xref: /haiku/src/add-ons/kernel/network/stack/net_socket.cpp (revision 98057dd02a2411868fd4c35f7a48d20acfd92c23)
1 /*
2  * Copyright 2006-2010, Haiku, Inc. All Rights Reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Authors:
6  *		Axel Dörfler, axeld@pinc-software.de
7  */
8 
9 
10 #include "stack_private.h"
11 
12 #include <stdlib.h>
13 #include <string.h>
14 #include <sys/ioctl.h>
15 #include <sys/time.h>
16 
17 #include <new>
18 
19 #include <Drivers.h>
20 #include <KernelExport.h>
21 #include <Select.h>
22 
23 #include <AutoDeleter.h>
24 #include <team.h>
25 #include <util/AutoLock.h>
26 #include <util/list.h>
27 #include <WeakReferenceable.h>
28 
29 #include <fs/select_sync_pool.h>
30 #include <kernel.h>
31 
32 #include <net_protocol.h>
33 #include <net_stack.h>
34 #include <net_stat.h>
35 
36 #include "ancillary_data.h"
37 #include "utility.h"
38 
39 
40 //#define TRACE_SOCKET
41 #ifdef TRACE_SOCKET
42 #	define TRACE(x...) dprintf(STACK_DEBUG_PREFIX x)
43 #else
44 #	define TRACE(x...) ;
45 #endif
46 
47 
48 struct net_socket_private;
49 typedef DoublyLinkedList<net_socket_private> SocketList;
50 
51 struct net_socket_private : net_socket,
52 		DoublyLinkedListLinkImpl<net_socket_private>,
53 		BWeakReferenceable {
54 	net_socket_private();
55 	~net_socket_private();
56 
57 	void RemoveFromParent();
58 
59 	BWeakReference<net_socket_private> parent;
60 	team_id						owner;
61 	uint32						max_backlog;
62 	uint32						child_count;
63 	SocketList					pending_children;
64 	SocketList					connected_children;
65 
66 	struct select_sync_pool*	select_pool;
67 	mutex						lock;
68 
69 	bool						is_connected;
70 	bool						is_in_socket_list;
71 };
72 
73 
74 int socket_bind(net_socket* socket, const struct sockaddr* address,
75 	socklen_t addressLength);
76 int socket_setsockopt(net_socket* socket, int level, int option,
77 	const void* value, int length);
78 ssize_t socket_read_avail(net_socket* socket);
79 
80 static SocketList sSocketList;
81 static mutex sSocketLock;
82 
83 
84 net_socket_private::net_socket_private()
85 	:
86 	owner(-1),
87 	max_backlog(0),
88 	child_count(0),
89 	select_pool(NULL),
90 	is_connected(false),
91 	is_in_socket_list(false)
92 {
93 	first_protocol = NULL;
94 	first_info = NULL;
95 	options = 0;
96 	linger = 0;
97 	bound_to_device = 0;
98 	error = 0;
99 
100 	address.ss_len = 0;
101 	peer.ss_len = 0;
102 
103 	mutex_init(&lock, "socket");
104 
105 	// set defaults (may be overridden by the protocols)
106 	send.buffer_size = 65535;
107 	send.low_water_mark = 1;
108 	send.timeout = B_INFINITE_TIMEOUT;
109 	receive.buffer_size = 65535;
110 	receive.low_water_mark = 1;
111 	receive.timeout = B_INFINITE_TIMEOUT;
112 }
113 
114 
115 net_socket_private::~net_socket_private()
116 {
117 	TRACE("delete net_socket %p\n", this);
118 
119 	if (parent != NULL)
120 		panic("socket still has a parent!");
121 
122 	if (is_in_socket_list) {
123 		MutexLocker _(sSocketLock);
124 		sSocketList.Remove(this);
125 	}
126 
127 	mutex_lock(&lock);
128 
129 	// also delete all children of this socket
130 	while (net_socket_private* child = pending_children.RemoveHead()) {
131 		child->RemoveFromParent();
132 	}
133 	while (net_socket_private* child = connected_children.RemoveHead()) {
134 		child->RemoveFromParent();
135 	}
136 
137 	mutex_unlock(&lock);
138 
139 	put_domain_protocols(this);
140 
141 	mutex_destroy(&lock);
142 }
143 
144 
145 void
146 net_socket_private::RemoveFromParent()
147 {
148 	ASSERT(!is_in_socket_list && parent != NULL);
149 
150 	parent = NULL;
151 
152 	mutex_lock(&sSocketLock);
153 	sSocketList.Add(this);
154 	mutex_unlock(&sSocketLock);
155 
156 	is_in_socket_list = true;
157 
158 	ReleaseReference();
159 }
160 
161 
162 //	#pragma mark -
163 
164 
165 static size_t
166 compute_user_iovec_length(iovec* userVec, uint32 count)
167 {
168 	size_t length = 0;
169 
170 	for (uint32 i = 0; i < count; i++) {
171 		iovec vec;
172 		if (user_memcpy(&vec, userVec + i, sizeof(iovec)) < B_OK)
173 			return 0;
174 
175 		length += vec.iov_len;
176 	}
177 
178 	return length;
179 }
180 
181 
182 static status_t
183 create_socket(int family, int type, int protocol, net_socket_private** _socket)
184 {
185 	struct net_socket_private* socket = new(std::nothrow) net_socket_private;
186 	if (socket == NULL)
187 		return B_NO_MEMORY;
188 	status_t status = socket->InitCheck();
189 	if (status != B_OK) {
190 		delete socket;
191 		return status;
192 	}
193 
194 	socket->family = family;
195 	socket->type = type;
196 	socket->protocol = protocol;
197 
198 	status = get_domain_protocols(socket);
199 	if (status != B_OK) {
200 		delete socket;
201 		return status;
202 	}
203 
204 	TRACE("create net_socket %p (%u.%u.%u):\n", socket, socket->family,
205 		socket->type, socket->protocol);
206 
207 #ifdef TRACE_SOCKET
208 	net_protocol* current = socket->first_protocol;
209 	for (int i = 0; current != NULL; current = current->next, i++)
210 		TRACE("  [%d] %p  %s\n", i, current, current->module->info.name);
211 #endif
212 
213 	*_socket = socket;
214 	return B_OK;
215 }
216 
217 
218 static status_t
219 add_ancillary_data(net_socket* socket, ancillary_data_container* container,
220 	void* data, size_t dataLen)
221 {
222 	cmsghdr* header = (cmsghdr*)data;
223 
224 	while (dataLen > 0) {
225 		if (header->cmsg_len < sizeof(cmsghdr) || header->cmsg_len > dataLen)
226 			return B_BAD_VALUE;
227 
228 		if (socket->first_info->add_ancillary_data == NULL)
229 			return B_NOT_SUPPORTED;
230 
231 		status_t status = socket->first_info->add_ancillary_data(
232 			socket->first_protocol, container, header);
233 		if (status != B_OK)
234 			return status;
235 
236 		dataLen -= _ALIGN(header->cmsg_len);
237 		header = (cmsghdr*)((uint8*)header + _ALIGN(header->cmsg_len));
238 	}
239 
240 	return B_OK;
241 }
242 
243 
244 static status_t
245 process_ancillary_data(net_socket* socket, ancillary_data_container* container,
246 	msghdr* messageHeader)
247 {
248 	uint8* dataBuffer = (uint8*)messageHeader->msg_control;
249 	int dataBufferLen = messageHeader->msg_controllen;
250 
251 	if (container == NULL || dataBuffer == NULL) {
252 		messageHeader->msg_controllen = 0;
253 		return B_OK;
254 	}
255 
256 	ancillary_data_header header;
257 	void* data = NULL;
258 
259 	while ((data = next_ancillary_data(container, data, &header)) != NULL) {
260 		if (socket->first_info->process_ancillary_data == NULL)
261 			return B_NOT_SUPPORTED;
262 
263 		ssize_t bytesWritten = socket->first_info->process_ancillary_data(
264 			socket->first_protocol, &header, data, dataBuffer, dataBufferLen);
265 		if (bytesWritten < 0)
