1 /* 2 * Copyright 2006-2010, Haiku, Inc. All Rights Reserved. 3 * Distributed under the terms of the MIT License. 4 * 5 * Authors: 6 * Axel Dörfler, axeld@pinc-software.de 7 */ 8 9 10 #include "stack_private.h" 11 12 #include <stdlib.h> 13 #include <string.h> 14 #include <sys/ioctl.h> 15 #include <sys/time.h> 16 17 #include <new> 18 19 #include <Drivers.h> 20 #include <KernelExport.h> 21 #include <Select.h> 22 23 #include <AutoDeleter.h> 24 #include <team.h> 25 #include <util/AutoLock.h> 26 #include <util/list.h> 27 #include <WeakReferenceable.h> 28 29 #include <fs/select_sync_pool.h> 30 #include <kernel.h> 31 32 #include <net_protocol.h> 33 #include <net_stack.h> 34 #include <net_stat.h> 35 36 #include "ancillary_data.h" 37 #include "utility.h" 38 39 40 //#define TRACE_SOCKET 41 #ifdef TRACE_SOCKET 42 # define TRACE(x...) dprintf(STACK_DEBUG_PREFIX x) 43 #else 44 # define TRACE(x...) ; 45 #endif 46 47 48 struct net_socket_private; 49 typedef DoublyLinkedList<net_socket_private> SocketList; 50 51 struct net_socket_private : net_socket, 52 DoublyLinkedListLinkImpl<net_socket_private>, 53 BWeakReferenceable { 54 net_socket_private(); 55 ~net_socket_private(); 56 57 void RemoveFromParent(); 58 59 BWeakReference<net_socket_private> parent; 60 team_id owner; 61 uint32 max_backlog; 62 uint32 child_count; 63 SocketList pending_children; 64 SocketList connected_children; 65 66 struct select_sync_pool* select_pool; 67 mutex lock; 68 69 bool is_connected; 70 bool is_in_socket_list; 71 }; 72 73 74 int socket_bind(net_socket* socket, const struct sockaddr* address, 75 socklen_t addressLength); 76 int socket_setsockopt(net_socket* socket, int level, int option, 77 const void* value, int length); 78 ssize_t socket_read_avail(net_socket* socket); 79 80 static SocketList sSocketList; 81 static mutex sSocketLock; 82 83 84 net_socket_private::net_socket_private() 85 : 86 owner(-1), 87 max_backlog(0), 88 child_count(0), 89 select_pool(NULL), 90 is_connected(false), 91 is_in_socket_list(false) 92 { 93 first_protocol = NULL; 94 first_info = NULL; 95 options = 0; 96 linger = 0; 97 bound_to_device = 0; 98 error = 0; 99 100 address.ss_len = 0; 101 peer.ss_len = 0; 102 103 mutex_init(&lock, "socket"); 104 105 // set defaults (may be overridden by the protocols) 106 send.buffer_size = 65535; 107 send.low_water_mark = 1; 108 send.timeout = B_INFINITE_TIMEOUT; 109 receive.buffer_size = 65535; 110 receive.low_water_mark = 1; 111 receive.timeout = B_INFINITE_TIMEOUT; 112 } 113 114 115 net_socket_private::~net_socket_private() 116 { 117 TRACE("delete net_socket %p\n", this); 118 119 if (parent != NULL) 120 panic("socket still has a parent!"); 121 122 if (is_in_socket_list) { 123 MutexLocker _(sSocketLock); 124 sSocketList.Remove(this); 125 } 126 127 mutex_lock(&lock); 128 129 // also delete all children of this socket 130 while (net_socket_private* child = pending_children.RemoveHead()) { 131 child->RemoveFromParent(); 132 } 133 while (net_socket_private* child = connected_children.RemoveHead()) { 134 child->RemoveFromParent(); 135 } 136 137 mutex_unlock(&lock); 138 139 put_domain_protocols(this); 140 141 mutex_destroy(&lock); 142 } 143 144 145 void 146 net_socket_private::RemoveFromParent() 147 { 148 ASSERT(!is_in_socket_list && parent != NULL); 149 150 parent = NULL; 151 152 mutex_lock(&sSocketLock); 153 sSocketList.Add(this); 154 mutex_unlock(&sSocketLock); 155 156 is_in_socket_list = true; 157 158 ReleaseReference(); 159 } 160 161 162 // #pragma mark - 163 164 165 static size_t 166 compute_user_iovec_length(iovec* userVec, uint32 count) 167 { 168 size_t length = 0; 169 170 for (uint32 i = 0; i < count; i++) { 171 iovec vec; 172 if (user_memcpy(&vec, userVec + i, sizeof(iovec)) < B_OK) 173 return 0; 174 175 length += vec.iov_len; 176 } 177 178 return length; 179 } 180 181 182 static status_t 183 create_socket(int family, int type, int protocol, net_socket_private** _socket) 184 { 185 struct net_socket_private* socket = new(std::nothrow) net_socket_private; 186 if (socket == NULL) 187 return B_NO_MEMORY; 188 status_t status = socket->InitCheck(); 189 if (status != B_OK) { 190 delete socket; 191 return status; 192 } 193 194 socket->family = family; 195 socket->type = type; 196 socket->protocol = protocol; 197 198 status = get_domain_protocols(socket); 199 if (status != B_OK) { 200 delete socket; 201 return status; 202 } 203 204 TRACE("create net_socket %p (%u.%u.%u):\n", socket, socket->family, 205 socket->type, socket->protocol); 206 207 #ifdef TRACE_SOCKET 208 net_protocol* current = socket->first_protocol; 209 for (int i = 0; current != NULL; current = current->next, i++) 210 TRACE(" [%d] %p %s\n", i, current, current->module->info.name); 211 #endif 212 213 *_socket = socket; 214 return B_OK; 215 } 216 217 218 static status_t 219 add_ancillary_data(net_socket* socket, ancillary_data_container* container, 220 void* data, size_t dataLen) 221 { 222 cmsghdr* header = (cmsghdr*)data; 223 224 while (dataLen > 0) { 225 if (header->cmsg_len < sizeof(cmsghdr) || header->cmsg_len > dataLen) 226 return B_BAD_VALUE; 227 228 if (socket->first_info->add_ancillary_data == NULL) 229 return B_NOT_SUPPORTED; 230 231 status_t status = socket->first_info->add_ancillary_data( 232 socket->first_protocol, container, header); 233 if (status != B_OK) 234 return status; 235 236 dataLen -= _ALIGN(header->cmsg_len); 237 header = (cmsghdr*)((uint8*)header + _ALIGN(header->cmsg_len)); 238 } 239 240 return B_OK; 241 } 242 243 244 static status_t 245 process_ancillary_data(net_socket* socket, ancillary_data_container* container, 246 msghdr* messageHeader) 247 { 248 uint8* dataBuffer = (uint8*)messageHeader->msg_control; 249 int