1 /* 2 * Copyright (c) 2002, 2003 Jerome Duval (jerome.duval@free.fr) 3 * Distributed under the terms of the MIT License. 4 */ 5 6 7 //! Media add-on for drivers that use the multi audio interface 8 9 10 #include "MultiAudioNode.h" 11 12 #include <stdio.h> 13 #include <string.h> 14 15 #include <Autolock.h> 16 #include <Buffer.h> 17 #include <BufferGroup.h> 18 #include <Catalog.h> 19 #include <ParameterWeb.h> 20 #include <String.h> 21 22 #include <Referenceable.h> 23 24 #include "MultiAudioUtility.h" 25 #ifdef DEBUG 26 # define PRINTING 27 #endif 28 #include "debug.h" 29 #include "Resampler.h" 30 31 #undef B_TRANSLATION_CONTEXT 32 #define B_TRANSLATION_CONTEXT "MultiAudio" 33 34 #define PARAMETER_ID_INPUT_FREQUENCY 1 35 #define PARAMETER_ID_OUTPUT_FREQUENCY 2 36 37 38 //This represent an hardware output 39 class node_input { 40 public: 41 node_input(media_input& input, media_format format); 42 ~node_input(); 43 44 int32 fChannelId; 45 media_input fInput; 46 media_format fPreferredFormat; 47 media_format fFormat; 48 volatile uint32 fBufferCycle; 49 multi_buffer_info fOldBufferInfo; 50 BBuffer* fBuffer; 51 Resampler *fResampler; 52 }; 53 54 55 //This represent an hardware input 56 class node_output { 57 public: 58 node_output(media_output& output, media_format format); 59 ~node_output(); 60 61 int32 fChannelId; 62 media_output fOutput; 63 media_format fPreferredFormat; 64 media_format fFormat; 65 66 BBufferGroup* fBufferGroup; 67 bool fOutputEnabled; 68 uint64 fSamplesSent; 69 volatile uint32 fBufferCycle; 70 multi_buffer_info fOldBufferInfo; 71 Resampler* fResampler; 72 }; 73 74 75 struct FrameRateChangeCookie : public BReferenceable { 76 float oldFrameRate; 77 uint32 id; 78 }; 79 80 81 struct sample_rate_info { 82 uint32 multiAudioRate; 83 const char* name; 84 }; 85 86 87 static const sample_rate_info kSampleRateInfos[] = { 88 {B_SR_8000, "8000"}, 89 {B_SR_11025, "11025"}, 90 {B_SR_12000, "12000"}, 91 {B_SR_16000, "16000"}, 92 {B_SR_22050, "22050"}, 93 {B_SR_24000, "24000"}, 94 {B_SR_32000, "32000"}, 95 {B_SR_44100, "44100"}, 96 {B_SR_48000, "48000"}, 97 {B_SR_64000, "64000"}, 98 {B_SR_88200, "88200"}, 99 {B_SR_96000, "96000"}, 100 {B_SR_176400, "176400"}, 101 {B_SR_192000, "192000"}, 102 {B_SR_384000, "384000"}, 103 {B_SR_1536000, "1536000"}, 104 {} 105 }; 106 107 108 const char* kMultiControlString[] = { 109 "NAME IS ATTACHED", 110 B_TRANSLATE("Output"), B_TRANSLATE("Input"), B_TRANSLATE("Setup"), 111 B_TRANSLATE("Tone control"), B_TRANSLATE("Extended Setup"), 112 B_TRANSLATE("Enhanced Setup"), B_TRANSLATE("Master"), B_TRANSLATE("Beep"), 113 B_TRANSLATE("Phone"), B_TRANSLATE("Mic"), B_TRANSLATE("Line"), 114 B_TRANSLATE("CD"), B_TRANSLATE("Video"), B_TRANSLATE("Aux"), 115 B_TRANSLATE("Wave"), B_TRANSLATE("Gain"), B_TRANSLATE("Level"), 116 B_TRANSLATE("Volume"), B_TRANSLATE("Mute"), B_TRANSLATE("Enable"), 117 B_TRANSLATE("Stereo mix"), B_TRANSLATE("Mono mix"), 118 B_TRANSLATE("Output stereo mix"), B_TRANSLATE("Output mono mix"), 119 B_TRANSLATE("Output bass"), B_TRANSLATE("Output treble"), 120 B_TRANSLATE("Output 3D center"), B_TRANSLATE("Output 3D depth"), 121 B_TRANSLATE("Headphones"), B_TRANSLATE("SPDIF") 122 }; 123 124 125 // #pragma mark - 126 127 128 node_input::node_input(media_input& input, media_format format) 129 { 130 CALLED(); 131 fInput = input; 132 fPreferredFormat = format; 133 fBufferCycle = 1; 134 fBuffer = NULL; 135 fResampler = NULL; 136 } 137 138 139 node_input::~node_input() 140 { 141 CALLED(); 142 } 143 144 145 // #pragma mark - 146 147 148 node_output::node_output(media_output& output, media_format format) 149 : 150 fBufferGroup(NULL), 151 fOutputEnabled(true) 152 { 153 CALLED(); 154 fOutput = output; 155 fPreferredFormat = format; 156 fBufferCycle = 1; 157 fResampler = NULL; 158 } 159 160 161 node_output::~node_output() 162 { 163 CALLED(); 164 } 165 166 167 // #pragma mark - 168 169 170 MultiAudioNode::MultiAudioNode(BMediaAddOn* addon, const char* name, 171 MultiAudioDevice* device, int32 internalID, BMessage* config) 172 : 173 BMediaNode(name), 174 BBufferConsumer(B_MEDIA_RAW_AUDIO), 175 BBufferProducer(B_MEDIA_RAW_AUDIO), 176 BMediaEventLooper(), 177 fBufferLock("multi audio buffers"), 178 fQuitThread(0), 179 fThread(-1), 180 fDevice(device), 181 fTimeSourceStarted(false), 182 fWeb(NULL), 183 fConfig() 184 { 185 CALLED(); 186 fInitStatus = B_NO_INIT; 187 188 if (!device) 189 return; 190 191 fAddOn = addon; 192 fId = internalID; 193 194 AddNodeKind(B_PHYSICAL_OUTPUT); 195 AddNodeKind(B_PHYSICAL_INPUT); 196 197 // initialize our preferred format objects 198 fOutputPreferredFormat.type = B_MEDIA_RAW_AUDIO; 199 fOutputPreferredFormat.u.raw_audio.format 200 = MultiAudio::convert_to_media_format( 201 fDevice->FormatInfo().output.format); 202 fOutputPreferredFormat.u.raw_audio.valid_bits 203 = MultiAudio::convert_to_valid_bits( 204 fDevice->FormatInfo().output.format); 205 fOutputPreferredFormat.u.raw_audio.channel_count = 2; 206 fOutputPreferredFormat.u.raw_audio.frame_rate 207 = MultiAudio::convert_to_sample_rate(fDevice->FormatInfo().output.rate); 208 // measured in Hertz 209 fOutputPreferredFormat.u.raw_audio.byte_order = B_MEDIA_HOST_ENDIAN; 210 211 // we'll use the consumer's preferred buffer size, if any 212 fOutputPreferredFormat.u.raw_audio.buffer_size 213 = fDevice->BufferList().return_playback_buffer_size 214 * (fOutputPreferredFormat.u.raw_audio.format 215 & media_raw_audio_format::B_AUDIO_SIZE_MASK) 216 * fOutputPreferredFormat.u.raw_audio.channel_count; 217 218 // initialize our preferred format objects 219 fInputPreferredFormat.type = B_MEDIA_RAW_AUDIO; 220 fInputPreferredFormat.u.raw_audio.format 221 = MultiAudio::convert_to_media_format( 222 fDevice->FormatInfo().input.format); 223 fInputPreferredFormat.u.raw_audio.valid_bits 224 = MultiAudio::convert_to_valid_bits(fDevice->FormatInfo().input.format); 225 fInputPreferredFormat.u.raw_audio.channel_count = 2; 226 fInputPreferredFormat.u.raw_audio.frame_rate 227 = MultiAudio::convert_to_sample_rate(fDevice->FormatInfo().input.rate); 228 // measured in Hertz 229 fInputPreferredFormat.u.raw_audio.byte_order = B_MEDIA_HOST_ENDIAN; 230 231 // we'll use the consumer's preferred buffer size, if any 232 fInputPreferredFormat.u.raw_audio.buffer_size 233 = fDevice->BufferList().return_record_buffer_size 234 * (fInputPreferredFormat.u.raw_audio.format 235 & media_raw_audio_format::B_AUDIO_SIZE_MASK) 236 * fInputPreferredFormat.u.raw_audio.channel_count; 237 238 if (config != NULL) { 239 fConfig = *config; 240 PRINT_OBJECT(*config); 241 } 242 243 fInitStatus = B_OK; 244 } 245 246 247 MultiAudioNode::~MultiAudioNode() 248 { 249 CALLED(); 250 fAddOn->GetConfigurationFor(this, NULL); 251 252 _StopOutputThread(); 253 BMediaEventLooper::Quit(); 254 } 255 256 257 status_t 258 MultiAudioNode::InitCheck() const 259 { 260 CALLED(); 261 return fInitStatus; 262 } 263 264 265 void 266 MultiAudioNode::GetFlavor(flavor_info* info, int32 id) 267 { 268 CALLED(); 269 if (info == NULL) 270 return; 271 272 info->flavor_flags = 0; 273 info->possible_count = 1; 274 // one flavor at a time 275 info->in_format_count = 0; 276 // no inputs 277 info->in_formats = 0; 278 info->out_format_count = 0; 279 // no outputs 280 info->out_formats = 0; 281 info->internal_id = id; 282 283 info->name = const_cast<char*>("MultiAudioNode Node"); 284 info->info = const_cast<char*>("The MultiAudioNode node outputs to " 285 "multi_audio drivers."); 286 info->kinds = B_BUFFER_CONSUMER | B_BUFFER_PRODUCER | B_TIME_SOURCE 287 | B_PHYSICAL_OUTPUT | B_PHYSICAL_INPUT | B_CONTROLLABLE; 288 info->in_format_count = 1; 289 // 1 input 290 media_format* inFormats = new media_format[info->in_format_count]; 291 GetFormat(&inFormats[0]); 292 info->in_formats = inFormats; 293 294 info->out_format_count = 1; 295 // 1 output 296 media_format* outFormats = new media_format[info->out_format_count]; 297 GetFormat(&outFormats[0]); 298 info->out_formats = outFormats; 299 } 300 301 302 void 303 MultiAudioNode::GetFormat(media_format* format) 304 { 305 CALLED(); 306 if (format == NULL) 307 return; 308 309 format->type = B_MEDIA_RAW_AUDIO; 310 format->require_flags = B_MEDIA_MAUI_UNDEFINED_FLAGS; 311 format->deny_flags = B_MEDIA_MAUI_UNDEFINED_FLAGS; 312 format->u.raw_audio = media_raw_audio_format::wildcard; 313 } 314 315 316 //#pragma mark - BMediaNode 317 318 319 BMediaAddOn* 320 MultiAudioNode::AddOn(int32* _internalID) const 321 { 322 CALLED(); 323 // BeBook says this only gets called if we were in an add-on. 324 if (fAddOn != 0 && _internalID != NULL) 325 *_internalID = fId; 326 327 return fAddOn; 328 } 329 330 331 void 332 MultiAudioNode::Preroll() 333 { 334 CALLED(); 335 // TODO: Performance opportunity 336 BMediaNode::Preroll(); 337 } 338 339 340 status_t 341 MultiAudioNode::HandleMessage(int32 message, const void* data, size_t size) 342 { 343 CALLED(); 344 return B_ERROR; 345 } 346 347 348 void 349 MultiAudioNode::NodeRegistered() 350 { 351 CALLED(); 352 353 if (fInitStatus != B_OK) { 354 ReportError(B_NODE_IN_DISTRESS); 355 return; 356 } 357 358 node_input *currentInput = NULL; 359 int32 currentId = 0; 360 361 for (int32 i = 0; i < fDevice->Description().output_channel_count; i++) { 362 if (currentInput == NULL 363 || (fDevice->Description().channels[i].designations 364 & B_CHANNEL_MONO_BUS) != 0 365 || ((fDevice->Description().channels[currentId].designations 366 & B_CHANNEL_STEREO_BUS) != 0 367 && ((fDevice->Description().channels[i].designations 