266 			return bytesWritten;
267 
268 		dataBuffer += bytesWritten;
269 		dataBufferLen -= bytesWritten;
270 	}
271 
272 	messageHeader->msg_controllen -= dataBufferLen;
273 
274 	return B_OK;
275 }
276 
277 
278 static status_t
279 process_ancillary_data(net_socket* socket,
280 	net_buffer* buffer, msghdr* messageHeader)
281 {
282 	void *dataBuffer = messageHeader->msg_control;
283 	ssize_t bytesWritten;
284 
285 	if (dataBuffer == NULL) {
286 		messageHeader->msg_controllen = 0;
287 		return B_OK;
288 	}
289 
290 	if (socket->first_info->process_ancillary_data_no_container == NULL)
291 		return B_NOT_SUPPORTED;
292 
293 	bytesWritten = socket->first_info->process_ancillary_data_no_container(
294 		socket->first_protocol, buffer, dataBuffer,
295 		messageHeader->msg_controllen);
296 	if (bytesWritten < 0)
297 		return bytesWritten;
298 	messageHeader->msg_controllen = bytesWritten;
299 
300 	return B_OK;
301 }
302 
303 
304 static ssize_t
305 socket_receive_no_buffer(net_socket* socket, msghdr* header, void* data,
306 	size_t length, int flags)
307 {
308 	iovec stackVec = { data, length };
309 	iovec* vecs = header ? header->msg_iov : &stackVec;
310 	int vecCount = header ? header->msg_iovlen : 1;
311 	sockaddr* address = header ? (sockaddr*)header->msg_name : NULL;
312 	socklen_t* addressLen = header ? &header->msg_namelen : NULL;
313 
314 	ancillary_data_container* ancillaryData = NULL;
315 	ssize_t bytesRead = socket->first_info->read_data_no_buffer(
316 		socket->first_protocol, vecs, vecCount, &ancillaryData, address,
317 		addressLen);
318 	if (bytesRead < 0)
319 		return bytesRead;
320 
321 	CObjectDeleter<ancillary_data_container> ancillaryDataDeleter(ancillaryData,
322 		&delete_ancillary_data_container);
323 
324 	// process ancillary data
325 	if (header != NULL) {
326 		status_t status = process_ancillary_data(socket, ancillaryData, header);
327 		if (status != B_OK)
328 			return status;
329 
330 		header->msg_flags = 0;
331 	}
332 
333 	return bytesRead;
334 }
335 
336 
337 #if ENABLE_DEBUGGER_COMMANDS
338 
339 
340 static void
341 print_socket_line(net_socket_private* socket, const char* prefix)
342 {
343 	BReference<net_socket_private> parent = socket->parent.GetReference();
344 	kprintf("%s%p %2d.%2d.%2d %6ld %p %p  %p%s\n", prefix, socket,
345 		socket->family, socket->type, socket->protocol, socket->owner,
346 		socket->first_protocol, socket->first_info, parent.Get(),
347 		parent.Get() != NULL ? socket->is_connected ? " (c)" : " (p)" : "");
348 }
349 
350 
351 static int
352 dump_socket(int argc, char** argv)
353 {
354 	if (argc < 2) {
355 		kprintf("usage: %s [address]\n", argv[0]);
356 		return 0;
357 	}
358 
359 	net_socket_private* socket = (net_socket_private*)parse_expression(argv[1]);
360 
361 	kprintf("SOCKET %p\n", socket);
362 	kprintf("  family.type.protocol: %d.%d.%d\n",
363 		socket->family, socket->type, socket->protocol);
364 	BReference<net_socket_private> parent = socket->parent.GetReference();
365 	kprintf("  parent:               %p\n", parent.Get());
366 	kprintf("  first protocol:       %p\n", socket->first_protocol);
367 	kprintf("  first module_info:    %p\n", socket->first_info);
368 	kprintf("  options:              %x\n", socket->options);
369 	kprintf("  linger:               %d\n", socket->linger);
370 	kprintf("  bound to device:      %" B_PRIu32 "\n", socket->bound_to_device);
371 	kprintf("  owner:                %ld\n", socket->owner);
372 	kprintf("  max backlog:          %ld\n", socket->max_backlog);
373 	kprintf("  is connected:         %d\n", socket->is_connected);
374 	kprintf("  child_count:          %lu\n", socket->child_count);
375 
376 	if (socket->child_count == 0)
377 		return 0;
378 
379 	kprintf("    pending children:\n");
380 	SocketList::Iterator iterator = socket->pending_children.GetIterator();
381 	while (net_socket_private* child = iterator.Next()) {
382 		print_socket_line(child, "      ");
383 	}
384 
385 	kprintf("    connected children:\n");
386 	iterator = socket->connected_children.GetIterator();
387 	while (net_socket_private* child = iterator.Next()) {
388 		print_socket_line(child, "      ");
389 	}
390 
391 	return 0;
392 }
393 
394 
395 static int
396 dump_sockets(int argc, char** argv)
397 {
398 	kprintf("address        kind  owner protocol   module_info parent\n");
399 
400 	SocketList::Iterator iterator = sSocketList.GetIterator();
401 	while (net_socket_private* socket = iterator.Next()) {
402 		print_socket_line(socket, "");
403 
404 		SocketList::Iterator childIterator
405 			= socket->pending_children.GetIterator();
406 		while (net_socket_private* child = childIterator.Next()) {
407 			print_socket_line(child, " ");
408 		}
409 
410 		childIterator = socket->connected_children.GetIterator();
411 		while (net_socket_private* child = childIterator.Next()) {
412 			print_socket_line(child, " ");
413 		}
414 	}
415 
416 	return 0;
417 }
418 
419 
420 #endif	// ENABLE_DEBUGGER_COMMANDS
421 
422 
423 //	#pragma mark -
424 
425 
426 status_t
427 socket_open(int family, int type, int protocol, net_socket** _socket)
428 {
429 	net_socket_private* socket;
430 	status_t status = create_socket(family, type, protocol, &socket);
431 	if (status != B_OK)
432 		return status;
433 
434 	status = socket->first_info->open(socket->first_protocol);
435 	if (status != B_OK) {
436 		delete socket;
437 		return status;
438 	}
439 
440 	socket->owner = team_get_current_team_id();
441 	socket->is_in_socket_list = true;
442 
443 	mutex_lock(&sSocketLock);
444 	sSocketList.Add(socket);
445 	mutex_unlock(&sSocketLock);
446 
447 	*_socket = socket;
448 	return B_OK;
449 }
450 
451 
452 status_t
453 socket_close(net_socket* _socket)
454 {
455 	net_socket_private* socket = (net_socket_private*)_socket;
456 	return socket->first_info->close(socket->first_protocol);
457 }
458 
459 
460 void
461 socket_free(net_socket* _socket)
462 {
463 	net_socket_private* socket = (net_socket_private*)_socket;
464 	socket->first_info->free(socket->first_protocol);
465 	socket->ReleaseReference();
466 }
467 
468 
469 status_t
470 socket_readv(net_socket* socket, const iovec* vecs, size_t vecCount,
471 	size_t* _length)
472 {
473 	return -1;
474 }
475 
476 
477 status_t
478 socket_writev(net_socket* socket, const iovec* vecs, size_t vecCount,
479 	size_t* _length)
480 {
481 	if (socket->peer.ss_len == 0)
482 		return ECONNRESET;
483 
484 	if (socket->address.ss_len == 0) {
485 		// try to bind first
486 		status_t status = socket_bind(socket, NULL, 0);
487 		if (status != B_OK)
488 			return status;
489 	}
490 
491 	// TODO: useful, maybe even computed header space!
