1 /* 2 * Copyright (c) 2002, 2003 Jerome Duval (jerome.duval@free.fr) 3 * Distributed under the terms of the MIT License. 4 */ 5 6 //! Multi-audio replacement media addon for BeOS 7 8 9 #include "MultiAudioNode.h" 10 11 #include <stdio.h> 12 #include <string.h> 13 14 #include <Autolock.h> 15 #include <Buffer.h> 16 #include <BufferGroup.h> 17 #include <Catalog.h> 18 #include <ParameterWeb.h> 19 #include <String.h> 20 21 #include <Referenceable.h> 22 23 #include "MultiAudioUtility.h" 24 #ifdef DEBUG 25 # define PRINTING 26 #endif 27 #include "debug.h" 28 #include "Resampler.h" 29 30 #undef B_TRANSLATION_CONTEXT 31 #define B_TRANSLATION_CONTEXT "MultiAudio" 32 33 #define PARAMETER_ID_INPUT_FREQUENCY 1 34 #define PARAMETER_ID_OUTPUT_FREQUENCY 2 35 36 37 //This represent an hardware output 38 class node_input { 39 public: 40 node_input(media_input& input, media_format format); 41 ~node_input(); 42 43 int32 fChannelId; 44 media_input fInput; 45 media_format fPreferredFormat; 46 media_format fFormat; 47 volatile uint32 fBufferCycle; 48 multi_buffer_info fOldBufferInfo; 49 BBuffer* fBuffer; 50 Resampler *fResampler; 51 }; 52 53 54 //This represent an hardware input 55 class node_output { 56 public: 57 node_output(media_output& output, media_format format); 58 ~node_output(); 59 60 int32 fChannelId; 61 media_output fOutput; 62 media_format fPreferredFormat; 63 media_format fFormat; 64 65 BBufferGroup* fBufferGroup; 66 bool fOutputEnabled; 67 uint64 fSamplesSent; 68 volatile uint32 fBufferCycle; 69 multi_buffer_info fOldBufferInfo; 70 Resampler *fResampler; 71 }; 72 73 74 struct FrameRateChangeCookie : public BReferenceable { 75 float oldFrameRate; 76 uint32 id; 77 }; 78 79 80 struct sample_rate_info { 81 uint32 multiAudioRate; 82 const char* name; 83 }; 84 85 86 static const sample_rate_info kSampleRateInfos[] = { 87 {B_SR_8000, "8000"}, 88 {B_SR_11025, "11025"}, 89 {B_SR_12000, "12000"}, 90 {B_SR_16000, "16000"}, 91 {B_SR_22050, "22050"}, 92 {B_SR_24000, "24000"}, 93 {B_SR_32000, "32000"}, 94 {B_SR_44100, "44100"}, 95 {B_SR_48000, "48000"}, 96 {B_SR_64000, "64000"}, 97 {B_SR_88200, "88200"}, 98 {B_SR_96000, "96000"}, 99 {B_SR_176400, "176400"}, 100 {B_SR_192000, "192000"}, 101 {B_SR_384000, "384000"}, 102 {B_SR_1536000, "1536000"}, 103 {} 104 }; 105 106 107 const char* kMultiControlString[] = { 108 "NAME IS ATTACHED", 109 B_TRANSLATE("Output"), B_TRANSLATE("Input"), B_TRANSLATE("Setup"), 110 B_TRANSLATE("Tone control"), B_TRANSLATE("Extended Setup"), 111 B_TRANSLATE("Enhanced Setup"), B_TRANSLATE("Master"), B_TRANSLATE("Beep"), 112 B_TRANSLATE("Phone"), B_TRANSLATE("Mic"), B_TRANSLATE("Line"), 113 B_TRANSLATE("CD"), B_TRANSLATE("Video"), B_TRANSLATE("Aux"), 114 B_TRANSLATE("Wave"), B_TRANSLATE("Gain"), B_TRANSLATE("Level"), 115 B_TRANSLATE("Volume"), B_TRANSLATE("Mute"), B_TRANSLATE("Enable"), 116 B_TRANSLATE("Stereo mix"), B_TRANSLATE("Mono mix"), 117 B_TRANSLATE("Output stereo mix"), B_TRANSLATE("Output mono mix"), 118 B_TRANSLATE("Output bass"), B_TRANSLATE("Output treble"), 119 B_TRANSLATE("Output 3D center"), B_TRANSLATE("Output 3D depth"), 120 B_TRANSLATE("Headphones"), B_TRANSLATE("SPDIF") 121 }; 122 123 124 // #pragma mark - 125 126 127 node_input::node_input(media_input& input, media_format format) 128 { 129 CALLED(); 130 fInput = input; 131 fPreferredFormat = format; 132 fBufferCycle = 1; 133 fBuffer = NULL; 134 fResampler = NULL; 135 } 136 137 138 node_input::~node_input() 139 { 140 CALLED(); 141 } 142 143 144 // #pragma mark - 145 146 147 node_output::node_output(media_output& output, media_format format) 148 : 149 fBufferGroup(NULL), 150 fOutputEnabled(true) 151 { 152 CALLED(); 153 fOutput = output; 154 fPreferredFormat = format; 155 fBufferCycle = 1; 156 fResampler = NULL; 157 } 158 159 160 node_output::~node_output() 161 { 162 CALLED(); 163 } 164 165 166 // #pragma mark - 167 168 169 MultiAudioNode::MultiAudioNode(BMediaAddOn* addon, const char* name, 170 MultiAudioDevice* device, int32 internalID, BMessage* config) 171 : BMediaNode(name), BBufferConsumer(B_MEDIA_RAW_AUDIO), 172 BBufferProducer(B_MEDIA_RAW_AUDIO), 173 fBufferLock("multi audio buffers"), 174 fThread(-1), 175 fDevice(device), 176 fTimeSourceStarted(false), 177 fWeb(NULL), 178 fConfig() 179 { 180 CALLED(); 181 fInitStatus = B_NO_INIT; 182 183 if (!device) 184 return; 185 186 fAddOn = addon; 187 fId = internalID; 188 189 AddNodeKind(B_PHYSICAL_OUTPUT); 190 AddNodeKind(B_PHYSICAL_INPUT); 191 192 // initialize our preferred format objects 193 memset(&fOutputPreferredFormat, 0, sizeof(fOutputPreferredFormat)); // set everything to wildcard first 194 fOutputPreferredFormat.type = B_MEDIA_RAW_AUDIO; 195 fOutputPreferredFormat.u.raw_audio.format = MultiAudio::convert_to_media_format(fDevice->FormatInfo().output.format); 196 fOutputPreferredFormat.u.raw_audio.valid_bits = MultiAudio::convert_to_valid_bits(fDevice->FormatInfo().output.format); 197 fOutputPreferredFormat.u.raw_audio.channel_count = 2; 198 fOutputPreferredFormat.u.raw_audio.frame_rate = MultiAudio::convert_to_sample_rate(fDevice->FormatInfo().output.rate); // measured in Hertz 199 fOutputPreferredFormat.u.raw_audio.byte_order = B_MEDIA_HOST_ENDIAN; 200 201 // we'll use the consumer's preferred buffer size, if any 202 fOutputPreferredFormat.u.raw_audio.buffer_size = fDevice->BufferList().return_playback_buffer_size 203 * (fOutputPreferredFormat.u.raw_audio.format & media_raw_audio_format::B_AUDIO_SIZE_MASK) 204 * fOutputPreferredFormat.u.raw_audio.channel_count; 205 206 // initialize our preferred format objects 207 memset(&fInputPreferredFormat, 0, sizeof(fInputPreferredFormat)); // set everything to wildcard first 208 fInputPreferredFormat.type = B_MEDIA_RAW_AUDIO; 209 fInputPreferredFormat.u.raw_audio.format = MultiAudio::convert_to_media_format(fDevice->FormatInfo().input.format); 210 fInputPreferredFormat.u.raw_audio.valid_bits = MultiAudio::convert_to_valid_bits(fDevice->FormatInfo().input.format); 211 fInputPreferredFormat.u.raw_audio.channel_count = 2; 212 fInputPreferredFormat.u.raw_audio.frame_rate = MultiAudio::convert_to_sample_rate(fDevice->FormatInfo().input.rate); // measured in Hertz 213 fInputPreferredFormat.u.raw_audio.byte_order = B_MEDIA_HOST_ENDIAN; 214 215 // we'll use the consumer's preferred buffer size, if any 216 fInputPreferredFormat.u.raw_audio.buffer_size = fDevice->BufferList().return_record_buffer_size 217 * (fInputPreferredFormat.u.raw_audio.format & media_raw_audio_format::B_AUDIO_SIZE_MASK) 218 * fInputPreferredFormat.u.raw_audio.channel_count; 219 220 221 if (config != NULL) { 222 fConfig = *config; 223 PRINT_OBJECT(*config); 224 } 225 226 fInitStatus = B_OK; 227 } 228 229 230 MultiAudioNode::~MultiAudioNode() 231 { 232 CALLED(); 233 fAddOn->GetConfigurationFor(this, NULL); 234 235 _StopOutputThread(); 236 BMediaEventLooper::Quit(); 237 238 fWeb = NULL; 239 } 240 241 242 status_t 243 MultiAudioNode::InitCheck() const 244 { 245 CALLED(); 246 return fInitStatus; 247 } 248 249 250 void 251 MultiAudioNode::GetFlavor(flavor_info* info, int32 id) 252 { 253 CALLED(); 254 if (info == NULL) 255 return; 256 257 info->flavor_flags = 0; 258 info->possible_count = 1; // one flavor at a time 259 info->in_format_count = 0; // no inputs 260 info->in_formats = 0; 261 info->out_format_count = 0; // no outputs 262 info->out_formats = 0; 263 info->internal_id = id; 264 265 info->name = (char*)"MultiAudioNode Node"; 266 info->info = (char*)"The MultiAudioNode node outputs to multi_audio " 267 "drivers."; 268 info->kinds = B_BUFFER_CONSUMER | B_BUFFER_PRODUCER | B_TIME_SOURCE 269 | B_PHYSICAL_OUTPUT | B_PHYSICAL_INPUT | B_CONTROLLABLE; 270 info->in_format_count = 1; // 1 input 271 media_format* inFormats = new media_format[info->in_format_count]; 272 GetFormat(&inFormats[0]); 273 info->in_formats = inFormats; 274 275 info->out_format_count = 1; // 1 output 276 media_format* outFormats = new media_format[info->out_format_count]; 277 GetFormat(&outFormats[0]); 278 info->out_formats = outFormats; 279 } 280 281 282 void 283 MultiAudioNode::GetFormat(media_format* format) 284 { 285 CALLED(); 286 if (format == NULL) 287 return; 288 289 format->type = B_MEDIA_RAW_AUDIO; 290 format->require_flags = B_MEDIA_MAUI_UNDEFINED_FLAGS; 291 format->deny_flags = B_MEDIA_MAUI_UNDEFINED_FLAGS; 292 format->u.raw_audio = media_raw_audio_format::wildcard; 293 } 294 295 296 //#pragma mark - BMediaNode 297 298 299 BMediaAddOn* 300 MultiAudioNode::AddOn(int32* _internalID) const 301 { 302 CALLED(); 303 // BeBook says this only gets called if we were in an add-on. 304 if (fAddOn != 0 && _internalID != NULL) 305 *_internalID = fId; 306 307 return fAddOn; 308 } 309 310 311 void 312 MultiAudioNode::Preroll() 313 { 314 CALLED(); 315 // XXX:Performance opportunity 316 BMediaNode::Preroll(); 317 } 318 319 320 status_t 321 MultiAudioNode::HandleMessage(int32 message, const void* data, size_t size) 322 { 323 CALLED(); 324 return B_ERROR; 325 } 326 327 328 void 329 MultiAudioNode::NodeRegistered() 330 { 331 CALLED(); 332 333 if (fInitStatus != B_OK) { 334 ReportError(B_NODE_IN_DISTRESS); 335 return; 336 } 337 338 SetPriority(B_REAL_TIME_PRIORITY); 339 Run(); 340 341 node_input *currentInput = NULL; 342 int32 currentId = 0; 343 344 for (int32 i = 0; i < fDevice->Description().output_channel_count; i++) { 345 if (currentInput == NULL 346 || (fDevice->Description().channels[i].designations & B_CHANNEL_MONO_BUS) 347 || (fDevice->Description().channels[currentId].designations & B_CHANNEL_STEREO_BUS 348 && ( fDevice->Description().channels[i].designations & B_CHANNEL_LEFT || 349 !