368 & B_CHANNEL_LEFT) != 0 369 || (fDevice->Description().channels[i].designations 370 & B_CHANNEL_STEREO_BUS) == 0)) 371 || ((fDevice->Description().channels[currentId].designations 372 & B_CHANNEL_SURROUND_BUS) != 0 373 && ((fDevice->Description().channels[i].designations 374 & B_CHANNEL_LEFT) != 0 375 || (fDevice->Description().channels[i].designations 376 & B_CHANNEL_SURROUND_BUS) == 0))) { 377 PRINT(("NodeRegistered(): creating an input for %" B_PRIi32 "\n", 378 i)); 379 PRINT(("%" B_PRId32 "\t%d\t0x%" B_PRIx32 "\t0x%" B_PRIx32 "\n", 380 fDevice->Description().channels[i].channel_id, 381 fDevice->Description().channels[i].kind, 382 fDevice->Description().channels[i].designations, 383 fDevice->Description().channels[i].connectors)); 384 385 media_input* input = new media_input; 386 387 input->format = fOutputPreferredFormat; 388 input->destination.port = ControlPort(); 389 input->destination.id = fInputs.CountItems(); 390 input->node = Node(); 391 sprintf(input->name, "output %" B_PRId32, input->destination.id); 392 393 currentInput = new node_input(*input, fOutputPreferredFormat); 394 currentInput->fPreferredFormat.u.raw_audio.channel_count = 1; 395 currentInput->fInput.format = currentInput->fPreferredFormat; 396 delete currentInput->fResampler; 397 currentInput->fResampler = new 398 Resampler(currentInput->fPreferredFormat.AudioFormat(), 399 fOutputPreferredFormat.AudioFormat()); 400 401 currentInput->fChannelId 402 = fDevice->Description().channels[i].channel_id; 403 fInputs.AddItem(currentInput); 404 405 currentId = i; 406 } else { 407 PRINT(("NodeRegistered(): adding a channel\n")); 408 currentInput->fPreferredFormat.u.raw_audio.channel_count++; 409 currentInput->fInput.format = currentInput->fPreferredFormat; 410 } 411 currentInput->fInput.format.u.raw_audio.format 412 = media_raw_audio_format::wildcard.format; 413 } 414 415 node_output *currentOutput = NULL; 416 currentId = 0; 417 418 for (int32 i = fDevice->Description().output_channel_count; 419 i < fDevice->Description().output_channel_count 420 + fDevice->Description().input_channel_count; i++) { 421 if (currentOutput == NULL 422 || (fDevice->Description().channels[i].designations 423 & B_CHANNEL_MONO_BUS) != 0 424 || ((fDevice->Description().channels[currentId].designations 425 & B_CHANNEL_STEREO_BUS) != 0 426 && ((fDevice->Description().channels[i].designations 427 & B_CHANNEL_LEFT) != 0 428 || (fDevice->Description().channels[i].designations 429 & B_CHANNEL_STEREO_BUS) == 0)) 430 || ((fDevice->Description().channels[currentId].designations 431 & B_CHANNEL_SURROUND_BUS) != 0 432 && ((fDevice->Description().channels[i].designations 433 & B_CHANNEL_LEFT) != 0 434 || (fDevice->Description().channels[i].designations 435 & B_CHANNEL_SURROUND_BUS) == 0))) { 436 PRINT(("NodeRegistered(): creating an output for %" B_PRIi32 "\n", 437 i)); 438 PRINT(("%" B_PRId32 "\t%d\t0x%" B_PRIx32 "\t0x%" B_PRIx32 "\n", 439 fDevice->Description().channels[i].channel_id, 440 fDevice->Description().channels[i].kind, 441 fDevice->Description().channels[i].designations, 442 fDevice->Description().channels[i].connectors)); 443 444 media_output *output = new media_output; 445 446 output->format = fInputPreferredFormat; 447 output->destination = media_destination::null; 448 output->source.port = ControlPort(); 449 output->source.id = fOutputs.CountItems(); 450 output->node = Node(); 451 sprintf(output->name, "input %" B_PRId32, output->source.id); 452 453 currentOutput = new node_output(*output, fInputPreferredFormat); 454 currentOutput->fPreferredFormat.u.raw_audio.channel_count = 1; 455 currentOutput->fOutput.format = currentOutput->fPreferredFormat; 456 delete currentOutput->fResampler; 457 currentOutput->fResampler = new 458 Resampler(fInputPreferredFormat.AudioFormat(), 459 currentOutput->fPreferredFormat.AudioFormat()); 460 461 currentOutput->fChannelId 462 = fDevice->Description().channels[i].channel_id; 463 fOutputs.AddItem(currentOutput); 464 465 currentId = i; 466 } else { 467 PRINT(("NodeRegistered(): adding a channel\n")); 468 currentOutput->fPreferredFormat.u.raw_audio.channel_count++; 469 currentOutput->fOutput.format = currentOutput->fPreferredFormat; 470 } 471 } 472 473 // Set up our parameter web 474 fWeb = MakeParameterWeb(); 475 SetParameterWeb(fWeb); 476 477 // Apply configuration 478 #ifdef PRINTING 479 bigtime_t start = system_time(); 480 #endif 481 482 int32 index = 0; 483 int32 parameterID = 0; 484 const void *data; 485 ssize_t size; 486 while (fConfig.FindInt32("parameterID", index, ¶meterID) == B_OK) { 487 if (fConfig.FindData("parameterData", B_RAW_TYPE, index, &data, &size) 488 == B_OK) { 489 SetParameterValue(parameterID, TimeSource()->Now(), data, size); 490 } 491 index++; 492 } 493 494 PRINT(("apply configuration in: %" B_PRIdBIGTIME "\n", 495 system_time() - start)); 496 497 SetPriority(B_REAL_TIME_PRIORITY); 498 Run(); 499 } 500 501 502 status_t 503 MultiAudioNode::RequestCompleted(const media_request_info& info) 504 { 505 CALLED(); 506 507 if (info.what != media_request_info::B_REQUEST_FORMAT_CHANGE) 508 return B_OK; 509 510 FrameRateChangeCookie* cookie 511 = (FrameRateChangeCookie*)info.user_data; 512 if (cookie == NULL) 513 return B_OK; 514 515 BReference<FrameRateChangeCookie> cookieReference(cookie, true); 516 517 // if the request failed, we reset the frame rate 518 if (info.status != B_OK) { 519 if (cookie->id == PARAMETER_ID_INPUT_FREQUENCY) { 520 _SetNodeInputFrameRate(cookie->oldFrameRate); 521 if (fDevice->Description().output_rates & B_SR_SAME_AS_INPUT) 522 _SetNodeOutputFrameRate(cookie->oldFrameRate); 523 } else if (cookie->id == PARAMETER_ID_OUTPUT_FREQUENCY) 524 _SetNodeOutputFrameRate(cookie->oldFrameRate); 525 526 // TODO: If we have multiple connections, we should request to change 527 // the format back! 528 } 529 530 return B_OK; 531 } 532 533 534 void 535 MultiAudioNode::SetTimeSource(BTimeSource* timeSource) 536 { 537 CALLED(); 538 } 539 540 541 // #pragma mark - BBufferConsumer 542 543 544 status_t 545 MultiAudioNode::AcceptFormat(const media_destination& dest, 546 media_format* format) 547 { 548 // Check to make sure the format is okay, then remove 549 // any wildcards corresponding to our requirements. 550 CALLED(); 551 552 if (format == NULL) 553 return B_BAD_VALUE; 554 if (format->type != B_MEDIA_RAW_AUDIO) 555 return B_MEDIA_BAD_FORMAT; 556 557 node_input *channel = _FindInput(dest); 558 if (channel == NULL) 559 return B_MEDIA_BAD_DESTINATION; 560 561 /* media_format * myFormat = GetFormat(); 562 fprintf(stderr,"proposed format: "); 563 print_media_format(format); 564 fprintf(stderr,"\n"); 565 fprintf(stderr,"my format: "); 566 print_media_format(myFormat); 567 fprintf(stderr,"\n");*/ 568 // Be's format_is_compatible doesn't work. 569 // if (!format_is_compatible(*format,*myFormat)) { 570 571 channel->fFormat = channel->fPreferredFormat; 572 573 /*if(format->u.raw_audio.format == media_raw_audio_format::B_AUDIO_FLOAT 574 && channel->fPreferredFormat.u.raw_audio.format == media_raw_audio_format::B_AUDIO_SHORT) 575 format->u.raw_audio.format = media_raw_audio_format::B_AUDIO_FLOAT; 576 else*/ 577 format->u.raw_audio.format = channel->fPreferredFormat.u.raw_audio.format; 578 format->u.raw_audio.valid_bits 579 = channel->fPreferredFormat.u.raw_audio.valid_bits; 580 581 format->u.raw_audio.frame_rate 582 = channel->fPreferredFormat.u.raw_audio.frame_rate; 583 format->u.raw_audio.channel_count 584 = channel->fPreferredFormat.u.raw_audio.channel_count; 585 format->u.raw_audio.byte_order = B_MEDIA_HOST_ENDIAN; 586 format->u.raw_audio.buffer_size 587 = fDevice->BufferList().return_playback_buffer_size 588 * (format->u.raw_audio.format 589 & media_raw_audio_format::B_AUDIO_SIZE_MASK) 590 * format->u.raw_audio.channel_count; 591 592 /*media_format myFormat; 593 GetFormat(&myFormat); 594 if (!format_is_acceptible(*format,myFormat)) { 595 fprintf(stderr,"<- B_MEDIA_BAD_FORMAT\n"); 596 return B_MEDIA_BAD_FORMAT; 597 }*/ 598 //AddRequirements(format); 599 return B_OK; 600 } 601 602 603 status_t 604 MultiAudioNode::GetNextInput(int32* cookie, media_input* _input) 605 { 606 CALLED(); 607 if (_input == NULL) 608 return B_BAD_VALUE; 609 610 if (*cookie >= fInputs.CountItems() || *cookie < 0) 611 return B_BAD_INDEX; 612 613 node_input* channel = (node_input*)fInputs.ItemAt(*cookie); 614 *_input = channel->fInput; 615 *cookie += 1; 616 PRINT(("input.format: %" B_PRIu32 "\n", 617 channel->fInput.format.u.raw_audio.format)); 618 return B_OK; 619 } 620 621 622 void 623 MultiAudioNode::DisposeInputCookie(int32 cookie) 624 { 625 CALLED(); 626 // nothing to do since our cookies are just integers 627 } 628 629 630 void 631 MultiAudioNode::BufferReceived(BBuffer* buffer) 632 { 633 //CALLED(); 634 switch (buffer->Header()->type) { 635 /*case B_MEDIA_PARAMETERS: 636 { 637 status_t status = ApplyParameterData(buffer->Data(),buffer->SizeUsed()); 638 if (status != B_OK) { 639 fprintf(stderr,"ApplyParameterData in MultiAudioNode::BufferReceived failed\n"); 640 } 641 buffer->Recycle(); 642 } 643 break;*/ 644 case B_MEDIA_RAW_AUDIO: 645 if ((buffer->Flags() & BBuffer::B_SMALL_BUFFER) != 0) { 646 fprintf(stderr, "NOT IMPLEMENTED: B_SMALL_BUFFER in " 647 "MultiAudioNode::BufferReceived\n"); 648 // TODO: implement this part 649 buffer->Recycle(); 650 } else { 651 media_timed_event event(buffer->Header()->start_time, 652 BTimedEventQueue::B_HANDLE_BUFFER, buffer, 653 