dataBufferLen = messageHeader->msg_controllen; 250 251 if (container == NULL || dataBuffer == NULL) { 252 messageHeader->msg_controllen = 0; 253 return B_OK; 254 } 255 256 ancillary_data_header header; 257 void* data = NULL; 258 259 while ((data = next_ancillary_data(container, data, &header)) != NULL) { 260 if (socket->first_info->process_ancillary_data == NULL) 261 return B_NOT_SUPPORTED; 262 263 ssize_t bytesWritten = socket->first_info->process_ancillary_data( 264 socket->first_protocol, &header, data, dataBuffer, dataBufferLen); 265 if (bytesWritten < 0) 266 return bytesWritten; 267 268 dataBuffer += bytesWritten; 269 dataBufferLen -= bytesWritten; 270 } 271 272 messageHeader->msg_controllen -= dataBufferLen; 273 274 return B_OK; 275 } 276 277 278 static status_t 279 process_ancillary_data(net_socket* socket, 280 net_buffer* buffer, msghdr* messageHeader) 281 { 282 void *dataBuffer = messageHeader->msg_control; 283 ssize_t bytesWritten; 284 285 if (dataBuffer == NULL) { 286 messageHeader->msg_controllen = 0; 287 return B_OK; 288 } 289 290 if (socket->first_info->process_ancillary_data_no_container == NULL) 291 return B_NOT_SUPPORTED; 292 293 bytesWritten = socket->first_info->process_ancillary_data_no_container( 294 socket->first_protocol, buffer, dataBuffer, 295 messageHeader->msg_controllen); 296 if (bytesWritten < 0) 297 return bytesWritten; 298 messageHeader->msg_controllen = bytesWritten; 299 300 return B_OK; 301 } 302 303 304 static ssize_t 305 socket_receive_no_buffer(net_socket* socket, msghdr* header, void* data, 306 size_t length, int flags) 307 { 308 iovec stackVec = { data, length }; 309 iovec* vecs = header ? header->msg_iov : &stackVec; 310 int vecCount = header ? header->msg_iovlen : 1; 311 sockaddr* address = header ? (sockaddr*)header->msg_name : NULL; 312 socklen_t* addressLen = header ? &header->msg_namelen : NULL; 313 314 ancillary_data_container* ancillaryData = NULL; 315 ssize_t bytesRead = socket->first_info->read_data_no_buffer( 316 socket->first_protocol, vecs, vecCount, &ancillaryData, address, 317 addressLen); 318 if (bytesRead < 0) 319 return bytesRead; 320 321 CObjectDeleter<ancillary_data_container> ancillaryDataDeleter(ancillaryData, 322 &delete_ancillary_data_container); 323 324 // process ancillary data 325 if (header != NULL) { 326 status_t status = process_ancillary_data(socket, ancillaryData, header); 327 if (status != B_OK) 328 return status; 329 330 header->msg_flags = 0; 331 } 332 333 return bytesRead; 334 } 335 336 337 #if ENABLE_DEBUGGER_COMMANDS 338 339 340 static void 341 print_socket_line(net_socket_private* socket, const char* prefix) 342 { 343 BReference<net_socket_private> parent = socket->parent.GetReference(); 344 kprintf("%s%p %2d.%2d.%2d %6" B_PRId32 " %p %p %p%s\n", prefix, socket, 345 socket->family, socket->type, socket->protocol, socket->owner, 346 socket->first_protocol, socket->first_info, parent.Get(), 347 parent.Get() != NULL ? socket->is_connected ? " (c)" : " (p)" : ""); 348 } 349 350 351 static int 352 dump_socket(int argc, char** argv) 353 { 354 if (argc < 2) { 355 kprintf("usage: %s [address]\n", argv[0]); 356 return 0; 357 } 358 359 net_socket_private* socket = (net_socket_private*)parse_expression(argv[1]); 360 361 kprintf("SOCKET %p\n", socket); 362 kprintf(" family.type.protocol: %d.%d.%d\n", 363 socket->family, socket->type, socket->protocol); 364 BReference<net_socket_private> parent = socket->parent.GetReference(); 365 kprintf(" parent: %p\n", parent.Get()); 366 kprintf(" first protocol: %p\n", socket->first_protocol); 367 kprintf(" first module_info: %p\n", socket->first_info); 368 kprintf(" options: %x\n", socket->options); 369 kprintf(" linger: %d\n", socket->linger); 370 kprintf(" bound to device: %" B_PRIu32 "\n", socket->bound_to_device); 371 kprintf(" owner: %" B_PRId32 "\n", socket->owner); 372 kprintf(" max backlog: %" B_PRId32 "\n", socket->max_backlog); 373 kprintf(" is connected: %d\n", socket->is_connected); 374 kprintf(" child_count: %" B_PRIu32 "\n", socket->child_count); 375 376 if (socket->child_count == 0) 377 return 0; 378 379 kprintf(" pending children:\n"); 380 SocketList::Iterator iterator = socket->pending_children.GetIterator(); 381 while (net_socket_private* child = iterator.Next()) { 382 print_socket_line(child, " "); 383 } 384 385 kprintf(" connected children:\n"); 386 iterator = socket->connected_children.GetIterator(); 387 while (net_socket_private* child = iterator.Next()) { 388 print_socket_line(child, " "); 389 } 390 391 return 0; 392 } 393 394 395 static int 396 dump_sockets(int argc, char** argv) 397 { 398 kprintf("address kind owner protocol module_info parent\n"); 399 400 SocketList::Iterator iterator = sSocketList.GetIterator(); 401 while (net_socket_private* socket = iterator.Next()) { 402 print_socket_line(socket, ""); 403 404 SocketList::Iterator childIterator 405 = socket->pending_children.GetIterator(); 406 while (net_socket_private* child = childIterator.Next()) { 407 print_socket_line(child, " "); 408 } 409 410 childIterator = socket->connected_children.GetIterator(); 411 while (net_socket_private* child = childIterator.Next()) { 412 print_socket_line(child, " "); 413 } 414 } 415 416 return 0; 417 } 418 419 420 #endif // ENABLE_DEBUGGER_COMMANDS 421 422 423 // #pragma mark - 424 425 426 status_t 427 socket_open(int family, int type, int protocol, net_socket** _socket) 428 { 429 net_socket_private* socket; 430 status_t status = create_socket(family, type, protocol, &socket); 431 if (status != B_OK) 432 return status; 433 434 status = socket->first_info->open(socket->first_protocol); 435 if (status != B_OK) { 436 delete socket; 437 return status; 438 } 439 440 