1 /* 2 * Copyright 2006-2010, Haiku, Inc. All Rights Reserved. 3 * Distributed under the terms of the MIT License. 4 * 5 * Authors: 6 * Axel Dörfler, axeld@pinc-software.de 7 */ 8 9 10 #include "stack_private.h" 11 12 #include <stdlib.h> 13 #include <string.h> 14 #include <sys/ioctl.h> 15 #include <sys/time.h> 16 17 #include <new> 18 19 #include <Drivers.h> 20 #include <KernelExport.h> 21 #include <Select.h> 22 23 #include <AutoDeleter.h> 24 #include <team.h> 25 #include <util/AutoLock.h> 26 #include <util/list.h> 27 #include <WeakReferenceable.h> 28 29 #include <fs/select_sync_pool.h> 30 #include <kernel.h> 31 32 #include <net_protocol.h> 33 #include <net_stack.h> 34 #include <net_stat.h> 35 36 #include "ancillary_data.h" 37 #include "utility.h" 38 39 40 //#define TRACE_SOCKET 41 #ifdef TRACE_SOCKET 42 # define TRACE(x...) dprintf(STACK_DEBUG_PREFIX x) 43 #else 44 # define TRACE(x...) ; 45 #endif 46 47 48 struct net_socket_private; 49 typedef DoublyLinkedList<net_socket_private> SocketList; 50 51 struct net_socket_private : net_socket, 52 DoublyLinkedListLinkImpl<net_socket_private>, 53 BWeakReferenceable { 54 net_socket_private(); 55 ~net_socket_private(); 56 57 void RemoveFromParent(); 58 59 BWeakReference<net_socket_private> parent; 60 team_id owner; 61 uint32 max_backlog; 62 uint32 child_count; 63 SocketList pending_children; 64 SocketList connected_children; 65 66 struct select_sync_pool* select_pool; 67 mutex lock; 68 69 bool is_connected; 70 bool is_in_socket_list; 71 }; 72 73 74 int socket_bind(net_socket* socket, const struct sockaddr* address, 75 socklen_t addressLength); 76 int socket_setsockopt(net_socket* socket, int level, int option, 77 const void* value, int length); 78 ssize_t socket_read_avail(net_socket* socket); 79 80 static SocketList sSocketList; 81 static mutex sSocketLock; 82 83 84 net_socket_private::net_socket_private() 85 : 86 owner(-1), 87 max_backlog(0), 88 child_count(0), 89 select_pool(NULL), 90 is_connected(false), 91 is_in_socket_list(false) 92 { 93 first_protocol = NULL; 94 first_info = NULL; 95 options = 0; 96 linger = 0; 97 bound_to_device = 0; 98 error = 0; 99 100 address.ss_len = 0; 101 peer.ss_len = 0; 102 103 mutex_init(&lock, "socket"); 104 105 // set defaults (may be overridden by the protocols) 106 send.buffer_size = 65535; 107 send.low_water_mark = 1; 108 send.timeout = B_INFINITE_TIMEOUT; 109 receive.buffer_size = 65535; 110 receive.low_water_mark = 1; 111 receive.timeout = B_INFINITE_TIMEOUT; 112 } 113 114 115 net_socket_private::~net_socket_private() 116 { 117 TRACE("delete net_socket %p\n", this); 118 119 if (parent != NULL) 120 panic("socket still has a parent!"); 121 122 if (is_in_socket_list) { 123 MutexLocker _(sSocketLock); 124 sSocketList.Remove(this); 125 } 126 127 mutex_lock(&lock); 128 129 // also delete all children of this socket 130 while (net_socket_private* child = pending_children.RemoveHead()) { 131 child->RemoveFromParent(); 132 } 133 while (net_socket_private* child = connected_children.RemoveHead()) { 134 child->RemoveFromParent(); 135 } 136 137 mutex_unlock(&lock); 138 139 put_domain_protocols(this); 140 141 mutex_destroy(&lock); 142 } 143 144 145 void 146 net_socket_private::RemoveFromParent() 147 { 148 ASSERT(!is_in_socket_list && parent != NULL); 149 150 parent = NULL; 151 152 mutex_lock(&sSocketLock); 153 sSocketList.Add(this); 154 mutex_unlock(&sSocketLock); 155 156 is_in_socket_list = true; 157 158 ReleaseReference(); 159 } 160 161 162 // #pragma mark - 163 164 165 static status_t 166 create_socket(int family, int type, int protocol, net_socket_private** _socket) 167 { 168 struct net_socket_private* socket = new(std::nothrow) net_socket_private; 169 if (socket == NULL) 170 return B_NO_MEMORY; 171 status_t status = socket->InitCheck(); 172 if (status != B_OK) { 173 delete socket; 174 return status; 175 } 176 177 socket->family = family; 178 socket->type = type; 179 socket->protocol = protocol; 180 181 status = get_domain_protocols(socket); 182 if (status != B_OK) { 183 delete socket; 184 return status; 185 } 186 187 TRACE("create net_socket %p (%u.%u.%u):\n", socket, socket->family, 188 socket->type, socket->protocol); 189 190 #ifdef TRACE_SOCKET 191 net_protocol* current = socket->first_protocol; 192 for (int i = 0; current != NULL; current = current->next, i++) 193 TRACE(" [%d] %p %s\n", i, current, current->module->info.name); 194 #endif 195 196 *_socket = socket; 197 return B_OK; 198 } 199 200 201 static status_t 202 add_ancillary_data(net_socket* socket, ancillary_data_container* container, 203 void* data, size_t dataLen) 204 { 205 cmsghdr* header = (cmsghdr*)data; 206 207 if (dataLen == 0) 208 return B_OK; 209 210 if (socket->first_info->add_ancillary_data == NULL) 211 return B_NOT_SUPPORTED; 212 213 while (true) { 214 if (header->cmsg_len < CMSG_LEN(0) || header->cmsg_len > dataLen) 215 return B_BAD_VALUE; 216 217 status_t status = socket->first_info->add_ancillary_data( 218 socket->first_protocol, container, header); 219 if (status != B_OK) 220 return status; 221 222 if (dataLen <= _ALIGN(header->cmsg_len)) 223 break; 224 dataLen -= _ALIGN(header->cmsg_len); 225 header = (cmsghdr*)((uint8*)header + _ALIGN(header->cmsg_len)); 226 } 227 228 return B_OK; 229 } 230 231 232 static status_t 233 process_ancillary_data(net_socket* socket, ancillary_data_container* container, 234 msghdr* messageHeader) 235 { 236 uint8* dataBuffer = (uint8*)messageHeader->msg_control; 237 int dataBufferLen = messageHeader->msg_controllen; 238 239 if (container == NULL || dataBuffer == NULL) { 240 