(fDevice->Description().channels[i].designations & B_CHANNEL_STEREO_BUS))) 350 || (fDevice->Description().channels[currentId].designations & B_CHANNEL_SURROUND_BUS 351 && ( fDevice->Description().channels[i].designations & B_CHANNEL_LEFT || 352 !(fDevice->Description().channels[i].designations & B_CHANNEL_SURROUND_BUS))) 353 ) { 354 PRINT(("NodeRegistered() : creating an input for %li\n", i)); 355 PRINT(("%ld\t%d\t0x%lx\t0x%lx\n", 356 fDevice->Description().channels[i].channel_id, 357 fDevice->Description().channels[i].kind, 358 fDevice->Description().channels[i].designations, 359 fDevice->Description().channels[i].connectors)); 360 361 media_input* input = new media_input; 362 363 input->format = fOutputPreferredFormat; 364 input->destination.port = ControlPort(); 365 input->destination.id = fInputs.CountItems(); 366 input->node = Node(); 367 sprintf(input->name, "output %ld", input->destination.id); 368 369 currentInput = new node_input(*input, fOutputPreferredFormat); 370 currentInput->fPreferredFormat.u.raw_audio.channel_count = 1; 371 currentInput->fInput.format = currentInput->fPreferredFormat; 372 delete currentInput->fResampler; 373 currentInput->fResampler = new 374 Resampler(currentInput->fPreferredFormat.AudioFormat(), 375 fOutputPreferredFormat.AudioFormat()); 376 377 currentInput->fChannelId = fDevice->Description().channels[i].channel_id; 378 fInputs.AddItem(currentInput); 379 380 currentId = i; 381 } else { 382 PRINT(("NodeRegistered() : adding a channel\n")); 383 currentInput->fPreferredFormat.u.raw_audio.channel_count++; 384 currentInput->fInput.format = currentInput->fPreferredFormat; 385 } 386 currentInput->fInput.format.u.raw_audio.format = media_raw_audio_format::wildcard.format; 387 } 388 389 node_output *currentOutput = NULL; 390 currentId = 0; 391 392 for (int32 i = fDevice->Description().output_channel_count; 393 i < fDevice->Description().output_channel_count 394 + fDevice->Description().input_channel_count; i++) { 395 if (currentOutput == NULL 396 || (fDevice->Description().channels[i].designations & B_CHANNEL_MONO_BUS) 397 || (fDevice->Description().channels[currentId].designations & B_CHANNEL_STEREO_BUS 398 && ( fDevice->Description().channels[i].designations & B_CHANNEL_LEFT || 399 !(fDevice->Description().channels[i].designations & B_CHANNEL_STEREO_BUS))) 400 || (fDevice->Description().channels[currentId].designations & B_CHANNEL_SURROUND_BUS 401 && ( fDevice->Description().channels[i].designations & B_CHANNEL_LEFT || 402 !(fDevice->Description().channels[i].designations & B_CHANNEL_SURROUND_BUS))) 403 ) { 404 PRINT(("NodeRegistered() : creating an output for %li\n", i)); 405 PRINT(("%ld\t%d\t0x%lx\t0x%lx\n",fDevice->Description().channels[i].channel_id, 406 fDevice->Description().channels[i].kind, 407 fDevice->Description().channels[i].designations, 408 fDevice->Description().channels[i].connectors)); 409 410 media_output *output = new media_output; 411 412 output->format = fInputPreferredFormat; 413 output->destination = media_destination::null; 414 output->source.port = ControlPort(); 415 output->source.id = fOutputs.CountItems(); 416 output->node = Node(); 417 sprintf(output->name, "input %ld", output->source.id); 418 419 currentOutput = new node_output(*output, fInputPreferredFormat); 420 currentOutput->fPreferredFormat.u.raw_audio.channel_count = 1; 421 currentOutput->fOutput.format = currentOutput->fPreferredFormat; 422 delete currentOutput->fResampler; 423 currentOutput->fResampler = new 424 Resampler(fInputPreferredFormat.AudioFormat(), 425 currentOutput->fPreferredFormat.AudioFormat()); 426 427 currentOutput->fChannelId = fDevice->Description().channels[i].channel_id; 428 fOutputs.AddItem(currentOutput); 429 430 currentId = i; 431 } else { 432 PRINT(("NodeRegistered() : adding a channel\n")); 433 currentOutput->fPreferredFormat.u.raw_audio.channel_count++; 434 currentOutput->fOutput.format = currentOutput->fPreferredFormat; 435 } 436 } 437 438 // Set up our parameter web 439 fWeb = MakeParameterWeb(); 440 SetParameterWeb(fWeb); 441 442 // Apply configuration 443 #ifdef PRINTING 444 bigtime_t start = system_time(); 445 #endif 446 447 int32 index = 0; 448 int32 parameterID = 0; 449 const void *data; 450 ssize_t size; 451 while (fConfig.FindInt32("parameterID", index, ¶meterID) == B_OK) { 452 if (fConfig.FindData("parameterData", B_RAW_TYPE, index, &data, &size) 453 == B_OK) { 454 SetParameterValue(parameterID, TimeSource()->Now(), data, size); 455 } 456 index++; 457 } 458 459 PRINT(("apply configuration in : %Ld\n", system_time() - start)); 460 } 461 462 463 status_t 464 MultiAudioNode::RequestCompleted(const media_request_info& info) 465 { 466 CALLED(); 467 468 if (info.what != media_request_info::B_REQUEST_FORMAT_CHANGE) 469 return B_OK; 470 471 FrameRateChangeCookie* cookie 472 = (FrameRateChangeCookie*)info.user_data; 473 if (cookie == NULL) 474 return B_OK; 475 476 BReference<FrameRateChangeCookie> cookieReference(cookie, true); 477 478 // if the request failed, we reset the frame rate 479 if (info.status != B_OK) { 480 if (cookie->id == PARAMETER_ID_INPUT_FREQUENCY) { 481 _SetNodeInputFrameRate(cookie->oldFrameRate); 482 if (fDevice->Description().output_rates & B_SR_SAME_AS_INPUT) 483 _SetNodeOutputFrameRate(cookie->oldFrameRate); 484 } else if (cookie->id == PARAMETER_ID_OUTPUT_FREQUENCY) 485 _SetNodeOutputFrameRate(cookie->oldFrameRate); 486 487 // TODO: If we have multiple connections, we should request to change 488 // the format back! 489 } 490 491 return B_OK; 492 } 493 494 495 void 496 MultiAudioNode::SetTimeSource(BTimeSource* timeSource) 497 { 498 CALLED(); 499 } 500 501 502 // #pragma mark - BBufferConsumer 503 504 505 status_t 506 MultiAudioNode::AcceptFormat(const media_destination& dest, 507 media_format* format) 508 { 509 // Check to make sure the format is okay, then remove 510 // any wildcards corresponding to our requirements. 511 CALLED(); 512 513 if (format == NULL) 514 return B_BAD_VALUE; 515 if (format->type != B_MEDIA_RAW_AUDIO) 516 return B_MEDIA_BAD_FORMAT; 517 518 node_input *channel = _FindInput(dest); 519 if (channel == NULL) 520 return B_MEDIA_BAD_DESTINATION; 521 522 /* media_format * myFormat = GetFormat(); 523 fprintf(stderr,"proposed format: "); 524 print_media_format(format); 525 fprintf(stderr,"\n"); 526 fprintf(stderr,"my format: "); 527 print_media_format(myFormat); 528 fprintf(stderr,"\n");*/ 529 // Be's format_is_compatible doesn't work. 530 // if (!format_is_compatible(*format,*myFormat)) { 531 532 channel->fFormat = channel->fPreferredFormat; 533 534 /*if(format->u.raw_audio.format == media_raw_audio_format::B_AUDIO_FLOAT 535 && channel->fPreferredFormat.u.raw_audio.format == media_raw_audio_format::B_AUDIO_SHORT) 536 format->u.raw_audio.format = media_raw_audio_format::B_AUDIO_FLOAT; 537 else*/ 538 format->u.raw_audio.format = channel->fPreferredFormat.u.raw_audio.format; 539 format->u.raw_audio.valid_bits = channel->fPreferredFormat.u.raw_audio.valid_bits; 540 541 format->u.raw_audio.frame_rate = channel->fPreferredFormat.u.raw_audio.frame_rate; 542 format->u.raw_audio.channel_count = channel->fPreferredFormat.u.raw_audio.channel_count; 543 format->u.raw_audio.byte_order = B_MEDIA_HOST_ENDIAN; 544 format->u.raw_audio.buffer_size = fDevice->BufferList().return_playback_buffer_size 545 * (format->u.raw_audio.format & media_raw_audio_format::B_AUDIO_SIZE_MASK) 546 * format->u.raw_audio.channel_count; 547 548 /*media_format myFormat; 549 GetFormat(&myFormat); 550 if (!format_is_acceptible(*format,myFormat)) { 551 fprintf(stderr,"<- B_MEDIA_BAD_FORMAT\n"); 552 return B_MEDIA_BAD_FORMAT; 553 }*/ 554 //AddRequirements(format); 555 return B_OK; 556 } 557 558 559 status_t 560 MultiAudioNode::GetNextInput(int32* cookie, media_input* _input) 561 { 562 CALLED(); 563 if (_input == NULL) 564 return B_BAD_VALUE; 565 566 if (*cookie >= fInputs.CountItems() || *cookie < 0) 567 return B_BAD_INDEX; 568 569 node_input *channel = (node_input *)fInputs.ItemAt(*cookie); 570 *_input = channel->fInput; 571 *cookie += 1; 572 PRINT(("input.format : %lu\n", channel->fInput.format.u.raw_audio.format)); 573 return B_OK; 574 } 575 576 577 void 578 MultiAudioNode::DisposeInputCookie(int32 cookie) 579 { 580 CALLED(); 581 // nothing to do since our cookies are just integers 582 } 583 584 585 void 586 MultiAudioNode::BufferReceived(BBuffer* buffer) 587 { 588 //CALLED(); 589 switch (buffer->Header()->type) { 590 /*case B_MEDIA_PARAMETERS: 591 { 592 status_t status = ApplyParameterData(buffer->Data(),buffer->SizeUsed()); 593 if (status != B_OK) { 594 fprintf(stderr,"ApplyParameterData in MultiAudioNode::BufferReceived failed\n"); 595 } 596 buffer->Recycle(); 597 } 598 break;*/ 599 case B_MEDIA_RAW_AUDIO: 600 if (buffer->Flags() & BBuffer::B_SMALL_BUFFER) { 601 fprintf(stderr,"NOT IMPLEMENTED: B_SMALL_BUFFER in MultiAudioNode::BufferReceived\n"); 602 // XXX: implement this part 603 buffer->Recycle(); 604 } else { 605 media_timed_event event(buffer->Header()->start_time, BTimedEventQueue::B_HANDLE_BUFFER, 606 buffer, BTimedEventQueue::B_RECYCLE_BUFFER); 607 status_t status = EventQueue()->AddEvent(event); 608 if (status != B_OK) { 609 fprintf(stderr,"EventQueue()->AddEvent(event) in MultiAudioNode::BufferReceived failed\n"); 610 buffer->Recycle(); 611 } 612 } 613 break; 614 default: 615 