socket->owner = team_get_current_team_id(); 441 socket->is_in_socket_list = true; 442 443 mutex_lock(&sSocketLock); 444 sSocketList.Add(socket); 445 mutex_unlock(&sSocketLock); 446 447 *_socket = socket; 448 return B_OK; 449 } 450 451 452 status_t 453 socket_close(net_socket* _socket) 454 { 455 net_socket_private* socket = (net_socket_private*)_socket; 456 return socket->first_info->close(socket->first_protocol); 457 } 458 459 460 void 461 socket_free(net_socket* _socket) 462 { 463 net_socket_private* socket = (net_socket_private*)_socket; 464 socket->first_info->free(socket->first_protocol); 465 socket->ReleaseReference(); 466 } 467 468 469 status_t 470 socket_readv(net_socket* socket, const iovec* vecs, size_t vecCount, 471 size_t* _length) 472 { 473 return -1; 474 } 475 476 477 status_t 478 socket_writev(net_socket* socket, const iovec* vecs, size_t vecCount, 479 size_t* _length) 480 { 481 if (socket->peer.ss_len == 0) 482 return ECONNRESET; 483 484 if (socket->address.ss_len == 0) { 485 // try to bind first 486 status_t status = socket_bind(socket, NULL, 0); 487 if (status != B_OK) 488 return status; 489 } 490 491 // TODO: useful, maybe even computed header space! 492 net_buffer* buffer = gNetBufferModule.create(256); 493 if (buffer == NULL) 494 return ENOBUFS; 495 496 // copy data into buffer 497 498 for (uint32 i = 0; i < vecCount; i++) { 499 if (gNetBufferModule.append(buffer, vecs[i].iov_base, 500 vecs[i].iov_len) < B_OK) { 501 gNetBufferModule.free(buffer); 502 return ENOBUFS; 503 } 504 } 505 506 memcpy(buffer->source, &socket->address, socket->address.ss_len); 507 memcpy(buffer->destination, &socket->peer, socket->peer.ss_len); 508 size_t size = buffer->size; 509 510 ssize_t bytesWritten = socket->first_info->send_data(socket->first_protocol, 511 buffer); 512 if (bytesWritten < B_OK) { 513 if (buffer->size != size) { 514 // this appears to be a partial write 515 *_length = size - buffer->size; 516 } 517 gNetBufferModule.free(buffer); 518 return bytesWritten; 519 } 520 521 *_length = bytesWritten; 522 return B_OK; 523 } 524 525 526 status_t 527 socket_control(net_socket* socket, int32 op, void* data, size_t length) 528 { 529 switch (op) { 530 case FIONBIO: 531 { 532 if (data == NULL) 533 return B_BAD_VALUE; 534 535 int value; 536 if (is_syscall()) { 537 if (!IS_USER_ADDRESS(data) 538 || user_memcpy(&value, data, sizeof(int)) != B_OK) { 539 return B_BAD_ADDRESS; 540 } 541 } else 542 value = *(int*)data; 543 544 return socket_setsockopt(socket, SOL_SOCKET, SO_NONBLOCK, &value, 545 sizeof(int)); 546 } 547 548 case FIONREAD: 549 { 550 if (data == NULL) 551 return B_BAD_VALUE; 552 553 int available = (int)socket_read_avail(socket); 554 if (available < 0) 555 return available; 556 557 if (is_syscall()) { 558 if (!IS_USER_ADDRESS(data) 559 || user_memcpy(data, &available, sizeof(available)) 560 != B_OK) { 561 return B_BAD_ADDRESS; 562 } 563 } else 564 *(int*)data = available; 565 566 return B_OK; 567 } 568 569 case B_SET_BLOCKING_IO: 570 case B_SET_NONBLOCKING_IO: 571 { 572 int value = op == B_SET_NONBLOCKING_IO; 573 return socket_setsockopt(socket, SOL_SOCKET, SO_NONBLOCK, &value, 574 sizeof(int)); 575 } 576 } 577 578 return socket->first_info->control(socket->first_protocol, 579 LEVEL_DRIVER_IOCTL, op, data, &length); 580 } 581 582 583 ssize_t 584 socket_read_avail(net_socket* socket) 585 { 586 return socket->first_info->read_avail(socket->first_protocol); 587 } 588 589 590 ssize_t 591 socket_send_avail(net_socket* socket) 592 { 593 return socket->first_info->send_avail(socket->first_protocol); 594 } 595 596 597 status_t 598 socket_send_data(net_socket* socket, net_buffer* buffer) 599 { 600 return socket->first_info->send_data(socket->first_protocol, 601 buffer); 602 } 603 604 605 status_t 606 socket_receive_data(net_socket* socket, size_t length, uint32 flags, 607 net_buffer** _buffer) 608 { 609 status_t status = socket->first_info->read_data(socket->first_protocol, 610 length, flags, _buffer); 611 if (status != B_OK) 612 return status; 613 614 if (*_buffer && length < (*_buffer)->size) { 615 // discard any data behind the amount requested 616 gNetBufferModule.trim(*_buffer, length); 617 } 618 619 return status; 620 } 621 622 623 status_t 624 socket_get_next_stat(uint32* _cookie, int family, struct net_stat* stat) 625 { 626 MutexLocker locker(sSocketLock); 627 628 net_socket_private* socket = NULL; 629 SocketList::Iterator iterator = sSocketList.GetIterator(); 630 uint32 cookie = *_cookie; 631 uint32 count = 0; 632 633 while (true) { 634 socket = iterator.Next(); 635 if (socket == NULL) 636 return B_ENTRY_NOT_FOUND; 637 638 // TODO: also traverse the pending connections 639 if (count == cookie) 640 break; 641 642 if (family == -1 || family == socket->family) 643 count++; 644 } 645 646 *_cookie = count + 1; 647 648 stat->family = socket->family; 649 stat->type = socket->type; 650 stat->protocol = socket->protocol; 651 stat->owner = socket->owner; 652 stat->state[0] = '\0'; 653 memcpy(&stat->address, &socket->address, sizeof(struct sockaddr_storage)); 654 memcpy(&stat->peer, &socket->peer, sizeof(struct sockaddr_storage)); 655 stat->receive_queue_size = 0; 656 stat->send_queue_size = 0; 657 658 // fill in protocol specific data (if supported by the protocol) 659 size_t length = sizeof(net_stat); 660 socket->first_info->control(socket->first_protocol, socket->protocol, 661 NET_STAT_SOCKET, stat, &length); 662 663 return B_OK; 664 } 665 666 667 // #pragma mark - connections 668 669 670 bool 671 socket_acquire(net_socket* _socket) 672 { 673 net_socket_private* socket = (net_socket_private*)_socket; 674 675 // During destruction, the socket might still be accessible over its 676 // endpoint protocol. We need to make sure the endpoint cannot acquire the 677 // socket anymore -- while not obvious, the endpoint protocol is responsible 678 // for the proper locking here. 679 if (socket->CountReferences() == 0) 680 return false; 681 682 socket->AcquireReference(); 683 return true; 684 } 685 686 687 bool 688 socket_release(net_socket* _socket) 689 { 690 net_socket_private* socket = (net_socket_private*)_socket; 691 return socket->ReleaseReference(); 692 } 693 694 695 status_t 696 socket_spawn_pending(net_socket* _parent, net_socket** _socket) 697 { 698 net_socket_private* parent = (net_socket_private*)_parent; 699 700 TRACE("%s(%p)\n", __FUNCTION__, parent); 701 702 MutexLocker locker(parent->lock); 703 704 // We actually accept more pending connections to compensate for those 705 // that never complete, and also make sure at least a single connection 706 // can always be accepted 707 if (parent->child_count > 3 * parent->max_backlog / 2) 708 return ENOBUFS; 709 710 net_socket_private* socket; 711 status_t status = create_socket(parent->family, parent->type, 712 parent->protocol, &socket); 713 if (status != B_OK) 714 return status; 715 716 // inherit parent's properties 717 socket->send = parent->send; 718 socket->receive = parent->receive; 719 socket->options = parent->options & ~SO_ACCEPTCONN; 720 socket->linger = parent->linger; 721 socket->owner = parent->owner; 722 memcpy(&socket->address, &parent->address, parent->address.ss_len); 723 memcpy(&socket->peer, &parent->peer, parent->peer.ss_len); 724 725 // add to the parent's list of pending connections 726 parent->pending_children.Add(socket); 727 socket->parent = parent; 728 parent->child_count++; 729 730 *_socket = socket; 731 return B_OK; 732 } 733 734 735 /*! Dequeues a connected child from a parent socket. 736 It also returns a reference with the child socket. 737 */ 738 status_t 739 socket_dequeue_connected(net_socket* _parent, net_socket** _socket) 740 { 741 net_socket_private* parent = (net_socket_private*)_parent; 742 743 mutex_lock(&parent->lock); 744 745 net_socket_private* socket = parent->connected_children.RemoveHead(); 746 if (socket != NULL) { 747 socket->AcquireReference(); 748 socket->RemoveFromParent(); 749 parent->child_count--; 750 *_socket = socket; 751 } 752 753 mutex_unlock(&parent->lock); 754 755 if (socket == NULL) 756 return B_ENTRY_NOT_FOUND; 757 758 return B_OK; 759 } 760 761 762 ssize_t 763 socket_count_connected(net_socket* _parent) 764 { 765 net_socket_private* parent = (net_socket_private*)_parent; 766 767 MutexLocker _(parent->lock); 768 return parent->connected_children.Count(); 769 } 770 771 772 status_t 773 socket_set_max_backlog(net_socket* _socket, uint32 backlog) 774 { 775 net_socket_private* socket = (net_socket_private*)_socket; 776 777 // we enforce an upper limit of connections waiting to be accepted 778 if (backlog > 256) 779 backlog = 256; 780 781 MutexLocker _(socket->lock); 782 783 // first remove the pending connections, then the already connected 784 // ones as needed 785 net_socket_private* child; 786 while (socket->child_count > backlog 787 && (child = socket->pending_children.RemoveTail()) != NULL) { 788 child->RemoveFromParent(); 789 socket->child_count--; 790 } 791 while (socket->child_count > backlog 792 && (child = socket->connected_children.RemoveTail()) != NULL) { 793 child->RemoveFromParent(); 794 socket->child_count--; 795 } 796 797 socket->max_backlog = backlog; 798 return B_OK; 799 } 800 801 802 /*! Returns whether or not this socket has a parent. The parent might not be 803 valid anymore, though. 804 */ 805 bool 806 socket_has_parent(net_socket* _socket) 807 { 808 net_socket_private* socket = (net_socket_private*)_socket; 809 return socket->parent != NULL; 810 } 811 812 813 /*! The socket has been connected. It will be moved to the connected queue 814 of its parent socket. 815 */ 816 status_t 817 socket_connected(net_socket* _socket) 818 { 819 net_socket_private* socket = (net_socket_private*)_socket; 820 821 TRACE("socket_connected(%p)\n", socket); 822 823 BReference<net_socket_private> parent = socket->parent.GetReference(); 824 if (parent.Get() == NULL) 825 return B_BAD_VALUE; 826 827 MutexLocker _(parent->lock); 828 829 parent->pending_children.Remove(socket); 830 parent->connected_children.Add(socket); 831 socket->is_connected = true; 832 833 // notify parent 834 if (parent->select_pool) 835 notify_select_event_pool(parent->select_pool, B_SELECT_READ); 836 837 return B_OK; 838 } 839 840 841 /*! The socket has been aborted. Steals the parent's reference, and releases 842 it. 843 */ 844 status_t 845 socket_aborted(net_socket* _socket) 846 { 847 net_socket_private* socket = (net_socket_private*)_socket; 848 849 TRACE("socket_aborted(%p)\n", socket); 850 851 BReference<net_socket_private> parent = socket->parent.GetReference(); 852 if (parent.Get() == NULL) 853 return B_BAD_VALUE; 854 855 MutexLocker _(parent->lock); 856 857 if (socket->is_connected) 858 parent->connected_children.Remove(socket); 859 else 860 parent->pending_children.Remove(socket); 861 862 parent->child_count--; 863 socket->RemoveFromParent(); 864 865 return B_OK; 866 } 867 868 869 // #pragma mark - notifications 870 871 872 status_t 873 socket_request_notification(net_socket* _socket, uint8 event, selectsync* sync) 874 { 875 net_socket_private* socket = (net_socket_private*)_socket; 876 877 mutex_lock(&socket->lock); 878 879 status_t status = add_select_sync_pool_entry(&socket->select_pool, sync, 880 event); 881 882 mutex_unlock(&socket->lock); 883 884 if (status != B_OK) 885 return status; 886 887 // check if the event is already present 888 // TODO: add support for poll() types 889 890 switch (event) { 891 case B_SELECT_READ: 892 { 893 ssize_t available = socket_read_avail(socket); 894 if ((ssize_t)socket->receive.low_water_mark <= available 895 || available < B_OK) 896 notify_select_event(sync, event); 897 break; 898 } 899 case B_SELECT_WRITE: 900 { 901 ssize_t available = socket_send_avail(socket); 902 if ((ssize_t)socket->send.low_water_mark <= available 903 || available < B_OK) 904 notify_select_event(sync, event); 905 break; 906 } 907 case B_SELECT_ERROR: 908 // TODO: B_SELECT_ERROR condition! 