492 	net_buffer* buffer = gNetBufferModule.create(256);
493 	if (buffer == NULL)
494 		return ENOBUFS;
495 
496 	// copy data into buffer
497 
498 	for (uint32 i = 0; i < vecCount; i++) {
499 		if (gNetBufferModule.append(buffer, vecs[i].iov_base,
500 				vecs[i].iov_len) < B_OK) {
501 			gNetBufferModule.free(buffer);
502 			return ENOBUFS;
503 		}
504 	}
505 
506 	memcpy(buffer->source, &socket->address, socket->address.ss_len);
507 	memcpy(buffer->destination, &socket->peer, socket->peer.ss_len);
508 	size_t size = buffer->size;
509 
510 	ssize_t bytesWritten = socket->first_info->send_data(socket->first_protocol,
511 		buffer);
512 	if (bytesWritten < B_OK) {
513 		if (buffer->size != size) {
514 			// this appears to be a partial write
515 			*_length = size - buffer->size;
516 		}
517 		gNetBufferModule.free(buffer);
518 		return bytesWritten;
519 	}
520 
521 	*_length = bytesWritten;
522 	return B_OK;
523 }
524 
525 
526 status_t
527 socket_control(net_socket* socket, int32 op, void* data, size_t length)
528 {
529 	switch (op) {
530 		case FIONBIO:
531 		{
532 			if (data == NULL)
533 				return B_BAD_VALUE;
534 
535 			int value;
536 			if (is_syscall()) {
537 				if (!IS_USER_ADDRESS(data)
538 					|| user_memcpy(&value, data, sizeof(int)) != B_OK) {
539 					return B_BAD_ADDRESS;
540 				}
541 			} else
542 				value = *(int*)data;
543 
544 			return socket_setsockopt(socket, SOL_SOCKET, SO_NONBLOCK, &value,
545 				sizeof(int));
546 		}
547 
548 		case FIONREAD:
549 		{
550 			if (data == NULL)
551 				return B_BAD_VALUE;
552 
553 			ssize_t available = socket_read_avail(socket);
554 			if (available < B_OK)
555 				return available;
556 
557 			if (is_syscall()) {
558 				if (!IS_USER_ADDRESS(data)
559 					|| user_memcpy(data, &available, sizeof(ssize_t)) != B_OK) {
560 					return B_BAD_ADDRESS;
561 				}
562 			} else
563 				*(ssize_t *)data = available;
564 
565 			return B_OK;
566 		}
567 
568 		case B_SET_BLOCKING_IO:
569 		case B_SET_NONBLOCKING_IO:
570 		{
571 			int value = op == B_SET_NONBLOCKING_IO;
572 			return socket_setsockopt(socket, SOL_SOCKET, SO_NONBLOCK, &value,
573 				sizeof(int));
574 		}
575 	}
576 
577 	return socket->first_info->control(socket->first_protocol,
578 		LEVEL_DRIVER_IOCTL, op, data, &length);
579 }
580 
581 
582 ssize_t
583 socket_read_avail(net_socket* socket)
584 {
585 	return socket->first_info->read_avail(socket->first_protocol);
586 }
587 
588 
589 ssize_t
590 socket_send_avail(net_socket* socket)
591 {
592 	return socket->first_info->send_avail(socket->first_protocol);
593 }
594 
595 
596 status_t
597 socket_send_data(net_socket* socket, net_buffer* buffer)
598 {
599 	return socket->first_info->send_data(socket->first_protocol,
600 		buffer);
601 }
602 
603 
604 status_t
605 socket_receive_data(net_socket* socket, size_t length, uint32 flags,
606 	net_buffer** _buffer)
607 {
608 	status_t status = socket->first_info->read_data(socket->first_protocol,
609 		length, flags, _buffer);
610 	if (status != B_OK)
611 		return status;
612 
613 	if (*_buffer && length < (*_buffer)->size) {
614 		// discard any data behind the amount requested
615 		gNetBufferModule.trim(*_buffer, length);
616 	}
617 
618 	return status;
619 }
620 
621 
622 status_t
623 socket_get_next_stat(uint32* _cookie, int family, struct net_stat* stat)
624 {
625 	MutexLocker locker(sSocketLock);
626 
627 	net_socket_private* socket = NULL;
628 	SocketList::Iterator iterator = sSocketList.GetIterator();
629 	uint32 cookie = *_cookie;
630 	uint32 count = 0;
631 
632 	while (true) {
633 		socket = iterator.Next();
634 		if (socket == NULL)
635 			return B_ENTRY_NOT_FOUND;
636 
637 		// TODO: also traverse the pending connections
638 		if (count == cookie)
639 			break;
640 
641 		if (family == -1 || family == socket->family)
642 			count++;
643 	}
644 
645 	*_cookie = count + 1;
646 
647 	stat->family = socket->family;
648 	stat->type = socket->type;
649 	stat->protocol = socket->protocol;
650 	stat->owner = socket->owner;
651 	stat->state[0] = '\0';
652 	memcpy(&stat->address, &socket->address, sizeof(struct sockaddr_storage));
653 	memcpy(&stat->peer, &socket->peer, sizeof(struct sockaddr_storage));
654 	stat->receive_queue_size = 0;
655 	stat->send_queue_size = 0;
656 
657 	// fill in protocol specific data (if supported by the protocol)
658 	size_t length = sizeof(net_stat);
659 	socket->first_info->control(socket->first_protocol, socket->protocol,
660 		NET_STAT_SOCKET, stat, &length);
661 
662 	return B_OK;
663 }
664 
665 
666 //	#pragma mark - connections
667 
668 
669 bool
670 socket_acquire(net_socket* _socket)
671 {
672 	net_socket_private* socket = (net_socket_private*)_socket;
673 
674 	// During destruction, the socket might still be accessible over its
675 	// endpoint protocol. We need to make sure the endpoint cannot acquire the
676 	// socket anymore -- while not obvious, the endpoint protocol is responsible
677 	// for the proper locking here.