fprintf(stderr,"unexpected buffer type in MultiAudioNode::BufferReceived\n"); 616 buffer->Recycle(); 617 break; 618 } 619 } 620 621 622 void 623 MultiAudioNode::ProducerDataStatus(const media_destination& forWhom, 624 int32 status, bigtime_t atPerformanceTime) 625 { 626 //CALLED(); 627 628 node_input *channel = _FindInput(forWhom); 629 if (channel == NULL) { 630 fprintf(stderr,"invalid destination received in MultiAudioNode::ProducerDataStatus\n"); 631 return; 632 } 633 634 media_timed_event event(atPerformanceTime, BTimedEventQueue::B_DATA_STATUS, 635 &channel->fInput, BTimedEventQueue::B_NO_CLEANUP, status, 0, NULL); 636 EventQueue()->AddEvent(event); 637 } 638 639 640 status_t 641 MultiAudioNode::GetLatencyFor(const media_destination& forWhom, 642 bigtime_t* _latency, media_node_id* _timeSource) 643 { 644 CALLED(); 645 if (_latency == NULL || _timeSource == NULL) 646 return B_BAD_VALUE; 647 648 node_input *channel = _FindInput(forWhom); 649 if (channel == NULL) 650 return B_MEDIA_BAD_DESTINATION; 651 652 *_latency = EventLatency(); 653 *_timeSource = TimeSource()->ID(); 654 return B_OK; 655 } 656 657 658 status_t 659 MultiAudioNode::Connected(const media_source& producer, 660 const media_destination& where, const media_format& with_format, 661 media_input* out_input) 662 { 663 CALLED(); 664 if (out_input == 0) { 665 fprintf(stderr, "<- B_BAD_VALUE\n"); 666 return B_BAD_VALUE; // no crashing 667 } 668 669 node_input *channel = _FindInput(where); 670 671 if (channel == NULL) { 672 fprintf(stderr, "<- B_MEDIA_BAD_DESTINATION\n"); 673 return B_MEDIA_BAD_DESTINATION; 674 } 675 676 _UpdateInternalLatency(with_format); 677 678 // record the agreed upon values 679 channel->fInput.source = producer; 680 channel->fInput.format = with_format; 681 *out_input = channel->fInput; 682 683 _StartOutputThreadIfNeeded(); 684 685 return B_OK; 686 } 687 688 689 void 690 MultiAudioNode::Disconnected(const media_source& producer, 691 const media_destination& where) 692 { 693 CALLED(); 694 node_input *channel = _FindInput(where); 695 696 if (channel == NULL || channel->fInput.source != producer) 697 return; 698 699 channel->fInput.source = media_source::null; 700 channel->fInput.format = channel->fPreferredFormat; 701 702 BAutolock locker(fBufferLock); 703 _FillWithZeros(*channel); 704 //GetFormat(&channel->fInput.format); 705 } 706 707 708 status_t 709 MultiAudioNode::FormatChanged(const media_source& producer, 710 const media_destination& consumer, int32 change_tag, 711 const media_format& format) 712 { 713 CALLED(); 714 node_input *channel = _FindInput(consumer); 715 716 if(channel==NULL) { 717 fprintf(stderr,"<- B_MEDIA_BAD_DESTINATION\n"); 718 return B_MEDIA_BAD_DESTINATION; 719 } 720 if (channel->fInput.source != producer) { 721 return B_MEDIA_BAD_SOURCE; 722 } 723 724 return B_ERROR; 725 } 726 727 728 status_t 729 MultiAudioNode::SeekTagRequested(const media_destination& destination, 730 bigtime_t in_target_time, 731 uint32 in_flags, 732 media_seek_tag * out_seek_tag, 733 bigtime_t * out_tagged_time, 734 uint32 * out_flags) 735 { 736 CALLED(); 737 return BBufferConsumer::SeekTagRequested(destination,in_target_time,in_flags, 738 out_seek_tag,out_tagged_time,out_flags); 739 } 740 741 742 // #pragma mark - BBufferProducer 743 744 745 status_t 746 MultiAudioNode::FormatSuggestionRequested(media_type type, int32 /*quality*/, 747 media_format* format) 748 { 749 // FormatSuggestionRequested() is not necessarily part of the format negotiation 750 // process; it's simply an interrogation -- the caller wants to see what the node's 751 // preferred data format is, given a suggestion by the caller. 752 CALLED(); 753 754 if (!format) 755 { 756 fprintf(stderr, "\tERROR - NULL format pointer passed in!\n"); 757 return B_BAD_VALUE; 758 } 759 760 // this is the format we'll be returning (our preferred format) 761 *format = fInputPreferredFormat; 762 763 // a wildcard type is okay; we can specialize it 764 if (type == B_MEDIA_UNKNOWN_TYPE) type = B_MEDIA_RAW_AUDIO; 765 766 // we only support raw audio 767 if (type != B_MEDIA_RAW_AUDIO) return B_MEDIA_BAD_FORMAT; 768 else return B_OK; 769 } 770 771 772 status_t 773 MultiAudioNode::FormatProposal(const media_source& output, media_format* format) 774 { 775 // FormatProposal() is the first stage in the BMediaRoster::Connect() process. We hand 776 // out a suggested format, with wildcards for any variations we support. 777 CALLED(); 778 node_output *channel = _FindOutput(output); 779 780 // is this a proposal for our select output? 781 if (channel == NULL) 782 { 783 fprintf(stderr, "MultiAudioNode::FormatProposal returning B_MEDIA_BAD_SOURCE\n"); 784 return B_MEDIA_BAD_SOURCE; 785 } 786 787 // we only support floating-point raw audio, so we always return that, but we 788 // supply an error code depending on whether we found the proposal acceptable. 789 media_type requestedType = format->type; 790 *format = channel->fPreferredFormat; 791 if ((requestedType != B_MEDIA_UNKNOWN_TYPE) && (requestedType != B_MEDIA_RAW_AUDIO)) 792 { 793 fprintf(stderr, "MultiAudioNode::FormatProposal returning B_MEDIA_BAD_FORMAT\n"); 794 return B_MEDIA_BAD_FORMAT; 795 } 796 else return B_OK; // raw audio or wildcard type, either is okay by us 797 } 798 799 800 status_t 801 MultiAudioNode::FormatChangeRequested(const media_source& source, 802 const media_destination& destination, media_format* format, 803 int32* _deprecated_) 804 { 805 CALLED(); 806 807 // we don't support any other formats, so we just reject any format changes. 808 return B_ERROR; 809 } 810 811 812 status_t 813 MultiAudioNode::GetNextOutput(int32* cookie, media_output* out_output) 814 { 815 CALLED(); 816 817 if ((*cookie < fOutputs.CountItems()) && (*cookie >= 0)) { 818 node_output *channel = (node_output *)fOutputs.ItemAt(*cookie); 819 *out_output = channel->fOutput; 820 *cookie += 1; 821 return B_OK; 822 } else 823 return B_BAD_INDEX; 824 } 825 826 827 status_t 828 MultiAudioNode::DisposeOutputCookie(int32 cookie) 829 { 830 CALLED(); 831 // do nothing because we don't use the cookie for anything special 832 return B_OK; 833 } 834 835 836 status_t 837 MultiAudioNode::SetBufferGroup(const media_source& for_source, 838 BBufferGroup* newGroup) 839 { 840 CALLED(); 841 842 node_output *channel = _FindOutput(for_source); 843 844 // is this our output? 845 if (channel == NULL) 846 { 847 fprintf(stderr, "MultiAudioNode::SetBufferGroup returning B_MEDIA_BAD_SOURCE\n"); 848 return B_MEDIA_BAD_SOURCE; 849 } 850 851 // Are we being passed the buffer group we're already using? 852 if (newGroup == channel->fBufferGroup) return B_OK; 853 854 // Ahh, someone wants us to use a different buffer group. At this point we delete 855 // the one we are using and use the specified one instead. If the specified group is 856 // NULL, we need to recreate one ourselves, and use *that*. Note that if we're 857 // caching a BBuffer that we requested earlier, we have to Recycle() that buffer 858 // *before* deleting the buffer group, otherwise we'll deadlock waiting for that 859 // buffer to be recycled! 860 delete channel->fBufferGroup; // waits for all buffers to recycle 861 if (newGroup != NULL) 862 { 863 // we were given a valid group; just use that one from now on 864 channel->fBufferGroup = newGroup; 865 } 866 else 867 { 868 // we were passed a NULL group pointer; that means we construct 869 // our own buffer group to use from now on 870 size_t size = channel->fOutput.format.u.raw_audio.buffer_size; 871 int32 count = int32(fLatency / BufferDuration() + 1 + 1); 872 channel->fBufferGroup = new BBufferGroup(size, count); 873 } 874 875 return B_OK; 876 } 877 878 879 status_t 880 MultiAudioNode::PrepareToConnect(const media_source& what, 881 const media_destination& where, media_format* format, 882 media_source* source, char* name) 883 { 884 CALLED(); 885 886 // is this our output? 887 node_output* channel = _FindOutput(what); 888 if (channel == NULL) { 889 fprintf(stderr, "MultiAudioNode::PrepareToConnect returning B_MEDIA_BAD_SOURCE\n"); 890 return B_MEDIA_BAD_SOURCE; 891 } 892 893 // are we already connected? 894 if (channel->fOutput.destination != media_destination::null) 895 return B_MEDIA_ALREADY_CONNECTED; 896 897 // the format may not yet be fully specialized (the consumer might have 898 // passed back some wildcards). Finish specializing it now, and return an 899 // error if we don't support the requested format. 900 if (format->type != B_MEDIA_RAW_AUDIO) { 901 fprintf(stderr, "\tnon-raw-audio format?!\n"); 902 return B_MEDIA_BAD_FORMAT; 903 } 904 905 // !!! validate all other fields except for buffer_size here, because the 906 // consumer might have supplied different values from AcceptFormat()? 907 908 // check the buffer size, which may still be wildcarded 909 if (format->u.raw_audio.buffer_size 910 == media_raw_audio_format::wildcard.buffer_size) { 911 format->u.raw_audio.buffer_size = 2048; 912 // pick something comfortable to suggest 913 fprintf(stderr, "\tno buffer size provided, suggesting %lu\n", 914 format->u.raw_audio.buffer_size); 915 } else { 916 fprintf(stderr, "\tconsumer suggested buffer_size %lu\n", 917 format->u.raw_audio.buffer_size); 918 } 919 920 // Now reserve the connection, and return information about it 921 channel->fOutput.destination = where; 922 channel->fOutput.format = *format; 923 924 *source = channel->fOutput.source; 925 #ifdef __HAIKU__ 926 strlcpy(name, channel->fOutput.name, B_MEDIA_NAME_LENGTH); 927 #else 928 strncpy(name, channel->fOutput.name, B_MEDIA_NAME_LENGTH); 929 #endif 930 return B_OK; 931 } 932 933 934 void 935 MultiAudioNode::Connect(status_t error, const media_source& source, 936 const media_destination& destination, const media_format& format, 937 char* name) 938 { 939 CALLED(); 940 941 // is this our output? 