909 break; 910 } 911 912 return B_OK; 913 } 914 915 916 status_t 917 socket_cancel_notification(net_socket* _socket, uint8 event, selectsync* sync) 918 { 919 net_socket_private* socket = (net_socket_private*)_socket; 920 921 MutexLocker _(socket->lock); 922 return remove_select_sync_pool_entry(&socket->select_pool, sync, event); 923 } 924 925 926 status_t 927 socket_notify(net_socket* _socket, uint8 event, int32 value) 928 { 929 net_socket_private* socket = (net_socket_private*)_socket; 930 bool notify = true; 931 932 switch (event) { 933 case B_SELECT_READ: 934 if ((ssize_t)socket->receive.low_water_mark > value 935 && value >= B_OK) 936 notify = false; 937 break; 938 939 case B_SELECT_WRITE: 940 if ((ssize_t)socket->send.low_water_mark > value && value >= B_OK) 941 notify = false; 942 break; 943 944 case B_SELECT_ERROR: 945 socket->error = value; 946 break; 947 } 948 949 MutexLocker _(socket->lock); 950 951 if (notify && socket->select_pool != NULL) { 952 notify_select_event_pool(socket->select_pool, event); 953 954 if (event == B_SELECT_ERROR) { 955 // always notify read/write on error 956 notify_select_event_pool(socket->select_pool, B_SELECT_READ); 957 notify_select_event_pool(socket->select_pool, B_SELECT_WRITE); 958 } 959 } 960 961 return B_OK; 962 } 963 964 965 // #pragma mark - standard socket API 966 967 968 int 969 socket_accept(net_socket* socket, struct sockaddr* address, 970 socklen_t* _addressLength, net_socket** _acceptedSocket) 971 { 972 if ((socket->options & SO_ACCEPTCONN) == 0) 973 return B_BAD_VALUE; 974 975 net_socket* accepted; 976 status_t status = socket->first_info->accept(socket->first_protocol, 977 &accepted); 978 if (status != B_OK) 979 return status; 980 981 if (address && *_addressLength > 0) { 982 memcpy(address, &accepted->peer, min_c(*_addressLength, 983 min_c(accepted->peer.ss_len, sizeof(sockaddr_storage)))); 984 *_addressLength = accepted->peer.ss_len; 985 } 986 987 *_acceptedSocket = accepted; 988 return B_OK; 989 } 990 991 992 int 993 socket_bind(net_socket* socket, const struct sockaddr* address, 994 socklen_t addressLength) 995 { 996 sockaddr empty; 997 if (address == NULL) { 998 // special - try to bind to an empty address, like INADDR_ANY 999 memset(&empty, 0, sizeof(sockaddr)); 1000 empty.sa_len = sizeof(sockaddr); 1001 empty.sa_family = socket->family; 1002 1003 address = ∅ 1004 addressLength = sizeof(sockaddr); 1005 } 1006 1007 if (socket->address.ss_len != 0) { 1008 status_t status = socket->first_info->unbind(socket->first_protocol, 1009 (sockaddr*)&socket->address); 1010 if (status != B_OK) 1011 return status; 1012 } 1013 1014 memcpy(&socket->address, address, sizeof(sockaddr)); 1015 socket->address.ss_len = sizeof(sockaddr_storage); 1016 1017 status_t status = socket->first_info->bind(socket->first_protocol, 1018 (sockaddr*)address); 1019 if (status != B_OK) { 1020 // clear address again, as binding failed 1021 socket->address.ss_len = 0; 1022 } 1023 1024 return status; 1025 } 1026 1027 1028 int 1029 socket_connect(net_socket* socket, const struct sockaddr* address, 1030 socklen_t addressLength) 1031 { 1032 if (address == NULL || addressLength == 0) 1033 return ENETUNREACH; 1034 1035 if (socket->address.ss_len == 0) { 1036 // try to bind first 1037 status_t status = socket_bind(socket, NULL, 0); 1038 if (status != B_OK) 1039 return status; 1040 } 1041 1042 return socket->first_info->connect(socket->first_protocol, address); 1043 } 1044 1045 1046 int 1047 socket_getpeername(net_socket* socket, struct sockaddr* address, 1048 socklen_t* _addressLength) 1049 { 1050 if (socket->peer.ss_len == 0) 1051 return ENOTCONN; 1052 1053 memcpy(address, &socket->peer, min_c(*_addressLength, socket->peer.ss_len)); 1054 *_addressLength = socket->peer.ss_len; 1055 return B_OK; 1056 } 1057 1058 1059 int 1060 socket_getsockname(net_socket* socket, struct sockaddr* address, 1061 socklen_t* _addressLength) 1062 { 1063 if (socket->address.ss_len == 0) 1064 return ENOTCONN; 1065 1066 memcpy(address, &socket->address, min_c(*_addressLength, 1067 socket->address.ss_len)); 1068 *_addressLength = socket->address.ss_len; 1069 return B_OK; 1070 } 1071 1072 1073 status_t 1074 socket_get_option(net_socket* socket, int level, int option, void* value, 1075 int* _length) 1076 { 1077 if (level != SOL_SOCKET) 1078 return ENOPROTOOPT; 1079 1080 switch (option) { 1081 case SO_SNDBUF: 1082 { 1083 uint32* size = (uint32*)value; 1084 *size = socket->send.buffer_size; 1085 *_length = sizeof(uint32); 1086 return B_OK; 1087 } 1088 1089 case SO_RCVBUF: 1090 { 1091 uint32* size = (uint32*)value; 1092 *size = socket->receive.buffer_size; 1093 *_length = sizeof(uint32); 1094 return B_OK; 1095 } 1096 1097 case SO_SNDLOWAT: 1098 { 1099 uint32* size = (uint32*)value; 1100 *size = socket->send.low_water_mark; 1101 *_length = sizeof(uint32); 1102 return B_OK; 1103 } 1104 1105 case SO_RCVLOWAT: 1106 { 1107 uint32* size = (uint32*)value; 1108 *size = socket->receive.low_water_mark; 1109 *_length = sizeof(uint32); 1110 return B_OK; 1111 } 1112 1113 case SO_RCVTIMEO: 1114 case SO_SNDTIMEO: 1115 { 1116 if (*_length < (int)sizeof(struct timeval)) 1117 return