1 /* 2 * Copyright 2006-2010, Haiku, Inc. All Rights Reserved. 3 * Distributed under the terms of the MIT License. 4 * 5 * Authors: 6 * Axel Dörfler, axeld@pinc-software.de 7 */ 8 9 10 #include "stack_private.h" 11 12 #include <stdlib.h> 13 #include <string.h> 14 #include <sys/ioctl.h> 15 #include <sys/time.h> 16 17 #include <new> 18 19 #include <Drivers.h> 20 #include <KernelExport.h> 21 #include <Select.h> 22 23 #include <AutoDeleter.h> 24 #include <team.h> 25 #include <util/AutoLock.h> 26 #include <util/list.h> 27 #include <WeakReferenceable.h> 28 29 #include <fs/select_sync_pool.h> 30 #include <kernel.h> 31 32 #include <net_protocol.h> 33 #include <net_stack.h> 34 #include <net_stat.h> 35 36 #include "ancillary_data.h" 37 #include "utility.h" 38 39 40 //#define TRACE_SOCKET 41 #ifdef TRACE_SOCKET 42 # define TRACE(x...) dprintf(STACK_DEBUG_PREFIX x) 43 #else 44 # define TRACE(x...) ; 45 #endif 46 47 48 struct net_socket_private; 49 typedef DoublyLinkedList<net_socket_private> SocketList; 50 51 struct net_socket_private : net_socket, 52 DoublyLinkedListLinkImpl<net_socket_private>, 53 BWeakReferenceable { 54 net_socket_private(); 55 ~net_socket_private(); 56 57 void RemoveFromParent(); 58 59 BWeakReference<net_socket_private> parent; 60 team_id owner; 61 uint32 max_backlog; 62 uint32 child_count; 63 SocketList pending_children; 64 SocketList connected_children; 65 66 struct select_sync_pool* select_pool; 67 mutex lock; 68 69 bool is_connected; 70 bool is_in_socket_list; 71 }; 72 73 74 int socket_bind(net_socket* socket, const struct sockaddr* address, 75 socklen_t addressLength); 76 int socket_setsockopt(net_socket* socket, int level, int option, 77 const void* value, int length); 78 ssize_t socket_read_avail(net_socket* socket); 79 80 static SocketList sSocketList; 81 static mutex sSocketLock; 82 83 84 net_socket_private::net_socket_private() 85 : 86 owner(-1), 87 max_backlog(0), 88 child_count(0), 89 select_pool(NULL), 90 is_connected(false), 91 is_in_socket_list(false) 92 { 93 first_protocol = NULL; 94 first_info = NULL; 95 options = 0; 96 linger = 0; 97 bound_to_device = 0; 98 error = 0; 99 100 address.ss_len = 0; 101 peer.ss_len = 0; 102 103 mutex_init(&lock, "socket"); 104 105 // set defaults (may be overridden by the protocols) 106 send.buffer_size = 65535; 107 send.low_water_mark = 1; 108 send.timeout = B_INFINITE_TIMEOUT; 109 receive.buffer_size = 65535; 110 receive.low_water_mark = 1; 111 receive.timeout = B_INFINITE_TIMEOUT; 112 } 113 114 115 net_socket_private::~net_socket_private() 116 { 117 TRACE("delete net_socket %p\n", this); 118 119 if (parent != NULL) 120 panic("socket still has a parent!"); 121 122 if (is_in_socket_list) { 123 MutexLocker _(sSocketLock); 124 sSocketList.Remove(this); 125 } 126 127 mutex_lock(&lock); 128 129 // also delete all children of this socket 130 while (net_socket_private* child = pending_children.RemoveHead()) { 131 child->RemoveFromParent(); 132 } 133 while (net_socket_private* child = connected_children.RemoveHead()) { 134 child->RemoveFromParent(); 135 } 136 137 mutex_unlock(&lock); 138 139 put_domain_protocols(this); 140 141 mutex_destroy(&lock); 142 } 143 144 145 void 146 net_socket_private::RemoveFromParent() 147 { 148 ASSERT(!is_in_socket_list && parent != NULL); 149 150 parent = NULL; 151 152 mutex_lock(&sSocketLock); 153 sSocketList.Add(this); 154 mutex_unlock(&sSocketLock); 155 156 is_in_socket_list = true; 157 158 ReleaseReference(); 159 } 160 161 162 // #pragma mark - 163 164 165 static size_t 166 compute_user_iovec_length(iovec* userVec, uint32 count) 167 { 168 size_t length = 0; 169 170 for (uint32 i = 0; i < count; i++) { 171 iovec vec; 172 if (user_memcpy(&vec, userVec + i, sizeof(iovec)) < B_OK) 173 return 0; 174 175 length += vec.iov_len; 176 } 177 178 return length; 179 } 180 181 182 static status_t 183 create_socket(int family, int type, int protocol, net_socket_private** _socket) 184 { 185 struct net_socket_private* socket = new(std::nothrow) net_socket_private; 186 if (socket == NULL) 187 return B_NO_MEMORY; 188 status_t status = socket->InitCheck(); 189 if (status != B_OK) { 190 delete socket; 191 return status; 192 } 193 194 socket->family = family; 195 socket->type = type; 196 socket->protocol = protocol; 197 198 status = get_domain_protocols(socket); 199 if (status != B_OK) { 200 delete socket; 201 return status; 202 } 203 204 TRACE("create net_socket %p (%u.%u.%u):\n", socket, socket->family, 205 socket->type, socket->protocol); 206 207 #ifdef TRACE_SOCKET 208 net_protocol* current = socket->first_protocol; 209 for (int i = 0; current != NULL; current = current->next, i++) 210 TRACE(" [%d] %p %s\n", i, current, current->module->info.name); 211 #endif 212 213 *_socket = socket; 214 return B_OK; 215 } 216 217 218 static status_t 219 add_ancillary_data(net_socket* socket, ancillary_data_container* container, 220 void* data, size_t dataLen) 221 { 222 cmsghdr* header = (cmsghdr*)data; 223 224 if (dataLen == 0) 225 return B_OK; 226 227 if (socket->first_info->add_ancillary_data == NULL) 228 return B_NOT_SUPPORTED; 229 230 while (true) { 231 if (header->cmsg_len < CMSG_LEN(0) || header->cmsg_len > dataLen) 232 return B_BAD_VALUE; 233 234 status_t status = socket->first_info->add_ancillary_data( 235 socket->first_protocol, container, header); 236 if (status != B_OK) 237 return status; 238 239 if (dataLen <= _ALIGN(header->cmsg_len)) 240 break; 241 dataLen -= _ALIGN(header->cmsg_len); 242 header = (cmsghdr*)((uint8*)header + _ALIGN(header->cmsg_len)); 243 } 244 245 return B_OK; 246 } 247 248 249 static status_t 250 process_ancillary_data(net_socket* socket, ancillary_data_container* container, 251 msghdr* messageHeader) 252 { 253 uint8* dataBuffer = (uint8*)messageHeader->msg_control; 