xref: /haiku/src/add-ons/media/media-add-ons/multi_audio/MultiAudioNode.cpp (revision 90ae2e54f6ccaca73c011a2aa4cdd660417108ad)
1 /*
2  * Copyright (c) 2002, 2003 Jerome Duval (jerome.duval@free.fr)
3  * Distributed under the terms of the MIT License.
4  */
5 
6 //! Multi-audio replacement media addon for BeOS
7 
8 
9 #include "MultiAudioNode.h"
10 
11 #include <stdio.h>
12 #include <string.h>
13 
14 #include <Autolock.h>
15 #include <Buffer.h>
16 #include <BufferGroup.h>
17 #include <Catalog.h>
18 #include <ParameterWeb.h>
19 #include <String.h>
20 
21 #include <Referenceable.h>
22 
23 #include "MultiAudioUtility.h"
24 #ifdef DEBUG
25 #	define PRINTING
26 #endif
27 #include "debug.h"
28 #include "Resampler.h"
29 
30 #undef B_TRANSLATION_CONTEXT
31 #define B_TRANSLATION_CONTEXT "MultiAudio"
32 
33 #define PARAMETER_ID_INPUT_FREQUENCY	1
34 #define PARAMETER_ID_OUTPUT_FREQUENCY	2
35 
36 
37 //This represent an hardware output
38 class node_input {
39 public:
40 	node_input(media_input& input, media_format format);
41 	~node_input();
42 
43 	int32				fChannelId;
44 	media_input			fInput;
45 	media_format 		fPreferredFormat;
46 	media_format		fFormat;
47 	volatile uint32		fBufferCycle;
48 	multi_buffer_info	fOldBufferInfo;
49 	BBuffer*			fBuffer;
50 	Resampler			*fResampler;
51 };
52 
53 
54 //This represent an hardware input
55 class node_output {
56 public:
57 	node_output(media_output& output, media_format format);
58 	~node_output();
59 
60 	int32				fChannelId;
61 	media_output		fOutput;
62 	media_format 		fPreferredFormat;
63 	media_format		fFormat;
64 
65 	BBufferGroup*		fBufferGroup;
66 	bool 				fOutputEnabled;
67 	uint64 				fSamplesSent;
68 	volatile uint32 	fBufferCycle;
69 	multi_buffer_info	fOldBufferInfo;
70 	Resampler			*fResampler;
71 };
72 
73 
74 struct FrameRateChangeCookie : public BReferenceable {
75 	float	oldFrameRate;
76 	uint32	id;
77 };
78 
79 
80 struct sample_rate_info {
81 	uint32		multiAudioRate;
82 	const char*	name;
83 };
84 
85 
86 static const sample_rate_info kSampleRateInfos[] = {
87 	{B_SR_8000,		"8000"},
88 	{B_SR_11025,	"11025"},
89 	{B_SR_12000,	"12000"},
90 	{B_SR_16000,	"16000"},
91 	{B_SR_22050,	"22050"},
92 	{B_SR_24000,	"24000"},
93 	{B_SR_32000,	"32000"},
94 	{B_SR_44100,	"44100"},
95 	{B_SR_48000,	"48000"},
96 	{B_SR_64000,	"64000"},
97 	{B_SR_88200,	"88200"},
98 	{B_SR_96000,	"96000"},
99 	{B_SR_176400,	"176400"},
100 	{B_SR_192000,	"192000"},
101 	{B_SR_384000,	"384000"},
102 	{B_SR_1536000,	"1536000"},
103 	{}
104 };
105 
106 
107 const char* kMultiControlString[] = {
108 	"NAME IS ATTACHED",
109 	B_TRANSLATE("Output"), B_TRANSLATE("Input"), B_TRANSLATE("Setup"),
110 	B_TRANSLATE("Tone control"), B_TRANSLATE("Extended Setup"),
111 	B_TRANSLATE("Enhanced Setup"), B_TRANSLATE("Master"), B_TRANSLATE("Beep"),
112 	B_TRANSLATE("Phone"), B_TRANSLATE("Mic"), B_TRANSLATE("Line"),
113 	B_TRANSLATE("CD"), B_TRANSLATE("Video"), B_TRANSLATE("Aux"),
114 	B_TRANSLATE("Wave"), B_TRANSLATE("Gain"), B_TRANSLATE("Level"),
115 	B_TRANSLATE("Volume"), B_TRANSLATE("Mute"), B_TRANSLATE("Enable"),
116 	B_TRANSLATE("Stereo mix"), B_TRANSLATE("Mono mix"),
117 	B_TRANSLATE("Output stereo mix"), B_TRANSLATE("Output mono mix"),
118 	B_TRANSLATE("Output bass"), B_TRANSLATE("Output treble"),
119 	B_TRANSLATE("Output 3D center"), B_TRANSLATE("Output 3D depth"),
120 	B_TRANSLATE("Headphones"), B_TRANSLATE("SPDIF")
121 };
122 
123 
124 //	#pragma mark -
125 
126 
127 node_input::node_input(media_input& input, media_format format)
128 {
129 	CALLED();
130 	fInput = input;
131 	fPreferredFormat = format;
132 	fBufferCycle = 1;
133 	fBuffer = NULL;
134 	fResampler = NULL;
135 }
136 
137 
138 node_input::~node_input()
139 {
140 	CALLED();
141 }
142 
143 
144 //	#pragma mark -
145 
146 
147 node_output::node_output(media_output& output, media_format format)
148 	:
149 	fBufferGroup(NULL),
150 	fOutputEnabled(true)
151 {
152 	CALLED();
153 	fOutput = output;
154 	fPreferredFormat = format;
155 	fBufferCycle = 1;
156 	fResampler = NULL;
157 }
158 
159 
160 node_output::~node_output()
161 {
162 	CALLED();
163 }
164 
165 
166 //	#pragma mark -
167 
168 
169 MultiAudioNode::MultiAudioNode(BMediaAddOn* addon, const char* name,
170 		MultiAudioDevice* device, int32 internalID, BMessage* config)
171 	: BMediaNode(name), BBufferConsumer(B_MEDIA_RAW_AUDIO),
172 	BBufferProducer(B_MEDIA_RAW_AUDIO),
173 	fBufferLock("multi audio buffers"),
174 	fThread(-1),
175 	fDevice(device),
176 	fTimeSourceStarted(false),
177 	fWeb(NULL),
178 	fConfig()
179 {
180 	CALLED();
181 	fInitStatus = B_NO_INIT;
182 
183 	if (!device)
184 		return;
185 
186 	fAddOn = addon;
187 	fId = internalID;
188 
189 	AddNodeKind(B_PHYSICAL_OUTPUT);
190 	AddNodeKind(B_PHYSICAL_INPUT);
191 
192 	// initialize our preferred format objects
193 	memset(&fOutputPreferredFormat, 0, sizeof(fOutputPreferredFormat)); // set everything to wildcard first
194 	fOutputPreferredFormat.type = B_MEDIA_RAW_AUDIO;
195 	fOutputPreferredFormat.u.raw_audio.format = MultiAudio::convert_to_media_format(fDevice->FormatInfo().output.format);
196 	fOutputPreferredFormat.u.raw_audio.valid_bits = MultiAudio::convert_to_valid_bits(fDevice->FormatInfo().output.format);
197 	fOutputPreferredFormat.u.raw_audio.channel_count = 2;
198 	fOutputPreferredFormat.u.raw_audio.frame_rate = MultiAudio::convert_to_sample_rate(fDevice->FormatInfo().output.rate);		// measured in Hertz
199 	fOutputPreferredFormat.u.raw_audio.byte_order = B_MEDIA_HOST_ENDIAN;
200 
201 	// we'll use the consumer's preferred buffer size, if any
202 	fOutputPreferredFormat.u.raw_audio.buffer_size = fDevice->BufferList().return_playback_buffer_size
203 		* (fOutputPreferredFormat.u.raw_audio.format & media_raw_audio_format::B_AUDIO_SIZE_MASK)
204 		* fOutputPreferredFormat.u.raw_audio.channel_count;
205 
206 	// initialize our preferred format objects
207 	memset(&fInputPreferredFormat, 0, sizeof(fInputPreferredFormat)); // set everything to wildcard first
208 	fInputPreferredFormat.type = B_MEDIA_RAW_AUDIO;
209 	fInputPreferredFormat.u.raw_audio.format = MultiAudio::convert_to_media_format(fDevice->FormatInfo().input.format);
210 	fInputPreferredFormat.u.raw_audio.valid_bits = MultiAudio::convert_to_valid_bits(fDevice->FormatInfo().input.format);
211 	fInputPreferredFormat.u.raw_audio.channel_count = 2;
212 	fInputPreferredFormat.u.raw_audio.frame_rate = MultiAudio::convert_to_sample_rate(fDevice->FormatInfo().input.rate);		// measured in Hertz
213 	fInputPreferredFormat.u.raw_audio.byte_order = B_MEDIA_HOST_ENDIAN;
214 
215 	// we'll use the consumer's preferred buffer size, if any
216 	fInputPreferredFormat.u.raw_audio.buffer_size = fDevice->BufferList().return_record_buffer_size
217 		* (fInputPreferredFormat.u.raw_audio.format & media_raw_audio_format::B_AUDIO_SIZE_MASK)
218 		* fInputPreferredFormat.u.raw_audio.channel_count;
219 
220 
221 	if (config != NULL) {
222 		fConfig = *config;
223 		PRINT_OBJECT(*config);
224 	}
225 
226 	fInitStatus = B_OK;
227 }
228 
229 
230 MultiAudioNode::~MultiAudioNode()
231 {
232 	CALLED();
233 	fAddOn->GetConfigurationFor(this, NULL);
234 
235 	_StopOutputThread();
236 	BMediaEventLooper::Quit();
237 
238 	fWeb = NULL;
239 }
240 
241 
242 status_t
243 MultiAudioNode::InitCheck() const
244 {
245 	CALLED();
246 	return fInitStatus;
247 }
248 
249 
250 void
251 MultiAudioNode::GetFlavor(flavor_info* info, int32 id)
252 {
253 	CALLED();
254 	if (info == NULL)
255 		return;
256 
257 	info->flavor_flags = 0;
258 	info->possible_count = 1;	// one flavor at a time
259 	info->in_format_count = 0; // no inputs
260 	info->in_formats = 0;
261 	info->out_format_count = 0; // no outputs
262 	info->out_formats = 0;
263 	info->internal_id = id;
264 
265 	info->name = (char*)"MultiAudioNode Node";
266 	info->info = (char*)"The MultiAudioNode node outputs to multi_audio "
267 		"drivers.";
268 	info->kinds = B_BUFFER_CONSUMER | B_BUFFER_PRODUCER | B_TIME_SOURCE
269 		| B_PHYSICAL_OUTPUT | B_PHYSICAL_INPUT | B_CONTROLLABLE;
270 	info->in_format_count = 1; // 1 input
271 	media_format* inFormats = new media_format[info->in_format_count];
272 	GetFormat(&inFormats[0]);
273 	info->in_formats = inFormats;
274 
275 	info->out_format_count = 1; // 1 output
276 	media_format* outFormats = new media_format[info->out_format_count];
277 	GetFormat(&outFormats[0]);
278 	info->out_formats = outFormats;
279 }
280 
281 
282 void
283 MultiAudioNode::GetFormat(media_format* format)
284 {
285 	CALLED();
286 	if (format == NULL)
287 		return;
288 
289 	format->type = B_MEDIA_RAW_AUDIO;
290 	format->require_flags = B_MEDIA_MAUI_UNDEFINED_FLAGS;
291 	format->deny_flags = B_MEDIA_MAUI_UNDEFINED_FLAGS;
292 	format->u.raw_audio = media_raw_audio_format::wildcard;
293 }
294 
295 
296 //#pragma mark - BMediaNode
297 
298 
299 BMediaAddOn*
300 MultiAudioNode::AddOn(int32* _internalID) const
301 {
302 	CALLED();
303 	// BeBook says this only gets called if we were in an add-on.