BTimedEventQueue::B_RECYCLE_BUFFER); 654 status_t status = EventQueue()->AddEvent(event); 655 if (status != B_OK) { 656 fprintf(stderr, "EventQueue()->AddEvent(event) in " 657 "MultiAudioNode::BufferReceived failed\n"); 658 buffer->Recycle(); 659 } 660 } 661 break; 662 default: 663 fprintf(stderr, "unexpected buffer type in " 664 "MultiAudioNode::BufferReceived\n"); 665 buffer->Recycle(); 666 break; 667 } 668 } 669 670 671 void 672 MultiAudioNode::ProducerDataStatus(const media_destination& forWhom, 673 int32 status, bigtime_t atPerformanceTime) 674 { 675 node_input* channel = _FindInput(forWhom); 676 if (channel == NULL) { 677 fprintf(stderr, "invalid destination received in " 678 "MultiAudioNode::ProducerDataStatus\n"); 679 return; 680 } 681 682 media_timed_event event(atPerformanceTime, BTimedEventQueue::B_DATA_STATUS, 683 &channel->fInput, BTimedEventQueue::B_NO_CLEANUP, status, 0, NULL); 684 EventQueue()->AddEvent(event); 685 } 686 687 688 status_t 689 MultiAudioNode::GetLatencyFor(const media_destination& forWhom, 690 bigtime_t* _latency, media_node_id* _timeSource) 691 { 692 CALLED(); 693 if (_latency == NULL || _timeSource == NULL) 694 return B_BAD_VALUE; 695 696 node_input* channel = _FindInput(forWhom); 697 if (channel == NULL) 698 return B_MEDIA_BAD_DESTINATION; 699 700 *_latency = EventLatency(); 701 *_timeSource = TimeSource()->ID(); 702 return B_OK; 703 } 704 705 706 status_t 707 MultiAudioNode::Connected(const media_source& producer, 708 const media_destination& where, const media_format& with_format, 709 media_input* out_input) 710 { 711 CALLED(); 712 if (out_input == 0) { 713 fprintf(stderr, "<- B_BAD_VALUE\n"); 714 return B_BAD_VALUE; 715 } 716 717 node_input* channel = _FindInput(where); 718 if (channel == NULL) { 719 fprintf(stderr, "<- B_MEDIA_BAD_DESTINATION\n"); 720 return B_MEDIA_BAD_DESTINATION; 721 } 722 723 _UpdateInternalLatency(with_format); 724 725 // record the agreed upon values 726 channel->fInput.source = producer; 727 channel->fInput.format = with_format; 728 *out_input = channel->fInput; 729 730 _StartOutputThreadIfNeeded(); 731 732 return B_OK; 733 } 734 735 736 void 737 MultiAudioNode::Disconnected(const media_source& producer, 738 const media_destination& where) 739 { 740 CALLED(); 741 742 node_input* channel = _FindInput(where); 743 if (channel == NULL || channel->fInput.source != producer) 744 return; 745 746 channel->fInput.source = media_source::null; 747 channel->fInput.format = channel->fPreferredFormat; 748 749 BAutolock locker(fBufferLock); 750 _FillWithZeros(*channel); 751 //GetFormat(&channel->fInput.format); 752 } 753 754 755 status_t 756 MultiAudioNode::FormatChanged(const media_source& producer, 757 const media_destination& consumer, int32 change_tag, 758 const media_format& format) 759 { 760 CALLED(); 761 762 node_input* channel = _FindInput(consumer); 763 764 if (channel==NULL) { 765 fprintf(stderr, "<- B_MEDIA_BAD_DESTINATION\n"); 766 return B_MEDIA_BAD_DESTINATION; 767 } 768 if (channel->fInput.source != producer) 769 return B_MEDIA_BAD_SOURCE; 770 771 return B_ERROR; 772 } 773 774 775 status_t 776 MultiAudioNode::SeekTagRequested(const media_destination& destination, 777 bigtime_t targetTime, uint32 flags, media_seek_tag* _seekTag, 778 bigtime_t* _taggedTime, uint32* _flags) 779 { 780 CALLED(); 781 return BBufferConsumer::SeekTagRequested(destination, targetTime, flags, 782 _seekTag, _taggedTime, _flags); 783 } 784 785 786 // #pragma mark - BBufferProducer 787 788 789 status_t 790 MultiAudioNode::FormatSuggestionRequested(media_type type, int32 /*quality*/, 791 media_format* format) 792 { 793 // FormatSuggestionRequested() is not necessarily part of the format 794 // negotiation process; it's simply an interrogation -- the caller 795 // wants to see what the node's preferred data format is, given a 796 // suggestion by the caller. 797 CALLED(); 798 799 if (format == NULL) { 800 fprintf(stderr, "\tERROR - NULL format pointer passed in!\n"); 801 return B_BAD_VALUE; 802 } 803 804 // this is the format we'll be returning (our preferred format) 805 *format = fInputPreferredFormat; 806 807 // a wildcard type is okay; we can specialize it 808 if (type == B_MEDIA_UNKNOWN_TYPE) 809 type = B_MEDIA_RAW_AUDIO; 810 811 // we only support raw audio 812 if (type != B_MEDIA_RAW_AUDIO) 813 return B_MEDIA_BAD_FORMAT; 814 815 return B_OK; 816 } 817 818 819 status_t 820 MultiAudioNode::FormatProposal(const media_source& output, media_format* format) 821 { 822 // FormatProposal() is the first stage in the BMediaRoster::Connect() 823 // process. We hand out a suggested format, with wildcards for any 824 // variations we support. 825 CALLED(); 826 827 // is this a proposal for our select output? 828 node_output* channel = _FindOutput(output); 829 if (channel == NULL) { 830 fprintf(stderr, "MultiAudioNode::FormatProposal returning " 831 "B_MEDIA_BAD_SOURCE\n"); 832 return B_MEDIA_BAD_SOURCE; 833 } 834 835 // We only support floating-point raw audio, so we always return that, 836 // but we supply an error code depending on whether we found the proposal 837 // acceptable. 838 media_type requestedType = format->type; 839 *format = channel->fPreferredFormat; 840 if (requestedType != B_MEDIA_UNKNOWN_TYPE 841 && requestedType != B_MEDIA_RAW_AUDIO) { 842 fprintf(stderr, "MultiAudioNode::FormatProposal returning " 843 "B_MEDIA_BAD_FORMAT\n"); 844 return B_MEDIA_BAD_FORMAT; 845 } 846 // raw audio or wildcard type, either is okay by us 847 return B_OK; 848 } 849 850 851 status_t 852 MultiAudioNode::FormatChangeRequested(const media_source& source, 853 const media_destination& destination, media_format* format, 854 int32* _deprecated_) 855 { 856 CALLED(); 857 858 // we don't support any other formats, so we just reject any format changes. 859 return B_ERROR; 860 } 861 862 863 status_t 864 MultiAudioNode::GetNextOutput(int32* cookie, media_output* _output) 865 { 866 CALLED(); 867 868 if (*cookie < fOutputs.CountItems() && *cookie >= 0) { 869 node_output* channel = (node_output*)fOutputs.ItemAt(*cookie); 870 *_output = channel->fOutput; 871 *cookie += 1; 872 return B_OK; 873 } 874 return B_BAD_INDEX; 875 } 876 877 878 status_t 879 MultiAudioNode::DisposeOutputCookie(int32 cookie) 880 { 881 CALLED(); 882 // do nothing because we don't use the cookie for anything special 883 return B_OK; 884 } 885 886 887 status_t 888 MultiAudioNode::SetBufferGroup(const media_source& forSource, 889 BBufferGroup* newGroup) 890 { 891 CALLED(); 892 893 // is this our output? 894 node_output* channel = _FindOutput(forSource); 895 if (channel == NULL) { 896 fprintf(stderr, "MultiAudioNode::SetBufferGroup returning " 897 "B_MEDIA_BAD_SOURCE\n"); 898 return B_MEDIA_BAD_SOURCE; 899 } 900 901 // Are we being passed the buffer group we're already using? 902 if (newGroup == channel->fBufferGroup) 903 return B_OK; 904 905 // Ahh, someone wants us to use a different buffer group. At this point 906 // we delete the one we are using and use the specified one instead. 907 // If the specified group is NULL, we need to recreate one ourselves, and 908 // use *that*. Note that if we're caching a BBuffer that we requested 909 // earlier, we have to Recycle() that buffer *before* deleting the buffer 910 // group, otherwise we'll deadlock waiting for that buffer to be recycled! 911 delete channel->fBufferGroup; 912 // waits for all buffers to recycle 913 if (newGroup != NULL) { 914 // we were given a valid group; just use that one from now on 915 channel->fBufferGroup = newGroup; 916 } else { 917 // we were passed a NULL group pointer; that means we construct 918 // our own buffer group to use from now on 919 size_t size = channel->fOutput.format.u.raw_audio.buffer_size; 920 int32 count = int32(fLatency / BufferDuration() + 1 + 1); 921 BBufferGroup* group = new BBufferGroup(size, count); 922 if (group == NULL || group->InitCheck() != B_OK) { 923 delete group; 924 fprintf(stderr, "MultiAudioNode::SetBufferGroup failed to" 925 "instantiate a new group.\n"); 926 return B_ERROR; 927 } 928 channel->fBufferGroup = group; 929 } 930 931 return B_OK; 932 } 933 934 935 status_t 936 MultiAudioNode::PrepareToConnect(const media_source& what, 937 const media_destination& where, media_format* format, 938 media_source* source, char* name) 939 { 940 CALLED(); 941 942 // is this our output? 943 node_output* channel = _FindOutput(what); 944 if (channel == NULL) { 945 fprintf(stderr, "MultiAudioNode::PrepareToConnect returning " 946 "B_MEDIA_BAD_SOURCE\n"); 947 return B_MEDIA_BAD_SOURCE; 948 } 949 950 // are we already connected? 951 if (channel->fOutput.destination != media_destination::null) 952 return B_MEDIA_ALREADY_CONNECTED; 953 954 // the format may not yet be fully specialized (the consumer might have 955 // passed back some wildcards). Finish specializing it now, and return an 956 // error if we don't support the requested format. 957 if (format->type != B_MEDIA_RAW_AUDIO) { 958 fprintf(stderr, "\tnon-raw-audio format?!\n"); 959 return B_MEDIA_BAD_FORMAT; 960 } 961 962 // !!! validate all other fields except for buffer_size here, because the 963 // consumer might have supplied different values from AcceptFormat()? 