
2735             {
2736               if (!PUSH_PATTERN_OP (p + j, fail_stack))
2737                 return -2;
2738             }
2739           else
2740             bufp->can_be_null = 1;
2741 
2742           if (succeed_n_p)
2743             {
2744               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
2745               succeed_n_p = false;
2746 	    }
2747 
2748           continue;
2749 
2750 
2751 	case succeed_n:
2752           /* Get to the number of times to succeed.  */
2753           p += 2;
2754 
2755           /* Increment p past the n for when k != 0.  */
2756           EXTRACT_NUMBER_AND_INCR (k, p);
2757           if (k == 0)
2758 	    {
2759               p -= 4;
2760   	      succeed_n_p = true;  /* Spaghetti code alert.  */
2761               goto handle_on_failure_jump;
2762             }
2763           continue;
2764 
2765 
2766 	case set_number_at:
2767           p += 4;
2768           continue;
2769 
2770 
2771 	case start_memory:
2772         case stop_memory:
2773 	  p += 2;
2774 	  continue;
2775 
2776 
2777 	default:
2778           abort (); /* We have listed all the cases.  */
2779         } /* switch *p++ */
2780 
2781       /* Getting here means we have found the possible starting
2782          characters for one path of the pattern -- and that the empty
2783          string does not match.  We need not follow this path further.
2784          Instead, look at the next alternative (remembered on the
2785          stack), or quit if no more.  The test at the top of the loop
2786          does these things.  */
2787       path_can_be_null = false;
2788       p = pend;
2789     } /* while p */
2790 
2791   /* Set `can_be_null' for the last path (also the first path, if the
2792      pattern is empty).  */
2793   bufp->can_be_null |= path_can_be_null;
2794   return 0;
2795 } /* re_compile_fastmap */
2796 
2797 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2798    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
2799    this memory for recording register information.  STARTS and ENDS
2800    must be allocated using the malloc library routine, and must each
2801    be at least NUM_REGS * sizeof (regoff_t) bytes long.
2802 
2803    If NUM_REGS == 0, then subsequent matches should allocate their own
2804    register data.
2805 
2806    Unless this function is called, the first search or match using
2807    PATTERN_BUFFER will allocate its own register data, without
2808    freeing the old data.  */
2809 
2810 void
2811 re_set_registers (bufp, regs, num_regs, starts, ends)
2812     struct re_pattern_buffer *bufp;
2813     struct re_registers *regs;
2814     unsigned num_regs;
2815     regoff_t *starts, *ends;
2816 {
2817   if (num_regs)
2818     {
2819       bufp->regs_allocated = REGS_REALLOCATE;
2820       regs->num_regs = num_regs;
2821       regs->start = starts;
2822       regs->end = ends;
2823     }
2824   else
2825     {
2826       bufp->regs_allocated = REGS_UNALLOCATED;
2827       regs->num_regs = 0;
2828       regs->start = regs->end = (regoff_t) 0;
2829     }
2830 }
2831 
2832 /* Searching routines.  */
2833 
2834 /* Like re_search_2, below, but only one string is specified, and
2835    doesn't let you say where to stop matching. */
2836 
2837 int
2838 re_search (bufp, string, size, startpos, range, regs)
2839      struct re_pattern_buffer *bufp;
2840      const char *string;
2841      int size, startpos, range;
2842      struct re_registers *regs;
2843 {
2844   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2845 		      regs, size);
2846 }
2847 
2848 
2849 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2850    virtual concatenation of STRING1 and STRING2, starting first at index
2851    STARTPOS, then at STARTPOS + 1, and so on.
2852 
2853    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2854 
2855    RANGE is how far to scan while trying to match.  RANGE = 0 means try
2856    only at STARTPOS; in general, the last start tried is STARTPOS +
2857    RANGE.
2858 
2859    In REGS, return the indices of the virtual concatenation of STRING1
2860    and STRING2 that matched the entire BUFP->buffer and its contained
2861    subexpressions.
2862 
2863    Do not consider matching one past the index STOP in the virtual
2864    concatenation of STRING1 and STRING2.
2865 
2866    We return either the position in the strings at which the match was
2867    found, -1 if no match, or -2 if error (such as failure
2868    stack overflow).  */
2869 
2870 int
2871 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2872      struct re_pattern_buffer *bufp;
2873      const char *string1, *string2;
2874      int size1, size2;
2875      int startpos;
2876      int range;
2877      struct re_registers *regs;
2878      int stop;
2879 {
2880   int val;
2881   register char *fastmap = bufp->fastmap;
2882   register char *translate = bufp->translate;
2883   int total_size = size1 + size2;
2884   int endpos = startpos + range;
2885 
2886   /* Check for out-of-range STARTPOS.  */
2887   if (startpos < 0 || startpos > total_size)
2888     return -1;
2889 
2890   /* Fix up RANGE if it might eventually take us outside
2891      the virtual concatenation of STRING1 and STRING2.  */
2892   if (endpos < -1)
2893     range = -1 - startpos;
2894   else if (endpos > total_size)
2895     range = total_size - startpos;
2896 
2897   /* If the search isn't to be a backwards one, don't waste time in a
2898      search for a pattern that must be anchored.  */
2899   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2900     {
2901       if (startpos > 0)
2902 	return -1;
2903       else
2904 	range = 1;
2905     }
2906 
2907   /* Update the fastmap now if not correct already.  */
2908   if (fastmap && !bufp->fastmap_accurate)
2909     if (re_compile_fastmap (bufp) == -2)
2910       return -2;
2911 
2912   /* Loop through the string, looking for a place to start matching.  */
2913   for (;;)
2914     {
2915       /* If a fastmap is supplied, skip quickly over characters that
2916          cannot be the start of a match.  If the pattern can match the
2917          null string, however, we don't need to skip characters; we want
2918          the first null string.  */
2919       if (fastmap && startpos < total_size && !bufp->can_be_null)
2920 	{
2921 	  if (range > 0)	/* Searching forwards.  */
2922 	    {
2923 	      register const char *d;
2924 	      register int lim = 0;
2925 	      int irange = range;
2926 
2927               if (startpos < size1 && startpos + range >= size1)
2928                 lim = range - (size1 - startpos);
2929 
2930 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2931 
2932               /* Written out as an if-else to avoid testing `translate'
2933                  inside the loop.  */
2934 	      if (translate)
2935                 while (range > lim
2936                        && !fastmap[(unsigned char)
2937 				   translate[(unsigned char) *d++]])
2938                   range--;
2939 	      else
2940                 while (range > lim && !fastmap[(unsigned char) *d++])
2941                   range--;
2942 
2943 	      startpos += irange - range;
2944 	    }
2945 	  else				/* Searching backwards.  */
2946 	    {
2947 	      register char c = (size1 == 0 || startpos >= size1
2948                                  ? string2[startpos - size1]
2949                                  : string1[startpos]);
2950 
2951 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
2952 		goto advance;
2953 	    }
2954 	}
2955 
2956       /* If can't match the null string, and that's all we have left, fail.  */
2957       if (range >= 0 && startpos == total_size && fastmap
2958           && !bufp->can_be_null)
2959 	return -1;
2960 
2961       val = re_match_2 (bufp, string1, size1, string2, size2,
2962 	                startpos, regs, stop);
2963       if (val >= 0)
2964 	return startpos;
2965 
2966       if (val == -2)
2967 	return -2;
2968 
2969     advance:
2970       if (!range)
2971         break;
2972       else if (range > 0)
2973         {
2974           range--;
2975           startpos++;
2976         }
2977       else
2978         {
2979           range++;
2980           startpos--;
2981         }
2982     }
2983   return -1;
2984 } /* re_search_2 */
2985 
2986 /* Declarations and macros for re_match_2.  */
2987 
2988 static int bcmp_translate ();
2989 static boolean alt_match_null_string_p (),
2990                common_op_match_null_string_p (),
2991                group_match_null_string_p ();
2992 
2993 /* Structure for per-register (a.k.a. per-group) information.
2994    This must not be longer than one word, because we push this value
2995    onto the failure stack.  Other register information, such as the
2996    starting and ending positions (which are addresses), and the list of
2997    inner groups (which is a bits list) are maintained in separate
2998    variables.