304 	if (fAddOn != 0 && _internalID != NULL)
305 		*_internalID = fId;
306 
307 	return fAddOn;
308 }
309 
310 
311 void
312 MultiAudioNode::Preroll()
313 {
314 	CALLED();
315 	// XXX:Performance opportunity
316 	BMediaNode::Preroll();
317 }
318 
319 
320 status_t
321 MultiAudioNode::HandleMessage(int32 message, const void* data, size_t size)
322 {
323 	CALLED();
324 	return B_ERROR;
325 }
326 
327 
328 void
329 MultiAudioNode::NodeRegistered()
330 {
331 	CALLED();
332 
333 	if (fInitStatus != B_OK) {
334 		ReportError(B_NODE_IN_DISTRESS);
335 		return;
336 	}
337 
338 	SetPriority(B_REAL_TIME_PRIORITY);
339 	Run();
340 
341 	node_input *currentInput = NULL;
342 	int32 currentId = 0;
343 
344 	for (int32 i = 0; i < fDevice->Description().output_channel_count; i++) {
345 		if (currentInput == NULL
346 			|| (fDevice->Description().channels[i].designations & B_CHANNEL_MONO_BUS)
347 			|| (fDevice->Description().channels[currentId].designations & B_CHANNEL_STEREO_BUS
348 				&& ( fDevice->Description().channels[i].designations & B_CHANNEL_LEFT ||
349 					!(fDevice->Description().channels[i].designations & B_CHANNEL_STEREO_BUS)))
350 			|| (fDevice->Description().channels[currentId].designations & B_CHANNEL_SURROUND_BUS
351 				&& ( fDevice->Description().channels[i].designations & B_CHANNEL_LEFT ||
352 					!(fDevice->Description().channels[i].designations & B_CHANNEL_SURROUND_BUS)))
353 			) {
354 			PRINT(("NodeRegistered() : creating an input for %li\n", i));
355 			PRINT(("%ld\t%d\t0x%lx\t0x%lx\n",
356 				fDevice->Description().channels[i].channel_id,
357 				fDevice->Description().channels[i].kind,
358 				fDevice->Description().channels[i].designations,
359 				fDevice->Description().channels[i].connectors));
360 
361 			media_input* input = new media_input;
362 
363 			input->format = fOutputPreferredFormat;
364 			input->destination.port = ControlPort();
365 			input->destination.id = fInputs.CountItems();
366 			input->node = Node();
367 			sprintf(input->name, "output %ld", input->destination.id);
368 
369 			currentInput = new node_input(*input, fOutputPreferredFormat);
370 			currentInput->fPreferredFormat.u.raw_audio.channel_count = 1;
371 			currentInput->fInput.format = currentInput->fPreferredFormat;
372 			delete currentInput->fResampler;
373 			currentInput->fResampler = new
374 				Resampler(currentInput->fPreferredFormat.AudioFormat(),
375 					fOutputPreferredFormat.AudioFormat());
376 
377 			currentInput->fChannelId = fDevice->Description().channels[i].channel_id;
378 			fInputs.AddItem(currentInput);
379 
380 			currentId = i;
381 		} else {
382 			PRINT(("NodeRegistered() : adding a channel\n"));
383 			currentInput->fPreferredFormat.u.raw_audio.channel_count++;
384 			currentInput->fInput.format = currentInput->fPreferredFormat;
385 		}
386 		currentInput->fInput.format.u.raw_audio.format = media_raw_audio_format::wildcard.format;
387 	}
388 
389 	node_output *currentOutput = NULL;
390 	currentId = 0;
391 
392 	for (int32 i = fDevice->Description().output_channel_count;
393 			i < fDevice->Description().output_channel_count
394 				+ fDevice->Description().input_channel_count; i++) {
395 		if (currentOutput == NULL
396 			|| (fDevice->Description().channels[i].designations & B_CHANNEL_MONO_BUS)
397 			|| (fDevice->Description().channels[currentId].designations & B_CHANNEL_STEREO_BUS
398 				&& ( fDevice->Description().channels[i].designations & B_CHANNEL_LEFT ||
399 					!(fDevice->Description().channels[i].designations & B_CHANNEL_STEREO_BUS)))
400 			|| (fDevice->Description().channels[currentId].designations & B_CHANNEL_SURROUND_BUS
401 				&& ( fDevice->Description().channels[i].designations & B_CHANNEL_LEFT ||
402 					!(fDevice->Description().channels[i].designations & B_CHANNEL_SURROUND_BUS)))
403 			) {
404 			PRINT(("NodeRegistered() : creating an output for %li\n", i));
405 			PRINT(("%ld\t%d\t0x%lx\t0x%lx\n",fDevice->Description().channels[i].channel_id,
406 											fDevice->Description().channels[i].kind,
407 											fDevice->Description().channels[i].designations,
408 											fDevice->Description().channels[i].connectors));
409 
410 			media_output *output = new media_output;
411 
412 			output->format = fInputPreferredFormat;
413 			output->destination = media_destination::null;
414 			output->source.port = ControlPort();
415 			output->source.id = fOutputs.CountItems();
416 			output->node = Node();
417 			sprintf(output->name, "input %ld", output->source.id);
418 
419 			currentOutput = new node_output(*output, fInputPreferredFormat);
420 			currentOutput->fPreferredFormat.u.raw_audio.channel_count = 1;
421 			currentOutput->fOutput.format = currentOutput->fPreferredFormat;
422 			delete currentOutput->fResampler;
423 			currentOutput->fResampler = new
424 				Resampler(fInputPreferredFormat.AudioFormat(),
425 					currentOutput->fPreferredFormat.AudioFormat());
426 
427 			currentOutput->fChannelId = fDevice->Description().channels[i].channel_id;
428 			fOutputs.AddItem(currentOutput);
429 
430 			currentId = i;
431 		} else {
432 			PRINT(("NodeRegistered() : adding a channel\n"));
433 			currentOutput->fPreferredFormat.u.raw_audio.channel_count++;
434 			currentOutput->fOutput.format = currentOutput->fPreferredFormat;
435 		}
436 	}
437 
438 	// Set up our parameter web
439 	fWeb = MakeParameterWeb();
440 	SetParameterWeb(fWeb);
441 
442 	// Apply configuration
443 #ifdef PRINTING
444 	bigtime_t start = system_time();
445 #endif
446 
447 	int32 index = 0;
448 	int32 parameterID = 0;
449 	const void *data;
450 	ssize_t size;
451 	while (fConfig.FindInt32("parameterID", index, &parameterID) == B_OK) {
452 		if (fConfig.FindData("parameterData", B_RAW_TYPE, index, &data, &size)
453 				== B_OK) {
454 			SetParameterValue(parameterID, TimeSource()->Now(), data, size);
455 		}
456 		index++;
457 	}
458 
459 	PRINT(("apply configuration in : %Ld\n", system_time() - start));
460 }
461 
462 
463 status_t
464 MultiAudioNode::RequestCompleted(const media_request_info& info)
465 {
466 	CALLED();
467 
468 	if (info.what != media_request_info::B_REQUEST_FORMAT_CHANGE)
469 		return B_OK;
470 
471 	FrameRateChangeCookie* cookie
472 		= (FrameRateChangeCookie*)info.user_data;
473 	if (cookie == NULL)
474 		return B_OK;
475 
476 	BReference<FrameRateChangeCookie> cookieReference(cookie, true);
477 
478 	// if the request failed, we reset the frame rate
479 	if (info.status != B_OK) {
480 		if (cookie->id == PARAMETER_ID_INPUT_FREQUENCY) {
481 			_SetNodeInputFrameRate(cookie->oldFrameRate);
482 			if (fDevice->Description().output_rates & B_SR_SAME_AS_INPUT)
483 				_SetNodeOutputFrameRate(cookie->oldFrameRate);
484 		} else if (cookie->id == PARAMETER_ID_OUTPUT_FREQUENCY)
485 			_SetNodeOutputFrameRate(cookie->oldFrameRate);
486 
487 		// TODO: If we have multiple connections, we should request to change
488 		// the format back!
489 	}
490 
491 	return B_OK;
492 }
493 
494 
495 void
496 MultiAudioNode::SetTimeSource(BTimeSource* timeSource)
497 {
498 	CALLED();
499 }
500 
501 
502 //	#pragma mark - BBufferConsumer
503 
504 
505 status_t
506 MultiAudioNode::AcceptFormat(const media_destination& dest,
507 	media_format* format)
508 {
509 	// Check to make sure the format is okay, then remove
510 	// any wildcards corresponding to our requirements.
511 	CALLED();
512 
513 	if (format == NULL)
514 		return B_BAD_VALUE;
515 	if (format->type != B_MEDIA_RAW_AUDIO)
516 		return B_MEDIA_BAD_FORMAT;
517 
518 	node_input *channel = _FindInput(dest);
519 	if (channel == NULL)
520 		return B_MEDIA_BAD_DESTINATION;
521 
522 /*	media_format * myFormat = GetFormat();
523 	fprintf(stderr,"proposed format: ");
524 	print_media_format(format);
525 	fprintf(stderr,"\n");
526 	fprintf(stderr,"my format: ");
527 	print_media_format(myFormat);
528 	fprintf(stderr,"\n");*/
529 	// Be's format_is_compatible doesn't work.