254 int dataBufferLen = messageHeader->msg_controllen; 255 256 if (container == NULL || dataBuffer == NULL) { 257 messageHeader->msg_controllen = 0; 258 return B_OK; 259 } 260 261 ancillary_data_header header; 262 void* data = NULL; 263 264 while ((data = next_ancillary_data(container, data, &header)) != NULL) { 265 if (socket->first_info->process_ancillary_data == NULL) 266 return B_NOT_SUPPORTED; 267 268 ssize_t bytesWritten = socket->first_info->process_ancillary_data( 269 socket->first_protocol, &header, data, dataBuffer, dataBufferLen); 270 if (bytesWritten < 0) 271 return bytesWritten; 272 273 dataBuffer += bytesWritten; 274 dataBufferLen -= bytesWritten; 275 } 276 277 messageHeader->msg_controllen -= dataBufferLen; 278 279 return B_OK; 280 } 281 282 283 static status_t 284 process_ancillary_data(net_socket* socket, 285 net_buffer* buffer, msghdr* messageHeader) 286 { 287 void *dataBuffer = messageHeader->msg_control; 288 ssize_t bytesWritten; 289 290 if (dataBuffer == NULL) { 291 messageHeader->msg_controllen = 0; 292 return B_OK; 293 } 294 295 if (socket->first_info->process_ancillary_data_no_container == NULL) 296 return B_NOT_SUPPORTED; 297 298 bytesWritten = socket->first_info->process_ancillary_data_no_container( 299 socket->first_protocol, buffer, dataBuffer, 300 messageHeader->msg_controllen); 301 if (bytesWritten < 0) 302 return bytesWritten; 303 messageHeader->msg_controllen = bytesWritten; 304 305 return B_OK; 306 } 307 308 309 static ssize_t 310 socket_receive_no_buffer(net_socket* socket, msghdr* header, void* data, 311 size_t length, int flags) 312 { 313 iovec stackVec = { data, length }; 314 iovec* vecs = header ? header->msg_iov : &stackVec; 315 int vecCount = header ? header->msg_iovlen : 1; 316 sockaddr* address = header ? (sockaddr*)header->msg_name : NULL; 317 socklen_t* addressLen = header ? &header->msg_namelen : NULL; 318 319 ancillary_data_container* ancillaryData = NULL; 320 ssize_t bytesRead = socket->first_info->read_data_no_buffer( 321 socket->first_protocol, vecs, vecCount, &ancillaryData, address, 322 addressLen); 323 if (bytesRead < 0) 324 return bytesRead; 325 326 CObjectDeleter<ancillary_data_container> ancillaryDataDeleter(ancillaryData, 327 &delete_ancillary_data_container); 328 329 // process ancillary data 330 if (header != NULL) { 331 status_t status = process_ancillary_data(socket, ancillaryData, header); 332 if (status != B_OK) 333 return status; 334 335 header->msg_flags = 0; 336 } 337 338 return bytesRead; 339 } 340 341 342 #if ENABLE_DEBUGGER_COMMANDS 343 344 345 static void 346 print_socket_line(net_socket_private* socket, const char* prefix) 347 { 348 BReference<net_socket_private> parent; 349 if (socket->parent.PrivatePointer() != NULL) 350 parent = socket->parent.GetReference(); 351 kprintf("%s%p %2d.%2d.%2d %6" B_PRId32 " %p %p %p%s\n", prefix, socket, 352 socket->family, socket->type, socket->protocol, socket->owner, 353 socket->first_protocol, socket->first_info, parent.Get(), 354 parent.Get() != NULL ? socket->is_connected ? " (c)" : " (p)" : ""); 355 } 356 357 358 static int 359 dump_socket(int argc, char** argv) 360 { 361 if (argc < 2) { 362 kprintf("usage: %s [address]\n", argv[0]); 363 return 0; 364 } 365 366 net_socket_private* socket = (net_socket_private*)parse_expression(argv[1]); 367 368 kprintf("SOCKET %p\n", socket); 369 kprintf(" family.type.protocol: %d.%d.%d\n", 370 socket->family, socket->type, socket->protocol); 371 BReference<net_socket_private> parent; 372 if (socket->parent.PrivatePointer() != NULL) 373 parent = socket->parent.GetReference(); 374 kprintf(" parent: %p\n", parent.Get()); 375 kprintf(" first protocol: %p\n", socket->first_protocol); 376 kprintf(" first module_info: %p\n", socket->first_info); 377 kprintf(" options: %x\n", socket->options); 378 kprintf(" linger: %d\n", socket->linger); 379 kprintf(" bound to device: %" B_PRIu32 "\n", socket->bound_to_device); 380 kprintf(" owner: %" B_PRId32 "\n", socket->owner); 381 kprintf(" max backlog: %" B_PRId32 "\n", socket->max_backlog); 382 kprintf(" is connected: %d\n", socket->is_connected); 383 kprintf(" child_count: %" B_PRIu32 "\n", socket->child_count); 384 385 if (socket->child_count == 0) 386 return 0; 387 388 kprintf(" pending children:\n"); 389 SocketList::Iterator iterator = socket->pending_children.GetIterator(); 390 while (net_socket_private* child = iterator.Next()) { 391 print_socket_line(child, " "); 392 } 393 394 kprintf(" connected children:\n"); 395 iterator = socket->connected_children.GetIterator(); 396 while (net_socket_private* child = iterator.Next()) { 397 print_socket_line(child, " "); 398 } 399 400 return 0; 401 } 402 403 404 static int 405 dump_sockets(int argc, char** argv) 406 { 407 kprintf("address kind owner protocol module_info parent\n"); 408 409 SocketList::Iterator iterator = sSocketList.GetIterator(); 410 while (net_socket_private* socket = iterator.Next()) { 411 print_socket_line(socket, ""); 412 413 SocketList::Iterator childIterator 414 = socket->pending_children.GetIterator(); 415 while (net_socket_private* child = childIterator.Next()) { 416 print_socket_line(child, " "); 417 } 418 419 childIterator = socket->connected_children.GetIterator(); 420 while (net_socket_private* child = childIterator.Next()) { 421 print_socket_line(child, " "); 422 } 423 } 424 425 return 0; 426 } 427 428 429 #endif // ENABLE_DEBUGGER_COMMANDS 430 431 432 // #pragma mark - 433 434 435 status_t 436 socket_open(int family, int type, int protocol, net_socket** _socket) 437 { 438 net_socket_private* socket; 439 status_t status = create_socket(family, type, protocol, &socket); 440 if (status != B_OK) 441 return status; 442 443 status = socket->first_info->open(socket->first_protocol); 