xref: /haiku/src/add-ons/kernel/network/stack/net_socket.cpp (revision 1773f0767ed809a3c64ccc0c1037f3c8a1d5de33)
1 /*
2  * Copyright 2006-2010, Haiku, Inc. All Rights Reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Authors:
6  *		Axel Dörfler, axeld@pinc-software.de
7  */
8 
9 
10 #include "stack_private.h"
11 
12 #include <stdlib.h>
13 #include <string.h>
14 #include <sys/ioctl.h>
15 #include <sys/time.h>
16 
17 #include <new>
18 
19 #include <Drivers.h>
20 #include <KernelExport.h>
21 #include <Select.h>
22 
23 #include <AutoDeleter.h>
24 #include <team.h>
25 #include <util/AutoLock.h>
26 #include <util/list.h>
27 #include <WeakReferenceable.h>
28 
29 #include <fs/select_sync_pool.h>
30 #include <kernel.h>
31 
32 #include <net_protocol.h>
33 #include <net_stack.h>
34 #include <net_stat.h>
35 
36 #include "ancillary_data.h"
37 #include "utility.h"
38 
39 
40 //#define TRACE_SOCKET
41 #ifdef TRACE_SOCKET
42 #	define TRACE(x...) dprintf(STACK_DEBUG_PREFIX x)
43 #else
44 #	define TRACE(x...) ;
45 #endif
46 
47 
48 struct net_socket_private;
49 typedef DoublyLinkedList<net_socket_private> SocketList;
50 
51 struct net_socket_private : net_socket,
52 		DoublyLinkedListLinkImpl<net_socket_private>,
53 		BWeakReferenceable {
54 	net_socket_private();
55 	~net_socket_private();
56 
57 	void RemoveFromParent();
58 
59 	BWeakReference<net_socket_private> parent;
60 	team_id						owner;
61 	uint32						max_backlog;
62 	uint32						child_count;
63 	SocketList					pending_children;
64 	SocketList					connected_children;
65 
66 	struct select_sync_pool*	select_pool;
67 	mutex						lock;
68 
69 	bool						is_connected;
70 	bool						is_in_socket_list;
71 };
72 
73 
74 int socket_bind(net_socket* socket, const struct sockaddr* address,
75 	socklen_t addressLength);
76 int socket_setsockopt(net_socket* socket, int level, int option,
77 	const void* value, int length);
78 ssize_t socket_read_avail(net_socket* socket);
79 
80 static SocketList sSocketList;
81 static mutex sSocketLock;
82 
83 
84 net_socket_private::net_socket_private()
85 	:
86 	owner(-1),
87 	max_backlog(0),
88 	child_count(0),
89 	select_pool(NULL),
90 	is_connected(false),
91 	is_in_socket_list(false)
92 {
93 	first_protocol = NULL;
94 	first_info = NULL;
95 	options = 0;
96 	linger = 0;
97 	bound_to_device = 0;
98 	error = 0;
99 
100 	address.ss_len = 0;
101 	peer.ss_len = 0;
102 
103 	mutex_init(&lock, "socket");
104 
105 	// set defaults (may be overridden by the protocols)
106 	send.buffer_size = 65535;
107 	send.low_water_mark = 1;
108 	send.timeout = B_INFINITE_TIMEOUT;
109 	receive.buffer_size = 65535;
110 	receive.low_water_mark = 1;
111 	receive.timeout = B_INFINITE_TIMEOUT;
112 }
113 
114 
115 net_socket_private::~net_socket_private()
116 {
117 	TRACE("delete net_socket %p\n", this);
118 
119 	if (parent != NULL)
120 		panic("socket still has a parent!");
121 
122 	if (is_in_socket_list) {
123 		MutexLocker _(sSocketLock);
124 		sSocketList.Remove(this);
125 	}
126 
127 	mutex_lock(&lock);
128 
129 	// also delete all children of this socket
130 	while (net_socket_private* child = pending_children.RemoveHead()) {
131 		child->RemoveFromParent();
132 	}
133 	while (net_socket_private* child = connected_children.RemoveHead()) {
134 		child->RemoveFromParent();
135 	}
136 
137 	mutex_unlock(&lock);
138 
139 	put_domain_protocols(this);
140 
141 	mutex_destroy(&lock);
142 }
143 
144 
145 void
146 net_socket_private::RemoveFromParent()
147 {
148 	ASSERT(!is_in_socket_list && parent != NULL);
149 
150 	parent = NULL;
151 
152 	mutex_lock(&sSocketLock);
153 	sSocketList.Add(this);
154 	mutex_unlock(&sSocketLock);
155 
156 	is_in_socket_list = true;
157 
158 	ReleaseReference();
159 }
160 
161 
162 //	#pragma mark -
163 
164 
165 static size_t
166 compute_user_iovec_length(iovec* userVec, uint32 count)
167 {
168 	size_t length = 0;
169 
170 	for (uint32 i = 0; i < count; i++) {
171 		iovec vec;
172 		if (user_memcpy(&vec, userVec + i, sizeof(iovec)) < B_OK)
173 			return 0;
174 
175 		length += vec.iov_len;
176 	}
177 
178 	return length;
179 }
180 
181 
182 static status_t
183 create_socket(int family, int type, int protocol, net_socket_private** _socket)
184 {
185 	struct net_socket_private* socket = new(std::nothrow) net_socket_private;
186 	if (socket == NULL)
187 		return B_NO_MEMORY;
188 	status_t status = socket->InitCheck();
189 	if (status != B_OK) {
190 		delete socket;
191 		return status;
192 	}
193 
194 	socket->family = family;
195 	socket->type = type;