530 //	if (!format_is_compatible(*format,*myFormat)) {
531 
532 	channel->fFormat = channel->fPreferredFormat;
533 
534 	/*if(format->u.raw_audio.format == media_raw_audio_format::B_AUDIO_FLOAT
535 		&& channel->fPreferredFormat.u.raw_audio.format == media_raw_audio_format::B_AUDIO_SHORT)
536 		format->u.raw_audio.format = media_raw_audio_format::B_AUDIO_FLOAT;
537 	else*/
538 	format->u.raw_audio.format = channel->fPreferredFormat.u.raw_audio.format;
539 	format->u.raw_audio.valid_bits = channel->fPreferredFormat.u.raw_audio.valid_bits;
540 
541 	format->u.raw_audio.frame_rate = channel->fPreferredFormat.u.raw_audio.frame_rate;
542 	format->u.raw_audio.channel_count = channel->fPreferredFormat.u.raw_audio.channel_count;
543 	format->u.raw_audio.byte_order = B_MEDIA_HOST_ENDIAN;
544 	format->u.raw_audio.buffer_size = fDevice->BufferList().return_playback_buffer_size
545 		* (format->u.raw_audio.format & media_raw_audio_format::B_AUDIO_SIZE_MASK)
546 		* format->u.raw_audio.channel_count;
547 
548 	/*media_format myFormat;
549 	GetFormat(&myFormat);
550 	if (!format_is_acceptible(*format,myFormat)) {
551 		fprintf(stderr,"<- B_MEDIA_BAD_FORMAT\n");
552 		return B_MEDIA_BAD_FORMAT;
553 	}*/
554 	//AddRequirements(format);
555 	return B_OK;
556 }
557 
558 
559 status_t
560 MultiAudioNode::GetNextInput(int32* cookie, media_input* _input)
561 {
562 	CALLED();
563 	if (_input == NULL)
564 		return B_BAD_VALUE;
565 
566 	if (*cookie >= fInputs.CountItems() || *cookie < 0)
567 		return B_BAD_INDEX;
568 
569 	node_input *channel = (node_input *)fInputs.ItemAt(*cookie);
570 	*_input = channel->fInput;
571 	*cookie += 1;
572 	PRINT(("input.format : %lu\n", channel->fInput.format.u.raw_audio.format));
573 	return B_OK;
574 }
575 
576 
577 void
578 MultiAudioNode::DisposeInputCookie(int32 cookie)
579 {
580 	CALLED();
581 	// nothing to do since our cookies are just integers
582 }
583 
584 
585 void
586 MultiAudioNode::BufferReceived(BBuffer* buffer)
587 {
588 	//CALLED();
589 	switch (buffer->Header()->type) {
590 		/*case B_MEDIA_PARAMETERS:
591 			{
592 			status_t status = ApplyParameterData(buffer->Data(),buffer->SizeUsed());
593 			if (status != B_OK) {
594 				fprintf(stderr,"ApplyParameterData in MultiAudioNode::BufferReceived failed\n");
595 			}
596 			buffer->Recycle();
597 			}
598 			break;*/
599 		case B_MEDIA_RAW_AUDIO:
600 			if (buffer->Flags() & BBuffer::B_SMALL_BUFFER) {
601 				fprintf(stderr,"NOT IMPLEMENTED: B_SMALL_BUFFER in MultiAudioNode::BufferReceived\n");
602 				// XXX: implement this part
603 				buffer->Recycle();
604 			} else {
605 				media_timed_event event(buffer->Header()->start_time, BTimedEventQueue::B_HANDLE_BUFFER,
606 										buffer, BTimedEventQueue::B_RECYCLE_BUFFER);
607 				status_t status = EventQueue()->AddEvent(event);
608 				if (status != B_OK) {
609 					fprintf(stderr,"EventQueue()->AddEvent(event) in MultiAudioNode::BufferReceived failed\n");
610 					buffer->Recycle();
611 				}
612 			}
613 			break;
614 		default:
615 			fprintf(stderr,"unexpected buffer type in MultiAudioNode::BufferReceived\n");
616 			buffer->Recycle();
617 			break;
618 	}
619 }
620 
621 
622 void
623 MultiAudioNode::ProducerDataStatus(const media_destination& forWhom,
624 	int32 status, bigtime_t atPerformanceTime)
625 {
626 	//CALLED();
627 
628 	node_input *channel = _FindInput(forWhom);
629 	if (channel == NULL) {
630 		fprintf(stderr,"invalid destination received in MultiAudioNode::ProducerDataStatus\n");
631 		return;
632 	}
633 
634 	media_timed_event event(atPerformanceTime, BTimedEventQueue::B_DATA_STATUS,
635 		&channel->fInput, BTimedEventQueue::B_NO_CLEANUP, status, 0, NULL);
636 	EventQueue()->AddEvent(event);
637 }
638 
639 
640 status_t
641 MultiAudioNode::GetLatencyFor(const media_destination& forWhom,
642 	bigtime_t* _latency, media_node_id* _timeSource)
643 {
644 	CALLED();
645 	if (_latency == NULL || _timeSource == NULL)
646 		return B_BAD_VALUE;
647 
648 	node_input *channel = _FindInput(forWhom);
649 	if (channel == NULL)
650 		return B_MEDIA_BAD_DESTINATION;
651 
652 	*_latency = EventLatency();
653 	*_timeSource = TimeSource()->ID();
654 	return B_OK;
655 }
656 
657 
658 status_t
659 MultiAudioNode::Connected(const media_source& producer,
660 	const media_destination& where, const media_format& with_format,
661 	media_input* out_input)
662 {
663 	CALLED();
664 	if (out_input == 0) {
665 		fprintf(stderr, "<- B_BAD_VALUE\n");
666 		return B_BAD_VALUE; // no crashing
667 	}
668 
669 	node_input *channel = _FindInput(where);
670 
671 	if (channel == NULL) {
672 		fprintf(stderr, "<- B_MEDIA_BAD_DESTINATION\n");
673 		return B_MEDIA_BAD_DESTINATION;
674 	}
675 
676 	_UpdateInternalLatency(with_format);
677 
678 	// record the agreed upon values
679 	channel->fInput.source = producer;
680 	channel->fInput.format = with_format;
681 	*out_input = channel->fInput;
682 
683 	_StartOutputThreadIfNeeded();
684 
685 	return B_OK;
686 }
687 
688 
689 void
690 MultiAudioNode::Disconnected(const media_source& producer,
691 	const media_destination& where)
692 {
693 	CALLED();
694 	node_input *channel = _FindInput(where);
695 
696 	if (channel == NULL || channel->fInput.source != producer)
697 		return;
698 
699 	channel->fInput.source = media_source::null;
700 	channel->fInput.format = channel->fPreferredFormat;
701 
702 	BAutolock locker(fBufferLock);
703 	_FillWithZeros(*channel);
704 	//GetFormat(&channel->fInput.format);
705 }
706 
707 
708 status_t
709 MultiAudioNode::FormatChanged(const media_source& producer,
710 	const media_destination& consumer, int32 change_tag,
711 	const media_format& format)
712 {
713 	CALLED();
714 	node_input *channel = _FindInput(consumer);
715 
716 	if(channel==NULL) {
717 		fprintf(stderr,"<- B_MEDIA_BAD_DESTINATION\n");
718 		return B_MEDIA_BAD_DESTINATION;
719 	}
720 	if (channel->fInput.source != producer) {
721 		return B_MEDIA_BAD_SOURCE;
722 	}
723 
724 	return B_ERROR;
725 }
726 
727 
728 status_t
729 MultiAudioNode::SeekTagRequested(const media_destination& destination,
730 				bigtime_t in_target_time,
731 				uint32 in_flags,
732 				media_seek_tag * out_seek_tag,
733 				bigtime_t * out_tagged_time,
734 				uint32 * out_flags)
735 {
736 	CALLED();
737 	return BBufferConsumer::SeekTagRequested(destination,in_target_time,in_flags,
738 											out_seek_tag,out_tagged_time,out_flags);
739 }
740 
741 
742 //	#pragma mark - BBufferProducer
743 
744 
745 status_t
746 MultiAudioNode::FormatSuggestionRequested(media_type type, int32 /*quality*/,
747 	media_format* format)
748 {
749 	// FormatSuggestionRequested() is not necessarily part of the format negotiation
750 	// process; it's simply an interrogation -- the caller wants to see what the node's
751 	// preferred data format is, given a suggestion by the caller.
752 	CALLED();
753 
754 	if (!format)
755 	{
756 		fprintf(stderr, "\tERROR - NULL format pointer passed in!\n");
757 		return B_BAD_VALUE;
758 	}
759 
760 	// this is the format we'll be returning (our preferred format)
761 	*format = fInputPreferredFormat;
762 
763 	// a wildcard type is okay; we can specialize it
764 	if (type == B_MEDIA_UNKNOWN_TYPE) type = B_MEDIA_RAW_AUDIO;
765 
766 	// we only support raw audio
767 	if (type != B_MEDIA_RAW_AUDIO) return B_MEDIA_BAD_FORMAT;
768 	else return B_OK;
769 }
770 
771 
772 status_t
773 MultiAudioNode::FormatProposal(const media_source& output, media_format* format)
774 {
775 	// FormatProposal() is the first stage in the BMediaRoster::Connect() process.  We hand
776 	// out a suggested format, with wildcards for any variations we support.
777 	CALLED();
778 	node_output *channel = _FindOutput(output);
779 
780 	// is this a proposal for our select output?
781 	if (channel == NULL)
782 	{
783 		fprintf(stderr, "MultiAudioNode::FormatProposal returning B_MEDIA_BAD_SOURCE\n");
784 		return B_MEDIA_BAD_SOURCE;
785 	}
786 
787 	// we only support floating-point raw audio, so we always return that, but we
788 	// supply an error code depending on whether we found the proposal acceptable.
789 	media_type requestedType = format->type;
790 	*format = channel->fPreferredFormat;
791 	if ((requestedType != B_MEDIA_UNKNOWN_TYPE) && (requestedType != B_MEDIA_RAW_AUDIO))
792 	{
793 		fprintf(stderr, "MultiAudioNode::FormatProposal returning B_MEDIA_BAD_FORMAT\n");
794 		return B_MEDIA_BAD_FORMAT;
795 	}
796 	else return B_OK;		// raw audio or wildcard type, either is okay by us
797 }
798 
799 
800 status_t
801 MultiAudioNode::FormatChangeRequested(const media_source& source,
802 	const media_destination& destination, media_format* format,
803 	int32* _deprecated_)
804 {
805 	CALLED();
806 
807 	// we don't support any other formats, so we just reject any format changes.
808 	return B_ERROR;
809 }
810 
811 
812 status_t
813 MultiAudioNode::GetNextOutput(int32* cookie, media_output* out_output)
814 {
815 	CALLED();
816 
817 	if ((*cookie < fOutputs.CountItems()) && (*cookie >= 0)) {
818 		node_output *channel = (node_output *)fOutputs.ItemAt(*cookie);
819 		*out_output = channel->fOutput;
820 		*cookie += 1;
821 		return B_OK;
822 	} else
823 		return B_BAD_INDEX;
824 }
825 
826 
827 status_t
828 MultiAudioNode::DisposeOutputCookie(int32 cookie)
829 {
830 	CALLED();
831 	// do nothing because we don't use the cookie for anything special
832 	return B_OK;
833 }
834 
835 
836 status_t
837 MultiAudioNode::SetBufferGroup(const media_source& for_source,
838 	BBufferGroup* newGroup)
839 {
840 	CALLED();
841 
842 	node_output *channel = _FindOutput(for_source);
843 
844 	// is this our output?
845 	if (channel == NULL)
846 	{
847 		fprintf(stderr, "MultiAudioNode::SetBufferGroup returning B_MEDIA_BAD_SOURCE\n");
848 		return B_MEDIA_BAD_SOURCE;
849 	}
850 
851 	// Are we being passed the buffer group we're already using?
852 	if (newGroup == channel->fBufferGroup) return B_OK;
853 
854 	// Ahh, someone wants us to use a different buffer group.  At this point we delete
855 	// the one we are using and use the specified one instead.  If the specified group is
856 	// NULL, we need to recreate one ourselves, and use *that*.  Note that if we're
857 	// caching a BBuffer that we requested earlier, we have to Recycle() that buffer
858 	// *before* deleting the buffer group, otherwise we'll deadlock waiting for that
859 	// buffer to be recycled!
860 	delete channel->fBufferGroup;		// waits for all buffers to recycle
861 	if (newGroup != NULL)
862 	{
863 		// we were given a valid group; just use that one from now on
864 		channel->fBufferGroup = newGroup;
865 	}
866 	else
867 	{
868 		// we were passed a NULL group pointer; that means we construct
869 		// our own buffer group to use from now on
870 		size_t size = channel->fOutput.format.u.raw_audio.buffer_size;
871 		int32 count = int32(fLatency / BufferDuration() + 1 + 1);
872 		channel->fBufferGroup = new BBufferGroup(size, count);
873 	}
874 
875 	return B_OK;
876 }
877 
878 
879 status_t
880 MultiAudioNode::PrepareToConnect(const media_source& what,
881 	const media_destination& where, media_format* format,
882 	media_source* source, char* name)
883 {
884 	CALLED();
885 
886 	// is this our output?
887 	node_output* channel = _FindOutput(what);
888 	if (channel == NULL) {
889 		fprintf(stderr, "MultiAudioNode::PrepareToConnect returning B_MEDIA_BAD_SOURCE\n");
890 		return B_MEDIA_BAD_SOURCE;
891 	}
892 
893 	// are we already connected?
894 	if (channel->fOutput.destination != media_destination::null)
895 		return B_MEDIA_ALREADY_CONNECTED;
896 
897 	// the format may not yet be fully specialized (the consumer might have
898 	// passed back some wildcards).  Finish specializing it now, and return an
899 	// error if we don't support the requested format.
900 	if (format->type != B_MEDIA_RAW_AUDIO) {
901 		fprintf(stderr, "\tnon-raw-audio format?!\n");
902 		return B_MEDIA_BAD_FORMAT;
903 	}
904 
905 	// !!! validate all other fields except for buffer_size here, because the
906 	// consumer might have supplied different values from AcceptFormat()?
907 
908 	// check the buffer size, which may still be wildcarded
909 	if (format->u.raw_audio.buffer_size
910 			== media_raw_audio_format::wildcard.buffer_size) {
911 		format->u.raw_audio.buffer_size = 2048;
912 			// pick something comfortable to suggest
913 		fprintf(stderr, "\tno buffer size provided, suggesting %lu\n",
914 			format->u.raw_audio.buffer_size);
915 	} else {
916 		fprintf(stderr, "\tconsumer suggested buffer_size %lu\n",
917 			format->u.raw_audio.buffer_size);
918 	}
919 
920 	// Now reserve the connection, and return information about it
921 	channel->fOutput.destination = where;
922 	channel->fOutput.format = *format;
923 
924 	*source = channel->fOutput.source;
925 #ifdef __HAIKU__
926 	strlcpy(name, channel->fOutput.name, B_MEDIA_NAME_LENGTH);
927 #else
928 	strncpy(name, channel->fOutput.name, B_MEDIA_NAME_LENGTH);
929 #endif
930 	return B_OK;
931 }
932 
933 
934 void
935 MultiAudioNode::Connect(status_t error, const media_source& source,
936 	const media_destination& destination, const media_format& format,
937 	char* name)
938 {
939 	CALLED();
940 
941 	// is this our output?