messageHeader->msg_controllen = 0; 241 return B_OK; 242 } 243 244 ancillary_data_header header; 245 void* data = NULL; 246 247 while ((data = next_ancillary_data(container, data, &header)) != NULL) { 248 if (socket->first_info->process_ancillary_data == NULL) 249 return B_NOT_SUPPORTED; 250 251 ssize_t bytesWritten = socket->first_info->process_ancillary_data( 252 socket->first_protocol, &header, data, dataBuffer, dataBufferLen); 253 if (bytesWritten < 0) 254 return bytesWritten; 255 256 dataBuffer += bytesWritten; 257 dataBufferLen -= bytesWritten; 258 } 259 260 messageHeader->msg_controllen -= dataBufferLen; 261 262 return B_OK; 263 } 264 265 266 static status_t 267 process_ancillary_data(net_socket* socket, 268 net_buffer* buffer, msghdr* messageHeader) 269 { 270 void *dataBuffer = messageHeader->msg_control; 271 ssize_t bytesWritten; 272 273 if (dataBuffer == NULL) { 274 messageHeader->msg_controllen = 0; 275 return B_OK; 276 } 277 278 if (socket->first_info->process_ancillary_data_no_container == NULL) 279 return B_NOT_SUPPORTED; 280 281 bytesWritten = socket->first_info->process_ancillary_data_no_container( 282 socket->first_protocol, buffer, dataBuffer, 283 messageHeader->msg_controllen); 284 if (bytesWritten < 0) 285 return bytesWritten; 286 messageHeader->msg_controllen = bytesWritten; 287 288 return B_OK; 289 } 290 291 292 static ssize_t 293 socket_receive_no_buffer(net_socket* socket, msghdr* header, void* data, 294 size_t length, int flags) 295 { 296 iovec stackVec = { data, length }; 297 iovec* vecs = header ? header->msg_iov : &stackVec; 298 int vecCount = header ? header->msg_iovlen : 1; 299 sockaddr* address = header ? (sockaddr*)header->msg_name : NULL; 300 socklen_t* addressLen = header ? &header->msg_namelen : NULL; 301 302 ancillary_data_container* ancillaryData = NULL; 303 ssize_t bytesRead = socket->first_info->read_data_no_buffer( 304 socket->first_protocol, vecs, vecCount, &ancillaryData, address, 305 addressLen, flags); 306 if (bytesRead < 0) 307 return bytesRead; 308 309 CObjectDeleter< 310 ancillary_data_container, void, delete_ancillary_data_container> 311 ancillaryDataDeleter(ancillaryData); 312 313 // process ancillary data 314 if (header != NULL) { 315 status_t status = process_ancillary_data(socket, ancillaryData, header); 316 if (status != B_OK) 317 return status; 318 319 header->msg_flags = 0; 320 } 321 322 return bytesRead; 323 } 324 325 326 #if ENABLE_DEBUGGER_COMMANDS 327 328 329 static void 330 print_socket_line(net_socket_private* socket, const char* prefix) 331 { 332 BReference<net_socket_private> parent = socket->parent.GetReference(); 333 kprintf("%s%p %2d.%2d.%2d %6" B_PRId32 " %p %p %p%s\n", prefix, socket, 334 socket->family, socket->type, socket->protocol, socket->owner, 335 socket->first_protocol, socket->first_info, parent.Get(), 336 parent.IsSet() ? socket->is_connected ? " (c)" : " (p)" : ""); 337 } 338 339 340 static int 341 dump_socket(int argc, char** argv) 342 { 343 if (argc < 2) { 344 kprintf("usage: %s [address]\n", argv[0]); 345 return 0; 346 } 347 348 net_socket_private* socket = (net_socket_private*)parse_expression(argv[1]); 349 350 kprintf("SOCKET %p\n", socket); 351 kprintf(" family.type.protocol: %d.%d.%d\n", 352 socket->family, socket->type, socket->protocol); 353 BReference<net_socket_private> parent = socket->parent.GetReference(); 354 kprintf(" parent: %p\n", parent.Get()); 355 kprintf(" first protocol: %p\n", socket->first_protocol); 356 kprintf(" first module_info: %p\n", socket->first_info); 357 kprintf(" options: %x\n", socket->options); 358 kprintf(" linger: %d\n", socket->linger); 359 kprintf(" bound to device: %" B_PRIu32 "\n", socket->bound_to_device); 360 kprintf(" owner: %" B_PRId32 "\n", socket->owner); 361 kprintf(" max backlog: %" B_PRId32 "\n", socket->max_backlog); 362 kprintf(" is connected: %d\n", socket->is_connected); 363 kprintf(" child_count: %" B_PRIu32 "\n", socket->child_count); 364 365 if (socket->child_count == 0) 366 return 0; 367 368 kprintf(" pending children:\n"); 369 SocketList::Iterator iterator = socket->pending_children.GetIterator(); 370 while (net_socket_private* child = iterator.Next()) { 371 print_socket_line(child, " "); 372 } 373 374 kprintf(" connected children:\n"); 375 iterator = socket->connected_children.GetIterator(); 376 while (net_socket_private* child = iterator.Next()) { 377 print_socket_line(child, " "); 378 } 379 380 return 0; 381 } 382 383 384 static int 385 dump_sockets(int argc, char** argv) 386 { 387 kprintf("address kind owner protocol module_info parent\n"); 388 389 SocketList::Iterator iterator = sSocketList.GetIterator(); 390 while (net_socket_private* socket = iterator.Next()) { 391 print_socket_line(socket, ""); 392 393 SocketList::Iterator childIterator 394 = socket->pending_children.GetIterator(); 395 while (net_socket_private* child = childIterator.Next()) { 396 print_socket_line(child, " "); 397 } 398 399 childIterator = socket->connected_children.GetIterator(); 400 while (net_socket_private* child = childIterator.Next()) { 401 print_socket_line(child, " "); 402 } 403 } 404 405 return 0; 406 } 407 408 409 #endif // ENABLE_DEBUGGER_COMMANDS 410 411 412 // #pragma mark - 413 414 415 status_t 416 socket_open(int family, int type, int protocol, net_socket** _socket) 417 { 418 net_socket_private* socket; 419 status_t status = create_socket(family, type, protocol, &socket); 420 if (status != B_OK) 421 return status; 422 423 status = socket->first_info->open(socket->first_protocol); 424 if (status != B_OK) { 425 delete socket; 426 return