196 	socket->protocol = protocol;
197 
198 	status = get_domain_protocols(socket);
199 	if (status != B_OK) {
200 		delete socket;
201 		return status;
202 	}
203 
204 	TRACE("create net_socket %p (%u.%u.%u):\n", socket, socket->family,
205 		socket->type, socket->protocol);
206 
207 #ifdef TRACE_SOCKET
208 	net_protocol* current = socket->first_protocol;
209 	for (int i = 0; current != NULL; current = current->next, i++)
210 		TRACE("  [%d] %p  %s\n", i, current, current->module->info.name);
211 #endif
212 
213 	*_socket = socket;
214 	return B_OK;
215 }
216 
217 
218 static status_t
219 add_ancillary_data(net_socket* socket, ancillary_data_container* container,
220 	void* data, size_t dataLen)
221 {
222 	cmsghdr* header = (cmsghdr*)data;
223 
224 	if (dataLen == 0)
225 		return B_OK;
226 
227 	if (socket->first_info->add_ancillary_data == NULL)
228 		return B_NOT_SUPPORTED;
229 
230 	while (true) {
231 		if (header->cmsg_len < CMSG_LEN(0) || header->cmsg_len > dataLen)
232 			return B_BAD_VALUE;
233 
234 		status_t status = socket->first_info->add_ancillary_data(
235 			socket->first_protocol, container, header);
236 		if (status != B_OK)
237 			return status;
238 
239 		if (dataLen <= _ALIGN(header->cmsg_len))
240 			break;
241 		dataLen -= _ALIGN(header->cmsg_len);
242 		header = (cmsghdr*)((uint8*)header + _ALIGN(header->cmsg_len));
243 	}
244 
245 	return B_OK;
246 }
247 
248 
249 static status_t
250 process_ancillary_data(net_socket* socket, ancillary_data_container* container,
251 	msghdr* messageHeader)
252 {
253 	uint8* dataBuffer = (uint8*)messageHeader->msg_control;
254 	int dataBufferLen = messageHeader->msg_controllen;
255 
256 	if (container == NULL || dataBuffer == NULL) {
257 		messageHeader->msg_controllen = 0;
258 		return B_OK;
259 	}
260 
261 	ancillary_data_header header;
262 	void* data = NULL;
263 
264 	while ((data = next_ancillary_data(container, data, &header)) != NULL) {
265 		if (socket->first_info->process_ancillary_data == NULL)
266 			return B_NOT_SUPPORTED;
267 
268 		ssize_t bytesWritten = socket->first_info->process_ancillary_data(
269 			socket->first_protocol, &header, data, dataBuffer, dataBufferLen);
270 		if (bytesWritten < 0)
271 			return bytesWritten;
272 
273 		dataBuffer += bytesWritten;
274 		dataBufferLen -= bytesWritten;
275 	}
276 
277 	messageHeader->msg_controllen -= dataBufferLen;
278 
279 	return B_OK;
280 }
281 
282 
283 static status_t
284 process_ancillary_data(net_socket* socket,
285 	net_buffer* buffer, msghdr* messageHeader)
286 {
287 	void *dataBuffer = messageHeader->msg_control;
288 	ssize_t bytesWritten;
289 
290 	if (dataBuffer == NULL) {
291 		messageHeader->msg_controllen = 0;
292 		return B_OK;
293 	}
294 
295 	if (socket->first_info->process_ancillary_data_no_container == NULL)
296 		return B_NOT_SUPPORTED;
297 
298 	bytesWritten = socket->first_info->process_ancillary_data_no_container(
299 		socket->first_protocol, buffer, dataBuffer,
300 		messageHeader->msg_controllen);
301 	if (bytesWritten < 0)
302 		return bytesWritten;
303 	messageHeader->msg_controllen = bytesWritten;
304 
305 	return B_OK;
306 }
307 
308 
309 static ssize_t
310 socket_receive_no_buffer(net_socket* socket, msghdr* header, void* data,
311 	size_t length, int flags)
312 {
313 	iovec stackVec = { data, length };
314 	iovec* vecs = header ? header->msg_iov : &stackVec;
315 	int vecCount = header ? header->msg_iovlen : 1;
316 	sockaddr* address = header ? (sockaddr*)header->msg_name : NULL;
317 	socklen_t* addressLen = header ? &header->msg_namelen : NULL;
318 
319 	ancillary_data_container* ancillaryData = NULL;
320 	ssize_t bytesRead = socket->first_info->read_data_no_buffer(
321 		socket->first_protocol, vecs, vecCount, &ancillaryData, address,
322 		addressLen);
323 	if (bytesRead < 0)
324 		return bytesRead;
325 
326 	CObjectDeleter<ancillary_data_container> ancillaryDataDeleter(ancillaryData,
327 		&delete_ancillary_data_container);
328 
329 	// process ancillary data
330 	if (header != NULL) {
331 		status_t status = process_ancillary_data(socket, ancillaryData, header);
332 		if (status != B_OK)
333 			return status;
334 
335 		header->msg_flags = 0;
336 	}
337 
338 	return bytesRead;
339 }
340 
341 
342 #if ENABLE_DEBUGGER_COMMANDS
343 
344 
345 static void
346 print_socket_line(net_socket_private* socket, const char* prefix)
347 {
348 	BReference<net_socket_private> parent;
349 	if (socket->parent.PrivatePointer() != NULL)
350 		parent = socket->parent.GetReference();