678 	if (socket->CountReferences() == 0)
679 		return false;
680 
681 	socket->AcquireReference();
682 	return true;
683 }
684 
685 
686 bool
687 socket_release(net_socket* _socket)
688 {
689 	net_socket_private* socket = (net_socket_private*)_socket;
690 	return socket->ReleaseReference();
691 }
692 
693 
694 status_t
695 socket_spawn_pending(net_socket* _parent, net_socket** _socket)
696 {
697 	net_socket_private* parent = (net_socket_private*)_parent;
698 
699 	TRACE("%s(%p)\n", __FUNCTION__, parent);
700 
701 	MutexLocker locker(parent->lock);
702 
703 	// We actually accept more pending connections to compensate for those
704 	// that never complete, and also make sure at least a single connection
705 	// can always be accepted
706 	if (parent->child_count > 3 * parent->max_backlog / 2)
707 		return ENOBUFS;
708 
709 	net_socket_private* socket;
710 	status_t status = create_socket(parent->family, parent->type,
711 		parent->protocol, &socket);
712 	if (status != B_OK)
713 		return status;
714 
715 	// inherit parent's properties
716 	socket->send = parent->send;
717 	socket->receive = parent->receive;
718 	socket->options = parent->options & ~SO_ACCEPTCONN;
719 	socket->linger = parent->linger;
720 	socket->owner = parent->owner;
721 	memcpy(&socket->address, &parent->address, parent->address.ss_len);
722 	memcpy(&socket->peer, &parent->peer, parent->peer.ss_len);
723 
724 	// add to the parent's list of pending connections
725 	parent->pending_children.Add(socket);
726 	socket->parent = parent;
727 	parent->child_count++;
728 
729 	*_socket = socket;
730 	return B_OK;
731 }
732 
733 
734 /*!	Dequeues a connected child from a parent socket.
735 	It also returns a reference with the child socket.
736 */
737 status_t
738 socket_dequeue_connected(net_socket* _parent, net_socket** _socket)
739 {
740 	net_socket_private* parent = (net_socket_private*)_parent;
741 
742 	mutex_lock(&parent->lock);
743 
744 	net_socket_private* socket = parent->connected_children.RemoveHead();
745 	if (socket != NULL) {
746 		socket->AcquireReference();
747 		socket->RemoveFromParent();
748 		parent->child_count--;
749 		*_socket = socket;
750 	}
751 
752 	mutex_unlock(&parent->lock);
753 
754 	if (socket == NULL)
755 		return B_ENTRY_NOT_FOUND;
756 
757 	return B_OK;
758 }
759 
760 
761 ssize_t
762 socket_count_connected(net_socket* _parent)
763 {
764 	net_socket_private* parent = (net_socket_private*)_parent;
765 
766 	MutexLocker _(parent->lock);
767 	return parent->connected_children.Count();
768 }
769 
770 
771 status_t
772 socket_set_max_backlog(net_socket* _socket, uint32 backlog)
773 {
774 	net_socket_private* socket = (net_socket_private*)_socket;
775 
776 	// we enforce an upper limit of connections waiting to be accepted
777 	if (backlog > 256)
778 		backlog = 256;
779 
780 	MutexLocker _(socket->lock);
781 
782 	// first remove the pending connections, then the already connected
783 	// ones as needed
784 	net_socket_private* child;
785 	while (socket->child_count > backlog
786 		&& (child = socket->pending_children.RemoveTail()) != NULL) {
787 		child->RemoveFromParent();
788 		socket->child_count--;
789 	}
790 	while (socket->child_count > backlog
791 		&& (child = socket->connected_children.RemoveTail()) != NULL) {
792 		child->RemoveFromParent();
793 		socket->child_count--;
794 	}
795 
796 	socket->max_backlog = backlog;
797 	return B_OK;
798 }
799 
800 
801 /*!	Returns whether or not this socket has a parent. The parent might not be
802 	valid anymore, though.
803 */
804 bool
805 socket_has_parent(net_socket* _socket)
806 {
807 	net_socket_private* socket = (net_socket_private*)_socket;
808 	return socket->parent != NULL;
809 }
810 
811 
812 /*!	The socket has been connected. It will be moved to the connected queue
813 	of its parent socket.
814 */
815 status_t
816 socket_connected(net_socket* _socket)
817 {
818 	net_socket_private* socket = (net_socket_private*)_socket;
819 
820 	TRACE("socket_connected(%p)\n", socket);
821 
822 	BReference<net_socket_private> parent = socket->parent.GetReference();
823 	if (parent.Get() == NULL)
824 		return B_BAD_VALUE;
825 
826 	MutexLocker _(parent->lock);
827 
828 	parent->pending_children.Remove(socket);
829 	parent->connected_children.Add(socket);
830 	socket->is_connected = true;
831 
832 	// notify parent
833 	if (parent->select_pool)
834 		notify_select_event_pool(parent->select_pool, B_SELECT_READ);
835 
836 	return B_OK;
837 }
838 
839 
840 /*!	The socket has been aborted. Steals the parent's reference, and releases
841 	it.
842 */
843 status_t
844 socket_aborted(net_socket* _socket)
845 {
846 	net_socket_private* socket = (net_socket_private*)_socket;
847 
848 	TRACE("socket_aborted(%p)\n", socket);
849 
850 	BReference<net_socket_private> parent = socket->parent.GetReference();
851 	if (parent.Get() == NULL)
852 		return B_BAD_VALUE;
853 
854 	MutexLocker _(parent->lock);
855 
856 	if (socket->is_connected)
857 		parent->connected_children.Remove(socket);
858 	else
859 		parent->pending_children.Remove(socket);
860 
861 	parent->child_count--;
862 	socket->RemoveFromParent();
863 
864 	return B_OK;
865 }
866 
867 
868 //	#pragma mark - notifications
869 
870 
871 status_t
872 socket_request_notification(net_socket* _socket, uint8 event, selectsync* sync)
873 {
874 	net_socket_private* socket = (net_socket_private*)_socket;
875 
876 	mutex_lock(&socket->lock);
877 
878 	status_t status = add_select_sync_pool_entry(&socket->select_pool, sync,
879 		event);
880 
881 	mutex_unlock(&socket->lock);
882 
883 	if (status != B_OK)
884 		return status;
885 
886 	// check if the event is already present
887 	// TODO: add support for poll() types
888 
889 	switch (event) {
890 		case B_SELECT_READ:
891 		{
892 			ssize_t available = socket_read_avail(socket);
893 			if ((ssize_t)socket->receive.low_water_mark <= available
894 				|| available < B_OK)
895 				notify_select_event(sync, event);
896 			break;
897 		}
898 		case B_SELECT_WRITE:
899 		{
900 			ssize_t available = socket_send_avail(socket);
901 			if ((ssize_t)socket->send.low_water_mark <= available
902 				|| available < B_OK)
903 				notify_select_event(sync, event);
904 			break;
905 		}
906 		case B_SELECT_ERROR:
907 			// TODO: B_SELECT_ERROR condition!