2999 
3000    We are making a (strictly speaking) nonportable assumption here: that
3001    the compiler will pack our bit fields into something that fits into
3002    the type of `word', i.e., is something that fits into one item on the
3003    failure stack.  */
3004 typedef union
3005 {
3006   fail_stack_elt_t word;
3007   struct
3008   {
3009       /* This field is one if this group can match the empty string,
3010          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
3011 #define MATCH_NULL_UNSET_VALUE 3
3012     unsigned match_null_string_p : 2;
3013     unsigned is_active : 1;
3014     unsigned matched_something : 1;
3015     unsigned ever_matched_something : 1;
3016   } bits;
3017 } register_info_type;
3018 
3019 #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
3020 #define IS_ACTIVE(R)  ((R).bits.is_active)
3021 #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
3022 #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
3023 
3024 
3025 /* Call this when have matched a real character; it sets `matched' flags
3026    for the subexpressions which we are currently inside.  Also records
3027    that those subexprs have matched.  */
3028 #define SET_REGS_MATCHED()						\
3029   do									\
3030     {									\
3031       unsigned r;							\
3032       for (r = lowest_active_reg; r <= highest_active_reg; r++)		\
3033         {								\
3034           MATCHED_SOMETHING (reg_info[r])				\
3035             = EVER_MATCHED_SOMETHING (reg_info[r])			\
3036             = 1;							\
3037         }								\
3038     }									\
3039   while (0)
3040 
3041 
3042 /* This converts PTR, a pointer into one of the search strings `string1'
3043    and `string2' into an offset from the beginning of that string.  */
3044 #define POINTER_TO_OFFSET(ptr)						\
3045   (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3046 
3047 /* Registers are set to a sentinel when they haven't yet matched.  */
3048 #define REG_UNSET_VALUE ((char *) -1)
3049 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3050 
3051 
3052 /* Macros for dealing with the split strings in re_match_2.  */
3053 
3054 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
3055 
3056 /* Call before fetching a character with *d.  This switches over to
3057    string2 if necessary.  */
3058 #define PREFETCH()							\
3059   while (d == dend)						    	\
3060     {									\
3061       /* End of string2 => fail.  */					\
3062       if (dend == end_match_2) 						\
3063         goto fail;							\
3064       /* End of string1 => advance to string2.  */ 			\
3065       d = string2;						        \
3066       dend = end_match_2;						\
3067     }
3068 
3069 
3070 /* Test if at very beginning or at very end of the virtual concatenation
3071    of `string1' and `string2'.  If only one string, it's `string2'.  */
3072 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3073 #define AT_STRINGS_END(d) ((d) == end2)
3074 
3075 
3076 /* Test if D points to a character which is word-constituent.  We have
3077    two special cases to check for: if past the end of string1, look at
3078    the first character in string2; and if before the beginning of
3079    string2, look at the last character in string1.  */
3080 #define WORDCHAR_P(d)							\
3081   (SYNTAX ((d) == end1 ? *string2					\
3082            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
3083    == Sword)
3084 
3085 /* Test if the character before D and the one at D differ with respect
3086    to being word-constituent.  */
3087 #define AT_WORD_BOUNDARY(d)						\
3088   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
3089    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3090 
3091 
3092 /* Free everything we malloc.  */
3093 #ifdef REGEX_MALLOC
3094 #define FREE_VAR(var) if (var) free (var); var = NULL
3095 #define FREE_VARIABLES()						\
3096   do {									\
3097     FREE_VAR (fail_stack.stack);					\
3098     FREE_VAR (regstart);						\
3099     FREE_VAR (regend);							\
3100     FREE_VAR (old_regstart);						\
3101     FREE_VAR (old_regend);						\
3102     FREE_VAR (best_regstart);						\
3103     FREE_VAR (best_regend);						\
3104     FREE_VAR (reg_info);						\
3105     FREE_VAR (reg_dummy);						\
3106     FREE_VAR (reg_info_dummy);						\
3107   } while (0)
3108 #else /* not REGEX_MALLOC */
3109 /* Some MIPS systems (at least) want this to free alloca'd storage.  */
3110 #define FREE_VARIABLES() alloca (0)
3111 #endif /* not REGEX_MALLOC */
3112 
3113 
3114 /* These values must meet several constraints.  They must not be valid
3115    register values; since we have a limit of 255 registers (because
3116    we use only one byte in the pattern for the register number), we can
3117    use numbers larger than 255.  They must differ by 1, because of
3118    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
3119    be larger than the value for the highest register, so we do not try
3120    to actually save any registers when none are active.  */
3121 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3122 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3123 
3124 /* Matching routines.  */
3125 
3126 #ifndef emacs   /* Emacs never uses this.  */
3127 /* re_match is like re_match_2 except it takes only a single string.  */
3128 
3129 int
3130 re_match (bufp, string, size, pos, regs)
3131      struct re_pattern_buffer *bufp;
3132      const char *string;
3133      int size, pos;
3134      struct re_registers *regs;
3135  {
3136   return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3137 }
3138 #endif /* not emacs */
3139 
3140 
3141 /* re_match_2 matches the compiled pattern in BUFP against the
3142    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3143    and SIZE2, respectively).  We start matching at POS, and stop
3144    matching at STOP.
3145 
3146    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3147    store offsets for the substring each group matched in REGS.  See the
3148    documentation for exactly how many groups we fill.
3149 
3150    We return -1 if no match, -2 if an internal error (such as the
3151    failure stack overflowing).  Otherwise, we return the length of the
3152    matched substring.  */
3153 
3154 int
3155 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3156      struct re_pattern_buffer *bufp;
3157      const char *string1, *string2;
3158      int size1, size2;
3159      int pos;
3160      struct re_registers *regs;
3161      int stop;
3162 {
3163   /* General temporaries.  */
3164   int mcnt;
3165   unsigned char *p1;
3166 
3167   /* Just past the end of the corresponding string.  */
3168   const char *end1, *end2;
3169 
3170   /* Pointers into string1 and string2, just past the last characters in
3171      each to consider matching.  */
3172   const char *end_match_1, *end_match_2;
3173 
3174   /* Where we are in the data, and the end of the current string.  */
3175   const char *d, *dend;
3176 
3177   /* Where we are in the pattern, and the end of the pattern.  */
3178   unsigned char *p = bufp->buffer;
3179   register unsigned char *pend = p + bufp->used;
3180 
3181   /* We use this to map every character in the string.  */
3182   char *translate = bufp->translate;
3183 
3184   /* Failure point stack.  Each place that can handle a failure further
3185      down the line pushes a failure point on this stack.  It consists of
3186      restart, regend, and reg_info for all registers corresponding to
3187      the subexpressions we're currently inside, plus the number of such
3188      registers, and, finally, two char *'s.  The first char * is where
3189      to resume scanning the pattern; the second one is where to resume
3190      scanning the strings.  If the latter is zero, the failure point is
3191      a ``dummy''; if a failure happens and the failure point is a dummy,
3192      it gets discarded and the next next one is tried.  */
3193   fail_stack_type fail_stack;
3194 #ifdef DEBUG
3195   static unsigned failure_id = 0;
3196   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3197 #endif
3198 
3199   /* We fill all the registers internally, independent of what we
3200      return, for use in backreferences.  The number here includes
3201      an element for register zero.  */
3202   unsigned num_regs = bufp->re_nsub + 1;
3203 
3204   /* The currently active registers.  */
3205   unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3206   unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3207 
3208   /* Information on the contents of registers. These are pointers into
3209      the input strings; they record just what was matched (on this
3210      attempt) by a subexpression part of the pattern, that is, the
3211      regnum-th regstart pointer points to where in the pattern we began
3212      matching and the regnum-th regend points to right after where we
3213      stopped matching the regnum-th subexpression.  (The zeroth register
3214      keeps track of what the whole pattern matches.)  */
3215   const char **regstart, **regend;
3216 
3217   /* If a group that's operated upon by a repetition operator fails to
3218      match anything, then the register for its start will need to be
3219      restored because it will have been set to wherever in the string we
3220      are when we last see its open-group operator.  Similarly for a
3221      register's end.  */
3222   const char **old_regstart, **old_regend;
3223 
3224   /* The is_active field of reg_info helps us keep track of which (possibly
3225      nested) subexpressions we are currently in. The matched_something
3226      field of reg_info[reg_num] helps us tell whether or not we have
3227      matched any of the pattern so far this time through the reg_num-th
3228      subexpression.  These two fields get reset each time through any
3229      loop their register is in.  */
3230   register_info_type *reg_info;
3231 
3232   /* The following record the register info as found in the above
3233      variables when we find a match better than any we've seen before.