351 	kprintf("%s%p %2d.%2d.%2d %6" B_PRId32 " %p %p  %p%s\n", prefix, socket,
352 		socket->family, socket->type, socket->protocol, socket->owner,
353 		socket->first_protocol, socket->first_info, parent.Get(),
354 		parent.Get() != NULL ? socket->is_connected ? " (c)" : " (p)" : "");
355 }
356 
357 
358 static int
359 dump_socket(int argc, char** argv)
360 {
361 	if (argc < 2) {
362 		kprintf("usage: %s [address]\n", argv[0]);
363 		return 0;
364 	}
365 
366 	net_socket_private* socket = (net_socket_private*)parse_expression(argv[1]);
367 
368 	kprintf("SOCKET %p\n", socket);
369 	kprintf("  family.type.protocol: %d.%d.%d\n",
370 		socket->family, socket->type, socket->protocol);
371 	BReference<net_socket_private> parent;
372 	if (socket->parent.PrivatePointer() != NULL)
373 		parent = socket->parent.GetReference();
374 	kprintf("  parent:               %p\n", parent.Get());
375 	kprintf("  first protocol:       %p\n", socket->first_protocol);
376 	kprintf("  first module_info:    %p\n", socket->first_info);
377 	kprintf("  options:              %x\n", socket->options);
378 	kprintf("  linger:               %d\n", socket->linger);
379 	kprintf("  bound to device:      %" B_PRIu32 "\n", socket->bound_to_device);
380 	kprintf("  owner:                %" B_PRId32 "\n", socket->owner);
381 	kprintf("  max backlog:          %" B_PRId32 "\n", socket->max_backlog);
382 	kprintf("  is connected:         %d\n", socket->is_connected);
383 	kprintf("  child_count:          %" B_PRIu32 "\n", socket->child_count);
384 
385 	if (socket->child_count == 0)
386 		return 0;
387 
388 	kprintf("    pending children:\n");
389 	SocketList::Iterator iterator = socket->pending_children.GetIterator();
390 	while (net_socket_private* child = iterator.Next()) {
391 		print_socket_line(child, "      ");
392 	}
393 
394 	kprintf("    connected children:\n");
395 	iterator = socket->connected_children.GetIterator();
396 	while (net_socket_private* child = iterator.Next()) {
397 		print_socket_line(child, "      ");
398 	}
399 
400 	return 0;
401 }
402 
403 
404 static int
405 dump_sockets(int argc, char** argv)
406 {
407 	kprintf("address        kind  owner protocol   module_info parent\n");
408 
409 	SocketList::Iterator iterator = sSocketList.GetIterator();
410 	while (net_socket_private* socket = iterator.Next()) {
411 		print_socket_line(socket, "");
412 
413 		SocketList::Iterator childIterator
414 			= socket->pending_children.GetIterator();
415 		while (net_socket_private* child = childIterator.Next()) {
416 			print_socket_line(child, " ");
417 		}
418 
419 		childIterator = socket->connected_children.GetIterator();
420 		while (net_socket_private* child = childIterator.Next()) {
421 			print_socket_line(child, " ");
422 		}
423 	}
424 
425 	return 0;
426 }
427 
428 
429 #endif	// ENABLE_DEBUGGER_COMMANDS
430 
431 
432 //	#pragma mark -
433 
434 
435 status_t
436 socket_open(int family, int type, int protocol, net_socket** _socket)
437 {
438 	net_socket_private* socket;
439 	status_t status = create_socket(family, type, protocol, &socket);
440 	if (status != B_OK)
441 		return status;
442 
443 	status = socket->first_info->open(socket->first_protocol);
444 	if (status != B_OK) {
445 		delete socket;
446 		return status;
447 	}
448 
449 	socket->owner = team_get_current_team_id();
450 	socket->is_in_socket_list = true;
451 
452 	mutex_lock(&sSocketLock);
453 	sSocketList.Add(socket);
454 	mutex_unlock(&sSocketLock);
455 
456 	*_socket = socket;
457 	return B_OK;
458 }
459 
460 
461 status_t
462 socket_close(net_socket* _socket)
463 {
464 	net_socket_private* socket = (net_socket_private*)_socket;
465 	return socket->first_info->close(socket->first_protocol);
466 }
467 
468 
469 void
470 socket_free(net_socket* _socket)
471 {
472 	net_socket_private* socket = (net_socket_private*)_socket;
473 	socket->first_info->free(socket->first_protocol);
474 	socket->ReleaseReference();
475 }
476 
477 
478 status_t
479 socket_readv(net_socket* socket, const iovec* vecs, size_t vecCount,
480 	size_t* _length)
481 {
482 	return -1;
483 }
484 
485 
486 status_t
487 socket_writev(net_socket* socket, const iovec* vecs, size_t vecCount,
488 	size_t* _length)
489 {
490 	if (socket->peer.ss_len == 0)
491 		return ECONNRESET;
492 
493 	if (socket->address.ss_len == 0) {
494 		// try to bind first
495 		status_t status = socket_bind(socket, NULL, 0);
496 		if (status != B_OK)
497 			return status;
498 	}
499 
500 	// TODO: useful, maybe even computed header space!