B_BAD_VALUE; 1118 1119 bigtime_t timeout; 1120 if (option == SO_SNDTIMEO) 1121 timeout = socket->send.timeout; 1122 else 1123 timeout = socket->receive.timeout; 1124 if (timeout == B_INFINITE_TIMEOUT) 1125 timeout = 0; 1126 1127 struct timeval* timeval = (struct timeval*)value; 1128 timeval->tv_sec = timeout / 1000000LL; 1129 timeval->tv_usec = timeout % 1000000LL; 1130 1131 *_length = sizeof(struct timeval); 1132 return B_OK; 1133 } 1134 1135 case SO_NONBLOCK: 1136 { 1137 int32* _set = (int32*)value; 1138 *_set = socket->receive.timeout == 0 && socket->send.timeout == 0; 1139 *_length = sizeof(int32); 1140 return B_OK; 1141 } 1142 1143 case SO_ACCEPTCONN: 1144 case SO_BROADCAST: 1145 case SO_DEBUG: 1146 case SO_DONTROUTE: 1147 case SO_KEEPALIVE: 1148 case SO_OOBINLINE: 1149 case SO_REUSEADDR: 1150 case SO_REUSEPORT: 1151 case SO_USELOOPBACK: 1152 { 1153 int32* _set = (int32*)value; 1154 *_set = (socket->options & option) != 0; 1155 *_length = sizeof(int32); 1156 return B_OK; 1157 } 1158 1159 case SO_TYPE: 1160 { 1161 int32* _set = (int32*)value; 1162 *_set = socket->type; 1163 *_length = sizeof(int32); 1164 return B_OK; 1165 } 1166 1167 case SO_ERROR: 1168 { 1169 int32* _set = (int32*)value; 1170 *_set = socket->error; 1171 *_length = sizeof(int32); 1172 1173 socket->error = B_OK; 1174 // clear error upon retrieval 1175 return B_OK; 1176 } 1177 1178 default: 1179 break; 1180 } 1181 1182 dprintf("socket_getsockopt: unknown option %d\n", option); 1183 return ENOPROTOOPT; 1184 } 1185 1186 1187 int 1188 socket_getsockopt(net_socket* socket, int level, int option, void* value, 1189 int* _length) 1190 { 1191 return socket->first_protocol->module->getsockopt(socket->first_protocol, 1192 level, option, value, _length); 1193 } 1194 1195 1196 int 1197 socket_listen(net_socket* socket, int backlog) 1198 { 1199 status_t status = socket->first_info->listen(socket->first_protocol, 1200 backlog); 1201 if (status == B_OK) 1202 socket->options |= SO_ACCEPTCONN; 1203 1204 return status; 1205 } 1206 1207 1208 ssize_t 1209 socket_receive(net_socket* socket, msghdr* header, void* data, size_t length, 1210 int flags) 1211 { 1212 // If the protocol sports read_data_no_buffer() we use it. 1213 if (socket->first_info->read_data_no_buffer != NULL) 1214 return socket_receive_no_buffer(socket, header, data, length, flags); 1215 1216 size_t totalLength = length; 1217 net_buffer* buffer; 1218 int i; 1219 1220 // the convention to this function is that have header been 1221 // present, { data, length } would have been iovec[0] and is 1222 // always considered like that 1223 1224 if (header) { 1225 // calculate the length considering all of the extra buffers 1226 for (i = 1; i < header->msg_iovlen; i++) 1227 totalLength += header->msg_iov[i].iov_len; 1228 } 1229 1230 status_t status = socket->first_info->read_data( 1231 socket->first_protocol, totalLength, flags, &buffer); 1232 if (status != B_OK) 1233 return status; 1234 1235 // process ancillary data 1236 if (header != NULL) { 1237 if (buffer != NULL && header->msg_control != NULL) { 1238 ancillary_data_container* container 1239 = gNetBufferModule.get_ancillary_data(buffer); 1240 if (container != NULL) 1241 status = process_ancillary_data(socket, container, header); 1242 else 1243 status = process_ancillary_data(socket, buffer, header); 1244 if (status != B_OK) { 1245 gNetBufferModule.free(buffer); 1246 return status; 1247 } 1248 } else 1249 header->msg_controllen = 0; 1250 } 1251 1252 // TODO: - returning a NULL buffer when received 0 bytes 1253 // may not make much sense as we still need the address 1254 // - gNetBufferModule.read() uses memcpy() instead of user_memcpy 1255 1256 size_t nameLen = 0; 1257 1258 if (header) { 1259 // TODO: - consider the control buffer options 1260 nameLen = header->msg_namelen; 1261 header->msg_namelen = 0; 1262 header->msg_flags = 0; 1263 } 1264 1265 if (buffer == NULL) 1266 return 0; 1267 1268 size_t bytesReceived = buffer->size, bytesCopied = 0; 1269 1270 length = min_c(bytesReceived, length); 1271 if (gNetBufferModule.read(buffer, 0, data, length) < B_OK) { 1272 gNetBufferModule.free(buffer); 1273 return ENOBUFS; 1274 } 1275 1276 // if first copy was a success, proceed to following 1277 // copies as required 1278 bytesCopied += length; 1279 1280 if (header) { 1281 // we only start considering at iovec[1] 1282 // as { data, length } is iovec[0] 1283 for (i = 1; i < header->msg_iovlen && bytesCopied < bytesReceived; i++) { 1284 iovec& vec = header->msg_iov[i]; 1285 size_t toRead = min_c(bytesReceived - bytesCopied, vec.iov_len); 1286 if (gNetBufferModule.read(buffer, bytesCopied, vec.iov_base, 1287 toRead) < B_OK) { 1288 break; 1289 } 1290 1291 bytesCopied += toRead; 1292 } 1293 1294 if (header->msg_name != NULL) { 1295 header->msg_namelen = min_c(nameLen, buffer->source->sa_len); 1296 memcpy(header->msg_name, buffer->source, header->msg_namelen); 1297 } 1298 } 1299 1300 gNetBufferModule.free(buffer); 1301 1302 if (bytesCopied < bytesReceived) { 1303 if (header) 1304 header->msg_flags = MSG_TRUNC; 1305 1306 if (flags & MSG_TRUNC) 1307 return bytesReceived; 1308 } 1309 1310 return bytesCopied; 1311 } 1312 1313 1314 ssize_t 1315 socket_send(net_socket* socket, msghdr* header, const void* data, size_t length, 1316 int flags) 1317 { 1318 const sockaddr* address = NULL; 1319 socklen_t addressLength = 0; 1320 size_t bytesLeft = length; 1321 1322 if (length > SSIZE_MAX) 1323 return B_BAD_VALUE; 1324 1325 ancillary_data_container* ancillaryData = NULL; 1326 CObjectDeleter<ancillary_data_container> ancillaryDataDeleter(NULL, 1327 &delete_ancillary_data_container); 1328 1329 if (header != NULL) { 1330 address = (const sockaddr*)header->msg_name; 