444 if (status != B_OK) { 445 delete socket; 446 return status; 447 } 448 449 socket->owner = team_get_current_team_id(); 450 socket->is_in_socket_list = true; 451 452 mutex_lock(&sSocketLock); 453 sSocketList.Add(socket); 454 mutex_unlock(&sSocketLock); 455 456 *_socket = socket; 457 return B_OK; 458 } 459 460 461 status_t 462 socket_close(net_socket* _socket) 463 { 464 net_socket_private* socket = (net_socket_private*)_socket; 465 return socket->first_info->close(socket->first_protocol); 466 } 467 468 469 void 470 socket_free(net_socket* _socket) 471 { 472 net_socket_private* socket = (net_socket_private*)_socket; 473 socket->first_info->free(socket->first_protocol); 474 socket->ReleaseReference(); 475 } 476 477 478 status_t 479 socket_readv(net_socket* socket, const iovec* vecs, size_t vecCount, 480 size_t* _length) 481 { 482 return -1; 483 } 484 485 486 status_t 487 socket_writev(net_socket* socket, const iovec* vecs, size_t vecCount, 488 size_t* _length) 489 { 490 if (socket->peer.ss_len == 0) 491 return ECONNRESET; 492 493 if (socket->address.ss_len == 0) { 494 // try to bind first 495 status_t status = socket_bind(socket, NULL, 0); 496 if (status != B_OK) 497 return status; 498 } 499 500 // TODO: useful, maybe even computed header space! 501 net_buffer* buffer = gNetBufferModule.create(256); 502 if (buffer == NULL) 503 return ENOBUFS; 504 505 // copy data into buffer 506 507 for (uint32 i = 0; i < vecCount; i++) { 508 if (gNetBufferModule.append(buffer, vecs[i].iov_base, 509 vecs[i].iov_len) < B_OK) { 510 gNetBufferModule.free(buffer); 511 return ENOBUFS; 512 } 513 } 514 515 memcpy(buffer->source, &socket->address, socket->address.ss_len); 516 memcpy(buffer->destination, &socket->peer, socket->peer.ss_len); 517 size_t size = buffer->size; 518 519 ssize_t bytesWritten = socket->first_info->send_data(socket->first_protocol, 520 buffer); 521 if (bytesWritten < B_OK) { 522 if (buffer->size != size) { 523 // this appears to be a partial write 524 *_length = size - buffer->size; 525 } 526 gNetBufferModule.free(buffer); 527 return bytesWritten; 528 } 529 530 *_length = bytesWritten; 531 return B_OK; 532 } 533 534 535 status_t 536 socket_control(net_socket* socket, uint32 op, void* data, size_t length) 537 { 538 switch (op) { 539 case FIONBIO: 540 { 541 if (data == NULL) 542 return B_BAD_VALUE; 543 544 int value; 545 if (is_syscall()) { 546 if (!IS_USER_ADDRESS(data) 547 || user_memcpy(&value, data, sizeof(int)) != B_OK) { 548 return B_BAD_ADDRESS; 549 } 550 } else 551 value = *(int*)data; 552 553 return socket_setsockopt(socket, SOL_SOCKET, SO_NONBLOCK, &value, 554 sizeof(int)); 555 } 556 557 case FIONREAD: 558 { 559 if (data == NULL) 560 return B_BAD_VALUE; 561 562 int available = (int)socket_read_avail(socket); 563 if (available < 0) 564 return available; 565 566 if (is_syscall()) { 567 if (!IS_USER_ADDRESS(data) 568 || user_memcpy(data, &available, sizeof(available)) 569 != B_OK) { 570 return B_BAD_ADDRESS; 571 } 572 } else 573 *(int*)data = available; 574 575 return B_OK; 576 } 577 578 case B_SET_BLOCKING_IO: 579 case B_SET_NONBLOCKING_IO: 580 { 581 int value = op == B_SET_NONBLOCKING_IO; 582 return socket_setsockopt(socket, SOL_SOCKET, SO_NONBLOCK, &value, 583 sizeof(int)); 584 } 585 } 586 587 return socket->first_info->control(socket->first_protocol, 588 LEVEL_DRIVER_IOCTL, op, data, &length); 589 } 590 591 592 ssize_t 593 socket_read_avail(net_socket* socket) 594 { 595 return socket->first_info->read_avail(socket->first_protocol); 596 } 597 598 599 ssize_t 600 socket_send_avail(net_socket* socket) 601 { 602 return socket->first_info->send_avail(socket->first_protocol); 603 } 604 605 606 status_t 607 socket_send_data(net_socket* socket, net_buffer* buffer) 608 { 609 return socket->first_info->send_data(socket->first_protocol, 610 buffer); 611 } 612 613 614 status_t 615 socket_receive_data(net_socket* socket, size_t length, uint32 flags, 616 net_buffer** _buffer) 617 { 618 status_t status = socket->first_info->read_data(socket->first_protocol, 619 length, flags, _buffer); 620 if (status != B_OK) 621 return status; 622 623 if (*_buffer && length < (*_buffer)->size) { 624 // discard any data behind the amount requested 625 gNetBufferModule.trim(*_buffer, length); 626 } 627 628 return status; 629 } 630 631 632 status_t 633 socket_get_next_stat(uint32* _cookie, int family, struct net_stat* stat) 634 { 635 MutexLocker locker(sSocketLock); 636 637 net_socket_private* socket = NULL; 638 SocketList::Iterator iterator = sSocketList.GetIterator(); 639 uint32 cookie = *_cookie; 640 uint32 count = 0; 641 642 while (true) { 643 socket = iterator.Next(); 644 if (socket == NULL) 645 return B_ENTRY_NOT_FOUND; 646 647 // TODO: also traverse the pending connections 648 if (count == cookie) 649 break; 650 651 if (family == -1 || family == socket->family) 652 count++; 653 } 654 655 *_cookie = count + 1; 656 657 stat->family = socket->family; 658 stat->type = socket->type; 659 stat->protocol = socket->protocol; 660 stat->owner = socket->owner; 661 stat->state[0] = '\0'; 662 memcpy(&stat->address, &socket->address, sizeof(struct sockaddr_storage)); 663 memcpy(&stat->peer, &socket->peer, sizeof(struct sockaddr_storage)); 664 stat->receive_queue_size = 0; 665 stat->send_queue_size = 0; 666 667 // fill in protocol specific data (if supported by the protocol) 668 size_t length = sizeof(net_stat); 669 socket->first_info->control(socket->first_protocol, socket->protocol, 670 NET_STAT_SOCKET, stat, &length); 671 672 return B_OK; 673 } 674 675 676 // #pragma mark - connections 677 678 679 bool 680 socket_acquire(net_socket* _socket) 681 { 682 net_socket_private* socket = (net_socket_private*)_socket; 683 684 // During destruction, the socket might still be accessible