501 	net_buffer* buffer = gNetBufferModule.create(256);
502 	if (buffer == NULL)
503 		return ENOBUFS;
504 
505 	// copy data into buffer
506 
507 	for (uint32 i = 0; i < vecCount; i++) {
508 		if (gNetBufferModule.append(buffer, vecs[i].iov_base,
509 				vecs[i].iov_len) < B_OK) {
510 			gNetBufferModule.free(buffer);
511 			return ENOBUFS;
512 		}
513 	}
514 
515 	memcpy(buffer->source, &socket->address, socket->address.ss_len);
516 	memcpy(buffer->destination, &socket->peer, socket->peer.ss_len);
517 	size_t size = buffer->size;
518 
519 	ssize_t bytesWritten = socket->first_info->send_data(socket->first_protocol,
520 		buffer);
521 	if (bytesWritten < B_OK) {
522 		if (buffer->size != size) {
523 			// this appears to be a partial write
524 			*_length = size - buffer->size;
525 		}
526 		gNetBufferModule.free(buffer);
527 		return bytesWritten;
528 	}
529 
530 	*_length = bytesWritten;
531 	return B_OK;
532 }
533 
534 
535 status_t
536 socket_control(net_socket* socket, uint32 op, void* data, size_t length)
537 {
538 	switch (op) {
539 		case FIONBIO:
540 		{
541 			if (data == NULL)
542 				return B_BAD_VALUE;
543 
544 			int value;
545 			if (is_syscall()) {
546 				if (!IS_USER_ADDRESS(data)
547 					|| user_memcpy(&value, data, sizeof(int)) != B_OK) {
548 					return B_BAD_ADDRESS;
549 				}
550 			} else
551 				value = *(int*)data;
552 
553 			return socket_setsockopt(socket, SOL_SOCKET, SO_NONBLOCK, &value,
554 				sizeof(int));
555 		}
556 
557 		case FIONREAD:
558 		{
559 			if (data == NULL)
560 				return B_BAD_VALUE;
561 
562 			int available = (int)socket_read_avail(socket);
563 			if (available < 0)
564 				return available;
565 
566 			if (is_syscall()) {
567 				if (!IS_USER_ADDRESS(data)
568 					|| user_memcpy(data, &available, sizeof(available))
569 						!= B_OK) {
570 					return B_BAD_ADDRESS;
571 				}
572 			} else
573 				*(int*)data = available;
574 
575 			return B_OK;
576 		}
577 
578 		case B_SET_BLOCKING_IO:
579 		case B_SET_NONBLOCKING_IO:
580 		{
581 			int value = op == B_SET_NONBLOCKING_IO;
582 			return socket_setsockopt(socket, SOL_SOCKET, SO_NONBLOCK, &value,
583 				sizeof(int));
584 		}
585 	}
586 
587 	return socket->first_info->control(socket->first_protocol,
588 		LEVEL_DRIVER_IOCTL, op, data, &length);
589 }
590 
591 
592 ssize_t
593 socket_read_avail(net_socket* socket)
594 {
595 	return socket->first_info->read_avail(socket->first_protocol);
596 }
597 
598 
599 ssize_t
600 socket_send_avail(net_socket* socket)
601 {
602 	return socket->first_info->send_avail(socket->first_protocol);
603 }
604 
605 
606 status_t
607 socket_send_data(net_socket* socket, net_buffer* buffer)
608 {
609 	return socket->first_info->send_data(socket->first_protocol,
610 		buffer);
611 }
612 
613 
614 status_t
615 socket_receive_data(net_socket* socket, size_t length, uint32 flags,
616 	net_buffer** _buffer)
617 {
618 	status_t status = socket->first_info->read_data(socket->first_protocol,
619 		length, flags, _buffer);
620 	if (status != B_OK)
621 		return status;
622 
623 	if (*_buffer && length < (*_buffer)->size) {
624 		// discard any data behind the amount requested
625 		gNetBufferModule.trim(*_buffer, length);
626 	}
627 
628 	return status;
629 }
630 
631 
632 status_t
633 socket_get_next_stat(uint32* _cookie, int family, struct net_stat* stat)
634 {
635 	MutexLocker locker(sSocketLock);
636 
637 	net_socket_private* socket = NULL;
638 	SocketList::Iterator iterator = sSocketList.GetIterator();
639 	uint32 cookie = *_cookie;
640 	uint32 count = 0;
641 
642 	while (true) {
643 		socket = iterator.Next();
644 		if (socket == NULL)
645 			return B_ENTRY_NOT_FOUND;
646 
647 		// TODO: also traverse the pending connections
648 		if (count == cookie)
649 			break;
650 
651 		if (family == -1 || family == socket->family)
652 			count++;
653 	}
654 
655 	*_cookie = count + 1;
656 
657 	stat->family = socket->family;
658 	stat->type = socket->type;
659 	stat->protocol = socket->protocol;
660 	stat->owner = socket->owner;
661 	stat->state[0] = '\0';
662 	memcpy(&stat->address, &socket->address, sizeof(struct sockaddr_storage));
663 	memcpy(&stat->peer, &socket->peer, sizeof(struct sockaddr_storage));
664 	stat->receive_queue_size = 0;
665 	stat->send_queue_size = 0;
666 
667 	// fill in protocol specific data (if supported by the protocol)
668 	size_t length = sizeof(net_stat);
669 	socket->first_info->control(socket->first_protocol, socket->protocol,
670 		NET_STAT_SOCKET, stat, &length);
671 
672 	return B_OK;
673 }
674 
675 
676 //	#pragma mark - connections
677 
678 
679 bool
680 socket_acquire(net_socket* _socket)
681 {
682 	net_socket_private* socket = (net_socket_private*)_socket;
683 
684 	// During destruction, the socket might still be accessible over its
685 	// endpoint protocol. We need to make sure the endpoint cannot acquire the
686 	// socket anymore -- while not obvious, the endpoint protocol is responsible
687 	// for the proper locking here.