942 	node_output* channel = _FindOutput(source);
943 	if (channel == NULL) {
944 		fprintf(stderr, "MultiAudioNode::Connect returning (cause : B_MEDIA_BAD_SOURCE)\n");
945 		return;
946 	}
947 
948 	// If something earlier failed, Connect() might still be called, but with
949 	// a non-zero error code.  When that happens we simply unreserve the
950 	// connection and do nothing else.
951 	if (error) {
952 		channel->fOutput.destination = media_destination::null;
953 		channel->fOutput.format = channel->fPreferredFormat;
954 		return;
955 	}
956 
957 	// Okay, the connection has been confirmed.  Record the destination and
958 	// format that we agreed on, and report our connection name again.
959 	channel->fOutput.destination = destination;
960 	channel->fOutput.format = format;
961 #ifdef __HAIKU__
962 	strlcpy(name, channel->fOutput.name, B_MEDIA_NAME_LENGTH);
963 #else
964 	strncpy(name, channel->fOutput.name, B_MEDIA_NAME_LENGTH);
965 #endif
966 
967 	// reset our buffer duration, etc. to avoid later calculations
968 	bigtime_t duration = channel->fOutput.format.u.raw_audio.buffer_size * 10000
969 		/ ((channel->fOutput.format.u.raw_audio.format & media_raw_audio_format::B_AUDIO_SIZE_MASK)
970 			* channel->fOutput.format.u.raw_audio.channel_count)
971 		/ ((int32)(channel->fOutput.format.u.raw_audio.frame_rate / 100));
972 
973 	SetBufferDuration(duration);
974 
975 	// Now that we're connected, we can determine our downstream latency.
976 	// Do so, then make sure we get our events early enough.
977 	media_node_id id;
978 	FindLatencyFor(channel->fOutput.destination, &fLatency, &id);
979 	PRINT(("\tdownstream latency = %Ld\n", fLatency));
980 
981 	fInternalLatency = BufferDuration();
982 	PRINT(("\tbuffer-filling took %Ld usec on this machine\n", fInternalLatency));
983 	//SetEventLatency(fLatency + fInternalLatency);
984 
985 	// Set up the buffer group for our connection, as long as nobody handed us
986 	// a buffer group (via SetBufferGroup()) prior to this.  That can happen,
987 	// for example, if the consumer calls SetOutputBuffersFor() on us from
988 	// within its Connected() method.
989 	if (!channel->fBufferGroup)
990 		_AllocateBuffers(*channel);
991 
992 	_StartOutputThreadIfNeeded();
993 }
994 
995 
996 void
997 MultiAudioNode::Disconnect(const media_source& what,
998 	const media_destination& where)
999 {
1000 	CALLED();
1001 
1002 	// is this our output?
1003 	node_output* channel = _FindOutput(what);
1004 	if (channel == NULL) {
1005 		fprintf(stderr, "MultiAudioNode::Disconnect() returning (cause : B_MEDIA_BAD_SOURCE)\n");
1006 		return;
1007 	}
1008 
1009 	// Make sure that our connection is the one being disconnected
1010 	if (where == channel->fOutput.destination
1011 		&& what == channel->fOutput.source) {
1012 		channel->fOutput.destination = media_destination::null;
1013 		channel->fOutput.format = channel->fPreferredFormat;
1014 		delete channel->fBufferGroup;
1015 		channel->fBufferGroup = NULL;
1016 	} else {
1017 		fprintf(stderr, "\tDisconnect() called with wrong source/destination (%ld/%ld), ours is (%ld/%ld)\n",
1018 			what.id, where.id, channel->fOutput.source.id, channel->fOutput.destination.id);
1019 	}
1020 }
1021 
1022 
1023 void
1024 MultiAudioNode::LateNoticeReceived(const media_source& what, bigtime_t howMuch,
1025 	bigtime_t performanceTime)
1026 {
1027 	CALLED();
1028 
1029 	// is this our output?
1030 	node_output *channel = _FindOutput(what);
1031 	if (channel == NULL)
1032 		return;
1033 
1034 	// If we're late, we need to catch up.  Respond in a manner appropriate
1035 	// to our current run mode.
1036 	if (RunMode() == B_RECORDING) {
1037 		// A hardware capture node can't adjust; it simply emits buffers at
1038 		// appropriate points.  We (partially) simulate this by not adjusting
1039 		// our behavior upon receiving late notices -- after all, the hardware
1040 		// can't choose to capture "sooner"....
1041 	} else if (RunMode() == B_INCREASE_LATENCY) {
1042 		// We're late, and our run mode dictates that we try to produce buffers
1043 		// earlier in order to catch up.  This argues that the downstream nodes
1044 		// are not properly reporting their latency, but there's not much we can
1045 		// do about that at the moment, so we try to start producing buffers
1046 		// earlier to compensate.
1047 		fInternalLatency += howMuch;
1048 		SetEventLatency(fLatency + fInternalLatency);
1049 
1050 		fprintf(stderr, "\tincreasing latency to %Ld\n",
1051 			fLatency + fInternalLatency);
1052 	} else {
1053 		// The other run modes dictate various strategies for sacrificing data
1054 		// quality in the interests of timely data delivery.  The way *we* do
1055 		// this is to skip a buffer, which catches us up in time by one buffer
1056 		// duration.
1057 		/*size_t nSamples = fOutput.format.u.raw_audio.buffer_size / sizeof(float);
1058 		mSamplesSent += nSamples;*/
1059 
1060 		fprintf(stderr, "\tskipping a buffer to try to catch up\n");
1061 	}
1062 }
1063 
1064 
1065 void
1066 MultiAudioNode::EnableOutput(const media_source& what, bool enabled,
1067 	int32* _deprecated_)
1068 {
1069 	CALLED();
1070 
1071 	// If I had more than one output, I'd have to walk my list of output
1072 	// records to see which one matched the given source, and then
1073 	// enable/disable that one.  But this node only has one output, so I
1074 	// just make sure the given source matches, then set the enable state
1075 	// accordingly.
1076 	node_output *channel = _FindOutput(what);
1077 	if (channel != NULL)
1078 		channel->fOutputEnabled = enabled;
1079 }
1080 
1081 
1082 void
1083 MultiAudioNode::AdditionalBufferRequested(const media_source& source,
1084 	media_buffer_id previousBuffer, bigtime_t previousTime,
1085 	const media_seek_tag* previousTag)
1086 {
1087 	CALLED();
1088 	// we don't support offline mode
1089 	return;
1090 }
1091 
1092 
1093 //	#pragma mark - BMediaEventLooper
1094 
1095 
1096 void
1097 MultiAudioNode::HandleEvent(const media_timed_event* event, bigtime_t lateness,
1098 	bool realTimeEvent)
1099 {
1100 	//CALLED();
1101 	switch (event->type) {
1102 		case BTimedEventQueue::B_START:
1103 			_HandleStart(event, lateness, realTimeEvent);
1104 			break;
1105 		case BTimedEventQueue::B_SEEK:
1106 			_HandleSeek(event, lateness, realTimeEvent);
1107 			break;
1108 		case BTimedEventQueue::B_WARP:
1109 			_HandleWarp(event, lateness, realTimeEvent);
1110 			break;
1111 		case BTimedEventQueue::B_STOP:
1112 			_HandleStop(event, lateness, realTimeEvent);
1113 			break;
1114 		case BTimedEventQueue::B_HANDLE_BUFFER:
1115 			if (RunState() == BMediaEventLooper::B_STARTED)
1116 				_HandleBuffer(event, lateness, realTimeEvent);
1117 			break;
1118 		case BTimedEventQueue::B_DATA_STATUS:
1119 			_HandleDataStatus(event, lateness, realTimeEvent);
1120 			break;
1121 		case BTimedEventQueue::B_PARAMETER:
1122 			_HandleParameter(event, lateness, realTimeEvent);
1123 			break;
1124 		default:
1125 			fprintf(stderr,"  unknown event type: %li\n", event->type);
1126 			break;
1127 	}
1128 }
1129 
1130 
1131 status_t
1132 MultiAudioNode::_HandleBuffer(const media_timed_event* event,
1133 	bigtime_t lateness, bool realTimeEvent)
1134 {
1135 	//CALLED();
1136 	BBuffer* buffer = const_cast<BBuffer*>((BBuffer*)event->pointer);
1137 	if (buffer == NULL)
1138 		return B_BAD_VALUE;
1139 
1140 	//PRINT(("buffer->Header()->destination : %i\n", buffer->Header()->destination));
1141 
1142 	node_input* channel = _FindInput(buffer->Header()->destination);
1143 	if (channel == NULL) {
1144 		buffer->Recycle();
1145 		return B_MEDIA_BAD_DESTINATION;
1146 	}
1147 
1148 	bigtime_t now = TimeSource()->Now();
1149 	bigtime_t performanceTime = buffer->Header()->start_time;
1150 
1151 	// the how_early calculate here doesn't include scheduling latency because
1152 	// we've already been scheduled to handle the buffer
1153 	bigtime_t howEarly = performanceTime - EventLatency() - now;
1154 
1155 	// if the buffer is late, we ignore it and report the fact to the producer
1156 	// who sent it to us
1157 	if (RunMode() != B_OFFLINE && RunMode() != B_RECORDING && howEarly < 0LL) {
1158 		// lateness doesn't matter in offline mode or in recording mode
1159 		//mLateBuffers++;
1160 		NotifyLateProducer(channel->fInput.source, -howEarly, performanceTime);
1161 		fprintf(stderr,"	<- LATE BUFFER : %lli\n", howEarly);
1162 		buffer->Recycle();
1163 	} else {
1164 		//WriteBuffer(buffer, *channel);
1165 		// TODO: This seems like a very fragile mechanism to wait until
1166 		// the previous buffer for this channel has been processed...