942 node_output* channel = _FindOutput(source); 943 if (channel == NULL) { 944 fprintf(stderr, "MultiAudioNode::Connect returning (cause : B_MEDIA_BAD_SOURCE)\n"); 945 return; 946 } 947 948 // If something earlier failed, Connect() might still be called, but with 949 // a non-zero error code. When that happens we simply unreserve the 950 // connection and do nothing else. 951 if (error) { 952 channel->fOutput.destination = media_destination::null; 953 channel->fOutput.format = channel->fPreferredFormat; 954 return; 955 } 956 957 // Okay, the connection has been confirmed. Record the destination and 958 // format that we agreed on, and report our connection name again. 959 channel->fOutput.destination = destination; 960 channel->fOutput.format = format; 961 #ifdef __HAIKU__ 962 strlcpy(name, channel->fOutput.name, B_MEDIA_NAME_LENGTH); 963 #else 964 strncpy(name, channel->fOutput.name, B_MEDIA_NAME_LENGTH); 965 #endif 966 967 // reset our buffer duration, etc. to avoid later calculations 968 bigtime_t duration = channel->fOutput.format.u.raw_audio.buffer_size * 10000 969 / ((channel->fOutput.format.u.raw_audio.format & media_raw_audio_format::B_AUDIO_SIZE_MASK) 970 * channel->fOutput.format.u.raw_audio.channel_count) 971 / ((int32)(channel->fOutput.format.u.raw_audio.frame_rate / 100)); 972 973 SetBufferDuration(duration); 974 975 // Now that we're connected, we can determine our downstream latency. 976 // Do so, then make sure we get our events early enough. 977 media_node_id id; 978 FindLatencyFor(channel->fOutput.destination, &fLatency, &id); 979 PRINT(("\tdownstream latency = %Ld\n", fLatency)); 980 981 fInternalLatency = BufferDuration(); 982 PRINT(("\tbuffer-filling took %Ld usec on this machine\n", fInternalLatency)); 983 //SetEventLatency(fLatency + fInternalLatency); 984 985 // Set up the buffer group for our connection, as long as nobody handed us 986 // a buffer group (via SetBufferGroup()) prior to this. That can happen, 987 // for example, if the consumer calls SetOutputBuffersFor() on us from 988 // within its Connected() method. 989 if (!channel->fBufferGroup) 990 _AllocateBuffers(*channel); 991 992 _StartOutputThreadIfNeeded(); 993 } 994 995 996 void 997 MultiAudioNode::Disconnect(const media_source& what, 998 const media_destination& where) 999 { 1000 CALLED(); 1001 1002 // is this our output? 1003 node_output* channel = _FindOutput(what); 1004 if (channel == NULL) { 1005 fprintf(stderr, "MultiAudioNode::Disconnect() returning (cause : B_MEDIA_BAD_SOURCE)\n"); 1006 return; 1007 } 1008 1009 // Make sure that our connection is the one being disconnected 1010 if (where == channel->fOutput.destination 1011 && what == channel->fOutput.source) { 1012 channel->fOutput.destination = media_destination::null; 1013 channel->fOutput.format = channel->fPreferredFormat; 1014 delete channel->fBufferGroup; 1015 channel->fBufferGroup = NULL; 1016 } else { 1017 fprintf(stderr, "\tDisconnect() called with wrong source/destination (%ld/%ld), ours is (%ld/%ld)\n", 1018 what.id, where.id, channel->fOutput.source.id, channel->fOutput.destination.id); 1019 } 1020 } 1021 1022 1023 void 1024 MultiAudioNode::LateNoticeReceived(const media_source& what, bigtime_t howMuch, 1025 bigtime_t performanceTime) 1026 { 1027 CALLED(); 1028 1029 // is this our output? 1030 node_output *channel = _FindOutput(what); 1031 if (channel == NULL) 1032 return; 1033 1034 // If we're late, we need to catch up. Respond in a manner appropriate 1035 // to our current run mode. 1036 if (RunMode() == B_RECORDING) { 1037 // A hardware capture node can't adjust; it simply emits buffers at 1038 // appropriate points. We (partially) simulate this by not adjusting 1039 // our behavior upon receiving late notices -- after all, the hardware 1040 // can't choose to capture "sooner".... 1041 } else if (RunMode() == B_INCREASE_LATENCY) { 1042 // We're late, and our run mode dictates that we try to produce buffers 1043 // earlier in order to catch up. This argues that the downstream nodes 1044 // are not properly reporting their latency, but there's not much we can 1045 // do about that at the moment, so we try to start producing buffers 1046 // earlier to compensate. 1047 fInternalLatency += howMuch; 1048 SetEventLatency(fLatency + fInternalLatency); 1049 1050 fprintf(stderr, "\tincreasing latency to %Ld\n", 1051 fLatency + fInternalLatency); 1052 } else { 1053 // The other run modes dictate various strategies for sacrificing data 1054 // quality in the interests of timely data delivery. The way *we* do 1055 // this is to skip a buffer, which catches us up in time by one buffer 1056 // duration. 1057 /*size_t nSamples = fOutput.format.u.raw_audio.buffer_size / sizeof(float); 1058 mSamplesSent += nSamples;*/ 1059 1060 fprintf(stderr, "\tskipping a buffer to try to catch up\n"); 1061 } 1062 } 1063 1064 1065 void 1066 MultiAudioNode::EnableOutput(const media_source& what, bool enabled, 1067 int32* _deprecated_) 1068 { 1069 CALLED(); 1070 1071 // If I had more than one output, I'd have to walk my list of output 1072 // records to see which one matched the given source, and then 1073 // enable/disable that one. But this node only has one output, so I 1074 // just make sure the given source matches, then set the enable state 1075 // accordingly. 1076 node_output *channel = _FindOutput(what); 1077 if (channel != NULL) 1078 channel->fOutputEnabled = enabled; 1079 } 1080 1081 1082 void 1083 MultiAudioNode::AdditionalBufferRequested(const media_source& source, 1084 media_buffer_id previousBuffer, bigtime_t previousTime, 1085 const media_seek_tag* previousTag) 1086 { 1087 CALLED(); 1088 // we don't support offline mode 1089 return; 1090 } 1091 1092 1093 // #pragma mark - BMediaEventLooper 1094 1095 1096 void 1097 MultiAudioNode::HandleEvent(const media_timed_event* event, bigtime_t lateness, 1098 bool realTimeEvent) 1099 { 1100 //CALLED(); 1101 switch (event->type) { 1102 case BTimedEventQueue::B_START: 1103 _HandleStart(event, lateness, realTimeEvent); 1104 break; 1105 case BTimedEventQueue::B_SEEK: 1106 _HandleSeek(event, lateness, realTimeEvent); 1107 break; 1108 case BTimedEventQueue::B_WARP: 1109 _HandleWarp(event, lateness, realTimeEvent); 1110 break; 1111 case BTimedEventQueue::B_STOP: 1112 _HandleStop(event, lateness, realTimeEvent); 1113 break; 1114 case BTimedEventQueue::B_HANDLE_BUFFER: 1115 if (RunState() == BMediaEventLooper::B_STARTED) 1116 _HandleBuffer(event, lateness, realTimeEvent); 1117 break; 1118 case BTimedEventQueue::B_DATA_STATUS: 1119 _HandleDataStatus(event, lateness, realTimeEvent); 1120 break; 1121 case BTimedEventQueue::B_PARAMETER: 1122 _HandleParameter(event, lateness, realTimeEvent); 1123 break; 1124 default: 1125 fprintf(stderr," unknown event type: %li\n", event->type); 1126 break; 1127 } 1128 } 1129 1130 1131 status_t 1132 MultiAudioNode::_HandleBuffer(const media_timed_event* event, 1133 bigtime_t lateness, bool realTimeEvent) 1134 { 1135 //CALLED(); 1136 BBuffer* buffer = const_cast<BBuffer*>((BBuffer*)event->pointer); 1137 if (buffer == NULL) 1138 return B_BAD_VALUE; 1139 1140 //PRINT(("buffer->Header()->destination : %i\n", buffer->Header()->destination)); 1141 1142 node_input* channel = _FindInput(buffer->Header()->destination); 1143 if (channel == NULL) { 1144 buffer->Recycle(); 1145 return B_MEDIA_BAD_DESTINATION; 1146 } 1147 1148 bigtime_t now = TimeSource()->Now(); 1149 bigtime_t performanceTime = buffer->Header()->start_time; 1150 1151 // the how_early calculate here doesn't include scheduling latency because 1152 // we've already been scheduled to handle the buffer 1153 bigtime_t howEarly = performanceTime - EventLatency() - now; 1154 1155 // if the buffer is late, we ignore it and report the fact to the producer 1156 // who sent it to us 1157 if (RunMode() != B_OFFLINE && RunMode() != B_RECORDING && howEarly < 0LL) { 1158 // lateness doesn't matter in offline mode or in recording mode 1159 //mLateBuffers++; 1160 NotifyLateProducer(channel->fInput.source, -howEarly, performanceTime); 1161 fprintf(stderr," <- LATE BUFFER : %lli\n", howEarly); 1162 buffer->Recycle(); 1163 } else { 1164 //WriteBuffer(buffer, *channel); 1165 // TODO: This seems like a very fragile mechanism to wait until 1166 // the previous buffer for this channel has been processed... 