688 	if (socket->CountReferences() == 0)
689 		return false;
690 
691 	socket->AcquireReference();
692 	return true;
693 }
694 
695 
696 bool
697 socket_release(net_socket* _socket)
698 {
699 	net_socket_private* socket = (net_socket_private*)_socket;
700 	return socket->ReleaseReference();
701 }
702 
703 
704 status_t
705 socket_spawn_pending(net_socket* _parent, net_socket** _socket)
706 {
707 	net_socket_private* parent = (net_socket_private*)_parent;
708 
709 	TRACE("%s(%p)\n", __FUNCTION__, parent);
710 
711 	MutexLocker locker(parent->lock);
712 
713 	// We actually accept more pending connections to compensate for those
714 	// that never complete, and also make sure at least a single connection
715 	// can always be accepted
716 	if (parent->child_count > 3 * parent->max_backlog / 2)
717 		return ENOBUFS;
718 
719 	net_socket_private* socket;
720 	status_t status = create_socket(parent->family, parent->type,
721 		parent->protocol, &socket);
722 	if (status != B_OK)
723 		return status;
724 
725 	// inherit parent's properties
726 	socket->send = parent->send;
727 	socket->receive = parent->receive;
728 	socket->options = parent->options & ~SO_ACCEPTCONN;
729 	socket->linger = parent->linger;
730 	socket->owner = parent->owner;
731 	memcpy(&socket->address, &parent->address, parent->address.ss_len);
732 	memcpy(&socket->peer, &parent->peer, parent->peer.ss_len);
733 
734 	// add to the parent's list of pending connections
735 	parent->pending_children.Add(socket);
736 	socket->parent = parent;
737 	parent->child_count++;
738 
739 	*_socket = socket;
740 	return B_OK;
741 }
742 
743 
744 /*!	Dequeues a connected child from a parent socket.
745 	It also returns a reference with the child socket.
746 */
747 status_t
748 socket_dequeue_connected(net_socket* _parent, net_socket** _socket)
749 {
750 	net_socket_private* parent = (net_socket_private*)_parent;
751 
752 	mutex_lock(&parent->lock);
753 
754 	net_socket_private* socket = parent->connected_children.RemoveHead();
755 	if (socket != NULL) {
756 		socket->AcquireReference();
757 		socket->RemoveFromParent();
758 		parent->child_count--;
759 		*_socket = socket;
760 	}
761 
762 	mutex_unlock(&parent->lock);
763 
764 	if (socket == NULL)
765 		return B_ENTRY_NOT_FOUND;
766 
767 	return B_OK;
768 }
769 
770 
771 ssize_t
772 socket_count_connected(net_socket* _parent)
773 {
774 	net_socket_private* parent = (net_socket_private*)_parent;
775 
776 	MutexLocker _(parent->lock);
777 	return parent->connected_children.Count();
778 }
779 
780 
781 status_t
782 socket_set_max_backlog(net_socket* _socket, uint32 backlog)
783 {
784 	net_socket_private* socket = (net_socket_private*)_socket;
785 
786 	// we enforce an upper limit of connections waiting to be accepted
787 	if (backlog > 256)
788 		backlog = 256;
789 
790 	MutexLocker _(socket->lock);
791 
792 	// first remove the pending connections, then the already connected
793 	// ones as needed
794 	net_socket_private* child;
795 	while (socket->child_count > backlog
796 		&& (child = socket->pending_children.RemoveTail()) != NULL) {
797 		child->RemoveFromParent();
798 		socket->child_count--;
799 	}
800 	while (socket->child_count > backlog
801 		&& (child = socket->connected_children.RemoveTail()) != NULL) {
802 		child->RemoveFromParent();
803 		socket->child_count--;
804 	}
805 
806 	socket->max_backlog = backlog;
807 	return B_OK;
808 }
809 
810 
811 /*!	Returns whether or not this socket has a parent. The parent might not be
812 	valid anymore, though.
813 */
814 bool
815 socket_has_parent(net_socket* _socket)
816 {
817 	net_socket_private* socket = (net_socket_private*)_socket;
818 	return socket->parent != NULL;
819 }
820 
821 
822 /*!	The socket has been connected. It will be moved to the connected queue
823 	of its parent socket.
824 */
825 status_t
826 socket_connected(net_socket* _socket)
827 {
828 	net_socket_private* socket = (net_socket_private*)_socket;
829 
830 	TRACE("socket_connected(%p)\n", socket);
831 
832 	BReference<net_socket_private> parent = socket->parent.GetReference();
833 	if (parent.Get() == NULL)
834 		return B_BAD_VALUE;
835 
836 	MutexLocker _(parent->lock);
837 
838 	parent->pending_children.Remove(socket);
839 	parent->connected_children.Add(socket);
840 	socket->is_connected = true;
841 
842 	// notify parent
843 	if (parent->select_pool)
844 		notify_select_event_pool(parent->select_pool, B_SELECT_READ);
845 
846 	return B_OK;
847 }
848 
849 
850 /*!	The socket has been aborted. Steals the parent's reference, and releases
851 	it.