908 			break;
909 	}
910 
911 	return B_OK;
912 }
913 
914 
915 status_t
916 socket_cancel_notification(net_socket* _socket, uint8 event, selectsync* sync)
917 {
918 	net_socket_private* socket = (net_socket_private*)_socket;
919 
920 	MutexLocker _(socket->lock);
921 	return remove_select_sync_pool_entry(&socket->select_pool, sync, event);
922 }
923 
924 
925 status_t
926 socket_notify(net_socket* _socket, uint8 event, int32 value)
927 {
928 	net_socket_private* socket = (net_socket_private*)_socket;
929 	bool notify = true;
930 
931 	switch (event) {
932 		case B_SELECT_READ:
933 			if ((ssize_t)socket->receive.low_water_mark > value
934 				&& value >= B_OK)
935 				notify = false;
936 			break;
937 
938 		case B_SELECT_WRITE:
939 			if ((ssize_t)socket->send.low_water_mark > value && value >= B_OK)
940 				notify = false;
941 			break;
942 
943 		case B_SELECT_ERROR:
944 			socket->error = value;
945 			break;
946 	}
947 
948 	MutexLocker _(socket->lock);
949 
950 	if (notify && socket->select_pool != NULL) {
951 		notify_select_event_pool(socket->select_pool, event);
952 
953 		if (event == B_SELECT_ERROR) {
954 			// always notify read/write on error
955 			notify_select_event_pool(socket->select_pool, B_SELECT_READ);
956 			notify_select_event_pool(socket->select_pool, B_SELECT_WRITE);
957 		}
958 	}
959 
960 	return B_OK;
961 }
962 
963 
964 //	#pragma mark - standard socket API
965 
966 
967 int
968 socket_accept(net_socket* socket, struct sockaddr* address,
969 	socklen_t* _addressLength, net_socket** _acceptedSocket)
970 {
971 	if ((socket->options & SO_ACCEPTCONN) == 0)
972 		return B_BAD_VALUE;
973 
974 	net_socket* accepted;
975 	status_t status = socket->first_info->accept(socket->first_protocol,
976 		&accepted);
977 	if (status != B_OK)
978 		return status;
979 
980 	if (address && *_addressLength > 0) {
981 		memcpy(address, &accepted->peer, min_c(*_addressLength,
982 			min_c(accepted->peer.ss_len, sizeof(sockaddr_storage))));
983 		*_addressLength = accepted->peer.ss_len;
984 	}
985 
986 	*_acceptedSocket = accepted;
987 	return B_OK;
988 }
989 
990 
991 int
992 socket_bind(net_socket* socket, const struct sockaddr* address,
993 	socklen_t addressLength)
994 {
995 	sockaddr empty;
996 	if (address == NULL) {
997 		// special - try to bind to an empty address, like INADDR_ANY
998 		memset(&empty, 0, sizeof(sockaddr));
999 		empty.sa_len = sizeof(sockaddr);
1000 		empty.sa_family = socket->family;
1001 
1002 		address = &empty;
1003 		addressLength = sizeof(sockaddr);
1004 	}
1005 
1006 	if (socket->address.ss_len != 0) {
1007 		status_t status = socket->first_info->unbind(socket->first_protocol,
1008 			(sockaddr*)&socket->address);
1009 		if (status != B_OK)
1010 			return status;
1011 	}
1012 
1013 	memcpy(&socket->address, address, sizeof(sockaddr));
1014 	socket->address.ss_len = sizeof(sockaddr_storage);
1015 
1016 	status_t status = socket->first_info->bind(socket->first_protocol,
1017 		(sockaddr*)address);
1018 	if (status != B_OK) {
1019 		// clear address again, as binding failed
1020 		socket->address.ss_len = 0;
1021 	}
1022 
1023 	return status;
1024 }
1025 
1026 
1027 int
1028 socket_connect(net_socket* socket, const struct sockaddr* address,
1029 	socklen_t addressLength)
1030 {
1031 	if (address == NULL || addressLength == 0)
1032 		return ENETUNREACH;
1033 
1034 	if (socket->address.ss_len == 0) {
1035 		// try to bind first
1036 		status_t status = socket_bind(socket, NULL, 0);
1037 		if (status != B_OK)
1038 			return status;
1039 	}
1040 
1041 	return socket->first_info->connect(socket->first_protocol, address);
1042 }
1043 
1044 
1045 int
1046 socket_getpeername(net_socket* socket, struct sockaddr* address,
1047 	socklen_t* _addressLength)
1048 {
1049 	if (socket->peer.ss_len == 0)
1050 		return ENOTCONN;
1051 
1052 	memcpy(address, &socket->peer, min_c(*_addressLength, socket->peer.ss_len));
1053 	*_addressLength = socket->peer.ss_len;
1054 	return B_OK;
1055 }
1056 
1057 
1058 int
1059 socket_getsockname(net_socket* socket, struct sockaddr* address,
1060 	socklen_t* _addressLength)
1061 {
1062 	if (socket->address.ss_len == 0)
1063 		return ENOTCONN;
1064 
1065 	memcpy(address, &socket->address, min_c(*_addressLength,
1066 		socket->address.ss_len));
1067 	*_addressLength = socket->address.ss_len;
1068 	return B_OK;
1069 }
1070 
1071 
1072 status_t
1073 socket_get_option(net_socket* socket, int level, int option, void* value,
1074 	int* _length)
1075 {
1076 	if (level != SOL_SOCKET)
1077 		return ENOPROTOOPT;
1078 
1079 	switch (option) {
1080 		case SO_SNDBUF:
1081 		{
1082 			uint32* size = (uint32*)value;
1083 			*size = socket->send.buffer_size;
1084 			*_length = sizeof(uint32);
1085 			return B_OK;
1086 		}
1087 
1088 		case SO_RCVBUF:
1089 		{
1090 			uint32* size = (uint32*)value;
1091 			*size = socket->receive.buffer_size;
1092 			*_length = sizeof(uint32);
1093 			return B_OK;
1094 		}
1095 
1096 		case SO_SNDLOWAT:
1097 		{
1098 			uint32* size = (uint32*)value;
1099 			*size = socket->send.low_water_mark;
1100 			*_length = sizeof(uint32);
1101 			return B_OK;
1102 		}
1103 
1104 		case SO_RCVLOWAT:
1105 		{
1106 			uint32* size = (uint32*)value;
1107 			*size = socket->receive.low_water_mark;
1108 			*_length = sizeof(uint32);
1109 			return B_OK;
1110 		}
1111 
1112 		case SO_RCVTIMEO:
1113 		case SO_SNDTIMEO:
1114 		{
1115 			if (*_length < (int)sizeof(struct timeval))
1116 				return B_BAD_VALUE;
1117 
1118 			bigtime_t timeout;
1119 			if (option == SO_SNDTIMEO)
1120 				timeout = socket->send.timeout;
1121 			else
1122 				timeout = socket->receive.timeout;
1123 			if (timeout == B_INFINITE_TIMEOUT)
1124 				timeout = 0;
1125 
1126 			struct timeval* timeval = (struct timeval*)value;
1127 			timeval->tv_sec = timeout / 1000000LL;
1128 			timeval->tv_usec = timeout % 1000000LL;
1129 
1130 			*_length = sizeof(struct timeval);
1131 			return B_OK;
1132 		}
1133 
1134 		case SO_NONBLOCK:
1135 		{
1136 			int32* _set = (int32*)value;
1137 			*_set = socket->receive.timeout == 0 && socket->send.timeout == 0;
1138 			*_length = sizeof(int32);
1139 			return B_OK;
1140 		}
1141 
1142 		case SO_ACCEPTCONN:
1143 		case SO_BROADCAST:
1144 		case SO_DEBUG:
1145 		case SO_DONTROUTE:
1146 		case SO_KEEPALIVE:
1147 		case SO_OOBINLINE:
1148 		case SO_REUSEADDR:
1149 		case SO_REUSEPORT:
1150 		case SO_USELOOPBACK:
1151 		{
1152 			int32* _set = (int32*)value;
1153 			*_set = (socket->options & option) != 0;
1154 			*_length = sizeof(int32);
1155 			return B_OK;
1156 		}
1157 
1158 		case SO_TYPE:
1159 		{
1160 			int32* _set = (int32*)value;
1161 			*_set = socket->type;
1162 			*_length = sizeof(int32);
1163 			return B_OK;
1164 		}
1165 
1166 		case SO_ERROR:
1167 		{
1168 			int32* _set = (int32*)value;
1169 			*_set = socket->error;
1170 			*_length = sizeof(int32);
1171 
1172 			socket->error = B_OK;
1173 				// clear error upon retrieval
1174 			return B_OK;
1175 		}
1176 
1177 		default:
1178 			break;
1179 	}
1180 
1181 	dprintf("socket_getsockopt: unknown option %d\n", option);
1182 	return ENOPROTOOPT;
1183 }
1184 
1185 
1186 int
1187 socket_getsockopt(net_socket* socket, int level, int option, void* value,
1188 	int* _length)
1189 {
1190 	return socket->first_protocol->module->getsockopt(socket->first_protocol,
1191 		level, option, value, _length);
1192 }
1193 
1194 
1195 int
1196 socket_listen(net_socket* socket, int backlog)
1197 {
1198 	status_t status = socket->first_info->listen(socket->first_protocol,
1199 		backlog);
1200 	if (status == B_OK)
1201 		socket->options |= SO_ACCEPTCONN;
1202 
1203 	return status;
1204 }
1205 
1206 
1207 ssize_t
1208 socket_receive(net_socket* socket, msghdr* header, void* data, size_t length,
1209 	int flags)
1210 {
1211 	// If the protocol sports read_data_no_buffer() we use it.