1167 if (channel->fBuffer != NULL) { 1168 PRINT(("MultiAudioNode::HandleBuffer snoozing recycling channelId : %li, how_early:%Ld\n", channel->fChannelId, howEarly)); 1169 //channel->fBuffer->Recycle(); 1170 snooze(100); 1171 if (channel->fBuffer != NULL) 1172 buffer->Recycle(); 1173 else 1174 channel->fBuffer = buffer; 1175 } else { 1176 //PRINT(("MultiAudioNode::HandleBuffer writing channelId : %li, how_early:%Ld\n", channel->fChannelId, howEarly)); 1177 channel->fBuffer = buffer; 1178 } 1179 } 1180 return B_OK; 1181 } 1182 1183 1184 status_t 1185 MultiAudioNode::_HandleDataStatus(const media_timed_event* event, 1186 bigtime_t lateness, bool realTimeEvent) 1187 { 1188 //CALLED(); 1189 PRINT(("MultiAudioNode::HandleDataStatus status:%li, lateness:%Li\n", event->data, lateness)); 1190 switch (event->data) { 1191 case B_DATA_NOT_AVAILABLE: 1192 break; 1193 case B_DATA_AVAILABLE: 1194 break; 1195 case B_PRODUCER_STOPPED: 1196 break; 1197 default: 1198 break; 1199 } 1200 return B_OK; 1201 } 1202 1203 1204 status_t 1205 MultiAudioNode::_HandleStart(const media_timed_event *event, bigtime_t lateness, 1206 bool realTimeEvent) 1207 { 1208 CALLED(); 1209 if (RunState() != B_STARTED) { 1210 } 1211 return B_OK; 1212 } 1213 1214 1215 status_t 1216 MultiAudioNode::_HandleSeek(const media_timed_event* event, bigtime_t lateness, 1217 bool realTimeEvent) 1218 { 1219 CALLED(); 1220 PRINT(("MultiAudioNode::HandleSeek(t=%lld,d=%li,bd=%lld)\n", 1221 event->event_time,event->data,event->bigdata)); 1222 return B_OK; 1223 } 1224 1225 1226 status_t 1227 MultiAudioNode::_HandleWarp(const media_timed_event* event, bigtime_t lateness, 1228 bool realTimeEvent) 1229 { 1230 CALLED(); 1231 return B_OK; 1232 } 1233 1234 1235 status_t 1236 MultiAudioNode::_HandleStop(const media_timed_event* event, bigtime_t lateness, 1237 bool realTimeEvent) 1238 { 1239 CALLED(); 1240 // flush the queue so downstreamers don't get any more 1241 EventQueue()->FlushEvents(0, BTimedEventQueue::B_ALWAYS, true, 1242 BTimedEventQueue::B_HANDLE_BUFFER); 1243 1244 //_StopOutputThread(); 1245 return B_OK; 1246 } 1247 1248 1249 status_t 1250 MultiAudioNode::_HandleParameter(const media_timed_event* event, 1251 bigtime_t lateness, bool realTimeEvent) 1252 { 1253 CALLED(); 1254 return B_OK; 1255 } 1256 1257 1258 // #pragma mark - BTimeSource 1259 1260 1261 void 1262 MultiAudioNode::SetRunMode(run_mode mode) 1263 { 1264 CALLED(); 1265 PRINT(("MultiAudioNode::SetRunMode mode:%i\n", mode)); 1266 //BTimeSource::SetRunMode(mode); 1267 } 1268 1269 1270 status_t 1271 MultiAudioNode::TimeSourceOp(const time_source_op_info& op, void* _reserved) 1272 { 1273 CALLED(); 1274 switch (op.op) { 1275 case B_TIMESOURCE_START: 1276 PRINT(("TimeSourceOp op B_TIMESOURCE_START\n")); 1277 if (RunState() != BMediaEventLooper::B_STARTED) { 1278 fTimeSourceStarted = true; 1279 _StartOutputThreadIfNeeded(); 1280 1281 media_timed_event startEvent(0, BTimedEventQueue::B_START); 1282 EventQueue()->AddEvent(startEvent); 1283 } 1284 break; 1285 case B_TIMESOURCE_STOP: 1286 PRINT(("TimeSourceOp op B_TIMESOURCE_STOP\n")); 1287 if (RunState() == BMediaEventLooper::B_STARTED) { 1288 media_timed_event stopEvent(0, BTimedEventQueue::B_STOP); 1289 EventQueue()->AddEvent(stopEvent); 1290 fTimeSourceStarted = false; 1291 _StopOutputThread(); 1292 PublishTime(0, 0, 0); 1293 } 1294 break; 1295 case B_TIMESOURCE_STOP_IMMEDIATELY: 1296 PRINT(("TimeSourceOp op B_TIMESOURCE_STOP_IMMEDIATELY\n")); 1297 if (RunState() == BMediaEventLooper::B_STARTED) { 1298 media_timed_event stopEvent(0, BTimedEventQueue::B_STOP); 1299 EventQueue()->AddEvent(stopEvent); 1300 fTimeSourceStarted = false; 1301 _StopOutputThread(); 1302 PublishTime(0, 0, 0); 1303 } 1304 break; 1305 case B_TIMESOURCE_SEEK: 1306 PRINT(("TimeSourceOp op B_TIMESOURCE_SEEK\n")); 1307 BroadcastTimeWarp(op.real_time, op.performance_time); 1308 break; 1309 default: 1310 break; 1311 } 1312 return B_OK; 1313 } 1314 1315 1316 // #pragma mark - BControllable 1317 1318 1319 status_t 1320 MultiAudioNode::GetParameterValue(int32 id, bigtime_t* lastChange, void* value, 1321 size_t* size) 1322 { 1323 CALLED(); 1324 1325 PRINT(("id : %li\n", id)); 1326 BParameter* parameter = NULL; 1327 for (int32 i = 0; i < fWeb->CountParameters(); i++) { 1328 parameter = fWeb->ParameterAt(i); 1329 if (parameter->ID() == id) 1330 break; 1331 } 1332 1333 if (parameter == NULL) { 1334 // Hmmm, we were asked for a parameter that we don't actually 1335 // support. Report an error back to the caller. 1336 PRINT(("\terror - asked for illegal parameter %ld\n", id)); 1337 return B_ERROR; 1338 } 1339 1340 if (id == PARAMETER_ID_INPUT_FREQUENCY 1341 || id == PARAMETER_ID_OUTPUT_FREQUENCY) { 1342 const multi_format_info& info = fDevice->FormatInfo(); 1343 1344 uint32 rate = id == PARAMETER_ID_INPUT_FREQUENCY 1345 ? info.input.rate : info.output.rate; 1346 1347 if (*size < sizeof(rate)) 1348 return B_ERROR; 1349 1350 memcpy(value, &rate, sizeof(rate)); 1351 *size = sizeof(rate); 1352 return B_OK; 1353 } 1354 1355 multi_mix_value_info info; 1356 multi_mix_value values[2]; 1357 info.values = values; 1358 info.item_count = 0; 1359 multi_mix_control* controls = fDevice->MixControlInfo().controls; 1360 int32 control_id = controls[id - 100].id; 1361 1362 if (*size < sizeof(float)) 1363 return B_ERROR; 1364 1365 if (parameter->Type() == BParameter::B_CONTINUOUS_PARAMETER) { 1366 info.item_count = 1; 1367 values[0].id = control_id; 1368 1369 if (parameter->CountChannels() == 2) { 1370 if (*size < 2*sizeof(float)) 1371 return B_ERROR; 1372 info.item_count = 2; 1373 values[1].id = controls[id + 1 - 100].id; 1374 } 1375 } else if(parameter->Type() == BParameter::B_DISCRETE_PARAMETER) { 1376 info.item_count = 1; 1377 values[0].id = control_id; 1378 } 1379 1380 if (info.item_count > 0) { 1381 status_t status = fDevice->GetMix(&info); 1382 if (status != B_OK) { 1383 fprintf(stderr, "Failed on DRIVER_GET_MIX\n"); 1384 } else { 1385 if (parameter->Type() == BParameter::B_CONTINUOUS_PARAMETER) { 1386 ((float*)value)[0] = values[0].gain; 1387 *size = sizeof(float); 1388 1389 if (parameter->CountChannels() == 2) { 1390 ((float*)value)[1] = values[1].gain; 1391 *size = 2*sizeof(float); 1392 } 1393 1394 for (uint32 i = 0; i < *size / sizeof(float); i++) { 1395 PRINT(("GetParameterValue B_CONTINUOUS_PARAMETER value[%li] : %f\n", i, ((float*)value)[i])); 1396 } 1397 } else if (parameter->Type() == BParameter::B_DISCRETE_PARAMETER) { 1398 BDiscreteParameter* discrete = (BDiscreteParameter*)parameter; 1399 if (discrete->CountItems() <= 2) 1400 ((int32*)value)[0] = values[0].enable ? 1 : 0; 1401 else 1402 ((int32*)value)[0] = values[0].mux; 1403 1404 *size = sizeof(int32); 1405 1406 for (uint32 i = 0; i < *size / sizeof(int32); i++) { 1407 PRINT(("GetParameterValue B_DISCRETE_PARAMETER value[%li] : %li\n", i, ((int32*)value)[i])); 1408 } 1409 } 1410 } 1411 } 1412 return B_OK; 1413 } 1414 1415 1416 void 1417 MultiAudioNode::SetParameterValue(int32 id, bigtime_t performanceTime, 1418 const void* value, size_t size) 1419 { 1420 CALLED(); 1421 PRINT(("id : %li, performance_time : %lld, size : %li\n", id, performanceTime, size)); 1422 1423 BParameter* parameter = NULL; 1424 for (int32 i = 0; i < fWeb->CountParameters(); i++) { 1425 parameter = fWeb->ParameterAt(i); 1426 if (parameter->ID() == id) 1427 break; 1428 } 1429 1430 if (parameter == NULL) 1431 return; 1432 1433 if (id == PARAMETER_ID_OUTPUT_FREQUENCY 1434 || (id == PARAMETER_ID_INPUT_FREQUENCY 1435 && (fDevice->Description().output_rates & B_SR_SAME_AS_INPUT))) { 1436 uint32 rate; 1437 if (size < sizeof(rate)) 1438 return; 1439 memcpy(&rate, value, sizeof(rate)); 1440 1441 if (rate == fOutputPreferredFormat.u.raw_audio.frame_rate) 1442 return; 1443 1444 // create a cookie RequestCompleted() can get the old frame rate from, 1445 // if anything goes wrong 1446 FrameRateChangeCookie* cookie 1447 = new(std::nothrow) FrameRateChangeCookie; 1448 if (cookie == NULL) 1449 return; 1450 1451 cookie->oldFrameRate = fOutputPreferredFormat.u.raw_audio.frame_rate; 1452 cookie->id = id; 1453 BReference<FrameRateChangeCookie> cookieReference(cookie, true); 1454 1455 // NOTE: What we should do is call RequestFormatChange() for all 1456 // connections and change the device's format in RequestCompleted(). 1457 // Unfortunately we need the new buffer size first, which we only get 1458 // from the device after changing the format. So we do that now and 1459 // reset it in RequestCompleted(), if something went wrong. This causes 1460 // the buffers we receive until then to be played incorrectly leading 1461 // to unpleasant noise. 1462 float frameRate = MultiAudio::convert_to_sample_rate(rate); 1463 if (_SetNodeInputFrameRate(frameRate) != B_OK) 1464 return; 1465 1466 for (int32 i = 0; i < fInputs.CountItems(); i++) { 1467 node_input* channel = (node_input*)fInputs.ItemAt(i); 1468 if (channel->fInput.source == media_source::null) 1469 continue; 1470 1471 media_format newFormat = channel->fInput.format; 1472 newFormat.u.raw_audio.frame_rate = frameRate; 1473 newFormat.u.raw_audio.buffer_size 1474 = fOutputPreferredFormat.u.raw_audio.buffer_size; 1475 1476 int32 changeTag = 0; 1477 status_t error = RequestFormatChange(channel->fInput.source, 1478 channel->fInput.destination, newFormat, NULL, &changeTag); 1479 if (error == B_OK) 1480 cookie->AcquireReference(); 1481 } 1482 1483 if (id != PARAMETER_ID_INPUT_FREQUENCY) 1484 return; 1485 //Do not return cause we should go in the next if 1486 } 1487 1488 if (id == PARAMETER_ID_INPUT_FREQUENCY) { 1489 uint32 rate; 1490 if (size < sizeof(rate)) 1491 return; 1492 memcpy(&rate, value, sizeof(rate)); 1493 1494 if (rate == fInputPreferredFormat.u.raw_audio.frame_rate) 1495 return; 1496 1497 // create a cookie RequestCompleted() can get the old frame rate from, 1498 // if anything goes wrong 1499 FrameRateChangeCookie* cookie 1500 = new(std::nothrow) FrameRateChangeCookie; 1501 if (cookie == NULL) 1502 return; 1503 1504 cookie->oldFrameRate = fInputPreferredFormat.u.raw_audio.frame_rate; 1505 cookie->id = id; 1506 BReference<FrameRateChangeCookie> cookieReference(cookie, true); 1507 1508 // NOTE: What we should do is call RequestFormatChange() for all 1509 // connections and change the device's format in RequestCompleted(). 