over its 685 // endpoint protocol. We need to make sure the endpoint cannot acquire the 686 // socket anymore -- while not obvious, the endpoint protocol is responsible 687 // for the proper locking here. 688 if (socket->CountReferences() == 0) 689 return false; 690 691 socket->AcquireReference(); 692 return true; 693 } 694 695 696 bool 697 socket_release(net_socket* _socket) 698 { 699 net_socket_private* socket = (net_socket_private*)_socket; 700 return socket->ReleaseReference(); 701 } 702 703 704 status_t 705 socket_spawn_pending(net_socket* _parent, net_socket** _socket) 706 { 707 net_socket_private* parent = (net_socket_private*)_parent; 708 709 TRACE("%s(%p)\n", __FUNCTION__, parent); 710 711 MutexLocker locker(parent->lock); 712 713 // We actually accept more pending connections to compensate for those 714 // that never complete, and also make sure at least a single connection 715 // can always be accepted 716 if (parent->child_count > 3 * parent->max_backlog / 2) 717 return ENOBUFS; 718 719 net_socket_private* socket; 720 status_t status = create_socket(parent->family, parent->type, 721 parent->protocol, &socket); 722 if (status != B_OK) 723 return status; 724 725 // inherit parent's properties 726 socket->send = parent->send; 727 socket->receive = parent->receive; 728 socket->options = parent->options & ~SO_ACCEPTCONN; 729 socket->linger = parent->linger; 730 socket->owner = parent->owner; 731 memcpy(&socket->address, &parent->address, parent->address.ss_len); 732 memcpy(&socket->peer, &parent->peer, parent->peer.ss_len); 733 734 // add to the parent's list of pending connections 735 parent->pending_children.Add(socket); 736 socket->parent = parent; 737 parent->child_count++; 738 739 *_socket = socket; 740 return B_OK; 741 } 742 743 744 /*! Dequeues a connected child from a parent socket. 745 It also returns a reference with the child socket. 746 */ 747 status_t 748 socket_dequeue_connected(net_socket* _parent, net_socket** _socket) 749 { 750 net_socket_private* parent = (net_socket_private*)_parent; 751 752 mutex_lock(&parent->lock); 753 754 net_socket_private* socket = parent->connected_children.RemoveHead(); 755 if (socket != NULL) { 756 socket->AcquireReference(); 757 socket->RemoveFromParent(); 758 parent->child_count--; 759 *_socket = socket; 760 } 761 762 mutex_unlock(&parent->lock); 763 764 if (socket == NULL) 765 return B_ENTRY_NOT_FOUND; 766 767 return B_OK; 768 } 769 770 771 ssize_t 772 socket_count_connected(net_socket* _parent) 773 { 774 net_socket_private* parent = (net_socket_private*)_parent; 775 776 MutexLocker _(parent->lock); 777 return parent->connected_children.Count(); 778 } 779 780 781 status_t 782 socket_set_max_backlog(net_socket* _socket, uint32 backlog) 783 { 784 net_socket_private* socket = (net_socket_private*)_socket; 785 786 // we enforce an upper limit of connections waiting to be accepted 787 if (backlog > 256) 788 backlog = 256; 789 790 MutexLocker _(socket->lock); 791 792 // first remove the pending connections, then the already connected 793 // ones as needed 794 net_socket_private* child; 795 while (socket->child_count > backlog 796 && (child = socket->pending_children.RemoveTail()) != NULL) { 797 child->RemoveFromParent(); 798 socket->child_count--; 799 } 800 while (socket->child_count > backlog 801 && (child = socket->connected_children.RemoveTail()) != NULL) { 802 child->RemoveFromParent(); 803 socket->child_count--; 804 } 805 806 socket->max_backlog = backlog; 807 return B_OK; 808 } 809 810 811 /*! Returns whether or not this socket has a parent. The parent might not be 812 valid anymore, though. 813 */ 814 bool 815 socket_has_parent(net_socket* _socket) 816 { 817 net_socket_private* socket = (net_socket_private*)_socket; 818 return socket->parent != NULL; 819 } 820 821 822 /*! The socket has been connected. It will be moved to the connected queue 823 of its parent socket. 824 */ 825 status_t 826 socket_connected(net_socket* _socket) 827 { 828 net_socket_private* socket = (net_socket_private*)_socket; 829 830 TRACE("socket_connected(%p)\n", socket); 831 832 if (socket->parent == NULL) { 833 socket->is_connected = true; 834 return B_OK; 835 } 836 837 BReference<net_socket_private> parent = socket->parent.GetReference(); 838 if (parent.Get() == NULL) 839 return B_BAD_VALUE; 840 841 MutexLocker _(parent->lock); 842 843 parent->pending_children.Remove(socket); 844 parent->connected_children.Add(socket); 845 socket->is_connected = true; 846 847 // notify parent 848 if (parent->select_pool) 849 notify_select_event_pool(parent->select_pool, B_SELECT_READ); 850 851 return B_OK; 852 } 853 854 855 /*! The socket has been aborted. Steals the parent's reference, and releases 856 it. 857 */ 858 status_t 859 socket_aborted(net_socket* _socket) 860 { 861 net_socket_private* socket = (net_socket_private*)_socket; 862 863 TRACE("socket_aborted(%p)\n", socket); 864 865 BReference<net_socket_private> parent = socket->parent.GetReference(); 866 if (parent.Get() == NULL) 867 return B_BAD_VALUE; 868 869 MutexLocker _(parent->lock); 870 871 if (socket->is_connected) 872 parent->connected_children.Remove(socket); 873 else 874 parent->pending_children.Remove(socket); 875 876 parent->child_count--; 877 socket->RemoveFromParent(); 878 879 return B_OK; 880 } 881 882 883 // #pragma mark - notifications 884 885 886 status_t 887 socket_request_notification(net_socket* _socket, uint8 event, selectsync* sync) 888 { 889 net_socket_private* socket = (net_socket_private*)_socket; 890 891 mutex_lock(&socket->lock); 892 893 status_t status = add_select_sync_pool_entry(&socket->select_pool, sync, 894 event); 895 896 mutex_unlock(&socket->lock); 897 898 if (status != B_OK) 899 return status; 900 901 // check if the event is