964 965 // check the buffer size, which may still be wildcarded 966 if (format->u.raw_audio.buffer_size 967 == media_raw_audio_format::wildcard.buffer_size) { 968 format->u.raw_audio.buffer_size = 2048; 969 // pick something comfortable to suggest 970 fprintf(stderr, "\tno buffer size provided, suggesting %lu\n", 971 format->u.raw_audio.buffer_size); 972 } else { 973 fprintf(stderr, "\tconsumer suggested buffer_size %lu\n", 974 format->u.raw_audio.buffer_size); 975 } 976 977 // Now reserve the connection, and return information about it 978 channel->fOutput.destination = where; 979 channel->fOutput.format = *format; 980 981 *source = channel->fOutput.source; 982 strlcpy(name, channel->fOutput.name, B_MEDIA_NAME_LENGTH); 983 return B_OK; 984 } 985 986 987 void 988 MultiAudioNode::Connect(status_t error, const media_source& source, 989 const media_destination& destination, const media_format& format, 990 char* name) 991 { 992 CALLED(); 993 994 // is this our output? 995 node_output* channel = _FindOutput(source); 996 if (channel == NULL) { 997 fprintf(stderr, "MultiAudioNode::Connect returning (cause: " 998 "B_MEDIA_BAD_SOURCE)\n"); 999 return; 1000 } 1001 1002 // If something earlier failed, Connect() might still be called, but with 1003 // a non-zero error code. When that happens we simply unreserve the 1004 // connection and do nothing else. 1005 if (error != B_OK) { 1006 channel->fOutput.destination = media_destination::null; 1007 channel->fOutput.format = channel->fPreferredFormat; 1008 return; 1009 } 1010 1011 // Okay, the connection has been confirmed. Record the destination and 1012 // format that we agreed on, and report our connection name again. 1013 channel->fOutput.destination = destination; 1014 channel->fOutput.format = format; 1015 strlcpy(name, channel->fOutput.name, B_MEDIA_NAME_LENGTH); 1016 1017 // reset our buffer duration, etc. to avoid later calculations 1018 bigtime_t duration = channel->fOutput.format.u.raw_audio.buffer_size * 10000 1019 / ((channel->fOutput.format.u.raw_audio.format 1020 & media_raw_audio_format::B_AUDIO_SIZE_MASK) 1021 * channel->fOutput.format.u.raw_audio.channel_count) 1022 / ((int32)(channel->fOutput.format.u.raw_audio.frame_rate / 100)); 1023 1024 SetBufferDuration(duration); 1025 1026 // Now that we're connected, we can determine our downstream latency. 1027 // Do so, then make sure we get our events early enough. 1028 media_node_id id; 1029 FindLatencyFor(channel->fOutput.destination, &fLatency, &id); 1030 PRINT(("\tdownstream latency = %" B_PRIdBIGTIME "\n", fLatency)); 1031 1032 fInternalLatency = BufferDuration(); 1033 PRINT(("\tbuffer-filling took %" B_PRIdBIGTIME " usec on this machine\n", 1034 fInternalLatency)); 1035 //SetEventLatency(fLatency + fInternalLatency); 1036 1037 // Set up the buffer group for our connection, as long as nobody handed us 1038 // a buffer group (via SetBufferGroup()) prior to this. That can happen, 1039 // for example, if the consumer calls SetOutputBuffersFor() on us from 1040 // within its Connected() method. 1041 if (channel->fBufferGroup == NULL) 1042 _AllocateBuffers(*channel); 1043 1044 _StartOutputThreadIfNeeded(); 1045 } 1046 1047 1048 void 1049 MultiAudioNode::Disconnect(const media_source& what, 1050 const media_destination& where) 1051 { 1052 CALLED(); 1053 1054 // is this our output? 1055 node_output* channel = _FindOutput(what); 1056 if (channel == NULL) { 1057 fprintf(stderr, "MultiAudioNode::Disconnect() returning (cause: " 1058 "B_MEDIA_BAD_SOURCE)\n"); 1059 return; 1060 } 1061 1062 // Make sure that our connection is the one being disconnected 1063 if (where == channel->fOutput.destination 1064 && what == channel->fOutput.source) { 1065 channel->fOutput.destination = media_destination::null; 1066 channel->fOutput.format = channel->fPreferredFormat; 1067 delete channel->fBufferGroup; 1068 channel->fBufferGroup = NULL; 1069 } else { 1070 fprintf(stderr, "\tDisconnect() called with wrong source/destination (" 1071 "%" B_PRId32 "/%" B_PRId32 "), ours is (%" B_PRId32 "/%" B_PRId32 1072 ")\n", what.id, where.id, channel->fOutput.source.id, 1073 channel->fOutput.destination.id); 1074 } 1075 } 1076 1077 1078 void 1079 MultiAudioNode::LateNoticeReceived(const media_source& what, bigtime_t howMuch, 1080 bigtime_t performanceTime) 1081 { 1082 CALLED(); 1083 1084 // is this our output? 1085 node_output* channel = _FindOutput(what); 1086 if (channel == NULL) 1087 return; 1088 1089 // If we're late, we need to catch up. Respond in a manner appropriate 1090 // to our current run mode. 1091 if (RunMode() == B_RECORDING) { 1092 // A hardware capture node can't adjust; it simply emits buffers at 1093 // appropriate points. We (partially) simulate this by not adjusting 1094 // our behavior upon receiving late notices -- after all, the hardware 1095 // can't choose to capture "sooner".... 1096 } else if (RunMode() == B_INCREASE_LATENCY) { 1097 // We're late, and our run mode dictates that we try to produce buffers 1098 // earlier in order to catch up. This argues that the downstream nodes 1099 // are not properly reporting their latency, but there's not much we can 1100 // do about that at the moment, so we try to start producing buffers 1101 // earlier to compensate. 1102 fInternalLatency += howMuch; 1103 SetEventLatency(fLatency + fInternalLatency); 1104 1105 fprintf(stderr, "\tincreasing latency to %" B_PRIdBIGTIME"\n", 1106 fLatency + fInternalLatency); 1107 } else { 1108 // The other run modes dictate various strategies for sacrificing data 1109 // quality in the interests of timely data delivery. The way *we* do 1110 // this is to skip a buffer, which catches us up in time by one buffer 1111 // duration. 1112 /*size_t nSamples = fOutput.format.u.raw_audio.buffer_size / sizeof(float); 1113 mSamplesSent += nSamples;*/ 1114 1115 fprintf(stderr, "\tskipping a buffer to try to catch up\n"); 1116 } 1117 } 1118 1119 1120 void 1121 MultiAudioNode::EnableOutput(const media_source& what, bool enabled, 1122 int32* _deprecated_) 1123 { 1124 CALLED(); 1125 1126 // If I had more than one output, I'd have to walk my list of output 1127 // records to see which one matched the given source, and then 1128 // enable/disable that one. But this node only has one output, so I 1129 // just make sure the given source matches, then set the enable state 1130 // accordingly. 1131 node_output* channel = _FindOutput(what); 1132 if (channel != NULL) 1133 channel->fOutputEnabled = enabled; 1134 } 1135 1136 1137 void 1138 MultiAudioNode::AdditionalBufferRequested(const media_source& source, 1139 media_buffer_id previousBuffer, bigtime_t previousTime, 1140 const media_seek_tag* previousTag) 1141 { 1142 CALLED(); 1143 // we don't support offline mode 1144 return; 1145 } 1146 1147 1148 // #pragma mark - BMediaEventLooper 1149 1150 1151 void 1152 MultiAudioNode::HandleEvent(const media_timed_event* event, bigtime_t lateness, 1153 bool realTimeEvent) 1154 { 1155 switch (event->type) { 1156 case BTimedEventQueue::B_START: 1157 _HandleStart(event, lateness, realTimeEvent); 1158 break; 1159 case BTimedEventQueue::B_SEEK: 1160 _HandleSeek(event, lateness, realTimeEvent); 1161 break; 1162 case BTimedEventQueue::B_WARP: 1163 _HandleWarp(event, lateness, realTimeEvent); 1164 break; 1165 case BTimedEventQueue::B_STOP: 1166 _HandleStop(event, lateness, realTimeEvent); 1167 break; 1168 case BTimedEventQueue::B_HANDLE_BUFFER: 1169 if (RunState() == BMediaEventLooper::B_STARTED) 1170 _HandleBuffer(event, lateness, realTimeEvent); 1171 break; 1172 case BTimedEventQueue::B_DATA_STATUS: 1173 _HandleDataStatus(event, lateness, realTimeEvent); 1174 break; 1175 case BTimedEventQueue::B_PARAMETER: 1176 _HandleParameter(event, lateness, realTimeEvent); 1177 break; 1178 default: 1179 fprintf(stderr," unknown event type: %" B_PRId32 "\n", 1180 event->type); 1181 break; 1182 } 1183 } 1184 1185 1186 status_t 1187 MultiAudioNode::_HandleBuffer(const media_timed_event* event, 1188 bigtime_t lateness, bool realTimeEvent) 1189 { 1190 BBuffer* buffer = const_cast<BBuffer*>((BBuffer*)event->pointer); 1191 if (buffer == NULL) 1192 return B_BAD_VALUE; 1193 1194 //PRINT(("buffer->Header()->destination: %i\n", buffer->Header()->destination)); 1195 1196 node_input* channel = _FindInput(buffer->Header()->destination); 1197 if (channel == NULL) { 1198 buffer->Recycle(); 1199 return B_MEDIA_BAD_DESTINATION; 1200 } 1201 1202 // if the buffer is late, we ignore it and report the fact to the producer 1203 // who sent it to us 1204 if (RunMode() != B_OFFLINE && RunMode() != B_RECORDING && lateness > 0) { 1205 // lateness doesn't matter in offline mode or in recording mode 1206 //mLateBuffers++; 1207 NotifyLateProducer(channel->fInput.source, lateness, event->event_time); 1208 fprintf(stderr," <- LATE BUFFER: %" B_PRIdBIGTIME "\n", lateness); 1209 buffer->Recycle(); 1210 } else { 1211 //WriteBuffer(buffer, *channel); 1212 // TODO: This seems like a very fragile mechanism to wait until 1213 // the previous buffer for this channel has been processed... 