1331 addressLength = header->msg_namelen; 1332 1333 // get the ancillary data 1334 if (header->msg_control != NULL) { 1335 ancillaryData = create_ancillary_data_container(); 1336 if (ancillaryData == NULL) 1337 return B_NO_MEMORY; 1338 ancillaryDataDeleter.SetTo(ancillaryData); 1339 1340 status_t status = add_ancillary_data(socket, ancillaryData, 1341 (cmsghdr*)header->msg_control, header->msg_controllen); 1342 if (status != B_OK) 1343 return status; 1344 } 1345 } 1346 1347 if (addressLength == 0) 1348 address = NULL; 1349 else if (address == NULL) 1350 return B_BAD_VALUE; 1351 1352 if (socket->peer.ss_len != 0) { 1353 if (address != NULL) 1354 return EISCONN; 1355 1356 // socket is connected, we use that address 1357 address = (struct sockaddr*)&socket->peer; 1358 addressLength = socket->peer.ss_len; 1359 } 1360 1361 if (address == NULL || addressLength == 0) { 1362 // don't know where to send to: 1363 return EDESTADDRREQ; 1364 } 1365 1366 if ((socket->first_info->flags & NET_PROTOCOL_ATOMIC_MESSAGES) != 0 1367 && bytesLeft > socket->send.buffer_size) 1368 return EMSGSIZE; 1369 1370 if (socket->address.ss_len == 0) { 1371 // try to bind first 1372 status_t status = socket_bind(socket, NULL, 0); 1373 if (status != B_OK) 1374 return status; 1375 } 1376 1377 // If the protocol has a send_data_no_buffer() hook, we use that one. 1378 if (socket->first_info->send_data_no_buffer != NULL) { 1379 iovec stackVec = { (void*)data, length }; 1380 iovec* vecs = header ? header->msg_iov : &stackVec; 1381 int vecCount = header ? header->msg_iovlen : 1; 1382 1383 ssize_t written = socket->first_info->send_data_no_buffer( 1384 socket->first_protocol, vecs, vecCount, ancillaryData, address, 1385 addressLength); 1386 if (written > 0) 1387 ancillaryDataDeleter.Detach(); 1388 return written; 1389 } 1390 1391 // By convention, if a header is given, the (data, length) equals the first 1392 // iovec. So drop the header, if it is the only iovec. Otherwise compute 1393 // the size of the remaining ones. 1394 if (header != NULL) { 1395 if (header->msg_iovlen <= 1) 1396 header = NULL; 1397 else { 1398 // TODO: The iovecs have already been copied to kernel space. Simplify! 1399 bytesLeft += compute_user_iovec_length(header->msg_iov + 1, 1400 header->msg_iovlen - 1); 1401 } 1402 } 1403 1404 ssize_t bytesSent = 0; 1405 size_t vecOffset = 0; 1406 uint32 vecIndex = 0; 1407 1408 while (bytesLeft > 0) { 1409 // TODO: useful, maybe even computed header space! 1410 net_buffer* buffer = gNetBufferModule.create(256); 1411 if (buffer == NULL) 1412 return ENOBUFS; 1413 1414 while (buffer->size < socket->send.buffer_size 1415 && buffer->size < bytesLeft) { 1416 if (vecIndex > 0 && vecOffset == 0) { 1417 // retrieve next iovec buffer from header 1418 iovec vec; 1419 if (user_memcpy(&vec, header->msg_iov + vecIndex, sizeof(iovec)) 1420 < B_OK) { 1421 gNetBufferModule.free(buffer); 1422 return B_BAD_ADDRESS; 1423 } 1424 1425 data = vec.iov_base; 1426 length = vec.iov_len; 1427 } 1428 1429 size_t bytes = length; 1430 if (buffer->size + bytes > socket->send.buffer_size) 1431 bytes = socket->send.buffer_size - buffer->size; 1432 1433 if (gNetBufferModule.append(buffer, data, bytes) < B_OK) { 1434 gNetBufferModule.free(buffer); 1435 return ENOBUFS; 1436 } 1437 1438 if (bytes != length) { 1439 // partial send 1440 vecOffset = bytes; 1441 length -= vecOffset; 1442 data = (uint8*)data + vecOffset; 1443 } else if (header != NULL) { 1444 // proceed with next buffer, if any 1445 vecOffset = 0; 1446 vecIndex++; 1447 1448 if (vecIndex >= (uint32)header->msg_iovlen) 1449 break; 1450 } 1451 } 1452 1453 // attach ancillary data to the first buffer 1454 status_t status = B_OK; 1455 if (ancillaryData != NULL) { 1456 gNetBufferModule.set_ancillary_data(buffer, ancillaryData); 1457 ancillaryDataDeleter.Detach(); 1458 ancillaryData = NULL; 1459 } 1460 1461 size_t bufferSize = buffer->size; 1462 buffer->flags = flags; 1463 memcpy(buffer->source, &socket->address, socket->address.ss_len); 1464 memcpy(buffer->destination, address, addressLength); 1465 buffer->destination->sa_len = addressLength; 1466 1467 if (status == B_OK) { 1468 status = socket->first_info->send_data(socket->first_protocol, 1469 buffer); 1470 } 1471 if (status != B_OK) { 1472 size_t sizeAfterSend = buffer->size; 1473 gNetBufferModule.free(buffer); 1474 1475 if ((sizeAfterSend != bufferSize || bytesSent > 0) 1476 && (status == B_INTERRUPTED || status == B_WOULD_BLOCK)) { 1477 // this appears to be a partial write 1478 return bytesSent + (bufferSize - sizeAfterSend); 1479 } 1480 return status; 1481 } 1482 1483 bytesLeft -= bufferSize; 1484 bytesSent += bufferSize; 1485 } 1486 1487 return bytesSent; 1488 } 1489 1490 1491 status_t 1492 socket_set_option(net_socket* socket, int level, int option, const void* value, 1493 int length) 1494 { 1495 if (level != SOL_SOCKET) 1496 return ENOPROTOOPT; 1497 1498 TRACE("%s(socket %p, option %d\n", __FUNCTION__, socket, option); 1499 1500 switch (option) { 1501 // TODO: implement other options! 