1167 		if (channel->fBuffer != NULL) {
1168 			PRINT(("MultiAudioNode::HandleBuffer snoozing recycling channelId : %li, how_early:%Ld\n", channel->fChannelId, howEarly));
1169 			//channel->fBuffer->Recycle();
1170 			snooze(100);
1171 			if (channel->fBuffer != NULL)
1172 				buffer->Recycle();
1173 			else
1174 				channel->fBuffer = buffer;
1175 		} else {
1176 			//PRINT(("MultiAudioNode::HandleBuffer writing channelId : %li, how_early:%Ld\n", channel->fChannelId, howEarly));
1177 			channel->fBuffer = buffer;
1178 		}
1179 	}
1180 	return B_OK;
1181 }
1182 
1183 
1184 status_t
1185 MultiAudioNode::_HandleDataStatus(const media_timed_event* event,
1186 	bigtime_t lateness, bool realTimeEvent)
1187 {
1188 	//CALLED();
1189 	PRINT(("MultiAudioNode::HandleDataStatus status:%li, lateness:%Li\n", event->data, lateness));
1190 	switch (event->data) {
1191 		case B_DATA_NOT_AVAILABLE:
1192 			break;
1193 		case B_DATA_AVAILABLE:
1194 			break;
1195 		case B_PRODUCER_STOPPED:
1196 			break;
1197 		default:
1198 			break;
1199 	}
1200 	return B_OK;
1201 }
1202 
1203 
1204 status_t
1205 MultiAudioNode::_HandleStart(const media_timed_event *event, bigtime_t lateness,
1206 	bool realTimeEvent)
1207 {
1208 	CALLED();
1209 	if (RunState() != B_STARTED) {
1210 	}
1211 	return B_OK;
1212 }
1213 
1214 
1215 status_t
1216 MultiAudioNode::_HandleSeek(const media_timed_event* event, bigtime_t lateness,
1217 	bool realTimeEvent)
1218 {
1219 	CALLED();
1220 	PRINT(("MultiAudioNode::HandleSeek(t=%lld,d=%li,bd=%lld)\n",
1221 		event->event_time,event->data,event->bigdata));
1222 	return B_OK;
1223 }
1224 
1225 
1226 status_t
1227 MultiAudioNode::_HandleWarp(const media_timed_event* event, bigtime_t lateness,
1228 	bool realTimeEvent)
1229 {
1230 	CALLED();
1231 	return B_OK;
1232 }
1233 
1234 
1235 status_t
1236 MultiAudioNode::_HandleStop(const media_timed_event* event, bigtime_t lateness,
1237 	bool realTimeEvent)
1238 {
1239 	CALLED();
1240 	// flush the queue so downstreamers don't get any more
1241 	EventQueue()->FlushEvents(0, BTimedEventQueue::B_ALWAYS, true,
1242 		BTimedEventQueue::B_HANDLE_BUFFER);
1243 
1244 	//_StopOutputThread();
1245 	return B_OK;
1246 }
1247 
1248 
1249 status_t
1250 MultiAudioNode::_HandleParameter(const media_timed_event* event,
1251 	bigtime_t lateness, bool realTimeEvent)
1252 {
1253 	CALLED();
1254 	return B_OK;
1255 }
1256 
1257 
1258 //	#pragma mark - BTimeSource
1259 
1260 
1261 void
1262 MultiAudioNode::SetRunMode(run_mode mode)
1263 {
1264 	CALLED();
1265 	PRINT(("MultiAudioNode::SetRunMode mode:%i\n", mode));
1266 	//BTimeSource::SetRunMode(mode);
1267 }
1268 
1269 
1270 status_t
1271 MultiAudioNode::TimeSourceOp(const time_source_op_info& op, void* _reserved)
1272 {
1273 	CALLED();
1274 	switch (op.op) {
1275 		case B_TIMESOURCE_START:
1276 			PRINT(("TimeSourceOp op B_TIMESOURCE_START\n"));
1277 			if (RunState() != BMediaEventLooper::B_STARTED) {
1278 				fTimeSourceStarted = true;
1279 				_StartOutputThreadIfNeeded();
1280 
1281 				media_timed_event startEvent(0, BTimedEventQueue::B_START);
1282 				EventQueue()->AddEvent(startEvent);
1283 			}
1284 			break;
1285 		case B_TIMESOURCE_STOP:
1286 			PRINT(("TimeSourceOp op B_TIMESOURCE_STOP\n"));
1287 			if (RunState() == BMediaEventLooper::B_STARTED) {
1288 				media_timed_event stopEvent(0, BTimedEventQueue::B_STOP);
1289 				EventQueue()->AddEvent(stopEvent);
1290 				fTimeSourceStarted = false;
1291 				_StopOutputThread();
1292 				PublishTime(0, 0, 0);
1293 			}
1294 			break;
1295 		case B_TIMESOURCE_STOP_IMMEDIATELY:
1296 			PRINT(("TimeSourceOp op B_TIMESOURCE_STOP_IMMEDIATELY\n"));
1297 			if (RunState() == BMediaEventLooper::B_STARTED) {
1298 				media_timed_event stopEvent(0, BTimedEventQueue::B_STOP);
1299 				EventQueue()->AddEvent(stopEvent);
1300 				fTimeSourceStarted = false;
1301 				_StopOutputThread();
1302 				PublishTime(0, 0, 0);
1303 			}
1304 			break;
1305 		case B_TIMESOURCE_SEEK:
1306 			PRINT(("TimeSourceOp op B_TIMESOURCE_SEEK\n"));
1307 			BroadcastTimeWarp(op.real_time, op.performance_time);
1308 			break;
1309 		default:
1310 			break;
1311 	}
1312 	return B_OK;
1313 }
1314 
1315 
1316 //	#pragma mark - BControllable
1317 
1318 
1319 status_t
1320 MultiAudioNode::GetParameterValue(int32 id, bigtime_t* lastChange, void* value,
1321 	size_t* size)
1322 {
1323 	CALLED();
1324 
1325 	PRINT(("id : %li\n", id));
1326 	BParameter* parameter = NULL;
1327 	for (int32 i = 0; i < fWeb->CountParameters(); i++) {
1328 		parameter = fWeb->ParameterAt(i);
1329 		if (parameter->ID() == id)
1330 			break;
1331 	}
1332 
1333 	if (parameter == NULL) {
1334 		// Hmmm, we were asked for a parameter that we don't actually
1335 		// support.  Report an error back to the caller.
1336 		PRINT(("\terror - asked for illegal parameter %ld\n", id));
1337 		return B_ERROR;
1338 	}
1339 
1340 	if (id == PARAMETER_ID_INPUT_FREQUENCY
1341 		|| id == PARAMETER_ID_OUTPUT_FREQUENCY) {
1342 		const multi_format_info& info = fDevice->FormatInfo();
1343 
1344 		uint32 rate = id == PARAMETER_ID_INPUT_FREQUENCY
1345 			? info.input.rate : info.output.rate;
1346 
1347 		if (*size < sizeof(rate))
1348 			return B_ERROR;
1349 
1350 		memcpy(value, &rate, sizeof(rate));
1351 		*size = sizeof(rate);
1352 		return B_OK;
1353 	}
1354 
1355 	multi_mix_value_info info;
1356 	multi_mix_value values[2];
1357 	info.values = values;
1358 	info.item_count = 0;
1359 	multi_mix_control* controls = fDevice->MixControlInfo().controls;
1360 	int32 control_id = controls[id - 100].id;
1361 
1362 	if (*size < sizeof(float))
1363 		return B_ERROR;
1364 
1365 	if (parameter->Type() == BParameter::B_CONTINUOUS_PARAMETER) {
1366 		info.item_count = 1;
1367 		values[0].id = control_id;
1368 
1369 		if (parameter->CountChannels() == 2) {
1370 			if (*size < 2*sizeof(float))
1371 				return B_ERROR;
1372 			info.item_count = 2;
1373 			values[1].id = controls[id + 1 - 100].id;
1374 		}
1375 	} else if(parameter->Type() == BParameter::B_DISCRETE_PARAMETER) {
1376 		info.item_count = 1;
1377 		values[0].id = control_id;
1378 	}
1379 
1380 	if (info.item_count > 0) {
1381 		status_t status = fDevice->GetMix(&info);
1382 		if (status != B_OK) {
1383 			fprintf(stderr, "Failed on DRIVER_GET_MIX\n");
1384 		} else {
1385 			if (parameter->Type() == BParameter::B_CONTINUOUS_PARAMETER) {
1386 				((float*)value)[0] = values[0].gain;
1387 				*size = sizeof(float);
1388 
1389 				if (parameter->CountChannels() == 2) {
1390 					((float*)value)[1] = values[1].gain;
1391 					*size = 2*sizeof(float);
1392 				}
1393 
1394 				for (uint32 i = 0; i < *size / sizeof(float); i++) {
1395 					PRINT(("GetParameterValue B_CONTINUOUS_PARAMETER value[%li] : %f\n", i, ((float*)value)[i]));
1396 				}
1397 			} else if (parameter->Type() == BParameter::B_DISCRETE_PARAMETER) {
1398 				BDiscreteParameter* discrete = (BDiscreteParameter*)parameter;
1399 				if (discrete->CountItems() <= 2)
1400 					((int32*)value)[0] = values[0].enable ? 1 : 0;
1401 				else
1402 					((int32*)value)[0] = values[0].mux;
1403 
1404 				*size = sizeof(int32);
1405 
1406 				for (uint32 i = 0; i < *size / sizeof(int32); i++) {
1407 					PRINT(("GetParameterValue B_DISCRETE_PARAMETER value[%li] : %li\n", i, ((int32*)value)[i]));
1408 				}
1409 			}
1410 		}
1411 	}
1412 	return B_OK;
1413 }
1414 
1415 
1416 void
1417 MultiAudioNode::SetParameterValue(int32 id, bigtime_t performanceTime,
1418 	const void* value, size_t size)
1419 {
1420 	CALLED();
1421 	PRINT(("id : %li, performance_time : %lld, size : %li\n", id, performanceTime, size));
1422 
1423 	BParameter* parameter = NULL;
1424 	for (int32 i = 0; i < fWeb->CountParameters(); i++) {
1425 		parameter = fWeb->ParameterAt(i);
1426 		if (parameter->ID() == id)
1427 			break;
1428 	}
1429 
1430 	if (parameter == NULL)
1431 		return;
1432 
1433 	if (id == PARAMETER_ID_OUTPUT_FREQUENCY
1434 		|| (id == PARAMETER_ID_INPUT_FREQUENCY
1435 			&& (fDevice->Description().output_rates & B_SR_SAME_AS_INPUT))) {
1436 		uint32 rate;
1437 		if (size < sizeof(rate))
1438 			return;
1439 		memcpy(&rate, value, sizeof(rate));
1440 
1441 		if (rate == fOutputPreferredFormat.u.raw_audio.frame_rate)
1442 			return;
1443 
1444 		// create a cookie RequestCompleted() can get the old frame rate from,
1445 		// if anything goes wrong
1446 		FrameRateChangeCookie* cookie
1447 			= new(std::nothrow) FrameRateChangeCookie;
1448 		if (cookie == NULL)
1449 			return;
1450 
1451 		cookie->oldFrameRate = fOutputPreferredFormat.u.raw_audio.frame_rate;
1452 		cookie->id = id;
1453 		BReference<FrameRateChangeCookie> cookieReference(cookie, true);
1454 
1455 		// NOTE: What we should do is call RequestFormatChange() for all
1456 		// connections and change the device's format in RequestCompleted().
1457 		// Unfortunately we need the new buffer size first, which we only get
1458 		// from the device after changing the format. So we do that now and
1459 		// reset it in RequestCompleted(), if something went wrong. This causes
1460 		// the buffers we receive until then to be played incorrectly leading
1461 		// to unpleasant noise.
1462 		float frameRate = MultiAudio::convert_to_sample_rate(rate);
1463 		if (_SetNodeInputFrameRate(frameRate) != B_OK)
1464 			return;
1465 
1466 		for (int32 i = 0; i < fInputs.CountItems(); i++) {
1467 			node_input* channel = (node_input*)fInputs.ItemAt(i);
1468 			if (channel->fInput.source == media_source::null)
1469 				continue;
1470 
1471 			media_format newFormat = channel->fInput.format;
1472 			newFormat.u.raw_audio.frame_rate = frameRate;
1473 			newFormat.u.raw_audio.buffer_size
1474 				= fOutputPreferredFormat.u.raw_audio.buffer_size;
1475 
1476 			int32 changeTag = 0;
1477 			status_t error = RequestFormatChange(channel->fInput.source,
1478 				channel->fInput.destination, newFormat, NULL, &changeTag);
1479 			if (error == B_OK)
1480 				cookie->AcquireReference();
1481 		}
1482 
1483 		if (id != PARAMETER_ID_INPUT_FREQUENCY)
1484 			return;
1485 		//Do not return cause we should go in the next if
1486 	}
1487 
1488 	if (id == PARAMETER_ID_INPUT_FREQUENCY) {
1489 		uint32 rate;
1490 		if (size < sizeof(rate))
1491 			return;
1492 		memcpy(&rate, value, sizeof(rate));
1493 
1494 		if (rate == fInputPreferredFormat.u.raw_audio.frame_rate)
1495 			return;
1496 
1497 		// create a cookie RequestCompleted() can get the old frame rate from,
1498 		// if anything goes wrong
1499 		FrameRateChangeCookie* cookie
1500 			= new(std::nothrow) FrameRateChangeCookie;
1501 		if (cookie == NULL)
1502 			return;
1503 
1504 		cookie->oldFrameRate = fInputPreferredFormat.u.raw_audio.frame_rate;
1505 		cookie->id = id;
1506 		BReference<FrameRateChangeCookie> cookieReference(cookie, true);
1507 
1508 		// NOTE: What we should do is call RequestFormatChange() for all
1509 		// connections and change the device's format in RequestCompleted().
1510 		// Unfortunately we need the new buffer size first, which we only get
1511 		// from the device after changing the format. So we do that now and
1512 		// reset it in RequestCompleted(), if something went wrong. This causes
1513 		// the buffers we receive until then to be played incorrectly leading
1514 		// to unpleasant noise.