852 */
853 status_t
854 socket_aborted(net_socket* _socket)
855 {
856 	net_socket_private* socket = (net_socket_private*)_socket;
857 
858 	TRACE("socket_aborted(%p)\n", socket);
859 
860 	BReference<net_socket_private> parent = socket->parent.GetReference();
861 	if (parent.Get() == NULL)
862 		return B_BAD_VALUE;
863 
864 	MutexLocker _(parent->lock);
865 
866 	if (socket->is_connected)
867 		parent->connected_children.Remove(socket);
868 	else
869 		parent->pending_children.Remove(socket);
870 
871 	parent->child_count--;
872 	socket->RemoveFromParent();
873 
874 	return B_OK;
875 }
876 
877 
878 //	#pragma mark - notifications
879 
880 
881 status_t
882 socket_request_notification(net_socket* _socket, uint8 event, selectsync* sync)
883 {
884 	net_socket_private* socket = (net_socket_private*)_socket;
885 
886 	mutex_lock(&socket->lock);
887 
888 	status_t status = add_select_sync_pool_entry(&socket->select_pool, sync,
889 		event);
890 
891 	mutex_unlock(&socket->lock);
892 
893 	if (status != B_OK)
894 		return status;
895 
896 	// check if the event is already present
897 	// TODO: add support for poll() types
898 
899 	switch (event) {
900 		case B_SELECT_READ:
901 		{
902 			ssize_t available = socket_read_avail(socket);
903 			if ((ssize_t)socket->receive.low_water_mark <= available
904 				|| available < B_OK)
905 				notify_select_event(sync, event);
906 			break;
907 		}
908 		case B_SELECT_WRITE:
909 		{
910 			ssize_t available = socket_send_avail(socket);
911 			if ((ssize_t)socket->send.low_water_mark <= available
912 				|| available < B_OK)
913 				notify_select_event(sync, event);
914 			break;
915 		}
916 		case B_SELECT_ERROR:
917 			if (socket->error != B_OK)
918 				notify_select_event(sync, event);
919 			break;
920 	}
921 
922 	return B_OK;
923 }
924 
925 
926 status_t
927 socket_cancel_notification(net_socket* _socket, uint8 event, selectsync* sync)
928 {
929 	net_socket_private* socket = (net_socket_private*)_socket;
930 
931 	MutexLocker _(socket->lock);
932 	return remove_select_sync_pool_entry(&socket->select_pool, sync, event);
933 }
934 
935 
936 status_t
937 socket_notify(net_socket* _socket, uint8 event, int32 value)
938 {
939 	net_socket_private* socket = (net_socket_private*)_socket;
940 	bool notify = true;
941 
942 	switch (event) {
943 		case B_SELECT_READ:
944 			if ((ssize_t)socket->receive.low_water_mark > value
945 				&& value >= B_OK)
946 				notify = false;
947 			break;
948 
949 		case B_SELECT_WRITE:
950 			if ((ssize_t)socket->send.low_water_mark > value && value >= B_OK)
951 				notify = false;
952 			break;
953 
954 		case B_SELECT_ERROR:
955 			socket->error = value;
956 			break;
957 	}
958 
959 	MutexLocker _(socket->lock);
960 
961 	if (notify && socket->select_pool != NULL) {
962 		notify_select_event_pool(socket->select_pool, event);
963 
964 		if (event == B_SELECT_ERROR) {
965 			// always notify read/write on error
966 			notify_select_event_pool(socket->select_pool, B_SELECT_READ);
967 			notify_select_event_pool(socket->select_pool, B_SELECT_WRITE);
968 		}
969 	}
970 
971 	return B_OK;
972 }
973 
974 
975 //	#pragma mark - standard socket API
976 
977 
978 int
979 socket_accept(net_socket* socket, struct sockaddr* address,
980 	socklen_t* _addressLength, net_socket** _acceptedSocket)
981 {
982 	if ((socket->options & SO_ACCEPTCONN) == 0)
983 		return B_BAD_VALUE;
984 
985 	net_socket* accepted;
986 	status_t status = socket->first_info->accept(socket->first_protocol,
987 		&accepted);
988 	if (status != B_OK)
989 		return status;
990 
991 	if (address && *_addressLength > 0) {
992 		memcpy(address, &accepted->peer, min_c(*_addressLength,
993 			min_c(accepted->peer.ss_len, sizeof(sockaddr_storage))));
994 		*_addressLength = accepted->peer.ss_len;
995 	}
996 
997 	*_acceptedSocket = accepted;
998 	return B_OK;
999 }
1000 
1001 
1002 int
1003 socket_bind(net_socket* socket, const struct sockaddr* address,
1004 	socklen_t addressLength)
1005 {
1006 	sockaddr empty;
1007 	if (address == NULL) {
1008 		// special - try to bind to an empty address, like INADDR_ANY
1009 		memset(&empty, 0, sizeof(sockaddr));
1010 		empty.sa_len = sizeof(sockaddr);
1011 		empty.sa_family = socket->family;
1012 
1013 		address = &empty;
1014 		addressLength = sizeof(sockaddr);
1015 	}
1016 
1017 	if (socket->address.ss_len != 0) {
1018 		status_t status = socket->first_info->unbind(socket->first_protocol,
1019 			(sockaddr*)&socket->address);
1020 		if (status != B_OK)
1021 			return status;
1022 	}
1023 
1024 	memcpy(&socket->address, address, sizeof(sockaddr));
1025 	socket->address.ss_len = sizeof(sockaddr_storage);
1026 
1027 	status_t status = socket->first_info->bind(socket->first_protocol,
1028 		(sockaddr*)address);
1029 	if (status != B_OK) {
1030 		// clear address again, as binding failed
1031 		socket->address.ss_len = 0;
1032 	}
1033 
1034 	return status;
1035 }
1036 
1037 