already present 902 // TODO: add support for poll() types 903 904 switch (event) { 905 case B_SELECT_READ: 906 { 907 ssize_t available = socket_read_avail(socket); 908 if ((ssize_t)socket->receive.low_water_mark <= available 909 || available < B_OK) 910 notify_select_event(sync, event); 911 break; 912 } 913 case B_SELECT_WRITE: 914 { 915 ssize_t available = socket_send_avail(socket); 916 if ((ssize_t)socket->send.low_water_mark <= available 917 || available < B_OK) 918 notify_select_event(sync, event); 919 break; 920 } 921 case B_SELECT_ERROR: 922 if (socket->error != B_OK) 923 notify_select_event(sync, event); 924 break; 925 } 926 927 return B_OK; 928 } 929 930 931 status_t 932 socket_cancel_notification(net_socket* _socket, uint8 event, selectsync* sync) 933 { 934 net_socket_private* socket = (net_socket_private*)_socket; 935 936 MutexLocker _(socket->lock); 937 return remove_select_sync_pool_entry(&socket->select_pool, sync, event); 938 } 939 940 941 status_t 942 socket_notify(net_socket* _socket, uint8 event, int32 value) 943 { 944 net_socket_private* socket = (net_socket_private*)_socket; 945 bool notify = true; 946 947 switch (event) { 948 case B_SELECT_READ: 949 if ((ssize_t)socket->receive.low_water_mark > value 950 && value >= B_OK) 951 notify = false; 952 break; 953 954 case B_SELECT_WRITE: 955 if ((ssize_t)socket->send.low_water_mark > value && value >= B_OK) 956 notify = false; 957 break; 958 959 case B_SELECT_ERROR: 960 socket->error = value; 961 break; 962 } 963 964 MutexLocker _(socket->lock); 965 966 if (notify && socket->select_pool != NULL) { 967 notify_select_event_pool(socket->select_pool, event); 968 969 if (event == B_SELECT_ERROR) { 970 // always notify read/write on error 971 notify_select_event_pool(socket->select_pool, B_SELECT_READ); 972 notify_select_event_pool(socket->select_pool, B_SELECT_WRITE); 973 } 974 } 975 976 return B_OK; 977 } 978 979 980 // #pragma mark - standard socket API 981 982 983 int 984 socket_accept(net_socket* socket, struct sockaddr* address, 985 socklen_t* _addressLength, net_socket** _acceptedSocket) 986 { 987 if ((socket->options & SO_ACCEPTCONN) == 0) 988 return B_BAD_VALUE; 989 990 net_socket* accepted; 991 status_t status = socket->first_info->accept(socket->first_protocol, 992 &accepted); 993 if (status != B_OK) 994 return status; 995 996 if (address && *_addressLength > 0) { 997 memcpy(address, &accepted->peer, min_c(*_addressLength, 998 min_c(accepted->peer.ss_len, sizeof(sockaddr_storage)))); 999 *_addressLength = accepted->peer.ss_len; 1000 } 1001 1002 *_acceptedSocket = accepted; 1003 return B_OK; 1004 } 1005 1006 1007 int 1008 socket_bind(net_socket* socket, const struct sockaddr* address, 1009 socklen_t addressLength) 1010 { 1011 sockaddr empty; 1012 if (address == NULL) { 1013 // special - try to bind to an empty address, like INADDR_ANY 1014 memset(&empty, 0, sizeof(sockaddr)); 1015 empty.sa_len = sizeof(sockaddr); 1016 empty.sa_family = socket->family; 1017 1018 address = ∅ 1019 addressLength = sizeof(sockaddr); 1020 } 1021 1022 if (socket->address.ss_len != 0) { 1023 status_t status = socket->first_info->unbind(socket->first_protocol, 1024 (sockaddr*)&socket->address); 1025 if (status != B_OK) 1026 return status; 1027 } 1028 1029 memcpy(&socket->address, address, sizeof(sockaddr)); 1030 socket->address.ss_len = sizeof(sockaddr_storage); 1031 1032 status_t status = socket->first_info->bind(socket->first_protocol, 1033 (sockaddr*)address); 1034 if (status != B_OK) { 1035 // clear address again, as binding failed 1036 socket->address.ss_len = 0; 1037 } 1038 1039 return status; 1040 } 1041 1042 1043 int 1044 socket_connect(net_socket* socket, const struct sockaddr* address, 1045 socklen_t addressLength) 1046 { 1047 if (address == NULL || addressLength == 0) 1048 return ENETUNREACH; 1049 1050 if (socket->address.ss_len == 0) { 1051 // try to bind first 1052 status_t status = socket_bind(socket, NULL, 0); 1053 if (status != B_OK) 1054 return status; 1055 } 1056 1057 return socket->first_info->connect(socket->first_protocol, address); 1058 } 1059 1060 1061 int 1062 socket_getpeername(net_socket* socket, struct sockaddr* address, 1063 socklen_t* _addressLength) 1064 { 1065 if (socket->peer.ss_len == 0) 1066 return ENOTCONN; 1067 1068 memcpy(address, &socket->peer, min_c(*_addressLength, socket->peer.ss_len)); 1069 *_addressLength = socket->peer.ss_len; 1070 return B_OK; 1071 } 1072 1073 1074 int 1075 socket_getsockname(net_socket* socket, struct sockaddr* address, 1076 socklen_t* _addressLength) 1077 { 1078 if (socket->address.ss_len == 0) { 1079 struct sockaddr buffer; 1080 memset(&buffer, 0, sizeof(buffer)); 1081 buffer.sa_family = socket->family; 1082 1083 memcpy(address, &buffer, min_c(*_addressLength, sizeof(buffer))); 1084 *_addressLength = sizeof(buffer); 1085 return B_OK; 1086 } 1087 1088 memcpy(address, &socket->address, min_c(*_addressLength, 1089 socket->address.ss_len)); 1090 *_addressLength = socket->address.ss_len; 1091 return B_OK; 1092 } 1093 1094 1095 status_t 1096 socket_get_option(net_socket* socket, int level, int option, void* value, 1097 int* _length) 1098 { 1099 if (level != SOL_SOCKET) 1100 return ENOPROTOOPT; 1101 1102 switch (option) { 1103 case SO_SNDBUF: 1104 { 1105 uint32* size = (uint32*)value; 1106 *size = socket->send.buffer_size; 1107 *_length = sizeof(uint32); 1108 return B_OK; 1109 } 1110 1111 case SO_RCVBUF: 1112 { 1113 uint32* size = (uint32*)value; 1114 *size = socket->receive.buffer_size; 1115 *_length = sizeof(uint32); 1116 return B_OK; 1117 } 1118 1119 case SO_SNDLOWAT: 1120 { 1121 uint32* size = (uint32*)value; 1122 *size = socket->send.low_water_mark; 1123 *_length = sizeof(uint32); 1124 return B_OK; 1125 } 1126 1127 case SO_RCVLOWAT: 1128 { 