1515 		float frameRate = MultiAudio::convert_to_sample_rate(rate);
1516 		if (_SetNodeOutputFrameRate(frameRate) != B_OK)
1517 			return;
1518 
1519 		for (int32 i = 0; i < fOutputs.CountItems(); i++) {
1520 			node_output* channel = (node_output*)fOutputs.ItemAt(i);
1521 			if (channel->fOutput.source == media_source::null)
1522 				continue;
1523 
1524 			media_format newFormat = channel->fOutput.format;
1525 			newFormat.u.raw_audio.frame_rate = frameRate;
1526 			newFormat.u.raw_audio.buffer_size
1527 				= fInputPreferredFormat.u.raw_audio.buffer_size;
1528 
1529 			int32 changeTag = 0;
1530 			status_t error = RequestFormatChange(channel->fOutput.source,
1531 				channel->fOutput.destination, newFormat, NULL, &changeTag);
1532 			if (error == B_OK)
1533 				cookie->AcquireReference();
1534 		}
1535 
1536 		return;
1537 	}
1538 
1539 	multi_mix_value_info info;
1540 	multi_mix_value values[2];
1541 	info.values = values;
1542 	info.item_count = 0;
1543 	multi_mix_control* controls = fDevice->MixControlInfo().controls;
1544 	int32 control_id = controls[id - 100].id;
1545 
1546 	if (parameter->Type() == BParameter::B_CONTINUOUS_PARAMETER) {
1547 		for (uint32 i = 0; i < size / sizeof(float); i++) {
1548 			PRINT(("SetParameterValue B_CONTINUOUS_PARAMETER value[%li] : %f\n", i, ((float*)value)[i]));
1549 		}
1550 		info.item_count = 1;
1551 		values[0].id = control_id;
1552 		values[0].gain = ((float*)value)[0];
1553 
1554 		if (parameter->CountChannels() == 2) {
1555 			info.item_count = 2;
1556 			values[1].id = controls[id + 1 - 100].id;
1557 			values[1].gain = ((float*)value)[1];
1558 		}
1559 	} else if (parameter->Type() == BParameter::B_DISCRETE_PARAMETER) {
1560 		for (uint32 i = 0; i < size / sizeof(int32); i++) {
1561 			PRINT(("SetParameterValue B_DISCRETE_PARAMETER value[%li] : %li\n", i, ((int32*)value)[i]));
1562 		}
1563 
1564 		BDiscreteParameter* discrete = (BDiscreteParameter*)parameter;
1565 		if (discrete->CountItems() <= 2) {
1566 			info.item_count = 1;
1567 			values[0].id = control_id;
1568 			values[0].enable = ((int32*)value)[0] == 1;
1569 		} else {
1570 			info.item_count = 1;
1571 			values[0].id = control_id;
1572 			values[0].mux = ((uint32*)value)[0];
1573 		}
1574 	}
1575 
1576 	if (info.item_count > 0) {
1577 		status_t status = fDevice->SetMix(&info);
1578 		if (status != B_OK)
1579 			fprintf(stderr, "Failed on DRIVER_SET_MIX\n");
1580 	}
1581 }
1582 
1583 
1584 BParameterWeb*
1585 MultiAudioNode::MakeParameterWeb()
1586 {
1587 	CALLED();
1588 	BParameterWeb* web = new BParameterWeb;
1589 
1590 	PRINT(("MixControlInfo().control_count : %li\n",
1591 		fDevice->MixControlInfo().control_count));
1592 
1593 	BParameterGroup* generalGroup = web->MakeGroup(B_TRANSLATE("General"));
1594 
1595 	const multi_description& description = fDevice->Description();
1596 
1597 	if (description.output_rates & B_SR_SAME_AS_INPUT) {
1598 		_CreateFrequencyParameterGroup(generalGroup, B_TRANSLATE("Input & Output"),
1599 			PARAMETER_ID_INPUT_FREQUENCY, description.input_rates);
1600 	} else {
1601 		_CreateFrequencyParameterGroup(generalGroup, B_TRANSLATE("Input"),
1602 			PARAMETER_ID_INPUT_FREQUENCY, description.input_rates);
1603 		_CreateFrequencyParameterGroup(generalGroup, B_TRANSLATE("Output"),
1604 			PARAMETER_ID_OUTPUT_FREQUENCY, description.output_rates);
1605 	}
1606 
1607 	multi_mix_control* controls = fDevice->MixControlInfo().controls;
1608 
1609 	for (int i = 0; i < fDevice->MixControlInfo().control_count; i++) {
1610 		if (controls[i].flags & B_MULTI_MIX_GROUP && controls[i].parent == 0) {
1611 			PRINT(("NEW_GROUP\n"));
1612 			BParameterGroup* child = web->MakeGroup(
1613 				_GetControlName(controls[i]));
1614 
1615 			int32 numParameters = 0;
1616 			_ProcessGroup(child, i, numParameters);
1617 		}
1618 	}
1619 
1620 	return web;
1621 }
1622 
1623 
1624 const char*
1625 MultiAudioNode::_GetControlName(multi_mix_control& control)
1626 {
1627 	if (control.string != S_null)
1628 		return kMultiControlString[control.string];
1629 
1630 	return control.name;
1631 }
1632 
1633 
1634 void
1635 MultiAudioNode::_ProcessGroup(BParameterGroup* group, int32 index,
1636 	int32& numParameters)
1637 {
1638 	CALLED();
1639 	multi_mix_control* parent = &fDevice->MixControlInfo().controls[index];
1640 	multi_mix_control* controls = fDevice->MixControlInfo().controls;
1641 
1642 	for (int32 i = 0; i < fDevice->MixControlInfo().control_count; i++) {
1643 		if (controls[i].parent != parent->id)
1644 			continue;
1645 
1646 		const char* name = _GetControlName(controls[i]);
1647 
1648 		if (controls[i].flags & B_MULTI_MIX_GROUP) {
1649 			PRINT(("NEW_GROUP\n"));
1650 			BParameterGroup* child = group->MakeGroup(name);
1651 			child->MakeNullParameter(100 + i, B_MEDIA_RAW_AUDIO, name,
1652 				B_WEB_BUFFER_OUTPUT);
1653 
1654 			int32 num = 1;
1655 			_ProcessGroup(child, i, num);
1656 		} else if (controls[i].flags & B_MULTI_MIX_MUX) {
1657 			PRINT(("NEW_MUX\n"));
1658 			BDiscreteParameter* parameter = group->MakeDiscreteParameter(
1659 				100 + i, B_MEDIA_RAW_AUDIO, name, B_INPUT_MUX);
1660 			if (numParameters > 0) {
1661 				(group->ParameterAt(numParameters - 1))->AddOutput(
1662 					group->ParameterAt(numParameters));
1663 				numParameters++;
1664 			}
1665 			_ProcessMux(parameter, i);
1666 		} else if (controls[i].flags & B_MULTI_MIX_GAIN) {
1667 			PRINT(("NEW_GAIN\n"));
1668 			group->MakeContinuousParameter(100 + i,
1669 				B_MEDIA_RAW_AUDIO, "", B_MASTER_GAIN, "dB",
1670 				controls[i].gain.min_gain, controls[i].gain.max_gain,
1671 				controls[i].gain.granularity);
1672 
1673 			if (i + 1 < fDevice->MixControlInfo().control_count
1674 				&& controls[i + 1].master == controls[i].id
1675 				&& controls[i + 1].flags & B_MULTI_MIX_GAIN) {
1676 				group->ParameterAt(numParameters)->SetChannelCount(
1677 					group->ParameterAt(numParameters)->CountChannels() + 1);
1678 				i++;
1679 			}
1680 
1681 			PRINT(("num parameters : %ld\n", numParameters));
1682 			if (numParameters > 0) {
1683 				(group->ParameterAt(numParameters - 1))->AddOutput(
1684 					group->ParameterAt(numParameters));
1685 				numParameters++;
1686 			}
1687 		} else if (controls[i].flags & B_MULTI_MIX_ENABLE) {
1688 			PRINT(("NEW_ENABLE\n"));
1689 			if (controls[i].string == S_MUTE) {
1690 				group->MakeDiscreteParameter(100 + i,
1691 					B_MEDIA_RAW_AUDIO, name, B_MUTE);
1692 			} else {
1693 				group->MakeDiscreteParameter(100 + i,
1694 					B_MEDIA_RAW_AUDIO, name, B_ENABLE);
1695 			}
1696 			if (numParameters > 0) {
1697 				(group->ParameterAt(numParameters - 1))->AddOutput(
1698 					group->ParameterAt(numParameters));
1699 				numParameters++;
1700 			}
1701 		}
1702 	}
1703 }
1704 
1705 
1706 void
1707 MultiAudioNode::_ProcessMux(BDiscreteParameter* parameter, int32 index)
1708 {
1709 	CALLED();
1710 	multi_mix_control* parent = &fDevice->MixControlInfo().controls[index];
1711 	multi_mix_control* controls = fDevice->MixControlInfo().controls;
1712 	int32 itemIndex = 0;
1713 
1714 	for (int32 i = 0; i < fDevice->MixControlInfo().control_count; i++) {
1715 		if (controls[i].parent != parent->id)
1716 			continue;
1717 
1718 		if (controls[i].flags & B_MULTI_MIX_MUX_VALUE) {
1719 			PRINT(("NEW_MUX_VALUE\n"));
1720 			parameter->AddItem(itemIndex, _GetControlName(controls[i]));
1721 			itemIndex++;
1722 		}
1723 	}
1724 }
1725 
1726 
1727 void
1728 MultiAudioNode::_CreateFrequencyParameterGroup(BParameterGroup* parentGroup,
1729 	const char* name, int32 parameterID, uint32 rateMask)
1730 {
1731 	BParameterGroup* group = parentGroup->MakeGroup(name);
1732 	BDiscreteParameter* frequencyParam = group->MakeDiscreteParameter(
1733 		parameterID, B_MEDIA_NO_TYPE, BString(name) << B_TRANSLATE(" frequency:"),
1734 		B_GENERIC);
1735 
1736 	for (int32 i = 0; kSampleRateInfos[i].name != NULL; i++) {
1737 		const sample_rate_info& info = kSampleRateInfos[i];
1738 		if ((rateMask & info.multiAudioRate) != 0) {
1739 			frequencyParam->AddItem(info.multiAudioRate,
1740 				BString(info.name) << " Hz");
1741 		}
1742 	}
1743 }
1744 
1745 
1746 //	#pragma mark - MultiAudioNode specific functions
1747 
1748 
1749 int32
1750 MultiAudioNode::_OutputThread()
1751 {
1752 	CALLED();
1753 	multi_buffer_info bufferInfo;
1754 	bufferInfo.info_size = sizeof(multi_buffer_info);
1755 	bufferInfo.playback_buffer_cycle = 0;
1756 	bufferInfo.record_buffer_cycle = 0;
1757 
1758 	// init the performance time computation
1759 	{
1760 		BAutolock locker(fBufferLock);
1761 		fTimeComputer.Init(fOutputPreferredFormat.u.raw_audio.frame_rate,
1762 			system_time());
1763 	}
1764 
1765 	while (true) {
1766 		// TODO: why this semaphore??