3234      This happens as we backtrack through the failure points, which in
3235      turn happens only if we have not yet matched the entire string. */
3236   unsigned best_regs_set = false;
3237   const char **best_regstart, **best_regend;
3238 
3239   /* Logically, this is `best_regend[0]'.  But we don't want to have to
3240      allocate space for that if we're not allocating space for anything
3241      else (see below).  Also, we never need info about register 0 for
3242      any of the other register vectors, and it seems rather a kludge to
3243      treat `best_regend' differently than the rest.  So we keep track of
3244      the end of the best match so far in a separate variable.  We
3245      initialize this to NULL so that when we backtrack the first time
3246      and need to test it, it's not garbage.  */
3247   const char *match_end = NULL;
3248 
3249   /* Used when we pop values we don't care about.  */
3250   const char **reg_dummy;
3251   register_info_type *reg_info_dummy;
3252 
3253 #ifdef DEBUG
3254   /* Counts the total number of registers pushed.  */
3255   unsigned num_regs_pushed = 0;
3256 #endif
3257 
3258   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3259 
3260   INIT_FAIL_STACK ();
3261 
3262   /* Do not bother to initialize all the register variables if there are
3263      no groups in the pattern, as it takes a fair amount of time.  If
3264      there are groups, we include space for register 0 (the whole
3265      pattern), even though we never use it, since it simplifies the
3266      array indexing.  We should fix this.  */
3267   if (bufp->re_nsub)
3268     {
3269       regstart = REGEX_TALLOC (num_regs, const char *);
3270       regend = REGEX_TALLOC (num_regs, const char *);
3271       old_regstart = REGEX_TALLOC (num_regs, const char *);
3272       old_regend = REGEX_TALLOC (num_regs, const char *);
3273       best_regstart = REGEX_TALLOC (num_regs, const char *);
3274       best_regend = REGEX_TALLOC (num_regs, const char *);
3275       reg_info = REGEX_TALLOC (num_regs, register_info_type);
3276       reg_dummy = REGEX_TALLOC (num_regs, const char *);
3277       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3278 
3279       if (!(regstart && regend && old_regstart && old_regend && reg_info
3280             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3281         {
3282           FREE_VARIABLES ();
3283           return -2;
3284         }
3285     }
3286 #ifdef REGEX_MALLOC
3287   else
3288     {
3289       /* We must initialize all our variables to NULL, so that
3290          `FREE_VARIABLES' doesn't try to free them.  */
3291       regstart = regend = old_regstart = old_regend = best_regstart
3292         = best_regend = reg_dummy = NULL;
3293       reg_info = reg_info_dummy = (register_info_type *) NULL;
3294     }
3295 #endif /* REGEX_MALLOC */
3296 
3297   /* The starting position is bogus.  */
3298   if (pos < 0 || pos > size1 + size2)
3299     {
3300       FREE_VARIABLES ();
3301       return -1;
3302     }
3303 
3304   /* Initialize subexpression text positions to -1 to mark ones that no
3305      start_memory/stop_memory has been seen for. Also initialize the
3306      register information struct.  */
3307   for (mcnt = 1; mcnt < num_regs; mcnt++)
3308     {
3309       regstart[mcnt] = regend[mcnt]
3310         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3311 
3312       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3313       IS_ACTIVE (reg_info[mcnt]) = 0;
3314       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3315       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3316     }
3317 
3318   /* We move `string1' into `string2' if the latter's empty -- but not if
3319      `string1' is null.  */
3320   if (size2 == 0 && string1 != NULL)
3321     {
3322       string2 = string1;
3323       size2 = size1;
3324       string1 = 0;
3325       size1 = 0;
3326     }
3327   end1 = string1 + size1;
3328   end2 = string2 + size2;
3329 
3330   /* Compute where to stop matching, within the two strings.  */
3331   if (stop <= size1)
3332     {
3333       end_match_1 = string1 + stop;
3334       end_match_2 = string2;
3335     }
3336   else
3337     {
3338       end_match_1 = end1;
3339       end_match_2 = string2 + stop - size1;
3340     }
3341 
3342   /* `p' scans through the pattern as `d' scans through the data.
3343      `dend' is the end of the input string that `d' points within.  `d'
3344      is advanced into the following input string whenever necessary, but
3345      this happens before fetching; therefore, at the beginning of the
3346      loop, `d' can be pointing at the end of a string, but it cannot
3347      equal `string2'.  */
3348   if (size1 > 0 && pos <= size1)
3349     {
3350       d = string1 + pos;
3351       dend = end_match_1;
3352     }
3353   else
3354     {
3355       d = string2 + pos - size1;
3356       dend = end_match_2;
3357     }
3358 
3359   DEBUG_PRINT1 ("The compiled pattern is: ");
3360   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3361   DEBUG_PRINT1 ("The string to match is: `");
3362   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3363   DEBUG_PRINT1 ("'\n");
3364 
3365   /* This loops over pattern commands.  It exits by returning from the
3366      function if the match is complete, or it drops through if the match
3367      fails at this starting point in the input data.  */
3368   for (;;)
3369     {
3370       DEBUG_PRINT2 ("\n0x%x: ", p);
3371 
3372       if (p == pend)
3373 	{ /* End of pattern means we might have succeeded.  */
3374           DEBUG_PRINT1 ("end of pattern ... ");
3375 
3376 	  /* If we haven't matched the entire string, and we want the
3377              longest match, try backtracking.  */
3378           if (d != end_match_2)
3379 	    {
3380               DEBUG_PRINT1 ("backtracking.\n");
3381 
3382               if (!FAIL_STACK_EMPTY ())
3383                 { /* More failure points to try.  */
3384                   boolean same_str_p = (FIRST_STRING_P (match_end)
3385 	        	                == MATCHING_IN_FIRST_STRING);
3386 
3387                   /* If exceeds best match so far, save it.  */
3388                   if (!best_regs_set
3389                       || (same_str_p && d > match_end)
3390                       || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3391                     {
3392                       best_regs_set = true;
3393                       match_end = d;
3394 
3395                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3396 
3397                       for (mcnt = 1; mcnt < num_regs; mcnt++)
3398                         {
3399                           best_regstart[mcnt] = regstart[mcnt];
3400                           best_regend[mcnt] = regend[mcnt];
3401                         }
3402                     }
3403                   goto fail;
3404                 }
3405 
3406               /* If no failure points, don't restore garbage.  */
3407               else if (best_regs_set)
3408                 {
3409   	        restore_best_regs:
3410                   /* Restore best match.  It may happen that `dend ==
3411                      end_match_1' while the restored d is in string2.
3412                      For example, the pattern `x.*y.*z' against the
3413                      strings `x-' and `y-z-', if the two strings are
3414                      not consecutive in memory.  */
3415                   DEBUG_PRINT1 ("Restoring best registers.\n");
3416 
3417                   d = match_end;
3418                   dend = ((d >= string1 && d <= end1)
3419 		           ? end_match_1 : end_match_2);
3420 
3421 		  for (mcnt = 1; mcnt < num_regs; mcnt++)
3422 		    {
3423 		      regstart[mcnt] = best_regstart[mcnt];
3424 		      regend[mcnt] = best_regend[mcnt];
3425 		    }
3426                 }
3427             } /* d != end_match_2 */
3428 
3429           DEBUG_PRINT1 ("Accepting match.\n");
3430 
3431           /* If caller wants register contents data back, do it.  */
3432           if (regs && !bufp->no_sub)
3433 	    {
3434               /* Have the register data arrays been allocated?  */
3435               if (bufp->regs_allocated == REGS_UNALLOCATED)
3436                 { /* No.  So allocate them with malloc.  We need one
3437                      extra element beyond `num_regs' for the `-1' marker
3438                      GNU code uses.  */
3439                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3440                   regs->start = TALLOC (regs->num_regs, regoff_t);
3441                   regs->end = TALLOC (regs->num_regs, regoff_t);
3442                   if (regs->start == NULL || regs->end == NULL)
3443                     return -2;
3444                   bufp->regs_allocated = REGS_REALLOCATE;
3445                 }
3446               else if (bufp->regs_allocated == REGS_REALLOCATE)
3447                 { /* Yes.  If we need more elements than were already
3448                      allocated, reallocate them.  If we need fewer, just
3449                      leave it alone.  */
3450                   if (regs->num_regs < num_regs + 1)
3451                     {
3452                       regs->num_regs = num_regs + 1;
3453                       RETALLOC (regs->start, regs->num_regs, regoff_t);
3454                       RETALLOC (regs->end, regs->num_regs, regoff_t);
3455                       if (regs->start == NULL || regs->end == NULL)
3456                         return -2;
3457                     }
3458                 }
3459               else
3460                 assert (bufp->regs_allocated == REGS_FIXED);
3461 
3462               /* Convert the pointer data in `regstart' and `regend' to
3463                  indices.  Register zero has to be set differently,
3464                  since we haven't kept track of any info for it.  */
3465               if (regs->num_regs > 0)
3466                 {
3467                   regs->start[0] = pos;
3468                   regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3469 			          : d - string2 + size1);
3470                 }
3471 
3472               /* Go through the first `min (num_regs, regs->num_regs)'
3473                  registers, since that is all we initialized.  */
3474 	      for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3475 		{
3476                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3477                     regs->start[mcnt] = regs->end[mcnt] = -1;
3478                   else
3479                     {
3480 		      regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3481                       regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3482                     }
3483 		}
3484 
3485               /* If the regs structure we return has more elements than
3486                  were in the pattern, set the extra elements to -1.  If
3487                  we (re)allocated the registers, this is the case,
3488                  because we always allocate enough to have at least one
3489                  -1 at the end.  */
3490               for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3491                 regs->start[mcnt] = regs->end[mcnt] = -1;
3492 	    } /* regs && !bufp->no_sub */
3493 
3494           FREE_VARIABLES ();
3495           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3496                         nfailure_points_pushed, nfailure_points_popped,
3497                         nfailure_points_pushed - nfailure_points_popped);
3498           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3499 
3500           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3501 			    ? string1
3502 			    : string2 - size1);
3503 
3504           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3505 
3506           return mcnt;
3507         }
3508 
3509       /* Otherwise match next pattern command.  */
3510 #ifdef SWITCH_ENUM_BUG
3511       switch ((int) ((re_opcode_t) *p++))
3512 #else
3513       switch ((re_opcode_t) *p++)
3514 #endif
3515 	{
3516         /* Ignore these.  Used to ignore the n of succeed_n's which
3517            currently have n == 0.  */
3518         case no_op:
3519           DEBUG_PRINT1 ("EXECUTING no_op.\n");
3520           break;
3521 
3522 
3523         /* Match the next n pattern characters exactly.  The following
3524            byte in the pattern defines n, and the n bytes after that
3525            are the characters to match.  */
3526 	case exactn:
3527 	  mcnt = *p++;
3528           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3529 
3530           /* This is written out as an if-else so we don't waste time
3531              testing `translate' inside the loop.  */
3532           if (translate)
3533 	    {
3534 	      do
3535 		{
3536 		  PREFETCH ();
3537 		  if (translate[(unsigned char) *d++] != (char) *p++)
3538                     goto fail;
3539 		}
3540 	      while (--mcnt);
3541 	    }
3542 	  else
3543 	    {
3544 	      do
3545 		{
3546 		  PREFETCH ();
3547 		  if (*d++ != (char) *p++) goto fail;
3548 		}
3549 	      while (--mcnt);
3550 	    }
3551 	  SET_REGS_MATCHED ();
3552           break;
3553 
3554 
3555         /* Match any character except possibly a newline or a null.  */
3556 	case anychar:
3557           DEBUG_PRINT1 ("EXECUTING anychar.\n");
3558 
3559           PREFETCH ();
3560 
3561           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3562               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3563 	    goto fail;
3564 
3565           SET_REGS_MATCHED ();
3566           DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
3567           d++;
3568 	  break;
3569 
3570 
3571 	case charset:
3572 	case charset_not:
3573 	  {
3574 	    register unsigned char c;
3575 	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
3576 
3577             DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3578 
3579 	    PREFETCH ();
3580 	    c = TRANSLATE (*d); /* The character to match.  */
3581 
3582             /* Cast to `unsigned' instead of `unsigned char' in case the
3583                bit list is a full 32 bytes long.  */
3584 	    if (c < (unsigned) (*p * BYTEWIDTH)
3585 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3586 	      not = !not;
3587 
3588 	    p += 1 + *p;
3589 
3590 	    if (!not) goto fail;
3591 
3592 	    SET_REGS_MATCHED ();
3593             d++;
3594 	    break;
3595 	  }
3596 
3597 
3598         /* The beginning of a group is represented by start_memory.