status; 427 } 428 429 socket->owner = team_get_current_team_id(); 430 socket->is_in_socket_list = true; 431 432 mutex_lock(&sSocketLock); 433 sSocketList.Add(socket); 434 mutex_unlock(&sSocketLock); 435 436 *_socket = socket; 437 return B_OK; 438 } 439 440 441 status_t 442 socket_close(net_socket* _socket) 443 { 444 net_socket_private* socket = (net_socket_private*)_socket; 445 return socket->first_info->close(socket->first_protocol); 446 } 447 448 449 void 450 socket_free(net_socket* _socket) 451 { 452 net_socket_private* socket = (net_socket_private*)_socket; 453 socket->first_info->free(socket->first_protocol); 454 socket->ReleaseReference(); 455 } 456 457 458 status_t 459 socket_control(net_socket* socket, uint32 op, void* data, size_t length) 460 { 461 switch (op) { 462 case FIONREAD: 463 { 464 if (data == NULL || (socket->options & SO_ACCEPTCONN) != 0) 465 return B_BAD_VALUE; 466 467 int available = (int)socket_read_avail(socket); 468 if (available < 0) 469 available = 0; 470 471 if (is_syscall()) { 472 if (!IS_USER_ADDRESS(data) 473 || user_memcpy(data, &available, sizeof(available)) 474 != B_OK) { 475 return B_BAD_ADDRESS; 476 } 477 } else 478 *(int*)data = available; 479 480 return B_OK; 481 } 482 483 case B_SET_BLOCKING_IO: 484 case B_SET_NONBLOCKING_IO: 485 { 486 int value = op == B_SET_NONBLOCKING_IO; 487 return socket_setsockopt(socket, SOL_SOCKET, SO_NONBLOCK, &value, 488 sizeof(int)); 489 } 490 } 491 492 return socket->first_info->control(socket->first_protocol, 493 LEVEL_DRIVER_IOCTL, op, data, &length); 494 } 495 496 497 ssize_t 498 socket_read_avail(net_socket* socket) 499 { 500 return socket->first_info->read_avail(socket->first_protocol); 501 } 502 503 504 ssize_t 505 socket_send_avail(net_socket* socket) 506 { 507 return socket->first_info->send_avail(socket->first_protocol); 508 } 509 510 511 status_t 512 socket_send_data(net_socket* socket, net_buffer* buffer) 513 { 514 return socket->first_info->send_data(socket->first_protocol, 515 buffer); 516 } 517 518 519 status_t 520 socket_receive_data(net_socket* socket, size_t length, uint32 flags, 521 net_buffer** _buffer) 522 { 523 status_t status = socket->first_info->read_data(socket->first_protocol, 524 length, flags, _buffer); 525 if (status != B_OK) 526 return status; 527 528 if (*_buffer && length < (*_buffer)->size) { 529 // discard any data behind the amount requested 530 gNetBufferModule.trim(*_buffer, length); 531 } 532 533 return status; 534 } 535 536 537 status_t 538 socket_get_next_stat(uint32* _cookie, int family, struct net_stat* stat) 539 { 540 MutexLocker locker(sSocketLock); 541 542 net_socket_private* socket = NULL; 543 SocketList::Iterator iterator = sSocketList.GetIterator(); 544 uint32 cookie = *_cookie; 545 uint32 count = 0; 546 547 while (true) { 548 socket = iterator.Next(); 549 if (socket == NULL) 550 return B_ENTRY_NOT_FOUND; 551 552 // TODO: also traverse the pending connections 553 if (count == cookie) 554 break; 555 556 if (family == -1 || family == socket->family) 557 count++; 558 } 559 560 *_cookie = count + 1; 561 562 stat->family = socket->family; 563 stat->type = socket->type; 564 stat->protocol = socket->protocol; 565 stat->owner = socket->owner; 566 stat->state[0] = '\0'; 567 memcpy(&stat->address, &socket->address, sizeof(struct sockaddr_storage)); 568 memcpy(&stat->peer, &socket->peer, sizeof(struct sockaddr_storage)); 569 stat->receive_queue_size = 0; 570 stat->send_queue_size = 0; 571 572 // fill in protocol specific data (if supported by the protocol) 573 size_t length = sizeof(net_stat); 574 socket->first_info->control(socket->first_protocol, socket->protocol, 575 NET_STAT_SOCKET, stat, &length); 576 577 return B_OK; 578 } 579 580 581 // #pragma mark - connections 582 583 584 bool 585 socket_acquire(net_socket* _socket) 586 { 587 net_socket_private* socket = (net_socket_private*)_socket; 588 589 // During destruction, the socket might still be accessible over its 590 // endpoint protocol. We need to make sure the endpoint cannot acquire the 591 // socket anymore -- while not obvious, the endpoint protocol is responsible 592 // for the proper locking here. 593 if (socket->CountReferences() == 0) 594 return false; 595 596 socket->AcquireReference(); 597 return true; 598 } 599 600 601 bool 602 socket_release(net_socket* _socket) 603 { 604 net_socket_private* socket = (net_socket_private*)_socket; 605 return socket->ReleaseReference(); 606 } 607 608 609 status_t 610 socket_spawn_pending(net_socket* _parent, net_socket** _socket) 611 { 612 net_socket_private* parent = (net_socket_private*)_parent; 613 614 TRACE("%s(%p)\n", __FUNCTION__, parent); 615 616 MutexLocker locker(parent->lock); 617 618 // We actually accept more pending connections to compensate for those 619 // that never complete, and also make sure at least a single connection 620 // can always be accepted 621 if (parent->child_count > 3 * parent->max_backlog / 2) 622 return ENOBUFS; 623 624 net_socket_private* socket; 625 status_t status = create_socket(parent->family, parent->type, 626 parent->protocol, &socket); 627 if (status != B_OK) 628 return status; 629 630 // inherit parent's properties 631 socket->send = parent->send; 632 socket->receive = parent->receive; 633 socket->options = parent->options & (SO_KEEPALIVE | SO_DONTROUTE | SO_LINGER | SO_OOBINLINE); 634 socket->linger = parent->linger; 635 socket->owner = parent->owner; 636 memcpy(&socket->address, &parent->address, parent->address.ss_len); 637 memcpy(&socket->peer, &parent->peer, parent->peer.ss_len); 638 639 // add to the parent's list of pending connections 640 parent->pending_children.Add(socket); 641 socket->parent = parent; 642 parent->child_count++; 643 644 *_socket = socket; 645 return B_OK; 646 } 647 648 649 /*! Dequeues a connected child from a parent socket. 