1767 		if (acquire_sem_etc(fBufferFreeSem, 1, B_RELATIVE_TIMEOUT, 0)
1768 				== B_BAD_SEM_ID) {
1769 			return B_OK;
1770 		}
1771 
1772 		BAutolock locker(fBufferLock);
1773 			// make sure the buffers don't change while we're playing with them
1774 
1775 		// send buffer
1776 		fDevice->BufferExchange(&bufferInfo);
1777 
1778 		//PRINT(("MultiAudioNode::RunThread: buffer exchanged\n"));
1779 		//PRINT(("MultiAudioNode::RunThread: played_real_time : %Ld\n", bufferInfo.played_real_time));
1780 		//PRINT(("MultiAudioNode::RunThread: played_frames_count : %Ld\n", bufferInfo.played_frames_count));
1781 		//PRINT(("MultiAudioNode::RunThread: buffer_cycle : %li\n", bufferInfo.playback_buffer_cycle));
1782 
1783 		for (int32 i = 0; i < fInputs.CountItems(); i++) {
1784 			node_input* input = (node_input*)fInputs.ItemAt(i);
1785 
1786 			if (bufferInfo.playback_buffer_cycle >= 0
1787 				&& bufferInfo.playback_buffer_cycle
1788 						< fDevice->BufferList().return_playback_buffers
1789 				&& (input->fOldBufferInfo.playback_buffer_cycle
1790 						!= bufferInfo.playback_buffer_cycle
1791 					|| fDevice->BufferList().return_playback_buffers == 1)
1792 				&& (input->fInput.source != media_source::null
1793 					|| input->fChannelId == 0)) {
1794 				//PRINT(("playback_buffer_cycle ok input : %li %ld\n", i, bufferInfo.playback_buffer_cycle));
1795 
1796 				input->fBufferCycle = (bufferInfo.playback_buffer_cycle - 1
1797 						+ fDevice->BufferList().return_playback_buffers)
1798 					% fDevice->BufferList().return_playback_buffers;
1799 
1800 				// update the timesource
1801 				if (input->fChannelId == 0) {
1802 					//PRINT(("updating timesource\n"));
1803 					_UpdateTimeSource(bufferInfo, input->fOldBufferInfo,
1804 						*input);
1805 				}
1806 
1807 				input->fOldBufferInfo = bufferInfo;
1808 
1809 				if (input->fBuffer != NULL) {
1810 					_FillNextBuffer(*input, input->fBuffer);
1811 					input->fBuffer->Recycle();
1812 					input->fBuffer = NULL;
1813 				} else {
1814 					// put zeros in current buffer
1815 					if (input->fInput.source != media_source::null)
1816 						_WriteZeros(*input, input->fBufferCycle);
1817 					//PRINT(("MultiAudioNode::Runthread WriteZeros\n"));
1818 				}
1819 
1820 				// mark buffer free
1821 				release_sem(fBufferFreeSem);
1822 			} else {
1823 				//PRINT(("playback_buffer_cycle non ok input : %i\n", i));
1824 			}
1825 		}
1826 
1827 		PRINT(("MultiAudioNode::RunThread: recorded_real_time : %Ld\n",
1828 			bufferInfo.recorded_real_time));
1829 		PRINT(("MultiAudioNode::RunThread: recorded_frames_count : %Ld\n",
1830 			bufferInfo.recorded_frames_count));
1831 		PRINT(("MultiAudioNode::RunThread: record_buffer_cycle : %li\n",
1832 			bufferInfo.record_buffer_cycle));
1833 
1834 		for (int32 i = 0; i < fOutputs.CountItems(); i++) {
1835 			node_output* output = (node_output*)fOutputs.ItemAt(i);
1836 
1837 			// make sure we're both started *and* connected before delivering a
1838 			// buffer
1839 			if (RunState() == BMediaEventLooper::B_STARTED
1840 				&& output->fOutput.destination != media_destination::null) {
1841 				if (bufferInfo.record_buffer_cycle >= 0
1842 					&& bufferInfo.record_buffer_cycle
1843 							< fDevice->BufferList().return_record_buffers
1844 					&& (output->fOldBufferInfo.record_buffer_cycle
1845 							!= bufferInfo.record_buffer_cycle
1846 						|| fDevice->BufferList().return_record_buffers == 1)) {
1847 					//PRINT(("record_buffer_cycle ok\n"));
1848 
1849 					output->fBufferCycle = bufferInfo.record_buffer_cycle;
1850 
1851 					// Get the next buffer of data
1852 					BBuffer* buffer = _FillNextBuffer(bufferInfo, *output);
1853 					if (buffer != NULL) {
1854 						// send the buffer downstream if and only if output is
1855 						// enabled
1856 						status_t err = B_ERROR;
1857 						if (output->fOutputEnabled) {
1858 							err = SendBuffer(buffer, output->fOutput.source,
1859 								output->fOutput.destination);
1860 						}
1861 						if (err) {
1862 							buffer->Recycle();
1863 						} else {
1864 							// track how much media we've delivered so far
1865 							size_t numSamples
1866 								= output->fOutput.format.u.raw_audio.buffer_size
1867 								/ (output->fOutput.format.u.raw_audio.format
1868 									& media_raw_audio_format::B_AUDIO_SIZE_MASK);
1869 							output->fSamplesSent += numSamples;
1870 						}
1871 					}
1872 
1873 					output->fOldBufferInfo = bufferInfo;
1874 				} else {
1875 					//PRINT(("record_buffer_cycle non ok\n"));
1876 				}
1877 			}
1878 		}
1879 	}
1880 
1881 	return B_OK;
1882 }
1883 
1884 
1885 void
1886 MultiAudioNode::_WriteZeros(node_input& input, uint32 bufferCycle)
1887 {
1888 	//CALLED();
1889 	/*int32 samples = input.fInput.format.u.raw_audio.buffer_size;
1890 	if(input.fInput.format.u.raw_audio.format == media_raw_audio_format::B_AUDIO_UCHAR) {
1891 		uint8 *sample = (uint8*)fDevice->BufferList().playback_buffers[input.fBufferCycle][input.fChannelId].base;
1892 		for(int32 i = samples-1; i>=0; i--)
1893 			*sample++ = 128;
1894 	} else {
1895 		int32 *sample = (int32*)fDevice->BufferList().playback_buffers[input.fBufferCycle][input.fChannelId].base;
1896 		for(int32 i = (samples / 4)-1; i>=0; i--)
1897 			*sample++ = 0;
1898 	}*/
1899 
1900 	uint32 channelCount = input.fFormat.u.raw_audio.channel_count;
1901 	uint32 bufferSize = fDevice->BufferList().return_playback_buffer_size;
1902 	size_t stride = fDevice->BufferList().playback_buffers[bufferCycle]
1903 		[input.fChannelId].stride;
1904 
1905 	switch (input.fFormat.u.raw_audio.format) {
1906 		case media_raw_audio_format::B_AUDIO_FLOAT:
1907 			for (uint32 channel = 0; channel < channelCount; channel++) {
1908 				char* dest = _PlaybackBuffer(bufferCycle,
1909 					input.fChannelId + channel);
1910 				for (uint32 i = bufferSize; i > 0; i--) {
1911 					*(float*)dest = 0;
1912 					dest += stride;
1913 				}
1914 			}
1915 			break;
1916 
1917 		case media_raw_audio_format::B_AUDIO_DOUBLE:
1918 			for (uint32 channel = 0; channel < channelCount; channel++) {
1919 				char* dest = _PlaybackBuffer(bufferCycle,
1920 					input.fChannelId + channel);
1921 				for (uint32 i = bufferSize; i > 0; i--) {
1922 					*(double*)dest = 0;
1923 					dest += stride;
1924 				}
1925 			}
1926 			break;
1927 
1928 		case media_raw_audio_format::B_AUDIO_INT:
1929 			for (uint32 channel = 0; channel < channelCount; channel++) {
1930 				char* dest = _PlaybackBuffer(bufferCycle,
1931 					input.fChannelId + channel);
1932 				for (uint32 i = bufferSize; i > 0; i--) {
1933 					*(int32*)dest = 0;
1934 					dest += stride;
1935 				}
1936 			}
1937 			break;
1938 
1939 		case media_raw_audio_format::B_AUDIO_SHORT:
1940 			for (uint32 channel = 0; channel < channelCount; channel++) {
1941 				char* dest = _PlaybackBuffer(bufferCycle,
1942 					input.fChannelId + channel);
1943 				for (uint32 i = bufferSize; i > 0; i--) {
1944 					*(int16*)dest = 0;
1945 					dest += stride;
1946 				}
1947 			}
1948 			break;
1949 
1950 		case media_raw_audio_format::B_AUDIO_UCHAR:
1951 			for (uint32 channel = 0; channel < channelCount; channel++) {
1952 				char* dest = _PlaybackBuffer(bufferCycle,
1953 					input.fChannelId + channel);
1954 				for (uint32 i = bufferSize; i > 0; i--) {
1955 					*(uint8*)dest = 128;
1956 					dest += stride;
1957 				}
1958 			}
1959 			break;
1960 
1961 		case media_raw_audio_format::B_AUDIO_CHAR:
1962 			for (uint32 channel = 0; channel < channelCount; channel++) {
1963 				char* dest = _PlaybackBuffer(bufferCycle,
1964 					input.fChannelId + channel);
1965 				for (uint32 i = bufferSize; i > 0; i--) {
1966 					*(int8*)dest = 0;
1967 					dest += stride;
1968 				}
1969 			}
1970 			break;
1971 
1972 		default:
1973 			fprintf(stderr, "ERROR in WriteZeros format not handled\n");
1974 	}
1975 }
1976 
1977 
1978 void
1979 MultiAudioNode::_FillWithZeros(node_input& input)
1980 {
1981 	CALLED();
1982 	for (int32 i = 0; i < fDevice->BufferList().return_playback_buffers; i++)
1983 		_WriteZeros(input, i);
1984 }
1985 
1986 
1987 void
1988 MultiAudioNode::_FillNextBuffer(node_input& input, BBuffer* buffer)
1989 {
1990 	uint32 channelCount = input.fInput.format.u.raw_audio.channel_count;
1991 	size_t inputSampleSize = input.fInput.format.u.raw_audio.format
1992 			& media_raw_audio_format::B_AUDIO_SIZE_MASK;
1993 
1994 	uint32 bufferSize = fDevice->BufferList().return_playback_buffer_size;
1995 
1996 	if (buffer->SizeUsed() / inputSampleSize / channelCount != bufferSize) {
1997 		_WriteZeros(input, input.fBufferCycle);
1998 		return;
1999 	}
2000 
2001 	if (channelCount != input.fFormat.u.raw_audio.channel_count) {
2002 		PRINT(("Channel count is different"));
2003 		return;
2004 	}
2005 
2006 	if (input.fResampler != NULL) {
2007 		size_t srcStride = channelCount * inputSampleSize;
2008 
2009 		for (uint32 channel = 0; channel < channelCount; channel++) {
2010 			char* src = (char*)buffer->Data() + channel * inputSampleSize;
2011 			char* dst = _PlaybackBuffer(input.fBufferCycle,
2012 							input.fChannelId + channel);
2013 			size_t dstStride = _PlaybackStride(input.fBufferCycle,
2014 							input.fChannelId + channel);
2015 
2016 			input.fResampler->Resample(src, srcStride,
2017 				dst, dstStride, bufferSize);
2018 		}
2019 	}
2020 }
2021 
2022 
2023 status_t
2024 MultiAudioNode::_StartOutputThreadIfNeeded()
2025 {
2026 	CALLED();
2027 	// the thread is already started ?
2028 	if (fThread >= 0)
2029 		return B_OK;
2030 
2031 	// allocate buffer free semaphore
2032 	fBufferFreeSem = create_sem(
2033 		fDevice->BufferList().return_playback_buffers - 1,
2034 		"multi_audio out buffer free");
2035 	if (fBufferFreeSem < B_OK)
2036 		return fBufferFreeSem;
2037 
2038 	PublishTime(-50, 0, 0);
2039 
2040 	fThread = spawn_thread(_OutputThreadEntry, "multi_audio audio output",
2041 		B_REAL_TIME_PRIORITY, this);
2042 	if (fThread < B_OK) {
2043 		delete_sem(fBufferFreeSem);
2044 		return fThread;
2045 	}
2046 
2047 	resume_thread(fThread);
2048 	return B_OK;
2049 }
2050 
2051 
2052 status_t
2053 MultiAudioNode::_StopOutputThread()
2054 {
2055 	CALLED();
2056 	delete_sem(fBufferFreeSem);
2057 
2058 	status_t exitValue;
2059 	wait_for_thread(fThread, &exitValue);
2060 	fThread = -1;
2061 	return B_OK;
2062 }
2063 
2064 
2065 void
2066 MultiAudioNode::_AllocateBuffers(node_output &channel)
2067 {
2068 	CALLED();
2069 
2070 	// allocate enough buffers to span our downstream latency, plus one
2071 	size_t size = channel.fOutput.format.u.raw_audio.buffer_size;
2072 	int32 count = int32(fLatency / BufferDuration() + 1 + 1);
2073 
2074 	PRINT(("\tlatency = %Ld, buffer duration = %Ld\n", fLatency,
2075 		BufferDuration()));
2076 	PRINT(("\tcreating group of %ld buffers, size = %lu\n", count, size));
2077 	channel.fBufferGroup = new BBufferGroup(size, count);
2078 }
2079 
2080 
2081 void
2082 MultiAudioNode::_UpdateTimeSource(multi_buffer_info& info,
2083 	multi_buffer_info& oldInfo, node_input& input)
2084 {
2085 	//CALLED();
2086 	if (!fTimeSourceStarted || oldInfo.played_real_time == 0)
2087 		return;
2088 
2089 	fTimeComputer.AddTimeStamp(info.played_real_time,
2090 		info.played_frames_count);
2091 	PublishTime(fTimeComputer.PerformanceTime(), fTimeComputer.RealTime(),
2092 		fTimeComputer.Drift());
2093 }
2094 
2095 
2096 BBuffer*
2097 MultiAudioNode::_FillNextBuffer(multi_buffer_info &info, node_output &output)
2098 {
2099 	//CALLED();
2100 	// get a buffer from our buffer group
2101 	//PRINT(("buffer size : %i, buffer duration : %i\n", fOutput.format.u.raw_audio.buffer_size, BufferDuration()));
2102 	//PRINT(("MBI.record_buffer_cycle : %i\n", MBI.record_buffer_cycle));
2103 	//PRINT(("MBI.recorded_real_time : %i\n", MBI.recorded_real_time));
2104 	//PRINT(("MBI.recorded_frames_count : %i\n", MBI.recorded_frames_count));
2105 	if (!output.fBufferGroup)
2106 		return NULL;
2107 
2108 	BBuffer* buffer = output.fBufferGroup->RequestBuffer(
2109 		output.fOutput.format.u.raw_audio.buffer_size, BufferDuration());
2110 	if (buffer == NULL) {
2111 		// If we fail to get a buffer (for example, if the request times out),
2112 		// we skip this buffer and go on to the next, to avoid locking up the
2113 		// control thread.