3599            The arguments are the register number in the next byte, and the
3600            number of groups inner to this one in the next.  The text
3601            matched within the group is recorded (in the internal
3602            registers data structure) under the register number.  */
3603         case start_memory:
3604 	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3605 
3606           /* Find out if this group can match the empty string.  */
3607 	  p1 = p;		/* To send to group_match_null_string_p.  */
3608 
3609           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3610             REG_MATCH_NULL_STRING_P (reg_info[*p])
3611               = group_match_null_string_p (&p1, pend, reg_info);
3612 
3613           /* Save the position in the string where we were the last time
3614              we were at this open-group operator in case the group is
3615              operated upon by a repetition operator, e.g., with `(a*)*b'
3616              against `ab'; then we want to ignore where we are now in
3617              the string in case this attempt to match fails.  */
3618           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3619                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3620                              : regstart[*p];
3621 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
3622 			 POINTER_TO_OFFSET (old_regstart[*p]));
3623 
3624           regstart[*p] = d;
3625 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3626 
3627           IS_ACTIVE (reg_info[*p]) = 1;
3628           MATCHED_SOMETHING (reg_info[*p]) = 0;
3629 
3630           /* This is the new highest active register.  */
3631           highest_active_reg = *p;
3632 
3633           /* If nothing was active before, this is the new lowest active
3634              register.  */
3635           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3636             lowest_active_reg = *p;
3637 
3638           /* Move past the register number and inner group count.  */
3639           p += 2;
3640           break;
3641 
3642 
3643         /* The stop_memory opcode represents the end of a group.  Its
3644            arguments are the same as start_memory's: the register
3645            number, and the number of inner groups.  */
3646 	case stop_memory:
3647 	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3648 
3649           /* We need to save the string position the last time we were at
3650              this close-group operator in case the group is operated
3651              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3652              against `aba'; then we want to ignore where we are now in
3653              the string in case this attempt to match fails.  */
3654           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3655                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
3656 			   : regend[*p];
3657 	  DEBUG_PRINT2 ("      old_regend: %d\n",
3658 			 POINTER_TO_OFFSET (old_regend[*p]));
3659 
3660           regend[*p] = d;
3661 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3662 
3663           /* This register isn't active anymore.  */
3664           IS_ACTIVE (reg_info[*p]) = 0;
3665 
3666           /* If this was the only register active, nothing is active
3667              anymore.  */
3668           if (lowest_active_reg == highest_active_reg)
3669             {
3670               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3671               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3672             }
3673           else
3674             { /* We must scan for the new highest active register, since
3675                  it isn't necessarily one less than now: consider
3676                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
3677                  new highest active register is 1.  */
3678               unsigned char r = *p - 1;
3679               while (r > 0 && !IS_ACTIVE (reg_info[r]))
3680                 r--;
3681 
3682               /* If we end up at register zero, that means that we saved
3683                  the registers as the result of an `on_failure_jump', not
3684                  a `start_memory', and we jumped to past the innermost
3685                  `stop_memory'.  For example, in ((.)*) we save
3686                  registers 1 and 2 as a result of the *, but when we pop
3687                  back to the second ), we are at the stop_memory 1.
3688                  Thus, nothing is active.  */
3689 	      if (r == 0)
3690                 {
3691                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3692                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3693                 }
3694               else
3695                 highest_active_reg = r;
3696             }
3697 
3698           /* If just failed to match something this time around with a
3699              group that's operated on by a repetition operator, try to
3700              force exit from the ``loop'', and restore the register
3701              information for this group that we had before trying this
3702              last match.  */
3703           if ((!MATCHED_SOMETHING (reg_info[*p])
3704                || (re_opcode_t) p[-3] == start_memory)
3705 	      && (p + 2) < pend)
3706             {
3707               boolean is_a_jump_n = false;
3708 
3709               p1 = p + 2;
3710               mcnt = 0;
3711               switch ((re_opcode_t) *p1++)
3712                 {
3713                   case jump_n:
3714 		    is_a_jump_n = true;
3715                   case pop_failure_jump:
3716 		  case maybe_pop_jump:
3717 		  case jump:
3718 		  case dummy_failure_jump:
3719                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3720 		    if (is_a_jump_n)
3721 		      p1 += 2;
3722                     break;
3723 
3724                   default:
3725                     /* do nothing */ ;
3726                 }
3727 	      p1 += mcnt;
3728 
3729               /* If the next operation is a jump backwards in the pattern
3730 	         to an on_failure_jump right before the start_memory
3731                  corresponding to this stop_memory, exit from the loop
3732                  by forcing a failure after pushing on the stack the
3733                  on_failure_jump's jump in the pattern, and d.  */
3734               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3735                   && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3736 		{
3737                   /* If this group ever matched anything, then restore
3738                      what its registers were before trying this last
3739                      failed match, e.g., with `(a*)*b' against `ab' for
3740                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
3741                      against `aba' for regend[3].