1129 uint32* size = (uint32*)value; 1130 *size = socket->receive.low_water_mark; 1131 *_length = sizeof(uint32); 1132 return B_OK; 1133 } 1134 1135 case SO_RCVTIMEO: 1136 case SO_SNDTIMEO: 1137 { 1138 if (*_length < (int)sizeof(struct timeval)) 1139 return B_BAD_VALUE; 1140 1141 bigtime_t timeout; 1142 if (option == SO_SNDTIMEO) 1143 timeout = socket->send.timeout; 1144 else 1145 timeout = socket->receive.timeout; 1146 if (timeout == B_INFINITE_TIMEOUT) 1147 timeout = 0; 1148 1149 struct timeval* timeval = (struct timeval*)value; 1150 timeval->tv_sec = timeout / 1000000LL; 1151 timeval->tv_usec = timeout % 1000000LL; 1152 1153 *_length = sizeof(struct timeval); 1154 return B_OK; 1155 } 1156 1157 case SO_NONBLOCK: 1158 { 1159 int32* _set = (int32*)value; 1160 *_set = socket->receive.timeout == 0 && socket->send.timeout == 0; 1161 *_length = sizeof(int32); 1162 return B_OK; 1163 } 1164 1165 case SO_ACCEPTCONN: 1166 case SO_BROADCAST: 1167 case SO_DEBUG: 1168 case SO_DONTROUTE: 1169 case SO_KEEPALIVE: 1170 case SO_OOBINLINE: 1171 case SO_REUSEADDR: 1172 case SO_REUSEPORT: 1173 case SO_USELOOPBACK: 1174 { 1175 int32* _set = (int32*)value; 1176 *_set = (socket->options & option) != 0; 1177 *_length = sizeof(int32); 1178 return B_OK; 1179 } 1180 1181 case SO_TYPE: 1182 { 1183 int32* _set = (int32*)value; 1184 *_set = socket->type; 1185 *_length = sizeof(int32); 1186 return B_OK; 1187 } 1188 1189 case SO_ERROR: 1190 { 1191 int32* _set = (int32*)value; 1192 *_set = socket->error; 1193 *_length = sizeof(int32); 1194 1195 socket->error = B_OK; 1196 // clear error upon retrieval 1197 return B_OK; 1198 } 1199 1200 default: 1201 break; 1202 } 1203 1204 dprintf("socket_getsockopt: unknown option %d\n", option); 1205 return ENOPROTOOPT; 1206 } 1207 1208 1209 int 1210 socket_getsockopt(net_socket* socket, int level, int option, void* value, 1211 int* _length) 1212 { 1213 return socket->first_protocol->module->getsockopt(socket->first_protocol, 1214 level, option, value, _length); 1215 } 1216 1217 1218 int 1219 socket_listen(net_socket* socket, int backlog) 1220 { 1221 status_t status = socket->first_info->listen(socket->first_protocol, 1222 backlog); 1223 if (status == B_OK) 1224 socket->options |= SO_ACCEPTCONN; 1225 1226 return status; 1227 } 1228 1229 1230 ssize_t 1231 socket_receive(net_socket* socket, msghdr* header, void* data, size_t length, 1232 int flags) 1233 { 1234 // If the protocol sports read_data_no_buffer() we use it. 1235 if (socket->first_info->read_data_no_buffer != NULL) 1236 return socket_receive_no_buffer(socket, header, data, length, flags); 1237 1238 size_t totalLength = length; 1239 net_buffer* buffer; 1240 int i; 1241 1242 // the convention to this function is that have header been 1243 // present, { data, length } would have been iovec[0] and is 1244 // always considered like that 1245 1246 if (header) { 1247 // calculate the length considering all of the extra buffers 1248 for (i = 1; i < header->msg_iovlen; i++) 1249 totalLength += header->msg_iov[i].iov_len; 1250 } 1251 1252 status_t status = socket->first_info->read_data( 1253 socket->first_protocol, totalLength, flags, &buffer); 1254 if (status != B_OK) 1255 return status; 1256 1257 // process ancillary data 1258 if (header != NULL) { 1259 if (buffer != NULL && header->msg_control != NULL) { 1260 ancillary_data_container* container 1261 = gNetBufferModule.get_ancillary_data(buffer); 1262 if (container != NULL) 1263 status = process_ancillary_data(socket, container, header); 1264 else 1265 status = process_ancillary_data(socket, buffer, header); 1266 if (status != B_OK) { 1267 gNetBufferModule.free(buffer); 1268 return status; 1269 } 1270 } else 1271 header->msg_controllen = 0; 1272 } 1273 1274 // TODO: - returning a NULL buffer when received 0 bytes 1275 // may not make much sense as we still need the address 1276 // - gNetBufferModule.read() uses memcpy() instead of user_memcpy 1277 1278 size_t nameLen = 0; 1279 1280 if (header) { 1281 // TODO: - consider the control buffer options 1282 nameLen = header->msg_namelen; 1283 header->msg_namelen = 0; 1284 header->msg_flags = 0; 1285 } 1286 1287 if (buffer == NULL) 1288 return 0; 1289 1290 size_t bytesReceived = buffer->size, bytesCopied = 0; 1291 1292 length = min_c(bytesReceived, length); 1293 if (gNetBufferModule.read(buffer, 0, data, length) < B_OK) { 1294 gNetBufferModule.free(buffer); 1295 return ENOBUFS; 1296 } 1297 1298 // if first copy was a success, proceed to following 1299 // copies as required 1300 bytesCopied += length; 1301 1302 if (header) { 1303 // we only start considering at iovec[1] 1304 // as { data, length } is iovec[0] 1305 for (i = 1; i < header->msg_iovlen && bytesCopied < bytesReceived; i++) { 1306 iovec& vec = header->msg_iov[i]; 1307 size_t toRead = min_c(bytesReceived - bytesCopied, vec.iov_len); 1308 if (gNetBufferModule.read(buffer, bytesCopied, vec.iov_base, 1309 toRead) < B_OK) { 1310 break; 1311 } 1312 1313 bytesCopied += toRead; 1314 } 1315 1316 if (header->msg_name != NULL) { 1317 header->msg_namelen = min_c(nameLen, buffer->source->sa_len); 1318 memcpy(header->msg_name, buffer->source, header->msg_namelen); 1319 } 1320 } 1321 1322 gNetBufferModule.free(buffer); 1323 1324 if (bytesCopied < bytesReceived) { 1325 if (header) 1326 header->msg_flags = MSG_TRUNC; 1327 1328 if (flags & MSG_TRUNC) 1329 return bytesReceived; 1330 } 1331 1332 return bytesCopied; 1333 } 1334 1335 1336 ssize_t 1337 socket_send(net_socket* socket, msghdr* header, const void* data, size_t length, 1338 int flags) 1339 { 1340 const sockaddr* address = NULL; 1341 socklen_t addressLength = 0; 1342 size_t bytesLeft = length; 1343 1344 if (length > SSIZE_MAX) 1345 return B_BAD_VALUE; 1346 1347 ancillary_data_container* ancillaryData = NULL; 1348 CObjectDeleter<ancillary_data_container> ancillaryDataDeleter(NULL, 1349 &delete_ancillary_data_container); 1350 1351 if (header != NULL) { 1352 address = (const sockaddr*)header->msg_name; 1353 addressLength = header->msg_namelen; 1354 1355 // get the ancillary data 1356 if (header->msg_control != NULL) { 1357 ancillaryData = create_ancillary_data_container(); 1358 if (ancillaryData == NULL) 1359 return B_NO_MEMORY; 1360 ancillaryDataDeleter.SetTo(ancillaryData); 1361 1362 status_t status = add_ancillary_data(socket, ancillaryData, 1363 (cmsghdr*)header->msg_control, header->msg_controllen); 1364 if (status != B_OK) 1365 return status; 1366 } 1367 } 1368 1369 if (addressLength == 0) 1370 address = NULL; 1371 else if (address == NULL) 1372 return B_BAD_VALUE; 1373 1374 if (socket->peer.ss_len != 0) { 1375 if (address != NULL) 1376 return EISCONN; 1377 1378 // socket is connected, we use that address 1379 address = (struct sockaddr*)&socket->peer; 1380 addressLength = socket->peer.ss_len; 1381 } 1382 1383 if (address == NULL || addressLength == 0) { 1384 // don't know where to send to: 1385 return EDESTADDRREQ; 1386 } 1387 1388 if ((socket->first_info->flags & NET_PROTOCOL_ATOMIC_MESSAGES) != 0 1389 && bytesLeft > socket->send.buffer_size) 1390 return EMSGSIZE; 1391 1392 if (socket->address.ss_len == 0) { 1393 // try to bind first 1394 status_t status = socket_bind(socket, NULL, 0); 1395 if (status != B_OK) 1396 return status; 1397 } 1398 1399 // If the protocol has a send_data_no_buffer() hook, we use that one. 1400 if (socket->first_info->send_data_no_buffer != NULL) { 1401 iovec stackVec = { (void*)data, length }; 1402 iovec* vecs = header ? header->msg_iov : &stackVec; 1403 int vecCount = header ? header->msg_iovlen : 1; 1404 1405 ssize_t written = socket->first_info->send_data_no_buffer( 1406 socket->first_protocol, vecs, vecCount, ancillaryData, address, 1407 addressLength); 1408 if (written > 0) 1409 ancillaryDataDeleter.Detach(); 1410 return written; 1411 } 1412 1413 // By convention, if a header is given, the (data, length) equals the first 1414 // iovec. So drop the header, if it is the only iovec. Otherwise compute 1415 // the size of the remaining ones. 1416 if (header != NULL) { 1417 if (header->msg_iovlen <= 1) 1418 header = NULL; 1419 else { 1420 // TODO: The iovecs have already been copied to kernel space. Simplify! 1421 bytesLeft += compute_user_iovec_length(header->msg_iov + 1, 1422 header->msg_iovlen - 1); 1423 } 1424 } 1425 1426 ssize_t bytesSent = 0; 1427 size_t vecOffset = 0; 1428 uint32 vecIndex = 0; 1429 1430 while (bytesLeft > 0) { 1431 // TODO: useful, maybe even computed header space! 1432 net_buffer* buffer = gNetBufferModule.create(256); 1433 if (buffer == NULL) 1434 return ENOBUFS; 1435 1436 while (buffer->size < socket->send.buffer_size 1437 && buffer->size < bytesLeft) { 1438 if (vecIndex > 0 && vecOffset == 0) { 1439 // retrieve next iovec buffer from header 1440 iovec vec; 1441 if (user_memcpy(&vec, header->msg_iov + vecIndex, sizeof(iovec)) 1442 < B_OK) { 1443 gNetBufferModule.free(buffer); 1444 return B_BAD_ADDRESS; 1445 } 1446 1447 data = vec.iov_base; 1448 length = vec.iov_len; 1449 } 1450 1451 size_t bytes = length; 1452 if (buffer->size + bytes > socket->send.buffer_size) 1453 bytes = socket->send.buffer_size - buffer->size; 1454 1455 if (gNetBufferModule.append(buffer, data, bytes) < B_OK) { 1456 gNetBufferModule.free(buffer); 1457 return ENOBUFS; 1458 } 1459 1460 if (bytes != length) { 1461 // partial send 1462 vecOffset = bytes; 1463 length -= vecOffset; 1464 data = (uint8*)data + vecOffset; 1465 } else if (header != NULL) { 1466 // proceed with next buffer, if any 1467 vecOffset = 0; 1468 vecIndex++; 1469 1470 if (vecIndex >= (uint32)header->msg_iovlen) 1471 break; 1472 } 1473 } 1474 1475 // attach ancillary data to the first buffer 1476 status_t status; 1477 if (ancillaryData != NULL) { 1478 gNetBufferModule.set_ancillary_data(buffer, ancillaryData); 1479 ancillaryDataDeleter.Detach(); 1480 ancillaryData = NULL; 1481 } 1482 1483 size_t bufferSize = buffer->size; 1484 buffer->flags = flags; 1485 memcpy(buffer->source, &socket->address, socket->address.ss_len); 1486 memcpy(buffer->destination, address, addressLength); 1487 buffer->destination->sa_len = addressLength; 1488 1489 status = socket->first_info->send_data(socket->first_protocol, buffer); 1490 if (status != B_OK) { 1491 size_t sizeAfterSend = buffer->size; 1492 gNetBufferModule.free(buffer); 1493 1494 if ((sizeAfterSend != bufferSize || bytesSent > 0) 1495 && (status == B_INTERRUPTED || status == B_WOULD_BLOCK)) { 1496 // this appears to be a partial write 1497 return bytesSent + (bufferSize - sizeAfterSend); 1498 } 1499 return status; 1500 } 1501 1502 bytesLeft -= bufferSize; 1503 bytesSent += bufferSize; 1504 } 1505 1506 return bytesSent; 1507 } 1508 1509 1510 status_t 1511 socket_set_option(net_socket* socket, int level, int option, const void* value, 1512 int length) 1513 { 1514 if (level != SOL_SOCKET) 1515 return ENOPROTOOPT; 1516 1517 TRACE("%s(socket %p, option %d\n", __FUNCTION__, socket, option); 1518 1519 switch (option) { 1520 // TODO: implement other options! 