1214 if (channel->fBuffer != NULL) { 1215 PRINT(("MultiAudioNode::HandleBuffer snoozing recycling channelId: " 1216 "%" B_PRIi32 ", how_early:%" B_PRIdBIGTIME "\n", 1217 channel->fChannelId, lateness)); 1218 //channel->fBuffer->Recycle(); 1219 snooze(100); 1220 if (channel->fBuffer != NULL) 1221 buffer->Recycle(); 1222 else 1223 channel->fBuffer = buffer; 1224 } else { 1225 //PRINT(("MultiAudioNode::HandleBuffer writing channelId: %li, how_early:%Ld\n", channel->fChannelId, howEarly)); 1226 channel->fBuffer = buffer; 1227 } 1228 } 1229 return B_OK; 1230 } 1231 1232 1233 status_t 1234 MultiAudioNode::_HandleDataStatus(const media_timed_event* event, 1235 bigtime_t lateness, bool realTimeEvent) 1236 { 1237 PRINT(("MultiAudioNode::HandleDataStatus status:%" B_PRIi32 ", lateness:%" 1238 B_PRIiBIGTIME "\n", event->data, lateness)); 1239 switch (event->data) { 1240 case B_DATA_NOT_AVAILABLE: 1241 break; 1242 case B_DATA_AVAILABLE: 1243 break; 1244 case B_PRODUCER_STOPPED: 1245 break; 1246 default: 1247 break; 1248 } 1249 return B_OK; 1250 } 1251 1252 1253 status_t 1254 MultiAudioNode::_HandleStart(const media_timed_event* event, bigtime_t lateness, 1255 bool realTimeEvent) 1256 { 1257 CALLED(); 1258 if (RunState() != B_STARTED) { 1259 } 1260 return B_OK; 1261 } 1262 1263 1264 status_t 1265 MultiAudioNode::_HandleSeek(const media_timed_event* event, bigtime_t lateness, 1266 bool realTimeEvent) 1267 { 1268 CALLED(); 1269 PRINT(("MultiAudioNode::HandleSeek(t=%" B_PRIdBIGTIME ",d=%" B_PRIi32 1270 ",bd=%" B_PRId64 ")\n", 1271 event->event_time,event->data,event->bigdata)); 1272 return B_OK; 1273 } 1274 1275 1276 status_t 1277 MultiAudioNode::_HandleWarp(const media_timed_event* event, bigtime_t lateness, 1278 bool realTimeEvent) 1279 { 1280 CALLED(); 1281 return B_OK; 1282 } 1283 1284 1285 status_t 1286 MultiAudioNode::_HandleStop(const media_timed_event* event, bigtime_t lateness, 1287 bool realTimeEvent) 1288 { 1289 CALLED(); 1290 // flush the queue so downstreamers don't get any more 1291 EventQueue()->FlushEvents(0, BTimedEventQueue::B_ALWAYS, true, 1292 BTimedEventQueue::B_HANDLE_BUFFER); 1293 1294 //_StopOutputThread(); 1295 return B_OK; 1296 } 1297 1298 1299 status_t 1300 MultiAudioNode::_HandleParameter(const media_timed_event* event, 1301 bigtime_t lateness, bool realTimeEvent) 1302 { 1303 CALLED(); 1304 return B_OK; 1305 } 1306 1307 1308 // #pragma mark - BTimeSource 1309 1310 1311 void 1312 MultiAudioNode::SetRunMode(run_mode mode) 1313 { 1314 CALLED(); 1315 PRINT(("MultiAudioNode::SetRunMode mode:%i\n", mode)); 1316 //BTimeSource::SetRunMode(mode); 1317 } 1318 1319 1320 status_t 1321 MultiAudioNode::TimeSourceOp(const time_source_op_info& op, void* _reserved) 1322 { 1323 CALLED(); 1324 switch (op.op) { 1325 case B_TIMESOURCE_START: 1326 PRINT(("TimeSourceOp op B_TIMESOURCE_START\n")); 1327 if (RunState() != BMediaEventLooper::B_STARTED) { 1328 fTimeSourceStarted = true; 1329 _StartOutputThreadIfNeeded(); 1330 1331 media_timed_event startEvent(0, BTimedEventQueue::B_START); 1332 EventQueue()->AddEvent(startEvent); 1333 } 1334 break; 1335 case B_TIMESOURCE_STOP: 1336 PRINT(("TimeSourceOp op B_TIMESOURCE_STOP\n")); 1337 if (RunState() == BMediaEventLooper::B_STARTED) { 1338 media_timed_event stopEvent(0, BTimedEventQueue::B_STOP); 1339 EventQueue()->AddEvent(stopEvent); 1340 fTimeSourceStarted = false; 1341 _StopOutputThread(); 1342 PublishTime(0, 0, 0); 1343 } 1344 break; 1345 case B_TIMESOURCE_STOP_IMMEDIATELY: 1346 PRINT(("TimeSourceOp op B_TIMESOURCE_STOP_IMMEDIATELY\n")); 1347 if (RunState() == BMediaEventLooper::B_STARTED) { 1348 media_timed_event stopEvent(0, BTimedEventQueue::B_STOP); 1349 EventQueue()->AddEvent(stopEvent); 1350 fTimeSourceStarted = false; 1351 _StopOutputThread(); 1352 PublishTime(0, 0, 0); 1353 } 1354 break; 1355 case B_TIMESOURCE_SEEK: 1356 PRINT(("TimeSourceOp op B_TIMESOURCE_SEEK\n")); 1357 BroadcastTimeWarp(op.real_time, op.performance_time); 1358 break; 1359 default: 1360 break; 1361 } 1362 return B_OK; 1363 } 1364 1365 1366 // #pragma mark - BControllable 1367 1368 1369 status_t 1370 MultiAudioNode::GetParameterValue(int32 id, bigtime_t* lastChange, void* value, 1371 size_t* size) 1372 { 1373 CALLED(); 1374 1375 PRINT(("id: %" B_PRIi32 "\n", id)); 1376 BParameter* parameter = NULL; 1377 for (int32 i = 0; i < fWeb->CountParameters(); i++) { 1378 parameter = fWeb->ParameterAt(i); 1379 if (parameter->ID() == id) 1380 break; 1381 } 1382 1383 if (parameter == NULL) { 1384 // Hmmm, we were asked for a parameter that we don't actually 1385 // support. Report an error back to the caller. 1386 PRINT(("\terror - asked for illegal parameter %" B_PRId32 "\n", id)); 1387 return B_ERROR; 1388 } 1389 1390 if (id == PARAMETER_ID_INPUT_FREQUENCY 1391 || id == PARAMETER_ID_OUTPUT_FREQUENCY) { 1392 const multi_format_info& info = fDevice->FormatInfo(); 1393 1394 uint32 rate = id == PARAMETER_ID_INPUT_FREQUENCY 1395 ? info.input.rate : info.output.rate; 1396 1397 if (*size < sizeof(rate)) 1398 return B_ERROR; 1399 1400 memcpy(value, &rate, sizeof(rate)); 1401 *size = sizeof(rate); 1402 return B_OK; 1403 } 1404 1405 multi_mix_value_info info; 1406 multi_mix_value values[2]; 1407 info.values = values; 1408 info.item_count = 0; 1409 multi_mix_control* controls = fDevice->MixControlInfo().controls; 1410 int32 control_id = controls[id - 100].id; 1411 1412 if (*size < sizeof(float)) 1413 return B_ERROR; 1414 1415 if (parameter->Type() == BParameter::B_CONTINUOUS_PARAMETER) { 1416 info.item_count = 1; 1417 values[0].id = control_id; 1418 1419 if (parameter->CountChannels() == 2) { 1420 if (*size < 2*sizeof(float)) 1421 return B_ERROR; 1422 info.item_count = 2; 1423 values[1].id = controls[id + 1 - 100].id; 1424 } 1425 } else if (parameter->Type() == BParameter::B_DISCRETE_PARAMETER) { 1426 info.item_count = 1; 1427 values[0].id = control_id; 1428 } 1429 1430 if (info.item_count > 0) { 1431 status_t status = fDevice->GetMix(&info); 1432 if (status != B_OK) { 1433 fprintf(stderr, "Failed on DRIVER_GET_MIX\n"); 1434 } else { 1435 if (parameter->Type() == BParameter::B_CONTINUOUS_PARAMETER) { 1436 ((float*)value)[0] = values[0].gain; 1437 *size = sizeof(float); 1438 1439 if (parameter->CountChannels() == 2) { 1440 ((float*)value)[1] = values[1].gain; 1441 *size = 2*sizeof(float); 1442 } 1443 1444 for (uint32 i = 0; i < *size / sizeof(float); i++) { 1445 PRINT(("GetParameterValue B_CONTINUOUS_PARAMETER value[%" 1446 B_PRIi32 "]: %f\n", i, ((float*)value)[i])); 1447 } 1448 } else if (parameter->Type() == BParameter::B_DISCRETE_PARAMETER) { 1449 BDiscreteParameter* discrete = (BDiscreteParameter*)parameter; 1450 if (discrete->CountItems() <= 2) 1451 ((int32*)value)[0] = values[0].enable ? 1 : 0; 1452 else 1453 ((int32*)value)[0] = values[0].mux; 1454 1455 *size = sizeof(int32); 1456 1457 for (uint32 i = 0; i < *size / sizeof(int32); i++) { 1458 PRINT(("GetParameterValue B_DISCRETE_PARAMETER value[%" 1459 B_PRIi32 "]: %" B_PRIi32 "\n", i, ((int32*)value)[i])); 1460 } 1461 } 1462 } 1463 } 1464 return B_OK; 1465 } 1466 1467 1468 void 1469 MultiAudioNode::SetParameterValue(int32 id, bigtime_t performanceTime, 1470 const void* value, size_t size) 1471 { 1472 CALLED(); 1473 PRINT(("id: %" B_PRIi32 ", performance_time: %" B_PRIdBIGTIME 1474 ", size: %" B_PRIuSIZE "\n", id, performanceTime, size)); 1475 1476 BParameter* parameter = NULL; 1477 for (int32 i = 0; i < fWeb->CountParameters(); i++) { 1478 parameter = fWeb->ParameterAt(i); 1479 if (parameter->ID() == id) 1480 break; 1481 } 1482 1483 if (parameter == NULL) 1484 return; 1485 1486 if (id == PARAMETER_ID_OUTPUT_FREQUENCY 1487 || (id == PARAMETER_ID_INPUT_FREQUENCY 1488 && (fDevice->Description().output_rates 1489 & B_SR_SAME_AS_INPUT) != 0)) { 1490 uint32 rate; 1491 if (size < sizeof(rate)) 1492 return; 1493 memcpy(&rate, value, sizeof(rate)); 1494 1495 if (rate == fOutputPreferredFormat.u.raw_audio.frame_rate) 1496 return; 1497 1498 // create a cookie RequestCompleted() can get the old frame rate from, 1499 // if anything goes wrong 1500 FrameRateChangeCookie* cookie = new(std::nothrow) FrameRateChangeCookie; 1501 if (cookie == NULL) 1502 return; 1503 1504 cookie->oldFrameRate = fOutputPreferredFormat.u.raw_audio.frame_rate; 1505 cookie->id = id; 1506 BReference<FrameRateChangeCookie> cookieReference(cookie, true); 1507 1508 // NOTE: What we should do is call RequestFormatChange() for all 1509 // connections and change the device's format in RequestCompleted(). 1510 // Unfortunately we need the new buffer size first, which we only get 1511 // from the device after changing the format. So we do that now and 1512 // reset it in RequestCompleted(), if something went wrong. This causes 1513 // the buffers we receive until then to be played incorrectly leading 1514 // to unpleasant noise. 1515 float frameRate = MultiAudio::convert_to_sample_rate(rate); 1516 if (_SetNodeInputFrameRate(frameRate) != B_OK) 1517 return; 1518 1519 for (int32 i = 0; i < fInputs.CountItems(); i++) { 1520 node_input* channel = (node_input*)fInputs.ItemAt(i); 1521 if (channel->fInput.source == media_source::null) 1522 continue; 1523 1524 media_format newFormat = channel->fInput.format; 1525 newFormat.u.raw_audio.frame_rate = frameRate; 1526 newFormat.u.raw_audio.buffer_size 1527 = fOutputPreferredFormat.u.raw_audio.buffer_size; 1528 1529 int32 changeTag = 0; 1530 status_t error = RequestFormatChange(channel->fInput.source, 1531 channel->fInput.destination, newFormat, NULL, &changeTag); 1532 if (error == B_OK) 1533 cookie->AcquireReference(); 1534 } 1535 1536 if (id != PARAMETER_ID_INPUT_FREQUENCY) 1537 return; 1538 //Do not return cause we should go in the next if 1539 } 1540 1541 if (id == PARAMETER_ID_INPUT_FREQUENCY) { 1542 uint32 rate; 1543 if (size < sizeof(rate)) 1544 return; 1545 memcpy(&rate, value, sizeof(rate)); 1546 1547 if (rate == fInputPreferredFormat.u.raw_audio.frame_rate) 1548 return; 1549 1550 // create a cookie RequestCompleted() can get the old frame rate from, 1551 // if anything goes wrong 1552 FrameRateChangeCookie* cookie = new(std::nothrow) FrameRateChangeCookie; 1553 if (cookie == NULL) 1554 return; 1555 1556 cookie->oldFrameRate = fInputPreferredFormat.u.raw_audio.frame_rate; 1557 cookie->id = id; 1558 BReference<FrameRateChangeCookie> cookieReference(cookie, true); 1559 1560 // NOTE: What we should do is call RequestFormatChange() for all 1561 // connections and change the device's format in RequestCompleted(). 