1212 	if (socket->first_info->read_data_no_buffer != NULL)
1213 		return socket_receive_no_buffer(socket, header, data, length, flags);
1214 
1215 	size_t totalLength = length;
1216 	net_buffer* buffer;
1217 	int i;
1218 
1219 	// the convention to this function is that have header been
1220 	// present, { data, length } would have been iovec[0] and is
1221 	// always considered like that
1222 
1223 	if (header) {
1224 		// calculate the length considering all of the extra buffers
1225 		for (i = 1; i < header->msg_iovlen; i++)
1226 			totalLength += header->msg_iov[i].iov_len;
1227 	}
1228 
1229 	status_t status = socket->first_info->read_data(
1230 		socket->first_protocol, totalLength, flags, &buffer);
1231 	if (status != B_OK)
1232 		return status;
1233 
1234 	// process ancillary data
1235 	if (header != NULL) {
1236 		if (buffer != NULL && header->msg_control != NULL) {
1237 			ancillary_data_container* container
1238 				= gNetBufferModule.get_ancillary_data(buffer);
1239 			if (container != NULL)
1240 				status = process_ancillary_data(socket, container, header);
1241 			else
1242 				status = process_ancillary_data(socket, buffer, header);
1243 			if (status != B_OK) {
1244 				gNetBufferModule.free(buffer);
1245 				return status;
1246 			}
1247 		} else
1248 			header->msg_controllen = 0;
1249 	}
1250 
1251 	// TODO: - returning a NULL buffer when received 0 bytes
1252 	//         may not make much sense as we still need the address
1253 	//       - gNetBufferModule.read() uses memcpy() instead of user_memcpy
1254 
1255 	size_t nameLen = 0;
1256 
1257 	if (header) {
1258 		// TODO: - consider the control buffer options
1259 		nameLen = header->msg_namelen;
1260 		header->msg_namelen = 0;
1261 		header->msg_flags = 0;
1262 	}
1263 
1264 	if (buffer == NULL)
1265 		return 0;
1266 
1267 	size_t bytesReceived = buffer->size, bytesCopied = 0;
1268 
1269 	length = min_c(bytesReceived, length);
1270 	if (gNetBufferModule.read(buffer, 0, data, length) < B_OK) {
1271 		gNetBufferModule.free(buffer);
1272 		return ENOBUFS;
1273 	}
1274 
1275 	// if first copy was a success, proceed to following
1276 	// copies as required
1277 	bytesCopied += length;
1278 
1279 	if (header) {
1280 		// we only start considering at iovec[1]
1281 		// as { data, length } is iovec[0]
1282 		for (i = 1; i < header->msg_iovlen && bytesCopied < bytesReceived; i++) {
1283 			iovec& vec = header->msg_iov[i];
1284 			size_t toRead = min_c(bytesReceived - bytesCopied, vec.iov_len);
1285 			if (gNetBufferModule.read(buffer, bytesCopied, vec.iov_base,
1286 					toRead) < B_OK) {
1287 				break;
1288 			}
1289 
1290 			bytesCopied += toRead;
1291 		}
1292 
1293 		if (header->msg_name != NULL) {
1294 			header->msg_namelen = min_c(nameLen, buffer->source->sa_len);
1295 			memcpy(header->msg_name, buffer->source, header->msg_namelen);
1296 		}
1297 	}
1298 
1299 	gNetBufferModule.free(buffer);
1300 
1301 	if (bytesCopied < bytesReceived) {
1302 		if (header)
1303 			header->msg_flags = MSG_TRUNC;
1304 
1305 		if (flags & MSG_TRUNC)
1306 			return bytesReceived;
1307 	}
1308 
1309 	return bytesCopied;
1310 }
1311 
1312 
1313 ssize_t
1314 socket_send(net_socket* socket, msghdr* header, const void* data, size_t length,
1315 	int flags)
1316 {
1317 	const sockaddr* address = NULL;
1318 	socklen_t addressLength = 0;
1319 	size_t bytesLeft = length;
1320 
1321 	if (length > SSIZE_MAX)
1322 		return B_BAD_VALUE;
1323 
1324 	ancillary_data_container* ancillaryData = NULL;
1325 	CObjectDeleter<ancillary_data_container> ancillaryDataDeleter(NULL,
1326 		&delete_ancillary_data_container);
1327 
1328 	if (header != NULL) {
1329 		address = (const sockaddr*)header->msg_name;
1330 		addressLength = header->msg_namelen;
1331 
1332 		// get the ancillary data
1333 		if (header->msg_control != NULL) {
1334 			ancillaryData = create_ancillary_data_container();
1335 			if (ancillaryData == NULL)
1336 				return B_NO_MEMORY;
1337 			ancillaryDataDeleter.SetTo(ancillaryData);
1338 
1339 			status_t status = add_ancillary_data(socket, ancillaryData,
1340 				(cmsghdr*)header->msg_control, header->msg_controllen);
1341 			if (status != B_OK)
1342 				return status;
1343 		}
1344 	}
1345 
1346 	if (addressLength == 0)
1347 		address = NULL;
1348 	else if (address == NULL)
1349 		return B_BAD_VALUE;
1350 
1351 	if (socket->peer.ss_len != 0) {
1352 		if (address != NULL)
1353 			return EISCONN;
1354 
1355 		// socket is connected, we use that address
1356 		address = (struct sockaddr*)&socket->peer;
1357 		addressLength = socket->peer.ss_len;
1358 	}
1359 
1360 	if (address == NULL || addressLength == 0) {
1361 		// don't know where to send to:
1362 		return EDESTADDRREQ;
1363 	}
1364 
1365 	if ((socket->first_info->flags & NET_PROTOCOL_ATOMIC_MESSAGES) != 0
1366 		&& bytesLeft > socket->send.buffer_size)
1367 		return EMSGSIZE;
1368 
1369 	if (socket->address.ss_len == 0) {
1370 		// try to bind first
1371 		status_t status = socket_bind(socket, NULL, 0);
1372 		if (status != B_OK)
1373 			return status;
1374 	}
1375 
1376 	// If the protocol has a send_data_no_buffer() hook, we use that one.