1510 // Unfortunately we need the new buffer size first, which we only get 1511 // from the device after changing the format. So we do that now and 1512 // reset it in RequestCompleted(), if something went wrong. This causes 1513 // the buffers we receive until then to be played incorrectly leading 1514 // to unpleasant noise. 1515 float frameRate = MultiAudio::convert_to_sample_rate(rate); 1516 if (_SetNodeOutputFrameRate(frameRate) != B_OK) 1517 return; 1518 1519 for (int32 i = 0; i < fOutputs.CountItems(); i++) { 1520 node_output* channel = (node_output*)fOutputs.ItemAt(i); 1521 if (channel->fOutput.source == media_source::null) 1522 continue; 1523 1524 media_format newFormat = channel->fOutput.format; 1525 newFormat.u.raw_audio.frame_rate = frameRate; 1526 newFormat.u.raw_audio.buffer_size 1527 = fInputPreferredFormat.u.raw_audio.buffer_size; 1528 1529 int32 changeTag = 0; 1530 status_t error = RequestFormatChange(channel->fOutput.source, 1531 channel->fOutput.destination, newFormat, NULL, &changeTag); 1532 if (error == B_OK) 1533 cookie->AcquireReference(); 1534 } 1535 1536 return; 1537 } 1538 1539 multi_mix_value_info info; 1540 multi_mix_value values[2]; 1541 info.values = values; 1542 info.item_count = 0; 1543 multi_mix_control* controls = fDevice->MixControlInfo().controls; 1544 int32 control_id = controls[id - 100].id; 1545 1546 if (parameter->Type() == BParameter::B_CONTINUOUS_PARAMETER) { 1547 for (uint32 i = 0; i < size / sizeof(float); i++) { 1548 PRINT(("SetParameterValue B_CONTINUOUS_PARAMETER value[%li] : %f\n", i, ((float*)value)[i])); 1549 } 1550 info.item_count = 1; 1551 values[0].id = control_id; 1552 values[0].gain = ((float*)value)[0]; 1553 1554 if (parameter->CountChannels() == 2) { 1555 info.item_count = 2; 1556 values[1].id = controls[id + 1 - 100].id; 1557 values[1].gain = ((float*)value)[1]; 1558 } 1559 } else if (parameter->Type() == BParameter::B_DISCRETE_PARAMETER) { 1560 for (uint32 i = 0; i < size / sizeof(int32); i++) { 1561 PRINT(("SetParameterValue B_DISCRETE_PARAMETER value[%li] : %li\n", i, ((int32*)value)[i])); 1562 } 1563 1564 BDiscreteParameter* discrete = (BDiscreteParameter*)parameter; 1565 if (discrete->CountItems() <= 2) { 1566 info.item_count = 1; 1567 values[0].id = control_id; 1568 values[0].enable = ((int32*)value)[0] == 1; 1569 } else { 1570 info.item_count = 1; 1571 values[0].id = control_id; 1572 values[0].mux = ((uint32*)value)[0]; 1573 } 1574 } 1575 1576 if (info.item_count > 0) { 1577 status_t status = fDevice->SetMix(&info); 1578 if (status != B_OK) 1579 fprintf(stderr, "Failed on DRIVER_SET_MIX\n"); 1580 } 1581 } 1582 1583 1584 BParameterWeb* 1585 MultiAudioNode::MakeParameterWeb() 1586 { 1587 CALLED(); 1588 BParameterWeb* web = new BParameterWeb; 1589 1590 PRINT(("MixControlInfo().control_count : %li\n", 1591 fDevice->MixControlInfo().control_count)); 1592 1593 BParameterGroup* generalGroup = web->MakeGroup(B_TRANSLATE("General")); 1594 1595 const multi_description& description = fDevice->Description(); 1596 1597 if (description.output_rates & B_SR_SAME_AS_INPUT) { 1598 _CreateFrequencyParameterGroup(generalGroup, B_TRANSLATE("Input & Output"), 1599 PARAMETER_ID_INPUT_FREQUENCY, description.input_rates); 1600 } else { 1601 _CreateFrequencyParameterGroup(generalGroup, B_TRANSLATE("Input"), 1602 PARAMETER_ID_INPUT_FREQUENCY, description.input_rates); 1603 _CreateFrequencyParameterGroup(generalGroup, B_TRANSLATE("Output"), 1604 PARAMETER_ID_OUTPUT_FREQUENCY, description.output_rates); 1605 } 1606 1607 multi_mix_control* controls = fDevice->MixControlInfo().controls; 1608 1609 for (int i = 0; i < fDevice->MixControlInfo().control_count; i++) { 1610 if (controls[i].flags & B_MULTI_MIX_GROUP && controls[i].parent == 0) { 1611 PRINT(("NEW_GROUP\n")); 1612 BParameterGroup* child = web->MakeGroup( 1613 _GetControlName(controls[i])); 1614 1615 int32 numParameters = 0; 1616 _ProcessGroup(child, i, numParameters); 1617 } 1618 } 1619 1620 return web; 1621 } 1622 1623 1624 const char* 1625 MultiAudioNode::_GetControlName(multi_mix_control& control) 1626 { 1627 if (control.string != S_null) 1628 return kMultiControlString[control.string]; 1629 1630 return control.name; 1631 } 1632 1633 1634 void 1635 MultiAudioNode::_ProcessGroup(BParameterGroup* group, int32 index, 1636 int32& numParameters) 1637 { 1638 CALLED(); 1639 multi_mix_control* parent = &fDevice->MixControlInfo().controls[index]; 1640 multi_mix_control* controls = fDevice->MixControlInfo().controls; 1641 1642 for (int32 i = 0; i < fDevice->MixControlInfo().control_count; i++) { 1643 if (controls[i].parent != parent->id) 1644 continue; 1645 1646 const char* name = _GetControlName(controls[i]); 1647 1648 if (controls[i].flags & B_MULTI_MIX_GROUP) { 1649 PRINT(("NEW_GROUP\n")); 1650 BParameterGroup* child = group->MakeGroup(name); 1651 child->MakeNullParameter(100 + i, B_MEDIA_RAW_AUDIO, name, 1652 B_WEB_BUFFER_OUTPUT); 1653 1654 int32 num = 1; 1655 _ProcessGroup(child, i, num); 1656 } else if (controls[i].flags & B_MULTI_MIX_MUX) { 1657 PRINT(("NEW_MUX\n")); 1658 BDiscreteParameter* parameter = group->MakeDiscreteParameter( 1659 100 + i, B_MEDIA_RAW_AUDIO, name, B_INPUT_MUX); 1660 if (numParameters > 0) { 1661 (group->ParameterAt(numParameters - 1))->AddOutput( 1662 group->ParameterAt(numParameters)); 1663 numParameters++; 1664 } 1665 _ProcessMux(parameter, i); 1666 } else if (controls[i].flags & B_MULTI_MIX_GAIN) { 1667 PRINT(("NEW_GAIN\n")); 1668 group->MakeContinuousParameter(100 + i, 1669 B_MEDIA_RAW_AUDIO, "", B_MASTER_GAIN, "dB", 1670 controls[i].gain.min_gain, controls[i].gain.max_gain, 1671 controls[i].gain.granularity); 1672 1673 if (i + 1 < fDevice->MixControlInfo().control_count 1674 && controls[i + 1].master == controls[i].id 1675 && controls[i + 1].flags & B_MULTI_MIX_GAIN) { 1676 group->ParameterAt(numParameters)->SetChannelCount( 1677 group->ParameterAt(numParameters)->CountChannels() + 1); 1678 i++; 1679 } 1680 1681 PRINT(("num parameters : %ld\n", numParameters)); 1682 if (numParameters > 0) { 1683 (group->ParameterAt(numParameters - 1))->AddOutput( 1684 group->ParameterAt(numParameters)); 1685 numParameters++; 1686 } 1687 } else if (controls[i].flags & B_MULTI_MIX_ENABLE) { 1688 PRINT(("NEW_ENABLE\n")); 1689 if (controls[i].string == S_MUTE) { 1690 group->MakeDiscreteParameter(100 + i, 1691 B_MEDIA_RAW_AUDIO, name, B_MUTE); 1692 } else { 1693 group->MakeDiscreteParameter(100 + i, 1694 B_MEDIA_RAW_AUDIO, name, B_ENABLE); 1695 } 1696 if (numParameters > 0) { 1697 (group->ParameterAt(numParameters - 1))->AddOutput( 1698 group->ParameterAt(numParameters)); 1699 numParameters++; 1700 } 1701 } 1702 } 1703 } 1704 1705 1706 void 1707 MultiAudioNode::_ProcessMux(BDiscreteParameter* parameter, int32 index) 1708 { 1709 CALLED(); 1710 multi_mix_control* parent = &fDevice->MixControlInfo().controls[index]; 1711 multi_mix_control* controls = fDevice->MixControlInfo().controls; 1712 int32 itemIndex = 0; 1713 1714 for (int32 i = 0; i < fDevice->MixControlInfo().control_count; i++) { 1715 if (controls[i].parent != parent->id) 1716 continue; 1717 1718 if (controls[i].flags & B_MULTI_MIX_MUX_VALUE) { 1719 PRINT(("NEW_MUX_VALUE\n")); 1720 parameter->AddItem(itemIndex, _GetControlName(controls[i])); 1721 itemIndex++; 1722 } 1723 } 1724 } 1725 1726 1727 void 1728 MultiAudioNode::_CreateFrequencyParameterGroup(BParameterGroup* parentGroup, 1729 const char* name, int32 parameterID, uint32 rateMask) 1730 { 1731 BParameterGroup* group = parentGroup->MakeGroup(name); 1732 BDiscreteParameter* frequencyParam = group->MakeDiscreteParameter( 1733 parameterID, B_MEDIA_NO_TYPE, BString(name) << B_TRANSLATE(" frequency:"), 1734 B_GENERIC); 1735 1736 for (int32 i = 0; kSampleRateInfos[i].name != NULL; i++) { 1737 const sample_rate_info& info = kSampleRateInfos[i]; 1738 if ((rateMask & info.multiAudioRate) != 0) { 1739 frequencyParam->AddItem(info.multiAudioRate, 1740 BString(info.name) << " Hz"); 1741 } 1742 } 1743 } 1744 1745 1746 // #pragma mark - MultiAudioNode specific functions 1747 1748 1749 int32 1750 MultiAudioNode::_OutputThread() 1751 { 1752 CALLED(); 1753 multi_buffer_info bufferInfo; 1754 bufferInfo.info_size = sizeof(multi_buffer_info); 1755 bufferInfo.playback_buffer_cycle = 0; 1756 bufferInfo.record_buffer_cycle = 0; 1757 1758 // init the performance time computation 1759 { 1760 BAutolock locker(fBufferLock); 1761 fTimeComputer.Init(fOutputPreferredFormat.u.raw_audio.frame_rate, 1762 system_time()); 1763 } 1764 1765 while (true) { 1766 // TODO: why this semaphore?? 