650 It also returns a reference with the child socket. 651 */ 652 status_t 653 socket_dequeue_connected(net_socket* _parent, net_socket** _socket) 654 { 655 net_socket_private* parent = (net_socket_private*)_parent; 656 657 mutex_lock(&parent->lock); 658 659 net_socket_private* socket = parent->connected_children.RemoveHead(); 660 if (socket != NULL) { 661 socket->AcquireReference(); 662 socket->RemoveFromParent(); 663 parent->child_count--; 664 *_socket = socket; 665 } 666 667 mutex_unlock(&parent->lock); 668 669 if (socket == NULL) 670 return B_ENTRY_NOT_FOUND; 671 672 return B_OK; 673 } 674 675 676 ssize_t 677 socket_count_connected(net_socket* _parent) 678 { 679 net_socket_private* parent = (net_socket_private*)_parent; 680 681 MutexLocker _(parent->lock); 682 return parent->connected_children.Count(); 683 } 684 685 686 status_t 687 socket_set_max_backlog(net_socket* _socket, uint32 backlog) 688 { 689 net_socket_private* socket = (net_socket_private*)_socket; 690 691 // we enforce an upper limit of connections waiting to be accepted 692 if (backlog > 256) 693 backlog = 256; 694 695 MutexLocker _(socket->lock); 696 697 // first remove the pending connections, then the already connected 698 // ones as needed 699 net_socket_private* child; 700 while (socket->child_count > backlog 701 && (child = socket->pending_children.RemoveTail()) != NULL) { 702 child->RemoveFromParent(); 703 socket->child_count--; 704 } 705 while (socket->child_count > backlog 706 && (child = socket->connected_children.RemoveTail()) != NULL) { 707 child->RemoveFromParent(); 708 socket->child_count--; 709 } 710 711 socket->max_backlog = backlog; 712 return B_OK; 713 } 714 715 716 /*! Returns whether or not this socket has a parent. The parent might not be 717 valid anymore, though. 718 */ 719 bool 720 socket_has_parent(net_socket* _socket) 721 { 722 net_socket_private* socket = (net_socket_private*)_socket; 723 return socket->parent != NULL; 724 } 725 726 727 /*! The socket has been connected. It will be moved to the connected queue 728 of its parent socket. 729 */ 730 status_t 731 socket_connected(net_socket* _socket) 732 { 733 net_socket_private* socket = (net_socket_private*)_socket; 734 735 TRACE("socket_connected(%p)\n", socket); 736 737 if (socket->parent == NULL) { 738 socket->is_connected = true; 739 return B_OK; 740 } 741 742 BReference<net_socket_private> parent = socket->parent.GetReference(); 743 if (!parent.IsSet()) 744 return B_BAD_VALUE; 745 746 MutexLocker _(parent->lock); 747 748 parent->pending_children.Remove(socket); 749 parent->connected_children.Add(socket); 750 socket->is_connected = true; 751 752 // notify parent 753 if (parent->select_pool) 754 notify_select_event_pool(parent->select_pool, B_SELECT_READ); 755 756 return B_OK; 757 } 758 759 760 /*! The socket has been aborted. Steals the parent's reference, and releases 761 it. 762 */ 763 status_t 764 socket_aborted(net_socket* _socket) 765 { 766 net_socket_private* socket = (net_socket_private*)_socket; 767 768 TRACE("socket_aborted(%p)\n", socket); 769 770 BReference<net_socket_private> parent = socket->parent.GetReference(); 771 if (!parent.IsSet()) 772 return B_BAD_VALUE; 773 774 MutexLocker _(parent->lock); 775 776 if (socket->is_connected) 777 parent->connected_children.Remove(socket); 778 else 779 parent->pending_children.Remove(socket); 780 781 parent->child_count--; 782 socket->RemoveFromParent(); 783 784 return B_OK; 785 } 786 787 788 // #pragma mark - notifications 789 790 791 status_t 792 socket_request_notification(net_socket* _socket, uint8 event, selectsync* sync) 793 { 794 net_socket_private* socket = (net_socket_private*)_socket; 795 796 mutex_lock(&socket->lock); 797 798 status_t status = add_select_sync_pool_entry(&socket->select_pool, sync, 799 event); 800 801 mutex_unlock(&socket->lock); 802 803 if (status != B_OK) 804 return status; 805 806 // check if the event is already present 807 // TODO: add support for poll() types 808 809 switch (event) { 810 case B_SELECT_READ: 811 { 812 ssize_t available = socket_read_avail(socket); 813 if ((ssize_t)socket->receive.low_water_mark <= available 814 || available < B_OK) 815 notify_select_event(sync, event); 816 break; 817 } 818 case B_SELECT_WRITE: 819 { 820 if ((socket->options & SO_ACCEPTCONN) != 0) 821 break; 822 823 ssize_t available = socket_send_avail(socket); 824 if ((ssize_t)socket->send.low_water_mark <= available 825 || available < B_OK) 826 notify_select_event(sync, event); 827 break; 828 } 829 case B_SELECT_ERROR: 830 if (socket->error != B_OK) 831 notify_select_event(sync, event); 832 break; 833 } 834 835 return B_OK; 836 } 837 838 839 status_t 840 socket_cancel_notification(net_socket* _socket, uint8 event, selectsync* sync) 841 { 842 net_socket_private* socket = (net_socket_private*)_socket; 843 844 MutexLocker _(socket->lock); 845 return remove_select_sync_pool_entry(&socket->select_pool, sync, event); 846 } 847 848 849 status_t 850 socket_notify(net_socket* _socket, uint8 event, int32 value) 851 { 852 net_socket_private* socket = (net_socket_private*)_socket; 853 bool notify = true; 854 855 switch (event) { 856 case B_SELECT_READ: 857 if ((ssize_t)socket->receive.low_water_mark > value 858 && value >= B_OK) 859 notify = false; 860 break; 861 862 case B_SELECT_WRITE: 863 if ((ssize_t)socket->send.low_water_mark > value && value >= B_OK) 864 notify = false; 865 break; 866 867 case B_SELECT_ERROR: 868 socket->error = value; 869 break; 870 } 871 872 MutexLocker _(socket->lock); 873 874 if (notify && socket->select_pool != NULL) { 875 notify_select_event_pool(socket->select_pool, event); 876 877 if (event == B_SELECT_ERROR) { 878 // always notify read/write on error 879 notify_select_event_pool(socket->select_pool, B_SELECT_READ); 880 notify_select_event_pool(socket->select_pool, B_SELECT_WRITE); 881 } 882 } 883 884 return B_OK; 885 } 886 887 888 // #pragma mark - standard socket API 889 890 891 int 892 socket_accept(net_socket* socket, struct sockaddr* address, 893 socklen_t* _addressLength, net_socket** _acceptedSocket) 894 { 895 if ((socket->options & SO_ACCEPTCONN) == 0) 896 return B_BAD_VALUE; 897 898 net_socket* accepted; 899 status_t status = socket->first_info->accept(socket->first_protocol, 900 &accepted); 901 if (status != B_OK) 902 return status; 903 904 if (address && *_addressLength > 0) { 905 memcpy(address, &accepted->peer, min_c(*_addressLength, 906 min_c(accepted->peer.ss_len, sizeof(sockaddr_storage)))); 907 *_addressLength = accepted->peer.ss_len; 908 } 909 910 *_acceptedSocket = accepted; 911 return B_OK; 912 } 913 914 915 int 916 socket_bind(net_socket* socket, const struct sockaddr* address, 917 socklen_t addressLength) 918 { 919 sockaddr empty; 920 if (address == NULL) { 921 // special - try to bind to an empty address, like INADDR_ANY 922 memset(&empty, 0, sizeof(sockaddr)); 923 empty.sa_len = sizeof(sockaddr); 924 empty.sa_family = socket->family; 925 926 address = ∅ 927 addressLength = sizeof(sockaddr); 928 } 929 930 if (socket->address.ss_len != 0) 931 return B_BAD_VALUE; 932 933 memcpy(&socket->address, address, sizeof(sockaddr)); 934 socket->address.ss_len = sizeof(sockaddr_storage); 935 936 status_t status = socket->first_info->bind(socket->first_protocol, 937 (sockaddr*)address); 938 if (status != B_OK) { 939 // clear address again, as binding failed 940 socket->address.ss_len = 0; 941 } 942 943 return status; 944 } 945 946 947 int 948 socket_connect(net_socket* socket, const struct sockaddr* address, 949 socklen_t addressLength) 950 { 951 if (address == NULL || addressLength == 0) 952 return ENETUNREACH; 953 954 if (socket->address.ss_len == 0) { 955 // try to bind first 956 status_t status = socket_bind(socket, NULL, 0); 957 if (status != B_OK) 958 return status; 959 } 960 961 return socket->first_info->connect(socket->first_protocol, address); 962 } 963 964 965 int 966 socket_getpeername(net_socket* _socket, struct sockaddr* address, 967 socklen_t* _addressLength) 968 { 969 net_socket_private* socket = (net_socket_private*)_socket; 970 BReference<net_socket_private> parent = socket->parent.GetReference(); 971 972 if ((!parent.IsSet() && !socket->is_connected) || socket->peer.ss_len == 0) 973 return ENOTCONN; 974 975 memcpy(address, &socket->peer, min_c(*_addressLength, socket->peer.ss_len)); 976 *_addressLength = socket->peer.ss_len; 977 return B_OK; 978 } 979 980 981 int 982 socket_getsockname(net_socket* socket, struct sockaddr* address, 983 socklen_t* _addressLength) 984 { 985 if (socket->address.ss_len == 0) { 986 struct sockaddr buffer; 987 memset(&buffer, 0, sizeof(buffer)); 988 buffer.sa_family = socket->family; 989 990 memcpy(address, &buffer, min_c(*_addressLength, sizeof(buffer))); 991 *_addressLength = sizeof(buffer); 992 return B_OK; 993 } 994 995 memcpy(address, &socket->address, min_c(*_addressLength, 996 socket->address.ss_len)); 997 *_addressLength = socket->address.ss_len; 998 return B_OK; 999 } 1000 1001 1002 status_t 1003 socket_get_option(net_socket* socket, int level, int option, void* value, 1004 int* _length) 1005 { 1006 if (level != SOL_SOCKET) 1007 return ENOPROTOOPT; 1008 1009 switch (option) { 1010 case SO_SNDBUF: 1011 { 1012 uint32* size = (uint32*)value; 1013 *size = socket->send.buffer_size; 1014 *_length = sizeof(uint32); 1015 return B_OK; 1016 } 1017 1018 case SO_RCVBUF: 1019 { 1020 uint32* size = (uint32*)value; 1021 *size = socket->receive.buffer_size; 1022 *_length = sizeof(uint32); 1023 return B_OK; 1024 } 1025 1026 case SO_SNDLOWAT: 1027 { 1028 uint32* size = (uint32*)value; 1029 *size = socket->send.low_water_mark; 1030 *_length = sizeof(uint32); 1031 return B_OK; 1032 } 1033 1034 case SO_RCVLOWAT: 1035 { 1036 uint32* size = (uint32*)value; 1037 *size = socket->receive.low_water_mark; 1038 *_length = sizeof(uint32); 1039 return B_OK; 1040 } 1041 1042 case SO_RCVTIMEO: 1043 case SO_SNDTIMEO: 1044 { 1045 if (*_length < (int)sizeof(struct timeval)) 1046 return B_BAD_VALUE; 1047 1048 bigtime_t timeout; 1049 if (option == SO_SNDTIMEO) 1050 timeout = socket->send.timeout; 1051 else 1052 timeout = socket->receive.timeout; 1053 if (timeout == B_INFINITE_TIMEOUT) 1054 timeout = 0; 1055 1056 struct timeval* timeval = (struct timeval*)value; 1057 timeval->tv_sec = timeout / 1000000LL; 1058 timeval->tv_usec = timeout % 1000000LL; 1059 1060 *_length = sizeof(struct timeval); 1061 return B_OK; 1062 } 1063 1064 case SO_NONBLOCK: 1065 { 1066 int32* _set = (int32*)value; 1067 *_set = socket->receive.timeout == 0 && socket->send.timeout == 0; 1068 *_length = sizeof(int32); 1069 return B_OK; 1070 } 1071 1072 case SO_ACCEPTCONN: 1073 case SO_BROADCAST: 1074 case SO_DEBUG: 1075 case SO_DONTROUTE: 1076 case SO_KEEPALIVE: 1077 case SO_OOBINLINE: 1078 case SO_REUSEADDR: 1079 case SO_REUSEPORT: 1080 case SO_USELOOPBACK: 1081 { 1082 int32* _set = (int32*)value; 1083 *_set = (socket->options & option) != 0; 1084 *_length = sizeof(int32); 1085 return B_OK; 1086 } 1087 1088 case SO_TYPE: 1089 { 1090 int32* _set = (int32*)value; 1091 *_set = socket->type; 1092 *_length = sizeof(int32); 1093 return B_OK; 1094 } 1095 1096 case SO_ERROR: 1097 { 1098 int32* _set = (int32*)value; 1099 *_set = socket->error; 1100 *_length = sizeof(int32); 1101 1102 socket->error = B_OK; 1103 // clear error upon retrieval 1104 return B_OK; 1105 } 1106 1107 default: 1108 break; 1109 } 1110 1111 dprintf("socket_getsockopt: unknown option %d\n", option); 1112 return ENOPROTOOPT; 1113 } 1114 1115 1116 int 1117 socket_getsockopt(net_socket* socket, int level, int option, void* value, 1118 int* _length) 1119 { 1120 return socket->first_protocol->module->getsockopt(socket->first_protocol, 1121 level, option, value, _length); 1122 } 1123 1124 1125 int 1126 socket_listen(net_socket* socket, int backlog) 1127 { 1128 status_t status = socket->first_info->listen(socket->first_protocol, 1129 backlog); 1130 if (status == B_OK) 1131 socket->options |= SO_ACCEPTCONN; 1132 1133 return status; 1134 } 1135 1136 1137 ssize_t 1138 socket_receive(net_socket* socket, msghdr* header, void* data, size_t length, 1139 int flags) 1140 { 1141 const int originalFlags = flags; 1142 1143 // MSG_NOSIGNAL is only meaningful for send(), not receive(), but it is 1144 // sometimes specified anyway. Mask it off to avoid unnecessary errors. 1145 flags &= ~MSG_NOSIGNAL; 1146 1147 // If the protocol sports read_data_no_buffer() we use it. 1148 if (socket->first_info->read_data_no_buffer != NULL) 1149 return socket_receive_no_buffer(socket, header, data, length, flags); 1150 1151 // Mask off flags handled in this function. 1152 flags &= ~(MSG_TRUNC); 1153 1154 size_t totalLength = length; 1155 if (header != NULL) { 1156 ASSERT(data == header->msg_iov[0].iov_base); 1157 1158 // calculate the length considering all of the extra buffers 1159 for (int i = 1; i < header->msg_iovlen; i++) 1160 totalLength += header->msg_iov[i].iov_len; 1161 } 1162 1163 net_buffer* buffer; 1164 status_t status = socket->first_info->read_data( 1165 socket->first_protocol, totalLength, flags, &buffer); 1166 if (status != B_OK) 1167 return status; 1168 1169 // process ancillary data 1170 if (header != NULL) { 1171 if (buffer != NULL && header->msg_control != NULL) { 1172 ancillary_data_container* container 1173 = gNetBufferModule.get_ancillary_data(buffer); 1174 if (container != NULL) 1175 status = process_ancillary_data(socket, container, header); 1176 else 1177 status = process_ancillary_data(socket, buffer, header); 1178 if (status != B_OK) { 1179 gNetBufferModule.free(buffer); 1180 return status; 1181 } 1182 } else 1183 header->msg_controllen = 0; 1184 } 1185 1186 // TODO: - returning a NULL buffer when received 0 bytes 1187 // may not make much sense as we still need the address 1188 1189 size_t nameLen = 0; 1190 if (header != NULL) { 1191 // TODO: - consider the control buffer options 1192 nameLen = header->msg_namelen; 1193 header->msg_namelen = 0; 1194 header->msg_flags = 0; 1195 } 1196 1197 if (buffer == NULL) 1198 return 0; 1199 1200 const size_t bytesReceived = buffer->size; 1201 size_t bytesCopied = 0; 1202 1203 size_t toRead = min_c(bytesReceived, length); 1204 status = gNetBufferModule.read(buffer, 0, data, toRead); 1205 if (status != B_OK) { 1206 gNetBufferModule.free(buffer); 1207 1208 if (status == B_BAD_ADDRESS) 1209 return status; 1210 return ENOBUFS; 1211 } 1212 1213 // if first copy was a success, proceed to following copies as required 1214 bytesCopied += toRead; 1215 1216 if (header != NULL) { 1217 // We start at iovec[1] as { data, length } is iovec[0]. 1218 for (int i = 1; i < header->msg_iovlen && bytesCopied < bytesReceived; i++) { 1219 iovec& vec = header->msg_iov[i]; 1220 toRead = min_c(bytesReceived - bytesCopied, vec.iov_len); 1221 if (gNetBufferModule.read(buffer, bytesCopied, vec.iov_base, 1222 toRead) < B_OK) { 1223 break; 1224 } 1225 1226 bytesCopied += toRead; 1227 } 1228 1229 if (header->msg_name != NULL) { 1230 header->msg_namelen = min_c(nameLen, buffer->source->sa_len); 1231 memcpy(header->msg_name, buffer->source, header->msg_namelen); 1232 } 1233 } 1234 1235 gNetBufferModule.free(buffer); 1236 1237 if (bytesCopied < bytesReceived) { 1238 if (header != NULL) 1239 header->msg_flags = MSG_TRUNC; 1240 1241 if ((originalFlags & MSG_TRUNC) != 0) 1242 return bytesReceived; 1243 } 1244 1245 return bytesCopied; 1246 } 1247 1248 1249 ssize_t 1250 socket_send(net_socket* socket, msghdr* header, const void* data, size_t length, 1251 int flags) 1252 { 1253 const bool nosignal = ((flags & MSG_NOSIGNAL) != 0); 1254 flags &= ~MSG_NOSIGNAL; 1255 1256 size_t bytesLeft = length; 1257 if (length > SSIZE_MAX) 1258 return B_BAD_VALUE; 1259 1260 ancillary_data_container* ancillaryData = NULL; 1261 CObjectDeleter< 1262 ancillary_data_container, void, delete_ancillary_data_container> 1263 ancillaryDataDeleter; 1264 1265 const sockaddr* address = NULL; 1266 socklen_t addressLength = 0; 1267 if (header != NULL) { 1268 address = (const sockaddr*)header->msg_name; 1269 addressLength = header->msg_namelen; 1270 1271 // get the ancillary data 1272 if (header->msg_control != NULL) { 1273 ancillaryData = create_ancillary_data_container(); 1274 if (ancillaryData == NULL) 1275 return B_NO_MEMORY; 1276 ancillaryDataDeleter.SetTo(ancillaryData); 1277 1278 status_t status = add_ancillary_data(socket, ancillaryData, 1279 (cmsghdr*)header->msg_control, header->msg_controllen); 1280 if (status != B_OK) 1281 return status; 1282 } 1283 } 1284 1285 if (addressLength == 0) 1286 address = NULL; 1287 else if (address == NULL) 1288 return B_BAD_VALUE; 1289 1290 if (socket->peer.ss_len != 0) { 1291 if (address != NULL) 1292 return EISCONN; 1293 1294 // socket is connected, we use that address 1295 address = (struct sockaddr*)&socket->peer; 1296 addressLength = socket->peer.ss_len; 1297 } 1298 1299 if (address == NULL || addressLength == 0) { 1300 // don't know where to send to: 1301 return EDESTADDRREQ; 1302 } 1303 1304 if ((socket->first_info->flags & NET_PROTOCOL_ATOMIC_MESSAGES) != 0 1305 && bytesLeft > socket->send.buffer_size) 1306 return EMSGSIZE; 1307 1308 if (socket->address.ss_len == 0) { 1309 // try to bind first 1310 status_t status = socket_bind(socket, NULL, 0); 1311 if (status != B_OK) 1312 return status; 1313 } 1314 1315 // If the protocol has a send_data_no_buffer() hook, we use that one. 1316 if (socket->first_info->send_data_no_buffer != NULL) { 1317 iovec stackVec = { (void*)data, length }; 1318 iovec* vecs = header ? header->msg_iov : &stackVec; 1319 int vecCount = header ? header->msg_iovlen : 1; 1320 1321 ssize_t written = socket->first_info->send_data_no_buffer( 1322 socket->first_protocol, vecs, vecCount, ancillaryData, address, 1323 addressLength, flags); 1324 1325 // we only send signals when called from userland 1326 if (written == EPIPE && is_syscall() && !nosignal) 1327 send_signal(find_thread(NULL), SIGPIPE); 1328 1329 if (written > 0) 1330 ancillaryDataDeleter.Detach(); 1331 return written; 1332 } 1333 1334 // By convention, if a header is given, the (data, length) equals the first 1335 // iovec. So drop the header, if it is the only iovec. Otherwise compute 1336 // the size of the remaining ones. 1337 if (header != NULL) { 1338 if (header->msg_iovlen <= 1) { 1339 header = NULL; 1340 } else { 1341 for (int i = 1; i < header->msg_iovlen; i++) 1342 bytesLeft += header->msg_iov[i].iov_len; 1343 } 1344 } 1345 1346 ssize_t bytesSent = 0; 1347 size_t vecOffset = 0; 1348 uint32 vecIndex = 0; 1349 1350 while (bytesLeft > 0) { 1351 // TODO: useful, maybe even computed header space! 1352 net_buffer* buffer = gNetBufferModule.create(256); 1353 if (buffer == NULL) 1354 return ENOBUFS; 1355 1356 while (buffer->size < socket->send.buffer_size 1357 && buffer->size < bytesLeft) { 1358 if (vecIndex > 0 && vecOffset == 0) { 1359 // retrieve next iovec buffer from header 1360 data = header->msg_iov[vecIndex].iov_base; 1361 length = header->msg_iov[vecIndex].iov_len; 1362 } 1363 1364 size_t bytes = length; 1365 if (buffer->size + bytes > socket->send.buffer_size) 1366 bytes = socket->send.buffer_size - buffer->size; 1367 1368 if (gNetBufferModule.append(buffer, data, bytes) < B_OK) { 1369 gNetBufferModule.free(buffer); 1370 return ENOBUFS; 1371 } 1372 1373 if (bytes != length) { 1374 // partial send 1375 vecOffset = bytes; 1376 length -= vecOffset; 1377 data = (uint8*)data + vecOffset; 1378 } else if (header != NULL) { 1379 // proceed with next buffer, if any 1380 vecOffset = 0; 1381 vecIndex++; 1382 1383 if (vecIndex >= (uint32)header->msg_iovlen) 1384 break; 1385 } 1386 } 1387 1388 // attach ancillary data to the first buffer 1389 status_t status; 1390 if (ancillaryData != NULL) { 1391 gNetBufferModule.set_ancillary_data(buffer, ancillaryData); 1392 ancillaryDataDeleter.Detach(); 1393 ancillaryData = NULL; 1394 } 1395 1396 size_t bufferSize = buffer->size; 1397 buffer->flags = flags; 1398 memcpy(buffer->source, &socket->address, socket->address.ss_len); 1399 memcpy(buffer->destination, address, addressLength); 1400 buffer->destination->sa_len = addressLength; 1401 1402 status = socket->first_info->send_data(socket->first_protocol, buffer); 1403 if (status != B_OK) { 1404 // we only send signals when called from userland 1405 if (status == EPIPE && is_syscall() && !nosignal) 1406 send_signal(find_thread(NULL), SIGPIPE); 1407 1408 size_t sizeAfterSend = buffer->size; 1409 gNetBufferModule.free(buffer); 1410 1411 if ((sizeAfterSend != bufferSize || bytesSent > 0) 1412 && (status == B_INTERRUPTED || status == B_WOULD_BLOCK)) { 1413 // this appears to be a partial write 1414 return bytesSent + (bufferSize - sizeAfterSend); 1415 } 1416 return status; 1417 } 1418 1419 bytesLeft -= bufferSize; 1420 bytesSent += bufferSize; 1421 } 1422 1423 return bytesSent; 1424 } 1425 1426 1427 status_t 1428 socket_set_option(net_socket* socket, int level, int option, const void* value, 1429 int length) 1430 { 1431 if (level != SOL_SOCKET) 1432 return ENOPROTOOPT; 1433 1434 TRACE("%s(socket %p, option %d\n", __FUNCTION__, socket, option); 1435 1436 switch (option) { 1437 // TODO: implement other options! 1438 case SO_LINGER: 1439 { 1440 if (length < (int)sizeof(struct linger)) 1441 return B_BAD_VALUE; 1442 1443 struct linger* linger = (struct linger*)value; 1444 if (linger->l_onoff) { 1445 socket->options |= SO_LINGER; 1446 socket->linger = linger->l_linger; 1447 } else { 1448 socket->options &= ~SO_LINGER; 1449 socket->linger = 0; 1450 } 1451 return B_OK; 1452 } 1453 1454 case SO_SNDBUF: 1455 if (length != sizeof(uint32)) 1456 return B_BAD_VALUE; 1457 1458 socket->send.buffer_size = *(const uint32*)value; 1459 return B_OK; 1460 1461 case SO_RCVBUF: 1462 if (length != sizeof(uint32)) 1463 return B_BAD_VALUE; 1464 1465 socket->receive.buffer_size = *(const uint32*)value; 1466 return B_OK; 1467 1468 case SO_SNDLOWAT: 1469 if (length != sizeof(uint32)) 1470 return B_BAD_VALUE; 1471 1472 socket->send.low_water_mark = *(const uint32*)value; 1473 return B_OK; 1474 1475 case SO_RCVLOWAT: 1476 if (length != sizeof(uint32)) 1477 return