1377 	if (socket->first_info->send_data_no_buffer != NULL) {
1378 		iovec stackVec = { (void*)data, length };
1379 		iovec* vecs = header ? header->msg_iov : &stackVec;
1380 		int vecCount = header ? header->msg_iovlen : 1;
1381 
1382 		ssize_t written = socket->first_info->send_data_no_buffer(
1383 			socket->first_protocol, vecs, vecCount, ancillaryData, address,
1384 			addressLength);
1385 		if (written > 0)
1386 			ancillaryDataDeleter.Detach();
1387 		return written;
1388 	}
1389 
1390 	// By convention, if a header is given, the (data, length) equals the first
1391 	// iovec. So drop the header, if it is the only iovec. Otherwise compute
1392 	// the size of the remaining ones.
1393 	if (header != NULL) {
1394 		if (header->msg_iovlen <= 1)
1395 			header = NULL;
1396 		else {
1397 // TODO: The iovecs have already been copied to kernel space. Simplify!
1398 			bytesLeft += compute_user_iovec_length(header->msg_iov + 1,
1399 				header->msg_iovlen - 1);
1400 		}
1401 	}
1402 
1403 	ssize_t bytesSent = 0;
1404 	size_t vecOffset = 0;
1405 	uint32 vecIndex = 0;
1406 
1407 	while (bytesLeft > 0) {
1408 		// TODO: useful, maybe even computed header space!
1409 		net_buffer* buffer = gNetBufferModule.create(256);
1410 		if (buffer == NULL)
1411 			return ENOBUFS;
1412 
1413 		while (buffer->size < socket->send.buffer_size
1414 			&& buffer->size < bytesLeft) {
1415 			if (vecIndex > 0 && vecOffset == 0) {
1416 				// retrieve next iovec buffer from header
1417 				iovec vec;
1418 				if (user_memcpy(&vec, header->msg_iov + vecIndex, sizeof(iovec))
1419 						< B_OK) {
1420 					gNetBufferModule.free(buffer);
1421 					return B_BAD_ADDRESS;
1422 				}
1423 
1424 				data = vec.iov_base;
1425 				length = vec.iov_len;
1426 			}
1427 
1428 			size_t bytes = length;
1429 			if (buffer->size + bytes > socket->send.buffer_size)
1430 				bytes = socket->send.buffer_size - buffer->size;
1431 
1432 			if (gNetBufferModule.append(buffer, data, bytes) < B_OK) {
1433 				gNetBufferModule.free(buffer);
1434 				return ENOBUFS;
1435 			}
1436 
1437 			if (bytes != length) {
1438 				// partial send
1439 				vecOffset = bytes;
1440 				length -= vecOffset;
1441 				data = (uint8*)data + vecOffset;
1442 			} else if (header != NULL) {
1443 				// proceed with next buffer, if any
1444 				vecOffset = 0;
1445 				vecIndex++;
1446 
1447 				if (vecIndex >= (uint32)header->msg_iovlen)
1448 					break;
1449 			}
1450 		}
1451 
1452 		// attach ancillary data to the first buffer
1453 		status_t status = B_OK;
1454 		if (ancillaryData != NULL) {
1455 			gNetBufferModule.set_ancillary_data(buffer, ancillaryData);
1456 			ancillaryDataDeleter.Detach();
1457 			ancillaryData = NULL;
1458 		}
1459 
1460 		size_t bufferSize = buffer->size;
1461 		buffer->flags = flags;
1462 		memcpy(buffer->source, &socket->address, socket->address.ss_len);
1463 		memcpy(buffer->destination, address, addressLength);
1464 		buffer->destination->sa_len = addressLength;
1465 
1466 		if (status == B_OK) {
1467 			status = socket->first_info->send_data(socket->first_protocol,
1468 				buffer);
1469 		}
1470 		if (status != B_OK) {
1471 			size_t sizeAfterSend = buffer->size;
1472 			gNetBufferModule.free(buffer);
1473 
1474 			if ((sizeAfterSend != bufferSize || bytesSent > 0)
1475 				&& (status == B_INTERRUPTED || status == B_WOULD_BLOCK)) {
1476 				// this appears to be a partial write
1477 				return bytesSent + (bufferSize - sizeAfterSend);
1478 			}
1479 			return status;
1480 		}
1481 
1482 		bytesLeft -= bufferSize;
1483 		bytesSent += bufferSize;
1484 	}
1485 
1486 	return bytesSent;
1487 }
1488 
1489 
1490 status_t
1491 socket_set_option(net_socket* socket, int level, int option, const void* value,
1492 	int length)
1493 {
1494 	if (level != SOL_SOCKET)
1495 		return ENOPROTOOPT;
1496 
1497 	TRACE("%s(socket %p, option %d\n", __FUNCTION__, socket, option);
1498 
1499 	switch (option) {
1500 		// TODO: implement other options!