3742 
3743                      Also restore the registers for inner groups for,
3744                      e.g., `((a*)(b*))*' against `aba' (register 3 would
3745                      otherwise get trashed).  */
3746 
3747                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3748 		    {
3749 		      unsigned r;
3750 
3751                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3752 
3753 		      /* Restore this and inner groups' (if any) registers.  */
3754                       for (r = *p; r < *p + *(p + 1); r++)
3755                         {
3756                           regstart[r] = old_regstart[r];
3757 
3758                           /* xx why this test?  */
3759                           if ((int) old_regend[r] >= (int) regstart[r])
3760                             regend[r] = old_regend[r];
3761                         }
3762                     }
3763 		  p1++;
3764                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3765                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3766 
3767                   goto fail;
3768                 }
3769             }
3770 
3771           /* Move past the register number and the inner group count.  */
3772           p += 2;
3773           break;
3774 
3775 
3776 	/* \<digit> has been turned into a `duplicate' command which is
3777            followed by the numeric value of <digit> as the register number.  */
3778         case duplicate:
3779 	  {
3780 	    register const char *d2, *dend2;
3781 	    int regno = *p++;   /* Get which register to match against.  */
3782 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3783 
3784 	    /* Can't back reference a group which we've never matched.  */
3785             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3786               goto fail;
3787 
3788             /* Where in input to try to start matching.  */
3789             d2 = regstart[regno];
3790 
3791             /* Where to stop matching; if both the place to start and
3792                the place to stop matching are in the same string, then
3793                set to the place to stop, otherwise, for now have to use
3794                the end of the first string.  */
3795 
3796             dend2 = ((FIRST_STRING_P (regstart[regno])
3797 		      == FIRST_STRING_P (regend[regno]))
3798 		     ? regend[regno] : end_match_1);
3799 	    for (;;)
3800 	      {
3801 		/* If necessary, advance to next segment in register
3802                    contents.  */
3803 		while (d2 == dend2)
3804 		  {
3805 		    if (dend2 == end_match_2) break;
3806 		    if (dend2 == regend[regno]) break;
3807 
3808                     /* End of string1 => advance to string2. */
3809                     d2 = string2;
3810                     dend2 = regend[regno];
3811 		  }
3812 		/* At end of register contents => success */
3813 		if (d2 == dend2) break;
3814 
3815 		/* If necessary, advance to next segment in data.  */
3816 		PREFETCH ();
3817 
3818 		/* How many characters left in this segment to match.  */
3819 		mcnt = dend - d;
3820 
3821 		/* Want how many consecutive characters we can match in
3822                    one shot, so, if necessary, adjust the count.  */
3823                 if (mcnt > dend2 - d2)
3824 		  mcnt = dend2 - d2;
3825 
3826 		/* Compare that many; failure if mismatch, else move
3827                    past them.  */
3828 		if (translate
3829                     ? bcmp_translate (d, d2, mcnt, translate)
3830                     : bcmp (d, d2, mcnt))
3831 		  goto fail;
3832 		d += mcnt, d2 += mcnt;
3833 	      }
3834 	  }
3835 	  break;
3836 
3837 
3838         /* begline matches the empty string at the beginning of the string
3839            (unless `not_bol' is set in `bufp'), and, if
3840            `newline_anchor' is set, after newlines.  */
3841 	case begline:
3842           DEBUG_PRINT1 ("EXECUTING begline.\n");
3843 
3844           if (AT_STRINGS_BEG (d))
3845             {
3846               if (!bufp->not_bol) break;
3847             }
3848           else if (d[-1] == '\n' && bufp->newline_anchor)
3849             {
3850               break;
3851             }
3852           /* In all other cases, we fail.  */
3853           goto fail;
3854 
3855 
3856         /* endline is the dual of begline.  */
3857 	case endline:
3858           DEBUG_PRINT1 ("EXECUTING endline.\n");
3859 
3860           if (AT_STRINGS_END (d))
3861             {
3862               if (!bufp->not_eol) break;
3863             }
3864 
3865           /* We have to ``prefetch'' the next character.  */
3866           else if ((d == end1 ? *string2 : *d) == '\n'
3867                    && bufp->newline_anchor)
3868             {
3869               break;
3870             }
3871           goto fail;
3872 
3873 
3874 	/* Match at the very beginning of the data.  */
3875         case begbuf:
3876           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3877           if (AT_STRINGS_BEG (d))
3878             break;
3879           goto fail;
3880 
3881 
3882 	/* Match at the very end of the data.  */
3883         case endbuf:
3884           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3885 	  if (AT_STRINGS_END (d))
3886 	    break;
3887           goto fail;
3888 
3889 
3890         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
3891            pushes NULL as the value for the string on the stack.  Then
3892            `pop_failure_point' will keep the current value for the
3893            string, instead of restoring it.  To see why, consider
3894            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
3895            then the . fails against the \n.  But the next thing we want
3896            to do is match the \n against the \n; if we restored the
3897            string value, we would be back at the foo.
3898 
3899            Because this is used only in specific cases, we don't need to
3900            check all the things that `on_failure_jump' does, to make
3901            sure the right things get saved on the stack.  Hence we don't
3902            share its code.  The only reason to push anything on the
3903            stack at all is that otherwise we would have to change
3904            `anychar's code to do something besides goto fail in this
3905            case; that seems worse than this.  */
3906         case on_failure_keep_string_jump:
3907           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3908 
3909           EXTRACT_NUMBER_AND_INCR (mcnt, p);
3910           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3911 
3912           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3913           break;
3914 
3915 
3916 	/* Uses of on_failure_jump:
3917 
3918            Each alternative starts with an on_failure_jump that points
3919            to the beginning of the next alternative.  Each alternative
3920            except the last ends with a jump that in effect jumps past
3921            the rest of the alternatives.  (They really jump to the
3922            ending jump of the following alternative, because tensioning
3923            these jumps is a hassle.)
3924 
3925            Repeats start with an on_failure_jump that points past both
3926            the repetition text and either the following jump or
3927            pop_failure_jump back to this on_failure_jump.  */
3928 	case on_failure_jump:
3929         on_failure:
3930           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3931 
3932           EXTRACT_NUMBER_AND_INCR (mcnt, p);
3933           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3934 
3935           /* If this on_failure_jump comes right before a group (i.e.,
3936              the original * applied to a group), save the information
3937              for that group and all inner ones, so that if we fail back
3938              to this point, the group's information will be correct.
3939              For example, in \(a*\)*\1, we need the preceding group,
3940              and in \(\(a*\)b*\)\2, we need the inner group.  */
3941 
3942           /* We can't use `p' to check ahead because we push
3943              a failure point to `p + mcnt' after we do this.  */
3944           p1 = p;
3945 
3946           /* We need to skip no_op's before we look for the
3947              start_memory in case this on_failure_jump is happening as
3948              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3949              against aba.  */
3950           while (p1 < pend && (re_opcode_t) *p1 == no_op)
3951             p1++;
3952 
3953           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3954             {
3955               /* We have a new highest active register now.  This will
3956                  get reset at the start_memory we are about to get to,
3957                  but we will have saved all the registers relevant to
3958                  this repetition op, as described above.  */
3959               highest_active_reg = *(p1 + 1) + *(p1 + 2);
3960               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3961                 lowest_active_reg = *(p1 + 1);
3962             }
3963 
3964           DEBUG_PRINT1 (":\n");
3965           PUSH_FAILURE_POINT (p + mcnt, d, -2);
3966           break;
3967 
3968 
3969         /* A smart repeat ends with `maybe_pop_jump'.
3970 	   We change it to either `pop_failure_jump' or `jump'.  */
3971         case maybe_pop_jump:
3972           EXTRACT_NUMBER_AND_INCR (mcnt, p);
3973           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3974           {
3975 	    register unsigned char *p2 = p;
3976 
3977             /* Compare the beginning of the repeat with what in the
3978                pattern follows its end. If we can establish that there
3979                is nothing that they would both match, i.e., that we
3980                would have to backtrack because of (as in, e.g., `a*a')
3981                then we can change to pop_failure_jump, because we'll
3982                never have to backtrack.
3983 
3984                This is not true in the case of alternatives: in
3985                `(a|ab)*' we do need to backtrack to the `ab' alternative
3986                (e.g., if the string was `ab').  But instead of trying to
3987                detect that here, the alternative has put on a dummy
3988                failure point which is what we will end up popping.  */
3989 
3990 	    /* Skip over open/close-group commands.  */
3991 	    while (p2 + 2 < pend
3992 		   && ((re_opcode_t) *p2 == stop_memory
3993 		       || (re_opcode_t) *p2 == start_memory))
3994 	      p2 += 3;			/* Skip over args, too.  */
3995 
3996             /* If we're at the end of the pattern, we can change.  */
3997             if (p2 == pend)
3998 	      {
3999 		/* Consider what happens when matching ":\(.*\)"
4000 		   against ":/".  I don't really understand this code
4001 		   yet.  */
4002   	        p[-3] = (unsigned char) pop_failure_jump;
4003                 DEBUG_PRINT1
4004                   ("  End of pattern: change to `pop_failure_jump'.\n");
4005               }
4006 
4007             else if ((re_opcode_t) *p2 == exactn
4008 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4009 	      {
4010 		register unsigned char c
4011                   = *p2 == (unsigned char) endline ? '\n' : p2[2];
4012 		p1 = p + mcnt;
4013 
4014                 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4015                    to the `maybe_finalize_jump' of this case.  Examine what
4016                    follows.  */
4017                 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4018                   {
4019   		    p[-3] = (unsigned char) pop_failure_jump;
4020                     DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
4021                                   c, p1[5]);
4022                   }
4023 
4024 		else if ((re_opcode_t) p1[3] == charset
4025 			 || (re_opcode_t) p1[3] == charset_not)
4026 		  {
4027 		    int not = (re_opcode_t) p1[3] == charset_not;
4028 
4029 		    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4030 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4031 		      not = !not;
4032 
4033                     /* `not' is equal to 1 if c would match, which means
4034                         that we can't change to pop_failure_jump.  */
4035 		    if (!not)
4036                       {
4037   		        p[-3] = (unsigned char) pop_failure_jump;
4038                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
4039                       }
4040 		  }
4041 	      }
4042 	  }
4043 	  p -= 2;		/* Point at relative address again.  */
4044 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
4045 	    {
4046 	      p[-1] = (unsigned char) jump;
4047               DEBUG_PRINT1 ("  Match => jump.\n");
4048 	      goto unconditional_jump;
4049 	    }
4050         /* Note fall through.  */
4051 
4052 
4053 	/* The end of a simple repeat has a pop_failure_jump back to
4054            its matching on_failure_jump, where the latter will push a
4055            failure point.  The pop_failure_jump takes off failure
4056            points put on by this pop_failure_jump's matching
4057            on_failure_jump; we got through the pattern to here from the
4058            matching on_failure_jump, so didn't fail.  */
4059         case pop_failure_jump:
4060           {
4061             /* We need to pass separate storage for the lowest and
4062                highest registers, even though we don't care about the
4063                actual values.  Otherwise, we will restore only one
4064                register from the stack, since lowest will == highest in
4065                `pop_failure_point'.  */
4066             unsigned dummy_low_reg, dummy_high_reg;
4067             unsigned char *pdummy;
4068             const char *sdummy;
4069 
4070             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4071             POP_FAILURE_POINT (sdummy, pdummy,
4072                                dummy_low_reg, dummy_high_reg,
4073                                reg_dummy, reg_dummy, reg_info_dummy);
4074           }
4075           /* Note fall through.  */
4076 
4077 
4078         /* Unconditionally jump (without popping any failure points).  */
4079         case jump:
4080 	unconditional_jump:
4081 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
4082           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4083 	  p += mcnt;				/* Do the jump.  */
4084           DEBUG_PRINT2 ("(to 0x%x).\n", p);
4085 	  break;
4086 
4087 
4088         /* We need this opcode so we can detect where alternatives end
4089            in `group_match_null_string_p' et al.  */
4090         case jump_past_alt:
4091           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4092           goto unconditional_jump;
4093 
4094 
4095         /* Normally, the on_failure_jump pushes a failure point, which
4096            then gets popped at pop_failure_jump.  We will end up at
4097            pop_failure_jump, also, and with a pattern of, say, `a+', we
4098            are skipping over the on_failure_jump, so we have to push
4099            something meaningless for pop_failure_jump to pop.  */
4100         case dummy_failure_jump:
4101           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4102           /* It doesn't matter what we push for the string here.  What
4103              the code at `fail' tests is the value for the pattern.  */
4104           PUSH_FAILURE_POINT (0, 0, -2);
4105           goto unconditional_jump;
4106 
4107 
4108         /* At the end of an alternative, we need to push a dummy failure
4109            point in case we are followed by a `pop_failure_jump', because
4110            we don't want the failure point for the alternative to be
4111            popped.  For example, matching `(a|ab)*' against `aab'
4112            requires that we match the `ab' alternative.  */
4113         case push_dummy_failure:
4114           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4115           /* See comments just above at `dummy_failure_jump' about the
4116              two zeroes.  */
4117           PUSH_FAILURE_POINT (0, 0, -2);
4118           break;
4119 
4120         /* Have to succeed matching what follows at least n times.