1038 int
1039 socket_connect(net_socket* socket, const struct sockaddr* address,
1040 	socklen_t addressLength)
1041 {
1042 	if (address == NULL || addressLength == 0)
1043 		return ENETUNREACH;
1044 
1045 	if (socket->address.ss_len == 0) {
1046 		// try to bind first
1047 		status_t status = socket_bind(socket, NULL, 0);
1048 		if (status != B_OK)
1049 			return status;
1050 	}
1051 
1052 	return socket->first_info->connect(socket->first_protocol, address);
1053 }
1054 
1055 
1056 int
1057 socket_getpeername(net_socket* socket, struct sockaddr* address,
1058 	socklen_t* _addressLength)
1059 {
1060 	if (socket->peer.ss_len == 0)
1061 		return ENOTCONN;
1062 
1063 	memcpy(address, &socket->peer, min_c(*_addressLength, socket->peer.ss_len));
1064 	*_addressLength = socket->peer.ss_len;
1065 	return B_OK;
1066 }
1067 
1068 
1069 int
1070 socket_getsockname(net_socket* socket, struct sockaddr* address,
1071 	socklen_t* _addressLength)
1072 {
1073 	if (socket->address.ss_len == 0) {
1074 		struct sockaddr buffer;
1075 		memset(&buffer, 0, sizeof(buffer));
1076 		buffer.sa_family = socket->family;
1077 
1078 		memcpy(address, &buffer, min_c(*_addressLength, sizeof(buffer)));
1079 		*_addressLength = sizeof(buffer);
1080 		return B_OK;
1081 	}
1082 
1083 	memcpy(address, &socket->address, min_c(*_addressLength,
1084 		socket->address.ss_len));
1085 	*_addressLength = socket->address.ss_len;
1086 	return B_OK;
1087 }
1088 
1089 
1090 status_t
1091 socket_get_option(net_socket* socket, int level, int option, void* value,
1092 	int* _length)
1093 {
1094 	if (level != SOL_SOCKET)
1095 		return ENOPROTOOPT;
1096 
1097 	switch (option) {
1098 		case SO_SNDBUF:
1099 		{
1100 			uint32* size = (uint32*)value;
1101 			*size = socket->send.buffer_size;
1102 			*_length = sizeof(uint32);
1103 			return B_OK;
1104 		}
1105 
1106 		case SO_RCVBUF:
1107 		{
1108 			uint32* size = (uint32*)value;
1109 			*size = socket->receive.buffer_size;
1110 			*_length = sizeof(uint32);
1111 			return B_OK;
1112 		}
1113 
1114 		case SO_SNDLOWAT:
1115 		{
1116 			uint32* size = (uint32*)value;
1117 			*size = socket->send.low_water_mark;
1118 			*_length = sizeof(uint32);
1119 			return B_OK;
1120 		}
1121 
1122 		case SO_RCVLOWAT:
1123 		{
1124 			uint32* size = (uint32*)value;
1125 			*size = socket->receive.low_water_mark;
1126 			*_length = sizeof(uint32);
1127 			return B_OK;
1128 		}
1129 
1130 		case SO_RCVTIMEO:
1131 		case SO_SNDTIMEO:
1132 		{
1133 			if (*_length < (int)sizeof(struct timeval))
1134 				return B_BAD_VALUE;
1135 
1136 			bigtime_t timeout;
1137 			if (option == SO_SNDTIMEO)
1138 				timeout = socket->send.timeout;
1139 			else
1140 				timeout = socket->receive.timeout;
1141 			if (timeout == B_INFINITE_TIMEOUT)
1142 				timeout = 0;
1143 
1144 			struct timeval* timeval = (struct timeval*)value;
1145 			timeval->tv_sec = timeout / 1000000LL;
1146 			timeval->tv_usec = timeout % 1000000LL;
1147 
1148 			*_length = sizeof(struct timeval);
1149 			return B_OK;
1150 		}
1151 
1152 		case SO_NONBLOCK:
1153 		{
1154 			int32* _set = (int32*)value;
1155 			*_set = socket->receive.timeout == 0 && socket->send.timeout == 0;
1156 			*_length = sizeof(int32);
1157 			return B_OK;
1158 		}
1159 
1160 		case SO_ACCEPTCONN:
1161 		case SO_BROADCAST:
1162 		case SO_DEBUG:
1163 		case SO_DONTROUTE:
1164 		case SO_KEEPALIVE:
1165 		case SO_OOBINLINE:
1166 		case SO_REUSEADDR:
1167 		case SO_REUSEPORT:
1168 		case SO_USELOOPBACK:
1169 		{
1170 			int32* _set = (int32*)value;
1171 			*_set = (socket->options & option) != 0;
1172 			*_length = sizeof(int32);
1173 			return B_OK;
1174 		}
1175 
1176 		case SO_TYPE:
1177 		{
1178 			int32* _set = (int32*)value;
1179 			*_set = socket->type;
1180 			*_length = sizeof(int32);
1181 			return B_OK;
1182 		}
1183 
1184 		case SO_ERROR:
1185 		{
1186 			int32* _set = (int32*)value;
1187 			*_set = socket->error;
1188 			*_length = sizeof(int32);
1189 
1190 			socket->error = B_OK;
1191 				// clear error upon retrieval
1192 			return B_OK;
1193 		}
1194 
1195 		default:
1196 			break;
1197 	}
1198 
1199 	dprintf("socket_getsockopt: unknown option %d\n", option);
1200 	return ENOPROTOOPT;
1201 }
1202 
1203 
1204 int
1205 socket_getsockopt(net_socket* socket, int level, int option, void* value,
1206 	int* _length)
1207 {
1208 	return socket->first_protocol->module->getsockopt(socket->first_protocol,
1209 		level, option, value, _length);
1210 }
1211 
1212 
1213 int
1214 socket_listen(net_socket* socket, int backlog)
1215 {
1216 	status_t status = socket->first_info->listen(socket->first_protocol,
1217 		backlog);
1218 	if (status == B_OK)
1219 		socket->options |= SO_ACCEPTCONN;
1220 
1221 	return status;
1222 }
1223 
1224 
1225 ssize_t
1226 socket_receive(net_socket* socket, msghdr* header, void* data, size_t length,
1227 	int flags)
1228 {
1229 	// If the protocol sports read_data_no_buffer() we use it.