1501 		case SO_LINGER:
1502 		{
1503 			if (length < (int)sizeof(struct linger))
1504 				return B_BAD_VALUE;
1505 
1506 			struct linger* linger = (struct linger*)value;
1507 			if (linger->l_onoff) {
1508 				socket->options |= SO_LINGER;
1509 				socket->linger = linger->l_linger;
1510 			} else {
1511 				socket->options &= ~SO_LINGER;
1512 				socket->linger = 0;
1513 			}
1514 			return B_OK;
1515 		}
1516 
1517 		case SO_SNDBUF:
1518 			if (length != sizeof(uint32))
1519 				return B_BAD_VALUE;
1520 
1521 			socket->send.buffer_size = *(const uint32*)value;
1522 			return B_OK;
1523 
1524 		case SO_RCVBUF:
1525 			if (length != sizeof(uint32))
1526 				return B_BAD_VALUE;
1527 
1528 			socket->receive.buffer_size = *(const uint32*)value;
1529 			return B_OK;
1530 
1531 		case SO_SNDLOWAT:
1532 			if (length != sizeof(uint32))
1533 				return B_BAD_VALUE;
1534 
1535 			socket->send.low_water_mark = *(const uint32*)value;
1536 			return B_OK;
1537 
1538 		case SO_RCVLOWAT:
1539 			if (length != sizeof(uint32))
1540 				return B_BAD_VALUE;
1541 
1542 			socket->receive.low_water_mark = *(const uint32*)value;
1543 			return B_OK;
1544 
1545 		case SO_RCVTIMEO:
1546 		case SO_SNDTIMEO:
1547 		{
1548 			if (length != sizeof(struct timeval))
1549 				return B_BAD_VALUE;
1550 
1551 			const struct timeval* timeval = (const struct timeval*)value;
1552 			bigtime_t timeout = timeval->tv_sec * 1000000LL + timeval->tv_usec;
1553 			if (timeout == 0)
1554 				timeout = B_INFINITE_TIMEOUT;
1555 
1556 			if (option == SO_SNDTIMEO)
1557 				socket->send.timeout = timeout;
1558 			else
1559 				socket->receive.timeout = timeout;
1560 			return B_OK;
1561 		}
1562 
1563 		case SO_NONBLOCK:
1564 			if (length != sizeof(int32))
1565 				return B_BAD_VALUE;
1566 
1567 			if (*(const int32*)value) {
1568 				socket->send.timeout = 0;
1569 				socket->receive.timeout = 0;
1570 			} else {
1571 				socket->send.timeout = B_INFINITE_TIMEOUT;
1572 				socket->receive.timeout = B_INFINITE_TIMEOUT;
1573 			}
1574 			return B_OK;
1575 
1576 		case SO_BROADCAST:
1577 		case SO_DEBUG:
1578 		case SO_DONTROUTE:
1579 		case SO_KEEPALIVE:
1580 		case SO_OOBINLINE:
1581 		case SO_REUSEADDR:
1582 		case SO_REUSEPORT:
1583 		case SO_USELOOPBACK:
1584 			if (length != sizeof(int32))
1585 				return B_BAD_VALUE;
1586 
1587 			if (*(const int32*)value)
1588 				socket->options |= option;
1589 			else
1590 				socket->options &= ~option;
1591 			return B_OK;
1592 
1593 		case SO_BINDTODEVICE:
1594 		{
1595 			if (length != sizeof(uint32))
1596 				return B_BAD_VALUE;
1597 
1598 			// TODO: we might want to check if the device exists at all
1599 			// (although it doesn't really harm when we don't)
1600 			socket->bound_to_device = *(const uint32*)value;
1601 			return B_OK;
1602 		}
1603 
1604 		default:
1605 			break;
1606 	}
1607 
1608 	dprintf("socket_setsockopt: unknown option %d\n", option);
1609 	return ENOPROTOOPT;
1610 }
1611 
1612 
1613 int
1614 socket_setsockopt(net_socket* socket, int level, int option, const void* value,
1615 	int length)
1616 {
1617 	return socket->first_protocol->module->setsockopt(socket->first_protocol,
1618 		level, option, value, length);
1619 }
1620 
1621 
1622 int
1623 socket_shutdown(net_socket* socket, int direction)
1624 {
1625 	return socket->first_info->shutdown(socket->first_protocol, direction);
1626 }
1627 
1628 
1629 status_t
1630 socket_socketpair(int family, int type, int protocol, net_socket* sockets[2])
1631 {
1632 	sockets[0] = NULL;
1633 	sockets[1] = NULL;
1634 
1635 	// create sockets
1636 	status_t error = socket_open(family, type, protocol, &sockets[0]);
1637 	if (error != B_OK)
1638 		return error;
1639 
1640 	if (error == B_OK)
1641 		error = socket_open(family, type, protocol, &sockets[1]);
1642 
1643 	// bind one
1644 	if (error == B_OK)
1645 		error = socket_bind(sockets[0], NULL, 0);
1646 
1647 	// start listening
1648 	if (error == B_OK)
1649 		error = socket_listen(sockets[0], 1);
1650 
1651 	// connect them
1652 	if (error == B_OK) {
1653 		error = socket_connect(sockets[1], (sockaddr*)&sockets[0]->address,
1654 			sockets[0]->address.ss_len);
1655 	}
1656 
1657 	// accept a socket
1658 	net_socket* acceptedSocket = NULL;
1659 	if (error == B_OK)
1660 		error = socket_accept(sockets[0], NULL, NULL, &acceptedSocket);
1661 
1662 	if (error == B_OK) {
1663 		// everything worked: close the listener socket
1664 		socket_close(sockets[0]);
1665 		socket_free(sockets[0]);
1666 		sockets[0] = acceptedSocket;
1667 	} else {
1668 		// close sockets on error
1669 		for (int i = 0; i < 2; i++) {
1670 			if (sockets[i] != NULL) {
1671 				socket_close(sockets[i]);
1672 				socket_free(sockets[i]);
1673 				sockets[i] = NULL;
1674 			}
1675 		}
1676 	}
1677 
1678 	return error;
1679 }
1680 
1681 
1682 //	#pragma mark -
1683 
1684 
1685 static status_t
1686 socket_std_ops(int32 op, ...)
1687 {
1688 	switch (op) {
1689 		case B_MODULE_INIT:
1690 		{
1691 			new (&sSocketList) SocketList;
1692 			mutex_init(&sSocketLock, "socket list");
1693 
1694 #if ENABLE_DEBUGGER_COMMANDS
1695 			add_debugger_command("sockets", dump_sockets, "lists all sockets");
1696 			add_debugger_command("socket", dump_socket, "dumps a socket");
1697 #endif
1698 			return B_OK;
1699 		}
1700 		case B_MODULE_UNINIT:
1701 			ASSERT(sSocketList.IsEmpty());
1702 			mutex_destroy(&sSocketLock);
1703 
1704 #if ENABLE_DEBUGGER_COMMANDS
1705 			remove_debugger_command("socket", dump_socket);
1706 			remove_debugger_command("sockets", dump_sockets);
1707 #endif
1708 			return B_OK;
1709 
1710 		default:
1711 			return B_ERROR;
1712 	}
1713 }
1714 
1715 
1716 net_socket_module_info gNetSocketModule = {
1717 	{
1718 		NET_SOCKET_MODULE_NAME,
1719 		0,
1720 		socket_std_ops
1721 	},
1722 	socket_open,
1723 	socket_close,
1724 	socket_free,
1725 
1726 	socket_readv,
1727 	socket_writev,
1728 	socket_control,
1729 
1730 	socket_read_avail,
1731 	socket_send_avail,
1732 
1733 	socket_send_data,
1734 	socket_receive_data,
1735 
1736 	socket_get_option,
1737 	socket_set_option,
1738 
1739 	socket_get_next_stat,
1740 
1741 	// connections
1742 	socket_acquire,
1743 	socket_release,
1744 	socket_spawn_pending,
1745 	socket_dequeue_connected,
1746 	socket_count_connected,
1747 	socket_set_max_backlog,
1748 	socket_has_parent,
1749 	socket_connected,
1750 	socket_aborted,
1751 
1752 	// notifications
1753 	socket_request_notification,
1754 	socket_cancel_notification,
1755 	socket_notify,
1756 
1757 	// standard socket API
1758 	socket_accept,
1759 	socket_bind,
1760 	socket_connect,
1761 	socket_getpeername,
1762 	socket_getsockname,
1763 	socket_getsockopt,
1764 	socket_listen,
1765 	socket_receive,
1766 	socket_send,
1767 	socket_setsockopt,
1768 	socket_shutdown,
1769 	socket_socketpair
1770 };
1771 
1772