1562 // Unfortunately we need the new buffer size first, which we only get 1563 // from the device after changing the format. So we do that now and 1564 // reset it in RequestCompleted(), if something went wrong. This causes 1565 // the buffers we receive until then to be played incorrectly leading 1566 // to unpleasant noise. 1567 float frameRate = MultiAudio::convert_to_sample_rate(rate); 1568 if (_SetNodeOutputFrameRate(frameRate) != B_OK) 1569 return; 1570 1571 for (int32 i = 0; i < fOutputs.CountItems(); i++) { 1572 node_output* channel = (node_output*)fOutputs.ItemAt(i); 1573 if (channel->fOutput.source == media_source::null) 1574 continue; 1575 1576 media_format newFormat = channel->fOutput.format; 1577 newFormat.u.raw_audio.frame_rate = frameRate; 1578 newFormat.u.raw_audio.buffer_size 1579 = fInputPreferredFormat.u.raw_audio.buffer_size; 1580 1581 int32 changeTag = 0; 1582 status_t error = RequestFormatChange(channel->fOutput.source, 1583 channel->fOutput.destination, newFormat, NULL, &changeTag); 1584 if (error == B_OK) 1585 cookie->AcquireReference(); 1586 } 1587 1588 return; 1589 } 1590 1591 multi_mix_value_info info; 1592 multi_mix_value values[2]; 1593 info.values = values; 1594 info.item_count = 0; 1595 multi_mix_control* controls = fDevice->MixControlInfo().controls; 1596 int32 control_id = controls[id - 100].id; 1597 1598 if (parameter->Type() == BParameter::B_CONTINUOUS_PARAMETER) { 1599 for (uint32 i = 0; i < size / sizeof(float); i++) { 1600 PRINT(("SetParameterValue B_CONTINUOUS_PARAMETER value[%" B_PRIi32 1601 "]: %f\n", i, ((float*)value)[i])); 1602 } 1603 info.item_count = 1; 1604 values[0].id = control_id; 1605 values[0].gain = ((float*)value)[0]; 1606 1607 if (parameter->CountChannels() == 2) { 1608 info.item_count = 2; 1609 values[1].id = controls[id + 1 - 100].id; 1610 values[1].gain = ((float*)value)[1]; 1611 } 1612 } else if (parameter->Type() == BParameter::B_DISCRETE_PARAMETER) { 1613 for (uint32 i = 0; i < size / sizeof(int32); i++) { 1614 PRINT(("SetParameterValue B_DISCRETE_PARAMETER value[%" B_PRIi32 1615 "]: %" B_PRIi32 "\n", i, ((int32*)value)[i])); 1616 } 1617 1618 BDiscreteParameter* discrete = (BDiscreteParameter*)parameter; 1619 if (discrete->CountItems() <= 2) { 1620 info.item_count = 1; 1621 values[0].id = control_id; 1622 values[0].enable = ((int32*)value)[0] == 1; 1623 } else { 1624 info.item_count = 1; 1625 values[0].id = control_id; 1626 values[0].mux = ((uint32*)value)[0]; 1627 } 1628 } 1629 1630 if (info.item_count > 0) { 1631 status_t status = fDevice->SetMix(&info); 1632 if (status != B_OK) 1633 fprintf(stderr, "Failed on DRIVER_SET_MIX\n"); 1634 } 1635 } 1636 1637 1638 BParameterWeb* 1639 MultiAudioNode::MakeParameterWeb() 1640 { 1641 CALLED(); 1642 BParameterWeb* web = new BParameterWeb(); 1643 1644 PRINT(("MixControlInfo().control_count: %" B_PRIi32 "\n", 1645 fDevice->MixControlInfo().control_count)); 1646 1647 BParameterGroup* generalGroup = web->MakeGroup(B_TRANSLATE("General")); 1648 1649 const multi_description& description = fDevice->Description(); 1650 1651 if ((description.output_rates & B_SR_SAME_AS_INPUT) != 0) { 1652 _CreateFrequencyParameterGroup(generalGroup, 1653 B_TRANSLATE("Input & Output"), PARAMETER_ID_INPUT_FREQUENCY, 1654 description.input_rates); 1655 } else { 1656 _CreateFrequencyParameterGroup(generalGroup, B_TRANSLATE("Input"), 1657 PARAMETER_ID_INPUT_FREQUENCY, description.input_rates); 1658 _CreateFrequencyParameterGroup(generalGroup, B_TRANSLATE("Output"), 1659 PARAMETER_ID_OUTPUT_FREQUENCY, description.output_rates); 1660 } 1661 1662 multi_mix_control* controls = fDevice->MixControlInfo().controls; 1663 1664 for (int i = 0; i < fDevice->MixControlInfo().control_count; i++) { 1665 if ((controls[i].flags & B_MULTI_MIX_GROUP) != 0 1666 && controls[i].parent == 0) { 1667 PRINT(("NEW_GROUP\n")); 1668 BParameterGroup* child = web->MakeGroup( 1669 _GetControlName(controls[i])); 1670 1671 int32 numParameters = 0; 1672 _ProcessGroup(child, i, numParameters); 1673 } 1674 } 1675 1676 return web; 1677 } 1678 1679 1680 const char* 1681 MultiAudioNode::_GetControlName(multi_mix_control& control) 1682 { 1683 if (control.string != S_null) 1684 return kMultiControlString[control.string]; 1685 1686 return control.name; 1687 } 1688 1689 1690 void 1691 MultiAudioNode::_ProcessGroup(BParameterGroup* group, int32 index, 1692 int32& numParameters) 1693 { 1694 CALLED(); 1695 multi_mix_control* parent = &fDevice->MixControlInfo().controls[index]; 1696 multi_mix_control* controls = fDevice->MixControlInfo().controls; 1697 1698 for (int32 i = 0; i < fDevice->MixControlInfo().control_count; i++) { 1699 if (controls[i].parent != parent->id) 1700 continue; 1701 1702 const char* name = _GetControlName(controls[i]); 1703 1704 if (controls[i].flags & B_MULTI_MIX_GROUP) { 1705 PRINT(("NEW_GROUP\n")); 1706 BParameterGroup* child = group->MakeGroup(name); 1707 child->MakeNullParameter(100 + i, B_MEDIA_RAW_AUDIO, name, 1708 B_WEB_BUFFER_OUTPUT); 1709 1710 int32 num = 1; 1711 _ProcessGroup(child, i, num); 1712 } else if (controls[i].flags & B_MULTI_MIX_MUX) { 1713 PRINT(("NEW_MUX\n")); 1714 BDiscreteParameter* parameter = group->MakeDiscreteParameter( 1715 100 + i, B_MEDIA_RAW_AUDIO, name, B_INPUT_MUX); 1716 if (numParameters > 0) { 1717 (group->ParameterAt(numParameters - 1))->AddOutput( 1718 group->ParameterAt(numParameters)); 1719 numParameters++; 1720 } 1721 _ProcessMux(parameter, i); 1722 } else if (controls[i].flags & B_MULTI_MIX_GAIN) { 1723 PRINT(("NEW_GAIN\n")); 1724 group->MakeContinuousParameter(100 + i, 1725 B_MEDIA_RAW_AUDIO, "", B_MASTER_GAIN, "dB", 1726 controls[i].gain.min_gain, controls[i].gain.max_gain, 1727 controls[i].gain.granularity); 1728 1729 if (i + 1 < fDevice->MixControlInfo().control_count 1730 && controls[i + 1].master == controls[i].id 1731 && (controls[i + 1].flags & B_MULTI_MIX_GAIN) != 0) { 1732 group->ParameterAt(numParameters)->SetChannelCount( 1733 group->ParameterAt(numParameters)->CountChannels() + 1); 1734 i++; 1735 } 1736 1737 PRINT(("num parameters: %" B_PRId32 "\n", numParameters)); 1738 if (numParameters > 0) { 1739 group->ParameterAt(numParameters - 1)->AddOutput( 1740 group->ParameterAt(numParameters)); 1741 numParameters++; 1742 } 1743 } else if (controls[i].flags & B_MULTI_MIX_ENABLE) { 1744 PRINT(("NEW_ENABLE\n")); 1745 if (controls[i].string == S_MUTE) { 1746 group->MakeDiscreteParameter(100 + i, 1747 B_MEDIA_RAW_AUDIO, name, B_MUTE); 1748 } else { 1749 group->MakeDiscreteParameter(100 + i, 1750 B_MEDIA_RAW_AUDIO, name, B_ENABLE); 1751 } 1752 if (numParameters > 0) { 1753 group->ParameterAt(numParameters - 1)->AddOutput( 1754 group->ParameterAt(numParameters)); 1755 numParameters++; 1756 } 1757 } 1758 } 1759 } 1760 1761 1762 void 1763 MultiAudioNode::_ProcessMux(BDiscreteParameter* parameter, int32 index) 1764 { 1765 CALLED(); 1766 multi_mix_control* parent = &fDevice->MixControlInfo().controls[index]; 1767 multi_mix_control* controls = fDevice->MixControlInfo().controls; 1768 int32 itemIndex = 0; 1769 1770 for (int32 i = 0; i < fDevice->MixControlInfo().control_count; i++) { 1771 if (controls[i].parent != parent->id) 1772 continue; 1773 1774 if ((controls[i].flags & B_MULTI_MIX_MUX_VALUE) != 0) { 1775 PRINT(("NEW_MUX_VALUE\n")); 1776 parameter->AddItem(itemIndex, _GetControlName(controls[i])); 1777 itemIndex++; 1778 } 1779 } 1780 } 1781 1782 1783 void 1784 MultiAudioNode::_CreateFrequencyParameterGroup(BParameterGroup* parentGroup, 1785 const char* name, int32 parameterID, uint32 rateMask) 1786 { 1787 BParameterGroup* group = parentGroup->MakeGroup(name); 1788 BDiscreteParameter* frequencyParam = group->MakeDiscreteParameter( 1789 parameterID, B_MEDIA_NO_TYPE, 1790 BString(name) << B_TRANSLATE(" frequency:"), 1791 B_GENERIC); 1792 1793 for (int32 i = 0; kSampleRateInfos[i].name != NULL; i++) { 1794 const sample_rate_info& info = kSampleRateInfos[i]; 1795 if ((rateMask & info.multiAudioRate) != 0) { 1796 frequencyParam->AddItem(info.multiAudioRate, 1797 BString(info.name) << " Hz"); 1798 } 1799 } 1800 } 1801 1802 1803 // #pragma mark - MultiAudioNode specific functions 1804 1805 1806 int32 1807 MultiAudioNode::_OutputThread() 1808 { 1809 CALLED(); 1810 multi_buffer_info bufferInfo; 1811 bufferInfo.info_size = sizeof(multi_buffer_info); 1812 bufferInfo.playback_buffer_cycle = 0; 1813 bufferInfo.record_buffer_cycle = 0; 1814 1815 // init the performance time computation 1816 { 1817 BAutolock locker(fBufferLock); 1818 fTimeComputer.Init(fOutputPreferredFormat.u.raw_audio.frame_rate, 1819 system_time()); 1820 } 1821 1822 while (atomic_get(&fQuitThread) == 0) { 1823 BAutolock locker(fBufferLock); 1824 // make sure the buffers don't change while we're playing with them 1825 1826 // send buffer 1827 fDevice->BufferExchange(&bufferInfo); 1828 1829 //PRINT(("MultiAudioNode::RunThread: buffer exchanged\n")); 1830 //PRINT(("MultiAudioNode::RunThread: played_real_time: %Ld\n", bufferInfo.played_real_time)); 1831 //PRINT(("MultiAudioNode::RunThread: played_frames_count: %Ld\n", bufferInfo.played_frames_count)); 1832 //PRINT(("MultiAudioNode::RunThread: buffer_cycle: %li\n", bufferInfo.playback_buffer_cycle)); 1833 1834 for (int32 i = 0; i < fInputs.CountItems(); i++) { 1835 node_input* input = (node_input*)fInputs.ItemAt(i); 1836 1837 if (bufferInfo.playback_buffer_cycle >= 0 1838 && bufferInfo.playback_buffer_cycle 1839 < fDevice->BufferList().return_playback_buffers 1840 && (input->fOldBufferInfo.playback_buffer_cycle 1841 != bufferInfo.playback_buffer_cycle 1842 || fDevice->BufferList().return_playback_buffers == 1) 1843 && (input->fInput.source != media_source::null 1844 || input->fChannelId == 0)) { 1845 //PRINT(("playback_buffer_cycle ok input: %li %ld\n", i, bufferInfo.playback_buffer_cycle)); 1846 1847 input->fBufferCycle = (bufferInfo.playback_buffer_cycle - 1 1848 + fDevice->BufferList().return_playback_buffers) 1849 % fDevice->BufferList().return_playback_buffers; 1850 1851 // update the timesource 1852 if (input->fChannelId == 0) { 1853 //PRINT(("updating timesource\n")); 1854 _UpdateTimeSource(bufferInfo, input->fOldBufferInfo, 1855 *input); 1856 } 1857 1858 input->fOldBufferInfo = bufferInfo; 1859 1860 if (input->fBuffer != NULL) { 1861 _FillNextBuffer(*input, input->fBuffer); 1862 input->fBuffer->Recycle(); 1863 input->fBuffer = NULL; 1864 } else { 1865 // put zeros in current buffer 1866 if (input->fInput.source != media_source::null) 1867 _WriteZeros(*input, input->fBufferCycle); 1868 //PRINT(("MultiAudioNode::Runthread WriteZeros\n")); 1869 } 1870 } else { 1871 //PRINT(("playback_buffer_cycle non ok input: %i\n", i)); 1872 } 1873 } 1874 1875 PRINT(("MultiAudioNode::RunThread: recorded_real_time: %" B_PRIdBIGTIME 1876 "\n", bufferInfo.recorded_real_time)); 1877 PRINT(("MultiAudioNode::RunThread: recorded_frames_count: %" 1878 B_PRId64 "\n", bufferInfo.recorded_frames_count)); 1879 PRINT(("MultiAudioNode::RunThread: record_buffer_cycle: %" B_PRIi32 1880 "\n", bufferInfo.record_buffer_cycle)); 1881 1882 for (int32 i = 0; i < fOutputs.CountItems(); i++) { 1883 node_output* output = (node_output*)fOutputs.ItemAt(i); 1884 1885 // make sure we're both started *and* connected before delivering a 1886 // buffer 1887 if (RunState() == BMediaEventLooper::B_STARTED 1888 && output->fOutput.destination != media_destination::null) { 1889 if (bufferInfo.record_buffer_cycle >= 0 1890 && bufferInfo.record_buffer_cycle 1891 < fDevice->BufferList().return_record_buffers 1892 && (output->fOldBufferInfo.record_buffer_cycle 1893 != bufferInfo.record_buffer_cycle 1894 || fDevice->BufferList().return_record_buffers == 1)) { 1895 //PRINT(("record_buffer_cycle ok\n")); 1896 1897 output->fBufferCycle = bufferInfo.record_buffer_cycle; 1898 1899 // Get the next buffer of data 1900 BBuffer* buffer = _FillNextBuffer(bufferInfo, *output); 1901 if (buffer != NULL) { 1902 // send the buffer downstream if and only if output is 1903 // enabled 1904 status_t err = B_ERROR; 1905 if (output->fOutputEnabled) { 1906 err = SendBuffer(buffer, output->fOutput.source, 1907 output->fOutput.destination); 1908 } 1909 if (err != B_OK) { 1910 buffer->Recycle(); 1911 } else { 1912 // track how much media we've delivered so far 1913 size_t numSamples 1914 = output->fOutput.format.u.raw_audio.buffer_size 1915 / (output->fOutput.format.u.raw_audio.format 1916 & media_raw_audio_format 1917 ::B_AUDIO_SIZE_MASK); 1918 output->fSamplesSent += numSamples; 1919 } 1920 } 1921 1922 output->fOldBufferInfo = bufferInfo; 1923 } else { 1924 //PRINT(("record_buffer_cycle non ok\n")); 1925 } 1926 } 1927 } 1928 } 1929 1930 return B_OK; 1931 } 1932 1933 1934 void 1935 MultiAudioNode::_WriteZeros(node_input& input, uint32 bufferCycle) 1936 { 1937 //CALLED(); 1938 /*int32 samples = input.fInput.format.u.raw_audio.buffer_size; 1939 if(input.fInput.format.u.raw_audio.format == media_raw_audio_format::B_AUDIO_UCHAR) { 1940 uint8 *sample = (uint8*)fDevice->BufferList().playback_buffers[input.fBufferCycle][input.fChannelId].base; 1941 for(int32 i = samples-1; i>=0; i--) 1942 *sample++ = 128; 1943 } else { 1944 int32 *sample = (int32*)fDevice->BufferList().playback_buffers[input.fBufferCycle][input.fChannelId].base; 1945 for(int32 i = (samples / 4)-1; i>=0; i--) 1946 *sample++ = 0; 1947 }*/ 1948 1949 uint32 channelCount = input.fFormat.u.raw_audio.channel_count; 1950 uint32 bufferSize = fDevice->BufferList().return_playback_buffer_size; 1951 size_t stride = fDevice->BufferList().playback_buffers[bufferCycle] 1952 [input.fChannelId].stride; 1953 1954 switch (input.fFormat.u.raw_audio.format) { 1955 case media_raw_audio_format::B_AUDIO_FLOAT: 1956 for (uint32 channel = 0; channel < channelCount; channel++) { 1957 char* dest = _PlaybackBuffer(bufferCycle, 1958 input.fChannelId + channel); 1959 for (uint32 i = bufferSize; i > 0; i--) { 1960 *(float*)dest = 0; 1961 dest += stride; 1962 } 1963 } 1964 break; 1965 1966 case media_raw_audio_format::B_AUDIO_DOUBLE: 1967 for (uint32 channel = 0; channel < channelCount; channel++) { 1968 char* dest = _PlaybackBuffer(bufferCycle, 1969 input.fChannelId + channel); 1970 for (uint32 i = bufferSize; i > 0; i--) { 1971 *(double*)dest = 0; 1972 dest += stride; 1973 } 1974 } 1975 break; 1976 1977 case media_raw_audio_format::B_AUDIO_INT: 1978 for (uint32 channel = 0; channel < channelCount; channel++) { 1979 char* dest = _PlaybackBuffer(bufferCycle, 1980 input.fChannelId + channel); 1981 for (uint32 i = bufferSize; i > 0; i--) { 1982 *(int32*)dest = 0; 1983 dest += stride; 1984 } 1985 } 1986 break; 1987 1988 case media_raw_audio_format::B_AUDIO_SHORT: 1989 for (uint32 channel = 0; channel < channelCount; channel++) { 1990 char* dest = _PlaybackBuffer(bufferCycle, 1991 input.fChannelId + channel); 1992 for (uint32 i = bufferSize; i > 0; i--) { 1993 *(int16*)dest = 0; 1994 dest += stride; 1995 } 1996 } 1997 break; 1998 1999 case media_raw_audio_format::B_AUDIO_UCHAR: 2000 for (uint32 channel = 0; channel < channelCount; channel++) { 2001 char* dest = _PlaybackBuffer(bufferCycle, 2002 input.fChannelId + channel); 2003 for (uint32 i = bufferSize; i > 0; i--) { 2004 *(uint8*)dest = 128; 2005 dest += stride; 2006 } 2007 } 2008 break; 2009 2010 case media_raw_audio_format::B_AUDIO_CHAR: 2011 for (uint32 channel = 0; channel < channelCount; channel++) { 2012 char* dest = _PlaybackBuffer(bufferCycle, 2013 input.fChannelId + channel); 2014 for (uint32 i = bufferSize; i > 0; i--) { 2015 *(int8*)dest = 0; 2016 dest += stride; 2017 } 2018 } 2019 break; 2020 2021 default: 2022 fprintf(stderr, "ERROR in WriteZeros format not handled\n"); 2023 } 2024 } 2025 2026 2027 void 2028 MultiAudioNode::_FillWithZeros(node_input& input) 2029 { 2030 CALLED(); 2031 for (int32 i = 0; i < fDevice->BufferList().return_playback_buffers; i++) 2032 _WriteZeros(input, i); 2033 } 2034 2035 2036 void 2037 MultiAudioNode::_FillNextBuffer(node_input& input, BBuffer* buffer) 2038 { 2039 uint32 channelCount = input.fInput.format.u.raw_audio.channel_count; 2040 size_t inputSampleSize = input.fInput.format.u.raw_audio.format 2041 & media_raw_audio_format::B_AUDIO_SIZE_MASK; 2042 2043 uint32 bufferSize = fDevice->BufferList().return_playback_buffer_size; 2044 2045 if (buffer->SizeUsed() / inputSampleSize / channelCount != bufferSize) { 2046 _WriteZeros(input, input.fBufferCycle); 2047 return; 2048 } 2049 2050 if (channelCount != input.fFormat.u.raw_audio.channel_count) { 2051 PRINT(("Channel count is different")); 2052 return; 2053 } 2054 2055 if (input.fResampler != NULL) { 2056 size_t srcStride = channelCount * inputSampleSize; 2057 2058 for (uint32 channel = 0; channel < channelCount; channel++) { 2059 char* src = (char*)buffer->Data() + channel * inputSampleSize; 2060 char* dst = _PlaybackBuffer(input.fBufferCycle, 2061 input.fChannelId + channel); 2062 size_t dstStride = _PlaybackStride(input.fBufferCycle, 2063 input.fChannelId + channel); 2064 2065 input.fResampler->Resample(src, srcStride, 2066 dst, dstStride, bufferSize); 2067 } 2068 } 2069 } 2070 2071 2072 status_t 2073 MultiAudioNode::_StartOutputThreadIfNeeded() 2074 { 2075 CALLED(); 2076 // the thread is already started ? 2077 if (fThread >= 0) 2078 return B_OK; 2079 2080 PublishTime(-50, 0, 0); 2081 2082 fThread = spawn_thread(_OutputThreadEntry, "multi_audio audio output", 2083 B_REAL_TIME_PRIORITY, this); 2084 if (fThread < 0) 2085 return fThread; 2086 2087 resume_thread(fThread); 2088 return B_OK; 2089 } 2090 2091 2092 status_t 2093 MultiAudioNode::_StopOutputThread() 2094 { 2095 CALLED(); 2096 atomic_set(&fQuitThread, 1); 2097 2098 wait_for_thread(fThread, NULL); 2099 fThread = -1; 2100 return B_OK; 2101 } 2102 2103 2104 void 2105 MultiAudioNode::_AllocateBuffers(node_output &channel) 2106 { 2107 CALLED(); 2108 2109 // allocate enough buffers to span our downstream latency, plus one 2110 size_t size = channel.fOutput.format.u.raw_audio.buffer_size; 2111 int32 count = int32(fLatency / BufferDuration() + 1 + 1); 2112 2113 PRINT(("\tlatency = %" B_PRIdBIGTIME ", buffer duration = %" B_PRIdBIGTIME 2114 "\n", fLatency, BufferDuration())); 2115 PRINT(("\tcreating group of %" B_PRId32 " buffers, size = %" B_PRIuSIZE 2116 "\n", count, size)); 2117 channel.fBufferGroup = new BBufferGroup(size, count); 2118 } 2119 2120 2121 void 2122 MultiAudioNode::_UpdateTimeSource(multi_buffer_info& info, 2123 multi_buffer_info& oldInfo, node_input& input) 2124 { 2125 //CALLED(); 2126 if (!fTimeSourceStarted || oldInfo.played_real_time == 0) 2127 return; 2128 2129 fTimeComputer.AddTimeStamp(info.played_real_time, 2130 info.played_frames_count); 2131 PublishTime(fTimeComputer.PerformanceTime(), fTimeComputer.RealTime(), 2132 fTimeComputer.Drift()); 2133 } 2134 2135 2136 BBuffer* 2137 MultiAudioNode::_FillNextBuffer(multi_buffer_info& info, node_output& output) 2138 { 2139 //CALLED(); 2140 // get a buffer from our buffer group 2141 //PRINT(("buffer size: %i, buffer duration: %i\n", fOutput.format.u.raw_audio.buffer_size, BufferDuration())); 2142 //PRINT(("MBI.record_buffer_cycle: %i\n", MBI.record_buffer_cycle)); 2143 //PRINT(("MBI.recorded_real_time: %i\n", MBI.recorded_real_time)); 2144 //PRINT(("MBI.recorded_frames_count: %i\n", MBI.recorded_frames_count)); 2145 if (output.fBufferGroup == NULL) 2146 return NULL; 2147 2148 BBuffer* buffer = output.fBufferGroup->RequestBuffer( 2149 output.fOutput.format.u.raw_audio.buffer_size, BufferDuration()); 2150 if (buffer == NULL) { 2151 // If we fail to get a buffer (for example, if the request times out), 2152 // we skip this buffer and go on to the next, to avoid locking up the 2153 // control thread. 