4121            After that, handle like `on_failure_jump'.  */
4122         case succeed_n:
4123           EXTRACT_NUMBER (mcnt, p + 2);
4124           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4125 
4126           assert (mcnt >= 0);
4127           /* Originally, this is how many times we HAVE to succeed.  */
4128           if (mcnt > 0)
4129             {
4130                mcnt--;
4131 	       p += 2;
4132                STORE_NUMBER_AND_INCR (p, mcnt);
4133                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p, mcnt);
4134             }
4135 	  else if (mcnt == 0)
4136             {
4137               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
4138 	      p[2] = (unsigned char) no_op;
4139               p[3] = (unsigned char) no_op;
4140               goto on_failure;
4141             }
4142           break;
4143 
4144         case jump_n:
4145           EXTRACT_NUMBER (mcnt, p + 2);
4146           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4147 
4148           /* Originally, this is how many times we CAN jump.  */
4149           if (mcnt)
4150             {
4151                mcnt--;
4152                STORE_NUMBER (p + 2, mcnt);
4153 	       goto unconditional_jump;
4154             }
4155           /* If don't have to jump any more, skip over the rest of command.  */
4156 	  else
4157 	    p += 4;
4158           break;
4159 
4160 	case set_number_at:
4161 	  {
4162             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4163 
4164             EXTRACT_NUMBER_AND_INCR (mcnt, p);
4165             p1 = p + mcnt;
4166             EXTRACT_NUMBER_AND_INCR (mcnt, p);
4167             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
4168 	    STORE_NUMBER (p1, mcnt);
4169             break;
4170           }
4171 
4172         case wordbound:
4173           DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4174           if (AT_WORD_BOUNDARY (d))
4175 	    break;
4176           goto fail;
4177 
4178 	case notwordbound:
4179           DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4180 	  if (AT_WORD_BOUNDARY (d))
4181 	    goto fail;
4182           break;
4183 
4184 	case wordbeg:
4185           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4186 	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4187 	    break;
4188           goto fail;
4189 
4190 	case wordend:
4191           DEBUG_PRINT1 ("EXECUTING wordend.\n");
4192 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4193               && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4194 	    break;
4195           goto fail;
4196 
4197 #ifdef emacs
4198 #ifdef emacs19
4199   	case before_dot:
4200           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4201  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4202   	    goto fail;
4203   	  break;
4204 
4205   	case at_dot:
4206           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4207  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
4208   	    goto fail;
4209   	  break;
4210 
4211   	case after_dot:
4212           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4213           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4214   	    goto fail;
4215   	  break;
4216 #else /* not emacs19 */
4217 	case at_dot:
4218           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4219 	  if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4220 	    goto fail;
4221 	  break;
4222 #endif /* not emacs19 */
4223 
4224 	case syntaxspec:
4225           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4226 	  mcnt = *p++;
4227 	  goto matchsyntax;
4228 
4229         case wordchar:
4230           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4231 	  mcnt = (int) Sword;
4232         matchsyntax:
4233 	  PREFETCH ();
4234 	  if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4235             goto fail;
4236           SET_REGS_MATCHED ();
4237 	  break;
4238 
4239 	case notsyntaxspec:
4240           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4241 	  mcnt = *p++;
4242 	  goto matchnotsyntax;
4243 
4244         case notwordchar:
4245           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4246 	  mcnt = (int) Sword;
4247         matchnotsyntax:
4248 	  PREFETCH ();
4249 	  if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4250             goto fail;
4251 	  SET_REGS_MATCHED ();
4252           break;
4253 
4254 #else /* not emacs */
4255 	case wordchar:
4256           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4257 	  PREFETCH ();
4258           if (!WORDCHAR_P (d))
4259             goto fail;
4260 	  SET_REGS_MATCHED ();
4261           d++;
4262 	  break;
4263 
4264 	case notwordchar:
4265           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4266 	  PREFETCH ();
4267 	  if (WORDCHAR_P (d))
4268             goto fail;
4269           SET_REGS_MATCHED ();
4270           d++;
4271 	  break;
4272 #endif /* not emacs */
4273 
4274         default:
4275           abort ();
4276 	}
4277       continue;  /* Successfully executed one pattern command; keep going.  */
4278 
4279 
4280     /* We goto here if a matching operation fails. */
4281     fail:
4282       if (!FAIL_STACK_EMPTY ())
4283 	{ /* A restart point is known.  Restore to that state.  */
4284           DEBUG_PRINT1 ("\nFAIL:\n");
4285           POP_FAILURE_POINT (d, p,
4286                              lowest_active_reg, highest_active_reg,
4287                              regstart, regend, reg_info);
4288 
4289           /* If this failure point is a dummy, try the next one.  */
4290           if (!p)
4291 	    goto fail;
4292 
4293           /* If we failed to the end of the pattern, don't examine *p.  */
4294 	  assert (p <= pend);
4295           if (p < pend)
4296             {
4297               boolean is_a_jump_n = false;
4298 
4299               /* If failed to a backwards jump that's part of a repetition
4300                  loop, need to pop this failure point and use the next one.  */
4301               switch ((re_opcode_t) *p)
4302                 {
4303                 case jump_n:
4304                   is_a_jump_n = true;
4305                 case maybe_pop_jump:
4306                 case pop_failure_jump:
4307                 case jump:
4308                   p1 = p + 1;
4309                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4310                   p1 += mcnt;
4311 
4312                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4313                       || (!is_a_jump_n
4314                           && (re_opcode_t) *p1 == on_failure_jump))
4315                     goto fail;
4316                   break;
4317                 default:
4318                   /* do nothing */ ;
4319                 }
4320             }
4321 
4322           if (d >= string1 && d <= end1)
4323 	    dend = end_match_1;
4324         }
4325       else
4326         break;   /* Matching at this starting point really fails.  */
4327     } /* for (;;) */
4328 
4329   if (best_regs_set)
4330     goto restore_best_regs;
4331 
4332   FREE_VARIABLES ();
4333 
4334   return -1;         			/* Failure to match.  */
4335 } /* re_match_2 */
4336 
4337 /* Subroutine definitions for re_match_2.  */
4338 
4339 
4340 /* We are passed P pointing to a register number after a start_memory.
4341 
4342    Return true if the pattern up to the corresponding stop_memory can
4343    match the empty string, and false otherwise.