1521 case SO_LINGER: 1522 { 1523 if (length < (int)sizeof(struct linger)) 1524 return B_BAD_VALUE; 1525 1526 struct linger* linger = (struct linger*)value; 1527 if (linger->l_onoff) { 1528 socket->options |= SO_LINGER; 1529 socket->linger = linger->l_linger; 1530 } else { 1531 socket->options &= ~SO_LINGER; 1532 socket->linger = 0; 1533 } 1534 return B_OK; 1535 } 1536 1537 case SO_SNDBUF: 1538 if (length != sizeof(uint32)) 1539 return B_BAD_VALUE; 1540 1541 socket->send.buffer_size = *(const uint32*)value; 1542 return B_OK; 1543 1544 case SO_RCVBUF: 1545 if (length != sizeof(uint32)) 1546 return B_BAD_VALUE; 1547 1548 socket->receive.buffer_size = *(const uint32*)value; 1549 return B_OK; 1550 1551 case SO_SNDLOWAT: 1552 if (length != sizeof(uint32)) 1553 return B_BAD_VALUE; 1554 1555 socket->send.low_water_mark = *(const uint32*)value; 1556 return B_OK; 1557 1558 case SO_RCVLOWAT: 1559 if (length != sizeof(uint32)) 1560 return B_BAD_VALUE; 1561 1562 socket->receive.low_water_mark = *(const uint32*)value; 1563 return B_OK; 1564 1565 case SO_RCVTIMEO: 1566 case SO_SNDTIMEO: 1567 { 1568 if (length != sizeof(struct timeval)) 1569 return B_BAD_VALUE; 1570 1571 const struct timeval* timeval = (const struct timeval*)value; 1572 bigtime_t timeout = timeval->tv_sec * 1000000LL + timeval->tv_usec; 1573 if (timeout == 0) 1574 timeout = B_INFINITE_TIMEOUT; 1575 1576 if (option == SO_SNDTIMEO) 1577 socket->send.timeout = timeout; 1578 else 1579 socket->receive.timeout = timeout; 1580 return B_OK; 1581 } 1582 1583 case SO_NONBLOCK: 1584 if (length != sizeof(int32)) 1585 return B_BAD_VALUE; 1586 1587 if (*(const int32*)value) { 1588 socket->send.timeout = 0; 1589 socket->receive.timeout = 0; 1590 } else { 1591 socket->send.timeout = B_INFINITE_TIMEOUT; 1592 socket->receive.timeout = B_INFINITE_TIMEOUT; 1593 } 1594 return B_OK; 1595 1596 case SO_BROADCAST: 1597 case SO_DEBUG: 1598 case SO_DONTROUTE: 1599 case SO_KEEPALIVE: 1600 case SO_OOBINLINE: 1601 case SO_REUSEADDR: 1602 case SO_REUSEPORT: 1603 case SO_USELOOPBACK: 1604 if (length != sizeof(int32)) 1605 return B_BAD_VALUE; 1606 1607 if (*(const int32*)value) 1608 socket->options |= option; 1609 else 1610 socket->options &= ~option; 1611 return B_OK; 1612 1613 case SO_BINDTODEVICE: 1614 { 1615 if (length != sizeof(uint32)) 1616 return B_BAD_VALUE; 1617 1618 // TODO: we might want to check if the device exists at all 1619 // (although it doesn't really harm when we don't) 1620 socket->bound_to_device = *(const uint32*)value; 1621 return B_OK; 1622 } 1623 1624 default: 1625 break; 1626 } 1627 1628 dprintf("socket_setsockopt: unknown option %d\n", option); 1629 return ENOPROTOOPT; 1630 } 1631 1632 1633 int 1634 socket_setsockopt(net_socket* socket, int level, int option, const void* value, 1635 int length) 1636 { 1637 return socket->first_protocol->module->setsockopt(socket->first_protocol, 1638 level, option, value, length); 1639 } 1640 1641 1642 int 1643 socket_shutdown(net_socket* socket, int direction) 1644 { 1645 return socket->first_info->shutdown(socket->first_protocol, direction); 1646 } 1647 1648 1649 status_t 1650 socket_socketpair(int family, int type, int protocol, net_socket* sockets[2]) 1651 { 1652 sockets[0] = NULL; 1653 sockets[1] = NULL; 1654 1655 // create sockets 1656 status_t error = socket_open(family, type, protocol, &sockets[0]); 1657 if (error != B_OK) 1658 return error; 1659 1660 error = socket_open(family, type, protocol, &sockets[1]); 1661 1662 // bind one 1663 if (error == B_OK) 1664 error = socket_bind(sockets[0], NULL, 0); 1665 1666 // start listening 1667 if (error == B_OK) 1668 error = socket_listen(sockets[0], 1); 1669 1670 // connect them 1671 if (error == B_OK) { 1672 error = socket_connect(sockets[1], (sockaddr*)&sockets[0]->address, 1673 sockets[0]->address.ss_len); 1674 } 1675 1676 // accept a socket 1677 net_socket* acceptedSocket = NULL; 1678 if (error == B_OK) 1679 error = socket_accept(sockets[0], NULL, NULL, &acceptedSocket); 1680 1681 if (error == B_OK) { 1682 // everything worked: close the listener socket 1683 socket_close(sockets[0]); 1684 socket_free(sockets[0]); 1685 sockets[0] = acceptedSocket; 1686 } else { 1687 // close sockets on error 1688 for (int i = 0; i < 2; i++) { 1689 if (sockets[i] != NULL) { 1690 socket_close(sockets[i]); 1691 socket_free(sockets[i]); 1692 sockets[i] = NULL; 1693 } 1694 } 1695 } 1696 1697 return error; 1698 } 1699 1700 1701 // #pragma mark - 1702 1703 1704 static status_t 1705 socket_std_ops(int32 op, ...) 1706 { 1707 switch (op) { 1708 case B_MODULE_INIT: 1709 { 1710 new (&sSocketList) SocketList; 1711 mutex_init(&sSocketLock, "socket list"); 1712 1713 #if ENABLE_DEBUGGER_COMMANDS 1714 add_debugger_command("sockets", dump_sockets, "lists all sockets"); 1715 add_debugger_command("socket", dump_socket, "dumps a socket"); 1716 #endif 1717 return B_OK; 1718 } 1719 case B_MODULE_UNINIT: 1720 ASSERT(sSocketList.IsEmpty()); 1721 mutex_destroy(&sSocketLock); 1722 1723 #if ENABLE_DEBUGGER_COMMANDS 1724 remove_debugger_command("socket", dump_socket); 1725 remove_debugger_command("sockets", dump_sockets); 1726 #endif 1727 return B_OK; 1728 1729 default: 1730 return B_ERROR; 1731 } 1732 } 1733 1734 1735 net_socket_module_info gNetSocketModule = { 1736 { 1737 NET_SOCKET_MODULE_NAME, 1738 0, 1739 socket_std_ops 1740 }, 1741 socket_open, 1742 socket_close, 1743 socket_free, 1744 1745 socket_readv, 1746 socket_writev, 1747 socket_control, 1748 1749 socket_read_avail, 1750 socket_send_avail, 1751 1752 socket_send_data, 1753 socket_receive_data, 1754 1755 socket_get_option, 1756 socket_set_option, 1757 1758 socket_get_next_stat, 1759 1760 // connections 1761 socket_acquire, 1762 socket_release, 1763 socket_spawn_pending, 1764 socket_dequeue_connected, 1765 socket_count_connected, 1766 socket_set_max_backlog, 1767 socket_has_parent, 1768 socket_connected, 1769 socket_aborted, 1770 1771 // notifications 1772 socket_request_notification, 1773 socket_cancel_notification, 1774 socket_notify, 1775 1776 // standard socket API 1777 socket_accept, 1778 socket_bind, 1779 socket_connect, 1780 socket_getpeername, 1781 socket_getsockname, 1782 socket_getsockopt, 1783 socket_listen, 1784 socket_receive, 1785 socket_send, 1786 socket_setsockopt, 1787 socket_shutdown, 1788 socket_socketpair 1789 }; 1790 1791