2114 		fprintf(stderr, "Buffer is null");
2115 		return NULL;
2116 	}
2117 
2118 	if (fDevice == NULL)
2119 		fprintf(stderr, "fDevice NULL\n");
2120 	if (buffer->Header() == NULL)
2121 		fprintf(stderr, "buffer->Header() NULL\n");
2122 	if (TimeSource() == NULL)
2123 		fprintf(stderr, "TimeSource() NULL\n");
2124 
2125 	uint32 channelCount = output.fOutput.format.u.raw_audio.channel_count;
2126 	size_t outputSampleSize = output.fOutput.format.u.raw_audio.format
2127 		& media_raw_audio_format::B_AUDIO_SIZE_MASK;
2128 
2129 	uint32 bufferSize = fDevice->BufferList().return_record_buffer_size;
2130 
2131 	if (output.fResampler != NULL) {
2132 		size_t dstStride = channelCount * outputSampleSize;
2133 
2134 		uint32 channelId = output.fChannelId
2135 			- fDevice->Description().output_channel_count;
2136 
2137 		for (uint32 channel = 0; channel < channelCount; channel++) {
2138 			char* src = _RecordBuffer(output.fBufferCycle,
2139 									channelId + channel);
2140 			size_t srcStride = _RecordStride(output.fBufferCycle,
2141 									channelId + channel);
2142 			char* dst = (char*)buffer->Data() + channel * outputSampleSize;
2143 
2144 			output.fResampler->Resample(src, srcStride, dst, dstStride,
2145 				bufferSize);
2146 		}
2147 	}
2148 
2149 	// fill in the buffer header
2150 	media_header* header = buffer->Header();
2151 	header->type = B_MEDIA_RAW_AUDIO;
2152 	header->size_used = output.fOutput.format.u.raw_audio.buffer_size;
2153 	header->time_source = TimeSource()->ID();
2154 	header->start_time = PerformanceTimeFor(info.recorded_real_time);
2155 
2156 	return buffer;
2157 }
2158 
2159 
2160 status_t
2161 MultiAudioNode::GetConfigurationFor(BMessage* message)
2162 {
2163 	CALLED();
2164 
2165 	BParameter *parameter = NULL;
2166 	void *buffer;
2167 	size_t bufferSize = 128;
2168 	bigtime_t lastChange;
2169 	status_t err;
2170 
2171 	if (message == NULL)
2172 		return B_BAD_VALUE;
2173 
2174 	buffer = malloc(bufferSize);
2175 	if (buffer == NULL)
2176 		return B_NO_MEMORY;
2177 
2178 	for (int32 i = 0; i < fWeb->CountParameters(); i++) {
2179 		parameter = fWeb->ParameterAt(i);
2180 		if (parameter->Type() != BParameter::B_CONTINUOUS_PARAMETER
2181 			&& parameter->Type() != BParameter::B_DISCRETE_PARAMETER)
2182 			continue;
2183 
2184 		PRINT(("getting parameter %li\n", parameter->ID()));
2185 		size_t size = bufferSize;
2186 		while ((err = GetParameterValue(parameter->ID(), &lastChange, buffer,
2187 				&size)) == B_NO_MEMORY && bufferSize < 128 * 1024) {
2188 			bufferSize += 128;
2189 			free(buffer);
2190 			buffer = malloc(bufferSize);
2191 			if (buffer == NULL)
2192 				return B_NO_MEMORY;
2193 		}
2194 
2195 		if (err == B_OK && size > 0) {
2196 			message->AddInt32("parameterID", parameter->ID());
2197 			message->AddData("parameterData", B_RAW_TYPE, buffer, size, false);
2198 		} else {
2199 			PRINT(("parameter err : %s\n", strerror(err)));
2200 		}
2201 	}
2202 
2203 	free(buffer);
2204 	PRINT_OBJECT(*message);
2205 	return B_OK;
2206 }
2207 
2208 
2209 node_output*
2210 MultiAudioNode::_FindOutput(media_source source)
2211 {
2212 	node_output* channel = NULL;
2213 
2214 	for (int32 i = 0; i < fOutputs.CountItems(); i++) {
2215 		channel = (node_output*)fOutputs.ItemAt(i);
2216 		if (source == channel->fOutput.source)
2217 			break;
2218 	}
2219 
2220 	if (source != channel->fOutput.source)
2221 		return NULL;
2222 
2223 	return channel;
2224 }
2225 
2226 
2227 node_input*
2228 MultiAudioNode::_FindInput(media_destination dest)
2229 {
2230 	node_input* channel = NULL;
2231 
2232 	for (int32 i = 0; i < fInputs.CountItems(); i++) {
2233 		channel = (node_input*)fInputs.ItemAt(i);
2234 		if (dest == channel->fInput.destination)
2235 			break;
2236 	}
2237 
2238 	if (dest != channel->fInput.destination)
2239 		return NULL;
2240 
2241 	return channel;
2242 }
2243 
2244 
2245 node_input*
2246 MultiAudioNode::_FindInput(int32 destinationId)
2247 {
2248 	node_input* channel = NULL;
2249 
2250 	for (int32 i = 0; i < fInputs.CountItems(); i++) {
2251 		channel = (node_input*)fInputs.ItemAt(i);
2252 		if (destinationId == channel->fInput.destination.id)
2253 			break;
2254 	}
2255 
2256 	if (destinationId != channel->fInput.destination.id)
2257 		return NULL;
2258 
2259 	return channel;
2260 }
2261 
2262 
2263 /*static*/ status_t
2264 MultiAudioNode::_OutputThreadEntry(void* data)
2265 {
2266 	CALLED();
2267 	return static_cast<MultiAudioNode*>(data)->_OutputThread();
2268 }
2269 
2270 
2271 status_t
2272 MultiAudioNode::_SetNodeInputFrameRate(float frameRate)
2273 {
2274 	// check whether the frame rate is supported
2275 	uint32 multiAudioRate = MultiAudio::convert_from_sample_rate(frameRate);
2276 	if ((fDevice->Description().output_rates & multiAudioRate) == 0)
2277 		return B_BAD_VALUE;
2278 
2279 	BAutolock locker(fBufferLock);
2280 
2281 	// already set?
2282 	if (fDevice->FormatInfo().output.rate == multiAudioRate)
2283 		return B_OK;
2284 
2285 	// set the frame rate on the device
2286 	status_t error = fDevice->SetOutputFrameRate(multiAudioRate);
2287 	if (error != B_OK)
2288 		return error;
2289 
2290 	// it went fine -- update all formats
2291 	fOutputPreferredFormat.u.raw_audio.frame_rate = frameRate;
2292 	fOutputPreferredFormat.u.raw_audio.buffer_size
2293 		= fDevice->BufferList().return_playback_buffer_size
2294 			* (fOutputPreferredFormat.u.raw_audio.format
2295 				& media_raw_audio_format::B_AUDIO_SIZE_MASK)
2296 			* fOutputPreferredFormat.u.raw_audio.channel_count;
2297 
2298 	for (int32 i = 0; node_input* channel = (node_input*)fInputs.ItemAt(i);
2299 			i++) {
2300 		channel->fPreferredFormat.u.raw_audio.frame_rate = frameRate;
2301 		channel->fPreferredFormat.u.raw_audio.buffer_size
2302 			= fOutputPreferredFormat.u.raw_audio.buffer_size;
2303 
2304 		channel->fFormat.u.raw_audio.frame_rate = frameRate;
2305 		channel->fFormat.u.raw_audio.buffer_size
2306 			= fOutputPreferredFormat.u.raw_audio.buffer_size;
2307 
2308 		channel->fInput.format.u.raw_audio.frame_rate = frameRate;
2309 		channel->fInput.format.u.raw_audio.buffer_size
2310 			= fOutputPreferredFormat.u.raw_audio.buffer_size;
2311 	}
2312 
2313 	// make sure the time base is reset
2314 	fTimeComputer.SetFrameRate(frameRate);
2315 
2316 	// update internal latency
2317 	_UpdateInternalLatency(fOutputPreferredFormat);
2318 
2319 	return B_OK;
2320 }
2321 
2322 
2323 status_t
2324 MultiAudioNode::_SetNodeOutputFrameRate(float frameRate)
2325 {
2326 	// check whether the frame rate is supported
2327 	uint32 multiAudioRate = MultiAudio::convert_from_sample_rate(frameRate);
2328 	if ((fDevice->Description().input_rates & multiAudioRate) == 0)
2329 		return B_BAD_VALUE;
2330 
2331 	BAutolock locker(fBufferLock);
2332 
2333 	// already set?
2334 	if (fDevice->FormatInfo().input.rate == multiAudioRate)
2335 		return B_OK;
2336 
2337 	// set the frame rate on the device
2338 	status_t error = fDevice->SetInputFrameRate(multiAudioRate);
2339 	if (error != B_OK)
2340 		return error;
2341 
2342 	// it went fine -- update all formats
2343 	fInputPreferredFormat.u.raw_audio.frame_rate = frameRate;
2344 	fInputPreferredFormat.u.raw_audio.buffer_size
2345 		= fDevice->BufferList().return_record_buffer_size
2346 			* (fInputPreferredFormat.u.raw_audio.format
2347 				& media_raw_audio_format::B_AUDIO_SIZE_MASK)
2348 			* fInputPreferredFormat.u.raw_audio.channel_count;
2349 
2350 	for (int32 i = 0; node_output* channel = (node_output*)fOutputs.ItemAt(i);
2351 			i++) {
2352 		channel->fPreferredFormat.u.raw_audio.frame_rate = frameRate;
2353 		channel->fPreferredFormat.u.raw_audio.buffer_size
2354 			= fInputPreferredFormat.u.raw_audio.buffer_size;
2355 
2356 		channel->fFormat.u.raw_audio.frame_rate = frameRate;
2357 		channel->fFormat.u.raw_audio.buffer_size
2358 			= fInputPreferredFormat.u.raw_audio.buffer_size;
2359 
2360 		channel->fOutput.format.u.raw_audio.frame_rate = frameRate;
2361 		channel->fOutput.format.u.raw_audio.buffer_size
2362 			= fInputPreferredFormat.u.raw_audio.buffer_size;
2363 	}
2364 
2365 	// make sure the time base is reset
2366 	fTimeComputer.SetFrameRate(frameRate);
2367 
2368 	// update internal latency
2369 	_UpdateInternalLatency(fInputPreferredFormat);
2370 
2371 	return B_OK;
2372 }
2373 
2374 
2375 void
2376 MultiAudioNode::_UpdateInternalLatency(const media_format& format)
2377 {
2378 	// use half a buffer length latency
2379 	fInternalLatency = format.u.raw_audio.buffer_size * 10000 / 2
2380 		/ ((format.u.raw_audio.format
2381 				& media_raw_audio_format::B_AUDIO_SIZE_MASK)
2382 			* format.u.raw_audio.channel_count)
2383 		/ ((int32)(format.u.raw_audio.frame_rate / 100));
2384 
2385 	PRINT(("  internal latency = %lld\n",fInternalLatency));
2386 
2387 	SetEventLatency(fInternalLatency);
2388 }
2389