1767 if (acquire_sem_etc(fBufferFreeSem, 1, B_RELATIVE_TIMEOUT, 0) 1768 == B_BAD_SEM_ID) { 1769 return B_OK; 1770 } 1771 1772 BAutolock locker(fBufferLock); 1773 // make sure the buffers don't change while we're playing with them 1774 1775 // send buffer 1776 fDevice->BufferExchange(&bufferInfo); 1777 1778 //PRINT(("MultiAudioNode::RunThread: buffer exchanged\n")); 1779 //PRINT(("MultiAudioNode::RunThread: played_real_time : %Ld\n", bufferInfo.played_real_time)); 1780 //PRINT(("MultiAudioNode::RunThread: played_frames_count : %Ld\n", bufferInfo.played_frames_count)); 1781 //PRINT(("MultiAudioNode::RunThread: buffer_cycle : %li\n", bufferInfo.playback_buffer_cycle)); 1782 1783 for (int32 i = 0; i < fInputs.CountItems(); i++) { 1784 node_input* input = (node_input*)fInputs.ItemAt(i); 1785 1786 if (bufferInfo.playback_buffer_cycle >= 0 1787 && bufferInfo.playback_buffer_cycle 1788 < fDevice->BufferList().return_playback_buffers 1789 && (input->fOldBufferInfo.playback_buffer_cycle 1790 != bufferInfo.playback_buffer_cycle 1791 || fDevice->BufferList().return_playback_buffers == 1) 1792 && (input->fInput.source != media_source::null 1793 || input->fChannelId == 0)) { 1794 //PRINT(("playback_buffer_cycle ok input : %li %ld\n", i, bufferInfo.playback_buffer_cycle)); 1795 1796 input->fBufferCycle = (bufferInfo.playback_buffer_cycle - 1 1797 + fDevice->BufferList().return_playback_buffers) 1798 % fDevice->BufferList().return_playback_buffers; 1799 1800 // update the timesource 1801 if (input->fChannelId == 0) { 1802 //PRINT(("updating timesource\n")); 1803 _UpdateTimeSource(bufferInfo, input->fOldBufferInfo, 1804 *input); 1805 } 1806 1807 input->fOldBufferInfo = bufferInfo; 1808 1809 if (input->fBuffer != NULL) { 1810 _FillNextBuffer(*input, input->fBuffer); 1811 input->fBuffer->Recycle(); 1812 input->fBuffer = NULL; 1813 } else { 1814 // put zeros in current buffer 1815 if (input->fInput.source != media_source::null) 1816 _WriteZeros(*input, input->fBufferCycle); 1817 //PRINT(("MultiAudioNode::Runthread WriteZeros\n")); 1818 } 1819 1820 // mark buffer free 1821 release_sem(fBufferFreeSem); 1822 } else { 1823 //PRINT(("playback_buffer_cycle non ok input : %i\n", i)); 1824 } 1825 } 1826 1827 PRINT(("MultiAudioNode::RunThread: recorded_real_time : %Ld\n", 1828 bufferInfo.recorded_real_time)); 1829 PRINT(("MultiAudioNode::RunThread: recorded_frames_count : %Ld\n", 1830 bufferInfo.recorded_frames_count)); 1831 PRINT(("MultiAudioNode::RunThread: record_buffer_cycle : %li\n", 1832 bufferInfo.record_buffer_cycle)); 1833 1834 for (int32 i = 0; i < fOutputs.CountItems(); i++) { 1835 node_output* output = (node_output*)fOutputs.ItemAt(i); 1836 1837 // make sure we're both started *and* connected before delivering a 1838 // buffer 1839 if (RunState() == BMediaEventLooper::B_STARTED 1840 && output->fOutput.destination != media_destination::null) { 1841 if (bufferInfo.record_buffer_cycle >= 0 1842 && bufferInfo.record_buffer_cycle 1843 < fDevice->BufferList().return_record_buffers 1844 && (output->fOldBufferInfo.record_buffer_cycle 1845 != bufferInfo.record_buffer_cycle 1846 || fDevice->BufferList().return_record_buffers == 1)) { 1847 //PRINT(("record_buffer_cycle ok\n")); 1848 1849 output->fBufferCycle = bufferInfo.record_buffer_cycle; 1850 1851 // Get the next buffer of data 1852 BBuffer* buffer = _FillNextBuffer(bufferInfo, *output); 1853 if (buffer != NULL) { 1854 // send the buffer downstream if and only if output is 1855 // enabled 1856 status_t err = B_ERROR; 1857 if (output->fOutputEnabled) { 1858 err = SendBuffer(buffer, output->fOutput.source, 1859 output->fOutput.destination); 1860 } 1861 if (err) { 1862 buffer->Recycle(); 1863 } else { 1864 // track how much media we've delivered so far 1865 size_t numSamples 1866 = output->fOutput.format.u.raw_audio.buffer_size 1867 / (output->fOutput.format.u.raw_audio.format 1868 & media_raw_audio_format::B_AUDIO_SIZE_MASK); 1869 output->fSamplesSent += numSamples; 1870 } 1871 } 1872 1873 output->fOldBufferInfo = bufferInfo; 1874 } else { 1875 //PRINT(("record_buffer_cycle non ok\n")); 1876 } 1877 } 1878 } 1879 } 1880 1881 return B_OK; 1882 } 1883 1884 1885 void 1886 MultiAudioNode::_WriteZeros(node_input& input, uint32 bufferCycle) 1887 { 1888 //CALLED(); 1889 /*int32 samples = input.fInput.format.u.raw_audio.buffer_size; 1890 if(input.fInput.format.u.raw_audio.format == media_raw_audio_format::B_AUDIO_UCHAR) { 1891 uint8 *sample = (uint8*)fDevice->BufferList().playback_buffers[input.fBufferCycle][input.fChannelId].base; 1892 for(int32 i = samples-1; i>=0; i--) 1893 *sample++ = 128; 1894 } else { 1895 int32 *sample = (int32*)fDevice->BufferList().playback_buffers[input.fBufferCycle][input.fChannelId].base; 1896 for(int32 i = (samples / 4)-1; i>=0; i--) 1897 *sample++ = 0; 1898 }*/ 1899 1900 uint32 channelCount = input.fFormat.u.raw_audio.channel_count; 1901 uint32 bufferSize = fDevice->BufferList().return_playback_buffer_size; 1902 size_t stride = fDevice->BufferList().playback_buffers[bufferCycle] 1903 [input.fChannelId].stride; 1904 1905 switch (input.fFormat.u.raw_audio.format) { 1906 case media_raw_audio_format::B_AUDIO_FLOAT: 1907 for (uint32 channel = 0; channel < channelCount; channel++) { 1908 char* dest = _PlaybackBuffer(bufferCycle, 1909 input.fChannelId + channel); 1910 for (uint32 i = bufferSize; i > 0; i--) { 1911 *(float*)dest = 0; 1912 dest += stride; 1913 } 1914 } 1915 break; 1916 1917 case media_raw_audio_format::B_AUDIO_DOUBLE: 1918 for (uint32 channel = 0; channel < channelCount; channel++) { 1919 char* dest = _PlaybackBuffer(bufferCycle, 1920 input.fChannelId + channel); 1921 for (uint32 i = bufferSize; i > 0; i--) { 1922 *(double*)dest = 0; 1923 dest += stride; 1924 } 1925 } 1926 break; 1927 1928 case media_raw_audio_format::B_AUDIO_INT: 1929 for (uint32 channel = 0; channel < channelCount; channel++) { 1930 char* dest = _PlaybackBuffer(bufferCycle, 1931 input.fChannelId + channel); 1932 for (uint32 i = bufferSize; i > 0; i--) { 1933 *(int32*)dest = 0; 1934 dest += stride; 1935 } 1936 } 1937 break; 1938 1939 case media_raw_audio_format::B_AUDIO_SHORT: 1940 for (uint32 channel = 0; channel < channelCount; channel++) { 1941 char* dest = _PlaybackBuffer(bufferCycle, 1942 input.fChannelId + channel); 1943 for (uint32 i = bufferSize; i > 0; i--) { 1944 *(int16*)dest = 0; 1945 dest += stride; 1946 } 1947 } 1948 break; 1949 1950 case media_raw_audio_format::B_AUDIO_UCHAR: 1951 for (uint32 channel = 0; channel < channelCount; channel++) { 1952 char* dest = _PlaybackBuffer(bufferCycle, 1953 input.fChannelId + channel); 1954 for (uint32 i = bufferSize; i > 0; i--) { 1955 *(uint8*)dest = 128; 1956 dest += stride; 1957 } 1958 } 1959 break; 1960 1961 case media_raw_audio_format::B_AUDIO_CHAR: 1962 for (uint32 channel = 0; channel < channelCount; channel++) { 1963 char* dest = _PlaybackBuffer(bufferCycle, 1964 input.fChannelId + channel); 1965 for (uint32 i = bufferSize; i > 0; i--) { 1966 *(int8*)dest = 0; 1967 dest += stride; 1968 } 1969 } 1970 break; 1971 1972 default: 1973 fprintf(stderr, "ERROR in WriteZeros format not handled\n"); 1974 } 1975 } 1976 1977 1978 void 1979 MultiAudioNode::_FillWithZeros(node_input& input) 1980 { 1981 CALLED(); 1982 for (int32 i = 0; i < fDevice->BufferList().return_playback_buffers; i++) 1983 _WriteZeros(input, i); 1984 } 1985 1986 1987 void 1988 MultiAudioNode::_FillNextBuffer(node_input& input, BBuffer* buffer) 1989 { 1990 uint32 channelCount = input.fInput.format.u.raw_audio.channel_count; 1991 size_t inputSampleSize = input.fInput.format.u.raw_audio.format 1992 & media_raw_audio_format::B_AUDIO_SIZE_MASK; 1993 1994 uint32 bufferSize = fDevice->BufferList().return_playback_buffer_size; 1995 1996 if (buffer->SizeUsed() / inputSampleSize / channelCount != bufferSize) { 1997 _WriteZeros(input, input.fBufferCycle); 1998 return; 1999 } 2000 2001 if (channelCount != input.fFormat.u.raw_audio.channel_count) { 2002 PRINT(("Channel count is different")); 2003 return; 2004 } 2005 2006 if (input.fResampler != NULL) { 2007 size_t srcStride = channelCount * inputSampleSize; 2008 2009 for (uint32 channel = 0; channel < channelCount; channel++) { 2010 char* src = (char*)buffer->Data() + channel * inputSampleSize; 2011 char* dst = _PlaybackBuffer(input.fBufferCycle, 2012 input.fChannelId + channel); 2013 size_t dstStride = _PlaybackStride(input.fBufferCycle, 2014 input.fChannelId + channel); 2015 2016 input.fResampler->Resample(src, srcStride, 2017 dst, dstStride, bufferSize); 2018 } 2019 } 2020 } 2021 2022 2023 status_t 2024 MultiAudioNode::_StartOutputThreadIfNeeded() 2025 { 2026 CALLED(); 2027 // the thread is already started ? 2028 if (fThread >= 0) 2029 return B_OK; 2030 2031 // allocate buffer free semaphore 2032 fBufferFreeSem = create_sem( 2033 fDevice->BufferList().return_playback_buffers - 1, 2034 "multi_audio out buffer free"); 2035 if (fBufferFreeSem < B_OK) 2036 return fBufferFreeSem; 2037 2038 PublishTime(-50, 0, 0); 2039 2040 fThread = spawn_thread(_OutputThreadEntry, "multi_audio audio output", 2041 B_REAL_TIME_PRIORITY, this); 2042 if (fThread < B_OK) { 2043 delete_sem(fBufferFreeSem); 2044 return fThread; 2045 } 2046 2047 resume_thread(fThread); 2048 return B_OK; 2049 } 2050 2051 2052 status_t 2053 MultiAudioNode::_StopOutputThread() 2054 { 2055 CALLED(); 2056 delete_sem(fBufferFreeSem); 2057 2058 status_t exitValue; 2059 wait_for_thread(fThread, &exitValue); 2060 fThread = -1; 2061 return B_OK; 2062 } 2063 2064 2065 void 2066 MultiAudioNode::_AllocateBuffers(node_output &channel) 2067 { 2068 CALLED(); 2069 2070 // allocate enough buffers to span our downstream latency, plus one 2071 size_t size = channel.fOutput.format.u.raw_audio.buffer_size; 2072 int32 count = int32(fLatency / BufferDuration() + 1 + 1); 2073 2074 PRINT(("\tlatency = %Ld, buffer duration = %Ld\n", fLatency, 2075 BufferDuration())); 2076 PRINT(("\tcreating group of %ld buffers, size = %lu\n", count, size)); 2077 channel.fBufferGroup = new BBufferGroup(size, count); 2078 } 2079 2080 2081 void 2082 MultiAudioNode::_UpdateTimeSource(multi_buffer_info& info, 2083 multi_buffer_info& oldInfo, node_input& input) 2084 { 2085 //CALLED(); 2086 if (!fTimeSourceStarted || oldInfo.played_real_time == 0) 2087 return; 2088 2089 fTimeComputer.AddTimeStamp(info.played_real_time, 2090 info.played_frames_count); 2091 PublishTime(fTimeComputer.PerformanceTime(), fTimeComputer.RealTime(), 2092 fTimeComputer.Drift()); 2093 } 2094 2095 2096 BBuffer* 2097 MultiAudioNode::_FillNextBuffer(multi_buffer_info &info, node_output &output) 2098 { 2099 //CALLED(); 2100 // get a buffer from our buffer group 2101 //PRINT(("buffer size : %i, buffer duration : %i\n", fOutput.format.u.raw_audio.buffer_size, BufferDuration())); 2102 //PRINT(("MBI.record_buffer_cycle : %i\n", MBI.record_buffer_cycle)); 2103 //PRINT(("MBI.recorded_real_time : %i\n", MBI.recorded_real_time)); 2104 //PRINT(("MBI.recorded_frames_count : %i\n", MBI.recorded_frames_count)); 2105 if (!output.fBufferGroup) 2106 return NULL; 2107 2108 BBuffer* buffer = output.fBufferGroup->RequestBuffer( 2109 output.fOutput.format.u.raw_audio.buffer_size, BufferDuration()); 2110 if (buffer == NULL) { 2111 // If we fail to get a buffer (for example, if the request times out), 2112 // we skip this buffer and go on to the next, to avoid locking up the 2113 // control thread. 