4344 
4345    If we find the matching stop_memory, sets P to point to one past its number.
4346    Otherwise, sets P to an undefined byte less than or equal to END.
4347 
4348    We don't handle duplicates properly (yet).  */
4349 
4350 static boolean
4351 group_match_null_string_p (p, end, reg_info)
4352     unsigned char **p, *end;
4353     register_info_type *reg_info;
4354 {
4355   int mcnt;
4356   /* Point to after the args to the start_memory.  */
4357   unsigned char *p1 = *p + 2;
4358 
4359   while (p1 < end)
4360     {
4361       /* Skip over opcodes that can match nothing, and return true or
4362 	 false, as appropriate, when we get to one that can't, or to the
4363          matching stop_memory.  */
4364 
4365       switch ((re_opcode_t) *p1)
4366         {
4367         /* Could be either a loop or a series of alternatives.  */
4368         case on_failure_jump:
4369           p1++;
4370           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4371 
4372           /* If the next operation is not a jump backwards in the
4373 	     pattern.  */
4374 
4375 	  if (mcnt >= 0)
4376 	    {
4377               /* Go through the on_failure_jumps of the alternatives,
4378                  seeing if any of the alternatives cannot match nothing.
4379                  The last alternative starts with only a jump,
4380                  whereas the rest start with on_failure_jump and end
4381                  with a jump, e.g., here is the pattern for `a|b|c':
4382 
4383                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4384                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4385                  /exactn/1/c
4386 
4387                  So, we have to first go through the first (n-1)
4388                  alternatives and then deal with the last one separately.  */
4389 
4390 
4391               /* Deal with the first (n-1) alternatives, which start
4392                  with an on_failure_jump (see above) that jumps to right
4393                  past a jump_past_alt.  */
4394 
4395               while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4396                 {
4397                   /* `mcnt' holds how many bytes long the alternative
4398                      is, including the ending `jump_past_alt' and
4399                      its number.  */
4400 
4401                   if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4402 				                      reg_info))
4403                     return false;
4404 
4405                   /* Move to right after this alternative, including the
4406 		     jump_past_alt.  */
4407                   p1 += mcnt;
4408 
4409                   /* Break if it's the beginning of an n-th alternative
4410                      that doesn't begin with an on_failure_jump.  */
4411                   if ((re_opcode_t) *p1 != on_failure_jump)
4412                     break;
4413 
4414 		  /* Still have to check that it's not an n-th
4415 		     alternative that starts with an on_failure_jump.  */
4416 		  p1++;
4417                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4418                   if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4419                     {
4420 		      /* Get to the beginning of the n-th alternative.  */
4421                       p1 -= 3;
4422                       break;
4423                     }
4424                 }
4425 
4426               /* Deal with the last alternative: go back and get number
4427                  of the `jump_past_alt' just before it.  `mcnt' contains
4428                  the length of the alternative.  */
4429               EXTRACT_NUMBER (mcnt, p1 - 2);
4430 
4431               if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4432                 return false;
4433 
4434               p1 += mcnt;	/* Get past the n-th alternative.  */
4435             } /* if mcnt > 0 */
4436           break;
4437 
4438 
4439         case stop_memory:
4440 	  assert (p1[1] == **p);
4441           *p = p1 + 2;
4442           return true;
4443 
4444 
4445         default:
4446           if (!common_op_match_null_string_p (&p1, end, reg_info))
4447             return false;
4448         }
4449     } /* while p1 < end */
4450 
4451   return false;
4452 } /* group_match_null_string_p */
4453 
4454 
4455 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4456    It expects P to be the first byte of a single alternative and END one
4457    byte past the last. The alternative can contain groups.  */
4458 
4459 static boolean
4460 alt_match_null_string_p (p, end, reg_info)
4461     unsigned char *p, *end;
4462     register_info_type *reg_info;
4463 {
4464   int mcnt;
4465   unsigned char *p1 = p;
4466 
4467   while (p1 < end)
4468     {
4469       /* Skip over opcodes that can match nothing, and break when we get
4470          to one that can't.  */
4471 
4472       switch ((re_opcode_t) *p1)
4473         {
4474 	/* It's a loop.  */
4475         case on_failure_jump:
4476           p1++;
4477           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4478           p1 += mcnt;
4479           break;
4480 
4481 	default:
4482           if (!common_op_match_null_string_p (&p1, end, reg_info))
4483             return false;
4484         }
4485     }  /* while p1 < end */
4486 
4487   return true;
4488 } /* alt_match_null_string_p */
4489 
4490 
4491 /* Deals with the ops common to group_match_null_string_p and
4492    alt_match_null_string_p.
4493 
4494    Sets P to one after the op and its arguments, if any.  */
4495 
4496 static boolean
4497 common_op_match_null_string_p (p, end, reg_info)
4498     unsigned char **p, *end;
4499     register_info_type *reg_info;
4500 {
4501   int mcnt;
4502   boolean ret;
4503   int reg_no;
4504   unsigned char *p1 = *p;
4505 
4506   switch ((re_opcode_t) *p1++)
4507     {
4508     case no_op:
4509     case begline:
4510     case endline:
4511     case begbuf:
4512     case endbuf:
4513     case wordbeg:
4514     case wordend:
4515     case wordbound:
4516     case notwordbound:
4517 #ifdef emacs
4518     case before_dot:
4519     case at_dot:
4520     case after_dot:
4521 #endif
4522       break;
4523 
4524     case start_memory:
4525       reg_no = *p1;
4526       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4527       ret = group_match_null_string_p (&p1, end, reg_info);
4528 
4529       /* Have to set this here in case we're checking a group which
4530          contains a group and a back reference to it.  */
4531 
4532       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4533         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4534 
4535       if (!ret)
4536         return false;
4537       break;
4538 
4539     /* If this is an optimized succeed_n for zero times, make the jump.  */
4540     case jump:
4541       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4542       if (mcnt >= 0)
4543         p1 += mcnt;
4544       else
4545         return false;
4546       break;
4547 
4548     case succeed_n:
4549       /* Get to the number of times to succeed.  */
4550       p1 += 2;
4551       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4552 
4553       if (mcnt == 0)
4554         {
4555           p1 -= 4;
4556           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4557           p1 += mcnt;
4558         }
4559       else
4560         return false;
4561       break;
4562 
4563     case duplicate:
4564       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4565         return false;
4566       break;
4567 
4568     case set_number_at:
4569       p1 += 4;
4570 
4571     default:
4572       /* All other opcodes mean we cannot match the empty string.  */
4573       return false;
4574   }
4575 
4576   *p = p1;
4577   return true;
4578 } /* common_op_match_null_string_p */
4579 
4580 
4581 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4582    bytes; nonzero otherwise.  */
4583 
4584 static int
4585 bcmp_translate (s1, s2, len, translate)
4586      unsigned char *s1, *s2;
4587      register int len;
4588      char *translate;
4589 {
4590   register unsigned char *p1 = s1, *p2 = s2;
4591   while (len)
4592     {
4593       if (translate[*p1++] != translate[*p2++]) return 1;
4594       len--;
4595     }
4596   return 0;
4597 }
4598 
4599 /* Entry points for GNU code.  */
4600 
4601 /* re_compile_pattern is the GNU regular expression compiler: it
4602    compiles PATTERN (of length SIZE) and puts the result in BUFP.
4603    Returns 0 if the pattern was valid, otherwise an error string.
4604 
4605    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4606    are set in BUFP on entry.
4607 
4608    We call regex_compile to do the actual compilation.  */
4609 
4610 const char *
4611 re_compile_pattern (pattern, length, bufp)
4612      const char *pattern;
4613      int length;
4614      struct re_pattern_buffer *bufp;
4615 {
4616   reg_errcode_t ret;
4617 
4618   /* GNU code is written to assume at least RE_NREGS registers will be set
4619      (and at least one extra will be -1).  */
4620   bufp->regs_allocated = REGS_UNALLOCATED;
4621 
4622   /* And GNU code determines whether or not to get register information
4623      by passing null for the REGS argument to re_match, etc., not by
4624      setting no_sub.  */
4625   bufp->no_sub = 0;
4626 
4627   /* Match anchors at newline.  */
4628   bufp->newline_anchor = 1;
4629 
4630   ret = regex_compile (pattern, length, re_syntax_options, bufp);
4631 
4632   return re_error_msg[(int) ret];
4633 }
4634 
4635 /* Entry points compatible with 4.2 BSD regex library.  We don't define
4636    them if this is an Emacs or POSIX compilation.  */
4637 
4638 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4639 
4640 /* BSD has one and only one pattern buffer.  */
4641 static struct re_pattern_buffer re_comp_buf;
4642 
4643 char *
4644 re_comp (s)
4645     const char *s;
4646 {
4647   reg_errcode_t ret;
4648 
4649   if (!s)
4650     {
4651       if (!re_comp_buf.buffer)
4652 	return "No previous regular expression";
4653       return 0;
4654     }
4655 
4656   if (!re_comp_buf.buffer)
4657     {
4658       re_comp_buf.buffer = (unsigned char *) malloc (200);
4659       if (re_comp_buf.buffer == NULL)
4660         return "Memory exhausted";
4661       re_comp_buf.allocated = 200;
4662 
4663       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4664       if (re_comp_buf.fastmap == NULL)
4665 	return "Memory exhausted";
4666     }
4667 
4668   /* Since `re_exec' always passes NULL for the `regs' argument, we
4669      don't need to initialize the pattern buffer fields which affect it.  */
4670 
4671   /* Match anchors at newlines.  */
4672   re_comp_buf.newline_anchor = 1;
4673 
4674   ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4675 
4676   /* Yes, we're discarding `const' here.  */
4677   return (char *) re_error_msg[(int) ret];
4678 }
4679 
4680 
4681 int
4682 re_exec (s)
4683     const char *s;
4684 {
4685   const int len = strlen (s);
4686   return
4687     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4688 }
4689 #endif /* not emacs and not _POSIX_SOURCE */
4690 
4691 /* POSIX.2 functions.  Don't define these for Emacs.  */
4692 
4693 #ifndef emacs
4694 
4695 /* regcomp takes a regular expression as a string and compiles it.