2154 fprintf(stderr, "Buffer is null"); 2155 return NULL; 2156 } 2157 2158 if (fDevice == NULL) 2159 fprintf(stderr, "fDevice NULL\n"); 2160 if (buffer->Header() == NULL) 2161 fprintf(stderr, "buffer->Header() NULL\n"); 2162 if (TimeSource() == NULL) 2163 fprintf(stderr, "TimeSource() NULL\n"); 2164 2165 uint32 channelCount = output.fOutput.format.u.raw_audio.channel_count; 2166 size_t outputSampleSize = output.fOutput.format.u.raw_audio.format 2167 & media_raw_audio_format::B_AUDIO_SIZE_MASK; 2168 2169 uint32 bufferSize = fDevice->BufferList().return_record_buffer_size; 2170 2171 if (output.fResampler != NULL) { 2172 size_t dstStride = channelCount * outputSampleSize; 2173 2174 uint32 channelId = output.fChannelId 2175 - fDevice->Description().output_channel_count; 2176 2177 for (uint32 channel = 0; channel < channelCount; channel++) { 2178 char* src = _RecordBuffer(output.fBufferCycle, 2179 channelId + channel); 2180 size_t srcStride = _RecordStride(output.fBufferCycle, 2181 channelId + channel); 2182 char* dst = (char*)buffer->Data() + channel * outputSampleSize; 2183 2184 output.fResampler->Resample(src, srcStride, dst, dstStride, 2185 bufferSize); 2186 } 2187 } 2188 2189 // fill in the buffer header 2190 media_header* header = buffer->Header(); 2191 header->type = B_MEDIA_RAW_AUDIO; 2192 header->size_used = output.fOutput.format.u.raw_audio.buffer_size; 2193 header->time_source = TimeSource()->ID(); 2194 header->start_time = PerformanceTimeFor(info.recorded_real_time); 2195 2196 return buffer; 2197 } 2198 2199 2200 status_t 2201 MultiAudioNode::GetConfigurationFor(BMessage* message) 2202 { 2203 CALLED(); 2204 if (message == NULL) 2205 return B_BAD_VALUE; 2206 2207 size_t bufferSize = 128; 2208 void* buffer = malloc(bufferSize); 2209 if (buffer == NULL) 2210 return B_NO_MEMORY; 2211 2212 for (int32 i = 0; i < fWeb->CountParameters(); i++) { 2213 BParameter* parameter = fWeb->ParameterAt(i); 2214 if (parameter->Type() != BParameter::B_CONTINUOUS_PARAMETER 2215 && parameter->Type() != BParameter::B_DISCRETE_PARAMETER) 2216 continue; 2217 2218 PRINT(("getting parameter %" B_PRIi32 "\n", parameter->ID())); 2219 size_t size = bufferSize; 2220 bigtime_t lastChange; 2221 status_t err; 2222 while ((err = GetParameterValue(parameter->ID(), &lastChange, buffer, 2223 &size)) == B_NO_MEMORY && bufferSize < 128 * 1024) { 2224 bufferSize += 128; 2225 free(buffer); 2226 buffer = malloc(bufferSize); 2227 if (buffer == NULL) 2228 return B_NO_MEMORY; 2229 } 2230 2231 if (err == B_OK && size > 0) { 2232 message->AddInt32("parameterID", parameter->ID()); 2233 message->AddData("parameterData", B_RAW_TYPE, buffer, size, false); 2234 } else { 2235 PRINT(("parameter err: %s\n", strerror(err))); 2236 } 2237 } 2238 2239 free(buffer); 2240 PRINT_OBJECT(*message); 2241 return B_OK; 2242 } 2243 2244 2245 node_output* 2246 MultiAudioNode::_FindOutput(media_source source) 2247 { 2248 node_output* channel = NULL; 2249 2250 for (int32 i = 0; i < fOutputs.CountItems(); i++) { 2251 channel = (node_output*)fOutputs.ItemAt(i); 2252 if (source == channel->fOutput.source) 2253 break; 2254 } 2255 2256 if (source != channel->fOutput.source) 2257 return NULL; 2258 2259 return channel; 2260 } 2261 2262 2263 node_input* 2264 MultiAudioNode::_FindInput(media_destination dest) 2265 { 2266 node_input* channel = NULL; 2267 2268 for (int32 i = 0; i < fInputs.CountItems(); i++) { 2269 channel = (node_input*)fInputs.ItemAt(i); 2270 if (dest == channel->fInput.destination) 2271 break; 2272 } 2273 2274 if (dest != channel->fInput.destination) 2275 return NULL; 2276 2277 return channel; 2278 } 2279 2280 2281 node_input* 2282 MultiAudioNode::_FindInput(int32 destinationId) 2283 { 2284 node_input* channel = NULL; 2285 2286 for (int32 i = 0; i < fInputs.CountItems(); i++) { 2287 channel = (node_input*)fInputs.ItemAt(i); 2288 if (destinationId == channel->fInput.destination.id) 2289 break; 2290 } 2291 2292 if (destinationId != channel->fInput.destination.id) 2293 return NULL; 2294 2295 return channel; 2296 } 2297 2298 2299 /*static*/ status_t 2300 MultiAudioNode::_OutputThreadEntry(void* data) 2301 { 2302 CALLED(); 2303 return static_cast<MultiAudioNode*>(data)->_OutputThread(); 2304 } 2305 2306 2307 status_t 2308 MultiAudioNode::_SetNodeInputFrameRate(float frameRate) 2309 { 2310 // check whether the frame rate is supported 2311 uint32 multiAudioRate = MultiAudio::convert_from_sample_rate(frameRate); 2312 if ((fDevice->Description().output_rates & multiAudioRate) == 0) 2313 return B_BAD_VALUE; 2314 2315 BAutolock locker(fBufferLock); 2316 2317 // already set? 2318 if (fDevice->FormatInfo().output.rate == multiAudioRate) 2319 return B_OK; 2320 2321 // set the frame rate on the device 2322 status_t error = fDevice->SetOutputFrameRate(multiAudioRate); 2323 if (error != B_OK) 2324 return error; 2325 2326 // it went fine -- update all formats 2327 fOutputPreferredFormat.u.raw_audio.frame_rate = frameRate; 2328 fOutputPreferredFormat.u.raw_audio.buffer_size 2329 = fDevice->BufferList().return_playback_buffer_size 2330 * (fOutputPreferredFormat.u.raw_audio.format 2331 & media_raw_audio_format::B_AUDIO_SIZE_MASK) 2332 * fOutputPreferredFormat.u.raw_audio.channel_count; 2333 2334 for (int32 i = 0; node_input* channel = (node_input*)fInputs.ItemAt(i); 2335 i++) { 2336 channel->fPreferredFormat.u.raw_audio.frame_rate = frameRate; 2337 channel->fPreferredFormat.u.raw_audio.buffer_size 2338 = fOutputPreferredFormat.u.raw_audio.buffer_size; 2339 2340 channel->fFormat.u.raw_audio.frame_rate = frameRate; 2341 channel->fFormat.u.raw_audio.buffer_size 2342 = fOutputPreferredFormat.u.raw_audio.buffer_size; 2343 2344 channel->fInput.format.u.raw_audio.frame_rate = frameRate; 2345 channel->fInput.format.u.raw_audio.buffer_size 2346 = fOutputPreferredFormat.u.raw_audio.buffer_size; 2347 } 2348 2349 // make sure the time base is reset 2350 fTimeComputer.SetFrameRate(frameRate); 2351 2352 // update internal latency 2353 _UpdateInternalLatency(fOutputPreferredFormat); 2354 2355 return B_OK; 2356 } 2357 2358 2359 status_t 2360 MultiAudioNode::_SetNodeOutputFrameRate(float frameRate) 2361 { 2362 // check whether the frame rate is supported 2363 uint32 multiAudioRate = MultiAudio::convert_from_sample_rate(frameRate); 2364 if ((fDevice->Description().input_rates & multiAudioRate) == 0) 2365 return B_BAD_VALUE; 2366 2367 BAutolock locker(fBufferLock); 2368 2369 // already set? 2370 if (fDevice->FormatInfo().input.rate == multiAudioRate) 2371 return B_OK; 2372 2373 // set the frame rate on the device 2374 status_t error = fDevice->SetInputFrameRate(multiAudioRate); 2375 if (error != B_OK) 2376 return error; 2377 2378 // it went fine -- update all formats 2379 fInputPreferredFormat.u.raw_audio.frame_rate = frameRate; 2380 fInputPreferredFormat.u.raw_audio.buffer_size 2381 = fDevice->BufferList().return_record_buffer_size 2382 * (fInputPreferredFormat.u.raw_audio.format 2383 & media_raw_audio_format::B_AUDIO_SIZE_MASK) 2384 * fInputPreferredFormat.u.raw_audio.channel_count; 2385 2386 for (int32 i = 0; node_output* channel = (node_output*)fOutputs.ItemAt(i); 2387 i++) { 2388 channel->fPreferredFormat.u.raw_audio.frame_rate = frameRate; 2389 channel->fPreferredFormat.u.raw_audio.buffer_size 2390 = fInputPreferredFormat.u.raw_audio.buffer_size; 2391 2392 channel->fFormat.u.raw_audio.frame_rate = frameRate; 2393 channel->fFormat.u.raw_audio.buffer_size 2394 = fInputPreferredFormat.u.raw_audio.buffer_size; 2395 2396 channel->fOutput.format.u.raw_audio.frame_rate = frameRate; 2397 channel->fOutput.format.u.raw_audio.buffer_size 2398 = fInputPreferredFormat.u.raw_audio.buffer_size; 2399 } 2400 2401 // make sure the time base is reset 2402 fTimeComputer.SetFrameRate(frameRate); 2403 2404 // update internal latency 2405 _UpdateInternalLatency(fInputPreferredFormat); 2406 2407 return B_OK; 2408 } 2409 2410 2411 void 2412 MultiAudioNode::_UpdateInternalLatency(const media_format& format) 2413 { 2414 // use half a buffer length latency 2415 fInternalLatency = format.u.raw_audio.buffer_size * 10000 / 2 2416 / ((format.u.raw_audio.format 2417 & media_raw_audio_format::B_AUDIO_SIZE_MASK) 2418 * format.u.raw_audio.channel_count) 2419 / ((int32)(format.u.raw_audio.frame_rate / 100)); 2420 2421 PRINT((" internal latency = %" B_PRIdBIGTIME "\n", fInternalLatency)); 2422 2423 SetEventLatency(fInternalLatency); 2424 } 2425