2114 fprintf(stderr, "Buffer is null"); 2115 return NULL; 2116 } 2117 2118 if (fDevice == NULL) 2119 fprintf(stderr, "fDevice NULL\n"); 2120 if (buffer->Header() == NULL) 2121 fprintf(stderr, "buffer->Header() NULL\n"); 2122 if (TimeSource() == NULL) 2123 fprintf(stderr, "TimeSource() NULL\n"); 2124 2125 uint32 channelCount = output.fOutput.format.u.raw_audio.channel_count; 2126 size_t outputSampleSize = output.fOutput.format.u.raw_audio.format 2127 & media_raw_audio_format::B_AUDIO_SIZE_MASK; 2128 2129 uint32 bufferSize = fDevice->BufferList().return_record_buffer_size; 2130 2131 if (output.fResampler != NULL) { 2132 size_t dstStride = channelCount * outputSampleSize; 2133 2134 uint32 channelId = output.fChannelId 2135 - fDevice->Description().output_channel_count; 2136 2137 for (uint32 channel = 0; channel < channelCount; channel++) { 2138 char* src = _RecordBuffer(output.fBufferCycle, 2139 channelId + channel); 2140 size_t srcStride = _RecordStride(output.fBufferCycle, 2141 channelId + channel); 2142 char* dst = (char*)buffer->Data() + channel * outputSampleSize; 2143 2144 output.fResampler->Resample(src, srcStride, dst, dstStride, 2145 bufferSize); 2146 } 2147 } 2148 2149 // fill in the buffer header 2150 media_header* header = buffer->Header(); 2151 header->type = B_MEDIA_RAW_AUDIO; 2152 header->size_used = output.fOutput.format.u.raw_audio.buffer_size; 2153 header->time_source = TimeSource()->ID(); 2154 header->start_time = PerformanceTimeFor(info.recorded_real_time); 2155 2156 return buffer; 2157 } 2158 2159 2160 status_t 2161 MultiAudioNode::GetConfigurationFor(BMessage* message) 2162 { 2163 CALLED(); 2164 2165 BParameter *parameter = NULL; 2166 void *buffer; 2167 size_t bufferSize = 128; 2168 bigtime_t lastChange; 2169 status_t err; 2170 2171 if (message == NULL) 2172 return B_BAD_VALUE; 2173 2174 buffer = malloc(bufferSize); 2175 if (buffer == NULL) 2176 return B_NO_MEMORY; 2177 2178 for (int32 i = 0; i < fWeb->CountParameters(); i++) { 2179 parameter = fWeb->ParameterAt(i); 2180 if (parameter->Type() != BParameter::B_CONTINUOUS_PARAMETER 2181 && parameter->Type() != BParameter::B_DISCRETE_PARAMETER) 2182 continue; 2183 2184 PRINT(("getting parameter %li\n", parameter->ID())); 2185 size_t size = bufferSize; 2186 while ((err = GetParameterValue(parameter->ID(), &lastChange, buffer, 2187 &size)) == B_NO_MEMORY && bufferSize < 128 * 1024) { 2188 bufferSize += 128; 2189 free(buffer); 2190 buffer = malloc(bufferSize); 2191 if (buffer == NULL) 2192 return B_NO_MEMORY; 2193 } 2194 2195 if (err == B_OK && size > 0) { 2196 message->AddInt32("parameterID", parameter->ID()); 2197 message->AddData("parameterData", B_RAW_TYPE, buffer, size, false); 2198 } else { 2199 PRINT(("parameter err : %s\n", strerror(err))); 2200 } 2201 } 2202 2203 free(buffer); 2204 PRINT_OBJECT(*message); 2205 return B_OK; 2206 } 2207 2208 2209 node_output* 2210 MultiAudioNode::_FindOutput(media_source source) 2211 { 2212 node_output* channel = NULL; 2213 2214 for (int32 i = 0; i < fOutputs.CountItems(); i++) { 2215 channel = (node_output*)fOutputs.ItemAt(i); 2216 if (source == channel->fOutput.source) 2217 break; 2218 } 2219 2220 if (source != channel->fOutput.source) 2221 return NULL; 2222 2223 return channel; 2224 } 2225 2226 2227 node_input* 2228 MultiAudioNode::_FindInput(media_destination dest) 2229 { 2230 node_input* channel = NULL; 2231 2232 for (int32 i = 0; i < fInputs.CountItems(); i++) { 2233 channel = (node_input*)fInputs.ItemAt(i); 2234 if (dest == channel->fInput.destination) 2235 break; 2236 } 2237 2238 if (dest != channel->fInput.destination) 2239 return NULL; 2240 2241 return channel; 2242 } 2243 2244 2245 node_input* 2246 MultiAudioNode::_FindInput(int32 destinationId) 2247 { 2248 node_input* channel = NULL; 2249 2250 for (int32 i = 0; i < fInputs.CountItems(); i++) { 2251 channel = (node_input*)fInputs.ItemAt(i); 2252 if (destinationId == channel->fInput.destination.id) 2253 break; 2254 } 2255 2256 if (destinationId != channel->fInput.destination.id) 2257 return NULL; 2258 2259 return channel; 2260 } 2261 2262 2263 /*static*/ status_t 2264 MultiAudioNode::_OutputThreadEntry(void* data) 2265 { 2266 CALLED(); 2267 return static_cast<MultiAudioNode*>(data)->_OutputThread(); 2268 } 2269 2270 2271 status_t 2272 MultiAudioNode::_SetNodeInputFrameRate(float frameRate) 2273 { 2274 // check whether the frame rate is supported 2275 uint32 multiAudioRate = MultiAudio::convert_from_sample_rate(frameRate); 2276 if ((fDevice->Description().output_rates & multiAudioRate) == 0) 2277 return B_BAD_VALUE; 2278 2279 BAutolock locker(fBufferLock); 2280 2281 // already set? 2282 if (fDevice->FormatInfo().output.rate == multiAudioRate) 2283 return B_OK; 2284 2285 // set the frame rate on the device 2286 status_t error = fDevice->SetOutputFrameRate(multiAudioRate); 2287 if (error != B_OK) 2288 return error; 2289 2290 // it went fine -- update all formats 2291 fOutputPreferredFormat.u.raw_audio.frame_rate = frameRate; 2292 fOutputPreferredFormat.u.raw_audio.buffer_size 2293 = fDevice->BufferList().return_playback_buffer_size 2294 * (fOutputPreferredFormat.u.raw_audio.format 2295 & media_raw_audio_format::B_AUDIO_SIZE_MASK) 2296 * fOutputPreferredFormat.u.raw_audio.channel_count; 2297 2298 for (int32 i = 0; node_input* channel = (node_input*)fInputs.ItemAt(i); 2299 i++) { 2300 channel->fPreferredFormat.u.raw_audio.frame_rate = frameRate; 2301 channel->fPreferredFormat.u.raw_audio.buffer_size 2302 = fOutputPreferredFormat.u.raw_audio.buffer_size; 2303 2304 channel->fFormat.u.raw_audio.frame_rate = frameRate; 2305 channel->fFormat.u.raw_audio.buffer_size 2306 = fOutputPreferredFormat.u.raw_audio.buffer_size; 2307 2308 channel->fInput.format.u.raw_audio.frame_rate = frameRate; 2309 channel->fInput.format.u.raw_audio.buffer_size 2310 = fOutputPreferredFormat.u.raw_audio.buffer_size; 2311 } 2312 2313 // make sure the time base is reset 2314 fTimeComputer.SetFrameRate(frameRate); 2315 2316 // update internal latency 2317 _UpdateInternalLatency(fOutputPreferredFormat); 2318 2319 return B_OK; 2320 } 2321 2322 2323 status_t 2324 MultiAudioNode::_SetNodeOutputFrameRate(float frameRate) 2325 { 2326 // check whether the frame rate is supported 2327 uint32 multiAudioRate = MultiAudio::convert_from_sample_rate(frameRate); 2328 if ((fDevice->Description().input_rates & multiAudioRate) == 0) 2329 return B_BAD_VALUE; 2330 2331 BAutolock locker(fBufferLock); 2332 2333 // already set? 2334 if (fDevice->FormatInfo().input.rate == multiAudioRate) 2335 return B_OK; 2336 2337 // set the frame rate on the device 2338 status_t error = fDevice->SetInputFrameRate(multiAudioRate); 2339 if (error != B_OK) 2340 return error; 2341 2342 // it went fine -- update all formats 2343 fInputPreferredFormat.u.raw_audio.frame_rate = frameRate; 2344 fInputPreferredFormat.u.raw_audio.buffer_size 2345 = fDevice->BufferList().return_record_buffer_size 2346 * (fInputPreferredFormat.u.raw_audio.format 2347 & media_raw_audio_format::B_AUDIO_SIZE_MASK) 2348 * fInputPreferredFormat.u.raw_audio.channel_count; 2349 2350 for (int32 i = 0; node_output* channel = (node_output*)fOutputs.ItemAt(i); 2351 i++) { 2352 channel->fPreferredFormat.u.raw_audio.frame_rate = frameRate; 2353 channel->fPreferredFormat.u.raw_audio.buffer_size 2354 = fInputPreferredFormat.u.raw_audio.buffer_size; 2355 2356 channel->fFormat.u.raw_audio.frame_rate = frameRate; 2357 channel->fFormat.u.raw_audio.buffer_size 2358 = fInputPreferredFormat.u.raw_audio.buffer_size; 2359 2360 channel->fOutput.format.u.raw_audio.frame_rate = frameRate; 2361 channel->fOutput.format.u.raw_audio.buffer_size 2362 = fInputPreferredFormat.u.raw_audio.buffer_size; 2363 } 2364 2365 // make sure the time base is reset 2366 fTimeComputer.SetFrameRate(frameRate); 2367 2368 // update internal latency 2369 _UpdateInternalLatency(fInputPreferredFormat); 2370 2371 return B_OK; 2372 } 2373 2374 2375 void 2376 MultiAudioNode::_UpdateInternalLatency(const media_format& format) 2377 { 2378 // use half a buffer length latency 2379 fInternalLatency = format.u.raw_audio.buffer_size * 10000 / 2 2380 / ((format.u.raw_audio.format 2381 & media_raw_audio_format::B_AUDIO_SIZE_MASK) 2382 * format.u.raw_audio.channel_count) 2383 / ((int32)(format.u.raw_audio.frame_rate / 100)); 2384 2385 PRINT((" internal latency = %lld\n",fInternalLatency)); 2386 2387 SetEventLatency(fInternalLatency); 2388 } 2389