4696 
4697    PREG is a regex_t *.  We do not expect any fields to be initialized,
4698    since POSIX says we shouldn't.  Thus, we set
4699 
4700      `buffer' to the compiled pattern;
4701      `used' to the length of the compiled pattern;
4702      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4703        REG_EXTENDED bit in CFLAGS is set; otherwise, to
4704        RE_SYNTAX_POSIX_BASIC;
4705      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4706      `fastmap' and `fastmap_accurate' to zero;
4707      `re_nsub' to the number of subexpressions in PATTERN.
4708 
4709    PATTERN is the address of the pattern string.
4710 
4711    CFLAGS is a series of bits which affect compilation.
4712 
4713      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4714      use POSIX basic syntax.
4715 
4716      If REG_NEWLINE is set, then . and [^...] don't match newline.
4717      Also, regexec will try a match beginning after every newline.
4718 
4719      If REG_ICASE is set, then we considers upper- and lowercase
4720      versions of letters to be equivalent when matching.
4721 
4722      If REG_NOSUB is set, then when PREG is passed to regexec, that
4723      routine will report only success or failure, and nothing about the
4724      registers.
4725 
4726    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
4727    the return codes and their meanings.)  */
4728 
4729 int
4730 regcomp (preg, pattern, cflags)
4731     regex_t *preg;
4732     const char *pattern;
4733     int cflags;
4734 {
4735   reg_errcode_t ret;
4736   unsigned syntax
4737     = (cflags & REG_EXTENDED) ?
4738       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4739 
4740   /* regex_compile will allocate the space for the compiled pattern.  */
4741   preg->buffer = 0;
4742   preg->allocated = 0;
4743 
4744   /* Don't bother to use a fastmap when searching.  This simplifies the
4745      REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4746      characters after newlines into the fastmap.  This way, we just try
4747      every character.  */
4748   preg->fastmap = 0;
4749 
4750   if (cflags & REG_ICASE)
4751     {
4752       unsigned i;
4753 
4754       preg->translate = (char *) malloc (CHAR_SET_SIZE);
4755       if (preg->translate == NULL)
4756         return (int) REG_ESPACE;
4757 
4758       /* Map uppercase characters to corresponding lowercase ones.  */
4759       for (i = 0; i < CHAR_SET_SIZE; i++)
4760         preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4761     }
4762   else
4763     preg->translate = NULL;
4764 
4765   /* If REG_NEWLINE is set, newlines are treated differently.  */
4766   if (cflags & REG_NEWLINE)
4767     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
4768       syntax &= ~RE_DOT_NEWLINE;
4769       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4770       /* It also changes the matching behavior.  */
4771       preg->newline_anchor = 1;
4772     }
4773   else
4774     preg->newline_anchor = 0;
4775 
4776   preg->no_sub = !!(cflags & REG_NOSUB);
4777 
4778   /* POSIX says a null character in the pattern terminates it, so we
4779      can use strlen here in compiling the pattern.  */
4780   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4781 
4782   /* POSIX doesn't distinguish between an unmatched open-group and an
4783      unmatched close-group: both are REG_EPAREN.  */
4784   if (ret == REG_ERPAREN) ret = REG_EPAREN;
4785 
4786   return (int) ret;
4787 }
4788 
4789 
4790 /* regexec searches for a given pattern, specified by PREG, in the
4791    string STRING.
4792 
4793    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4794    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
4795    least NMATCH elements, and we set them to the offsets of the
4796    corresponding matched substrings.
4797 
4798    EFLAGS specifies `execution flags' which affect matching: if
4799    REG_NOTBOL is set, then ^ does not match at the beginning of the
4800    string; if REG_NOTEOL is set, then $ does not match at the end.
4801 
4802    We return 0 if we find a match and REG_NOMATCH if not.  */
4803 
4804 int
4805 regexec (preg, string, nmatch, pmatch, eflags)
4806     const regex_t *preg;
4807     const char *string;
4808     size_t nmatch;
4809     regmatch_t pmatch[];
4810     int eflags;
4811 {
4812   int ret;
4813   struct re_registers regs;
4814   regex_t private_preg;
4815   int len = strlen (string);
4816   boolean want_reg_info = !preg->no_sub && nmatch > 0;
4817 
4818   private_preg = *preg;
4819 
4820   private_preg.not_bol = !!(eflags & REG_NOTBOL);
4821   private_preg.not_eol = !!(eflags & REG_NOTEOL);
4822 
4823   /* The user has told us exactly how many registers to return
4824      information about, via `nmatch'.  We have to pass that on to the
4825      matching routines.  */
4826   private_preg.regs_allocated = REGS_FIXED;
4827 
4828   if (want_reg_info)
4829     {
4830       regs.num_regs = nmatch;
4831       regs.start = TALLOC (nmatch, regoff_t);
4832       regs.end = TALLOC (nmatch, regoff_t);
4833       if (regs.start == NULL || regs.end == NULL)
4834         return (int) REG_NOMATCH;
4835     }
4836 
4837   /* Perform the searching operation.  */
4838   ret = re_search (&private_preg, string, len,
4839                    /* start: */ 0, /* range: */ len,
4840                    want_reg_info ? &regs : (struct re_registers *) 0);
4841 
4842   /* Copy the register information to the POSIX structure.  */
4843   if (want_reg_info)
4844     {
4845       if (ret >= 0)
4846         {
4847           unsigned r;
4848 
4849           for (r = 0; r < nmatch; r++)
4850             {
4851               pmatch[r].rm_so = regs.start[r];
4852               pmatch[r].rm_eo = regs.end[r];
4853             }
4854         }
4855 
4856       /* If we needed the temporary register info, free the space now.  */
4857       free (regs.start);
4858       free (regs.end);
4859     }
4860 
4861   /* We want zero return to mean success, unlike `re_search'.  */
4862   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4863 }
4864 
4865 
4866 /* Returns a message corresponding to an error code, ERRCODE, returned
4867    from either regcomp or regexec.   We don't use PREG here.  */
4868 
4869 size_t
4870 regerror (errcode, preg, errbuf, errbuf_size)
4871     int errcode;
4872     const regex_t *preg;
4873     char *errbuf;
4874     size_t errbuf_size;
4875 {
4876   const char *msg;
4877   size_t msg_size;
4878 
4879   if (errcode < 0
4880       || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
4881     /* Only error codes returned by the rest of the code should be passed
4882        to this routine.  If we are given anything else, or if other regex
4883        code generates an invalid error code, then the program has a bug.
4884        Dump core so we can fix it.  */
4885     abort ();
4886 
4887   msg = re_error_msg[errcode];
4888 
4889   /* POSIX doesn't require that we do anything in this case, but why
4890      not be nice.  */
4891   if (! msg)
4892     msg = "Success";
4893 
4894   msg_size = strlen (msg) + 1; /* Includes the null.  */
4895 
4896   if (errbuf_size != 0)
4897     {
4898       if (msg_size > errbuf_size)
4899         {
4900           strncpy (errbuf, msg, errbuf_size - 1);
4901           errbuf[errbuf_size - 1] = 0;
4902         }
4903       else
4904         strcpy (errbuf, msg);
4905     }
4906 
4907   return msg_size;
4908 }
4909 
4910 
4911 /* Free dynamically allocated space used by PREG.  */
4912 
4913 void
4914 regfree (preg)
4915     regex_t *preg;
4916 {
4917   if (preg->buffer != NULL)
4918     free (preg->buffer);
4919   preg->buffer = NULL;
4920 
4921   preg->allocated = 0;
4922   preg->used = 0;
4923 
4924   if (preg->fastmap != NULL)
4925     free (preg->fastmap);
4926   preg->fastmap = NULL;
4927   preg->fastmap_accurate = 0;
4928 
4929   if (preg->translate != NULL)
4930     free (preg->translate);
4931   preg->translate = NULL;
4932 }
4933 
4934 #endif /* not emacs  */
4935 
4936 /*
4937 Local variables:
4938 make-backup-files: t
4939 version-control: t
4940 trim-versions-without-asking: nil
4941 End:
4942 */
4943