B_BAD_VALUE; 1478 1479 socket->receive.low_water_mark = *(const uint32*)value; 1480 return B_OK; 1481 1482 case SO_RCVTIMEO: 1483 case SO_SNDTIMEO: 1484 { 1485 if (length != sizeof(struct timeval)) 1486 return B_BAD_VALUE; 1487 1488 const struct timeval* timeval = (const struct timeval*)value; 1489 bigtime_t timeout = timeval->tv_sec * 1000000LL + timeval->tv_usec; 1490 if (timeout == 0) 1491 timeout = B_INFINITE_TIMEOUT; 1492 1493 if (option == SO_SNDTIMEO) 1494 socket->send.timeout = timeout; 1495 else 1496 socket->receive.timeout = timeout; 1497 return B_OK; 1498 } 1499 1500 case SO_NONBLOCK: 1501 if (length != sizeof(int32)) 1502 return B_BAD_VALUE; 1503 1504 if (*(const int32*)value) { 1505 socket->send.timeout = 0; 1506 socket->receive.timeout = 0; 1507 } else { 1508 socket->send.timeout = B_INFINITE_TIMEOUT; 1509 socket->receive.timeout = B_INFINITE_TIMEOUT; 1510 } 1511 return B_OK; 1512 1513 case SO_BROADCAST: 1514 case SO_DEBUG: 1515 case SO_DONTROUTE: 1516 case SO_KEEPALIVE: 1517 case SO_OOBINLINE: 1518 case SO_REUSEADDR: 1519 case SO_REUSEPORT: 1520 case SO_USELOOPBACK: 1521 if (length != sizeof(int32)) 1522 return B_BAD_VALUE; 1523 1524 if (*(const int32*)value) 1525 socket->options |= option; 1526 else 1527 socket->options &= ~option; 1528 return B_OK; 1529 1530 case SO_BINDTODEVICE: 1531 { 1532 if (length != sizeof(uint32)) 1533 return B_BAD_VALUE; 1534 1535 // TODO: we might want to check if the device exists at all 1536 // (although it doesn't really harm when we don't) 1537 socket->bound_to_device = *(const uint32*)value; 1538 return B_OK; 1539 } 1540 1541 default: 1542 break; 1543 } 1544 1545 dprintf("socket_setsockopt: unknown option %d\n", option); 1546 return ENOPROTOOPT; 1547 } 1548 1549 1550 int 1551 socket_setsockopt(net_socket* socket, int level, int option, const void* value, 1552 int length) 1553 { 1554 return socket->first_protocol->module->setsockopt(socket->first_protocol, 1555 level, option, value, length); 1556 } 1557 1558 1559 int 1560 socket_shutdown(net_socket* socket, int direction) 1561 { 1562 return socket->first_info->shutdown(socket->first_protocol, direction); 1563 } 1564 1565 1566 status_t 1567 socket_socketpair(int family, int type, int protocol, net_socket* sockets[2]) 1568 { 1569 sockets[0] = NULL; 1570 sockets[1] = NULL; 1571 1572 // create sockets 1573 status_t error = socket_open(family, type, protocol, &sockets[0]); 1574 if (error != B_OK) 1575 return error; 1576 1577 error = socket_open(family, type, protocol, &sockets[1]); 1578 1579 // bind one 1580 if (error == B_OK) 1581 error = socket_bind(sockets[0], NULL, 0); 1582 1583 // start listening 1584 if (error == B_OK && type == SOCK_STREAM) 1585 error = socket_listen(sockets[0], 1); 1586 1587 // connect them 1588 if (error == B_OK) { 1589 error = socket_connect(sockets[1], (sockaddr*)&sockets[0]->address, 1590 sockets[0]->address.ss_len); 1591 } 1592 1593 if (error == B_OK) { 1594 // accept a socket 1595 if (type == SOCK_STREAM) { 1596 net_socket* acceptedSocket = NULL; 1597 error = socket_accept(sockets[0], NULL, NULL, &acceptedSocket); 1598 if (error == B_OK) { 1599 // everything worked: close the listener socket 1600 socket_close(sockets[0]); 1601 socket_free(sockets[0]); 1602 sockets[0] = acceptedSocket; 1603 } 1604 // connect the other side 1605 } else { 1606 error = socket_connect(sockets[0], (sockaddr*)&sockets[1]->address, 1607 sockets[1]->address.ss_len); 1608 } 1609 } 1610 1611 if (error != B_OK) { 1612 // close sockets on error 1613 for (int i = 0; i < 2; i++) { 1614 if (sockets[i] != NULL) { 1615 socket_close(sockets[i]); 1616 socket_free(sockets[i]); 1617 sockets[i] = NULL; 1618 } 1619 } 1620 } 1621 1622 return error; 1623 } 1624 1625 1626 // #pragma mark - 1627 1628 1629 static status_t 1630 socket_std_ops(int32 op, ...) 1631 { 1632 switch (op) { 1633 case B_MODULE_INIT: 1634 { 1635 new (&sSocketList) SocketList; 1636 mutex_init(&sSocketLock, "socket list"); 1637 1638 #if ENABLE_DEBUGGER_COMMANDS 1639 add_debugger_command("sockets", dump_sockets, "lists all sockets"); 1640 add_debugger_command("socket", dump_socket, "dumps a socket"); 1641 #endif 1642 return B_OK; 1643 } 1644 case B_MODULE_UNINIT: 1645 ASSERT(sSocketList.IsEmpty()); 1646 mutex_destroy(&sSocketLock); 1647 1648 #if ENABLE_DEBUGGER_COMMANDS 1649 remove_debugger_command("socket", dump_socket); 1650 remove_debugger_command("sockets", dump_sockets); 1651 #endif 1652 return B_OK; 1653 1654 default: 1655 return B_ERROR; 1656 } 1657 } 1658 1659 1660 net_socket_module_info gNetSocketModule = { 1661 { 1662 NET_SOCKET_MODULE_NAME, 1663 0, 1664 socket_std_ops 1665 }, 1666 socket_open, 1667 socket_close, 1668 socket_free, 1669 1670 socket_control, 1671 1672 socket_read_avail, 1673 socket_send_avail, 1674 1675 socket_send_data, 1676 socket_receive_data, 1677 1678 socket_get_option, 1679 socket_set_option, 1680 1681 socket_get_next_stat, 1682 1683 // connections 1684 socket_acquire, 1685 socket_release, 1686 socket_spawn_pending, 1687 socket_dequeue_connected, 1688 socket_count_connected, 1689 socket_set_max_backlog, 1690 socket_has_parent, 1691 socket_connected, 1692 socket_aborted, 1693 1694 // notifications 1695 socket_request_notification, 1696 socket_cancel_notification, 1697 socket_notify, 1698 1699 // standard socket API 1700 socket_accept, 1701 socket_bind, 1702 socket_connect, 1703 socket_getpeername, 1704 socket_getsockname, 1705 socket_getsockopt, 1706 socket_listen, 1707 socket_receive, 1708 socket_send, 1709 socket_setsockopt, 1710 socket_shutdown, 1711 socket_socketpair 1712 }; 1713 1714