1502 case SO_LINGER: 1503 { 1504 if (length < (int)sizeof(struct linger)) 1505 return B_BAD_VALUE; 1506 1507 struct linger* linger = (struct linger*)value; 1508 if (linger->l_onoff) { 1509 socket->options |= SO_LINGER; 1510 socket->linger = linger->l_linger; 1511 } else { 1512 socket->options &= ~SO_LINGER; 1513 socket->linger = 0; 1514 } 1515 return B_OK; 1516 } 1517 1518 case SO_SNDBUF: 1519 if (length != sizeof(uint32)) 1520 return B_BAD_VALUE; 1521 1522 socket->send.buffer_size = *(const uint32*)value; 1523 return B_OK; 1524 1525 case SO_RCVBUF: 1526 if (length != sizeof(uint32)) 1527 return B_BAD_VALUE; 1528 1529 socket->receive.buffer_size = *(const uint32*)value; 1530 return B_OK; 1531 1532 case SO_SNDLOWAT: 1533 if (length != sizeof(uint32)) 1534 return B_BAD_VALUE; 1535 1536 socket->send.low_water_mark = *(const uint32*)value; 1537 return B_OK; 1538 1539 case SO_RCVLOWAT: 1540 if (length != sizeof(uint32)) 1541 return B_BAD_VALUE; 1542 1543 socket->receive.low_water_mark = *(const uint32*)value; 1544 return B_OK; 1545 1546 case SO_RCVTIMEO: 1547 case SO_SNDTIMEO: 1548 { 1549 if (length != sizeof(struct timeval)) 1550 return B_BAD_VALUE; 1551 1552 const struct timeval* timeval = (const struct timeval*)value; 1553 bigtime_t timeout = timeval->tv_sec * 1000000LL + timeval->tv_usec; 1554 if (timeout == 0) 1555 timeout = B_INFINITE_TIMEOUT; 1556 1557 if (option == SO_SNDTIMEO) 1558 socket->send.timeout = timeout; 1559 else 1560 socket->receive.timeout = timeout; 1561 return B_OK; 1562 } 1563 1564 case SO_NONBLOCK: 1565 if (length != sizeof(int32)) 1566 return B_BAD_VALUE; 1567 1568 if (*(const int32*)value) { 1569 socket->send.timeout = 0; 1570 socket->receive.timeout = 0; 1571 } else { 1572 socket->send.timeout = B_INFINITE_TIMEOUT; 1573 socket->receive.timeout = B_INFINITE_TIMEOUT; 1574 } 1575 return B_OK; 1576 1577 case SO_BROADCAST: 1578 case SO_DEBUG: 1579 case SO_DONTROUTE: 1580 case SO_KEEPALIVE: 1581 case SO_OOBINLINE: 1582 case SO_REUSEADDR: 1583 case SO_REUSEPORT: 1584 case SO_USELOOPBACK: 1585 if (length != sizeof(int32)) 1586 return B_BAD_VALUE; 1587 1588 if (*(const int32*)value) 1589 socket->options |= option; 1590 else 1591 socket->options &= ~option; 1592 return B_OK; 1593 1594 case SO_BINDTODEVICE: 1595 { 1596 if (length != sizeof(uint32)) 1597 return B_BAD_VALUE; 1598 1599 // TODO: we might want to check if the device exists at all 1600 // (although it doesn't really harm when we don't) 1601 socket->bound_to_device = *(const uint32*)value; 1602 return B_OK; 1603 } 1604 1605 default: 1606 break; 1607 } 1608 1609 dprintf("socket_setsockopt: unknown option %d\n", option); 1610 return ENOPROTOOPT; 1611 } 1612 1613 1614 int 1615 socket_setsockopt(net_socket* socket, int level, int option, const void* value, 1616 int length) 1617 { 1618 return socket->first_protocol->module->setsockopt(socket->first_protocol, 1619 level, option, value, length); 1620 } 1621 1622 1623 int 1624 socket_shutdown(net_socket* socket, int direction) 1625 { 1626 return socket->first_info->shutdown(socket->first_protocol, direction); 1627 } 1628 1629 1630 status_t 1631 socket_socketpair(int family, int type, int protocol, net_socket* sockets[2]) 1632 { 1633 sockets[0] = NULL; 1634 sockets[1] = NULL; 1635 1636 // create sockets 1637 status_t error = socket_open(family, type, protocol, &sockets[0]); 1638 if (error != B_OK) 1639 return error; 1640 1641 if (error == B_OK) 1642 error = socket_open(family, type, protocol, &sockets[1]); 1643 1644 // bind one 1645 if (error == B_OK) 1646 error = socket_bind(sockets[0], NULL, 0); 1647 1648 // start listening 1649 if (error == B_OK) 1650 error = socket_listen(sockets[0], 1); 1651 1652 // connect them 1653 if (error == B_OK) { 1654 error = socket_connect(sockets[1], (sockaddr*)&sockets[0]->address, 1655 sockets[0]->address.ss_len); 1656 } 1657 1658 // accept a socket 1659 net_socket* acceptedSocket = NULL; 1660 if (error == B_OK) 1661 error = socket_accept(sockets[0], NULL, NULL, &acceptedSocket); 1662 1663 if (error == B_OK) { 1664 // everything worked: close the listener socket 1665 socket_close(sockets[0]); 1666 socket_free(sockets[0]); 1667 sockets[0] = acceptedSocket; 1668 } else { 1669 // close sockets on error 1670 for (int i = 0; i < 2; i++) { 1671 if (sockets[i] != NULL) { 1672 socket_close(sockets[i]); 1673 socket_free(sockets[i]); 1674 sockets[i] = NULL; 1675 } 1676 } 1677 } 1678 1679 return error; 1680 } 1681 1682 1683 // #pragma mark - 1684 1685 1686 static status_t 1687 socket_std_ops(int32 op, ...) 1688 { 1689 switch (op) { 1690 case B_MODULE_INIT: 1691 { 1692 new (&sSocketList) SocketList; 1693 mutex_init(&sSocketLock, "socket list"); 1694 1695 #if ENABLE_DEBUGGER_COMMANDS 1696 add_debugger_command("sockets", dump_sockets, "lists all sockets"); 1697 add_debugger_command("socket", dump_socket, "dumps a socket"); 1698 #endif 1699 return B_OK; 1700 } 1701 case B_MODULE_UNINIT: 1702 ASSERT(sSocketList.IsEmpty()); 1703 mutex_destroy(&sSocketLock); 1704 1705 #if ENABLE_DEBUGGER_COMMANDS 1706 remove_debugger_command("socket", dump_socket); 1707 remove_debugger_command("sockets", dump_sockets); 1708 #endif 1709 return B_OK; 1710 1711 default: 1712 return B_ERROR; 1713 } 1714 } 1715 1716 1717 net_socket_module_info gNetSocketModule = { 1718 { 1719 NET_SOCKET_MODULE_NAME, 1720 0, 1721 socket_std_ops 1722 }, 1723 socket_open, 1724 socket_close, 1725 socket_free, 1726 1727 socket_readv, 1728 socket_writev, 1729 socket_control, 1730 1731 socket_read_avail, 1732 socket_send_avail, 1733 1734 socket_send_data, 1735 socket_receive_data, 1736 1737 socket_get_option, 1738 socket_set_option, 1739 1740 socket_get_next_stat, 1741 1742 // connections 1743 socket_acquire, 1744 socket_release, 1745 socket_spawn_pending, 1746 socket_dequeue_connected, 1747 socket_count_connected, 1748 socket_set_max_backlog, 1749 socket_has_parent, 1750 socket_connected, 1751 socket_aborted, 1752 1753 // notifications 1754 socket_request_notification, 1755 socket_cancel_notification, 1756 socket_notify, 1757 1758 // standard socket API 1759 socket_accept, 1760 socket_bind, 1761 socket_connect, 1762 socket_getpeername, 1763 socket_getsockname, 1764 socket_getsockopt, 1765 socket_listen, 1766 socket_receive, 1767 socket_send, 1768 socket_setsockopt, 1769 socket_shutdown, 1770 socket_socketpair 1771 }; 1772 1773