1230 	if (socket->first_info->read_data_no_buffer != NULL)
1231 		return socket_receive_no_buffer(socket, header, data, length, flags);
1232 
1233 	size_t totalLength = length;
1234 	net_buffer* buffer;
1235 	int i;
1236 
1237 	// the convention to this function is that have header been
1238 	// present, { data, length } would have been iovec[0] and is
1239 	// always considered like that
1240 
1241 	if (header) {
1242 		// calculate the length considering all of the extra buffers
1243 		for (i = 1; i < header->msg_iovlen; i++)
1244 			totalLength += header->msg_iov[i].iov_len;
1245 	}
1246 
1247 	status_t status = socket->first_info->read_data(
1248 		socket->first_protocol, totalLength, flags, &buffer);
1249 	if (status != B_OK)
1250 		return status;
1251 
1252 	// process ancillary data
1253 	if (header != NULL) {
1254 		if (buffer != NULL && header->msg_control != NULL) {
1255 			ancillary_data_container* container
1256 				= gNetBufferModule.get_ancillary_data(buffer);
1257 			if (container != NULL)
1258 				status = process_ancillary_data(socket, container, header);
1259 			else
1260 				status = process_ancillary_data(socket, buffer, header);
1261 			if (status != B_OK) {
1262 				gNetBufferModule.free(buffer);
1263 				return status;
1264 			}
1265 		} else
1266 			header->msg_controllen = 0;
1267 	}
1268 
1269 	// TODO: - returning a NULL buffer when received 0 bytes
1270 	//         may not make much sense as we still need the address
1271 	//       - gNetBufferModule.read() uses memcpy() instead of user_memcpy
1272 
1273 	size_t nameLen = 0;
1274 
1275 	if (header) {
1276 		// TODO: - consider the control buffer options
1277 		nameLen = header->msg_namelen;
1278 		header->msg_namelen = 0;
1279 		header->msg_flags = 0;
1280 	}
1281 
1282 	if (buffer == NULL)
1283 		return 0;
1284 
1285 	size_t bytesReceived = buffer->size, bytesCopied = 0;
1286 
1287 	length = min_c(bytesReceived, length);
1288 	if (gNetBufferModule.read(buffer, 0, data, length) < B_OK) {
1289 		gNetBufferModule.free(buffer);
1290 		return ENOBUFS;
1291 	}
1292 
1293 	// if first copy was a success, proceed to following
1294 	// copies as required
1295 	bytesCopied += length;
1296 
1297 	if (header) {
1298 		// we only start considering at iovec[1]
1299 		// as { data, length } is iovec[0]
1300 		for (i = 1; i < header->msg_iovlen && bytesCopied < bytesReceived; i++) {
1301 			iovec& vec = header->msg_iov[i];
1302 			size_t toRead = min_c(bytesReceived - bytesCopied, vec.iov_len);
1303 			if (gNetBufferModule.read(buffer, bytesCopied, vec.iov_base,
1304 					toRead) < B_OK) {
1305 				break;
1306 			}
1307 
1308 			bytesCopied += toRead;
1309 		}
1310 
1311 		if (header->msg_name != NULL) {
1312 			header->msg_namelen = min_c(nameLen, buffer->source->sa_len);
1313 			memcpy(header->msg_name, buffer->source, header->msg_namelen);
1314 		}
1315 	}
1316 
1317 	gNetBufferModule.free(buffer);
1318 
1319 	if (bytesCopied < bytesReceived) {
1320 		if (header)
1321 			header->msg_flags = MSG_TRUNC;
1322 
1323 		if (flags & MSG_TRUNC)
1324 			return bytesReceived;
1325 	}
1326 
1327 	return bytesCopied;
1328 }
1329 
1330 
1331 ssize_t
1332 socket_send(net_socket* socket, msghdr* header, const void* data, size_t length,
1333 	int flags)
1334 {
1335 	const sockaddr* address = NULL;
1336 	socklen_t addressLength = 0;
1337 	size_t bytesLeft = length;
1338 
1339 	if (length > SSIZE_MAX)
1340 		return B_BAD_VALUE;
1341 
1342 	ancillary_data_container* ancillaryData = NULL;
1343 	CObjectDeleter<ancillary_data_container> ancillaryDataDeleter(NULL,
1344 		&delete_ancillary_data_container);
1345 
1346 	if (header != NULL) {
1347 		address = (const sockaddr*)header->msg_name;
1348 		addressLength = header->msg_namelen;
1349 
1350 		// get the ancillary data
1351 		if (header->msg_control != NULL) {
1352 			ancillaryData = create_ancillary_data_container();
1353 			if (ancillaryData == NULL)
1354 				return B_NO_MEMORY;
1355 			ancillaryDataDeleter.SetTo(ancillaryData);
1356 
1357 			status_t status = add_ancillary_data(socket, ancillaryData,
1358 				(cmsghdr*)header->msg_control, header->msg_controllen);
1359 			if (status != B_OK)
1360 				return status;
1361 		}
1362 	}
1363 
1364 	if (addressLength == 0)
1365 		address = NULL;
1366 	else if (address == NULL)
1367 		return B_BAD_VALUE;
1368 
1369 	if (socket->peer.ss_len != 0) {
1370 		if (address != NULL)
1371 			return EISCONN;
1372 
1373 		// socket is connected, we use that address
1374 		address = (struct sockaddr*)&socket->peer;
1375 		addressLength = socket->peer.ss_len;
1376 	}
1377 
1378 	if (address == NULL || addressLength == 0) {
1379 		// don't know where to send to:
1380 		return EDESTADDRREQ;
1381 	}
1382 
1383 	if ((socket->first_info->flags & NET_PROTOCOL_ATOMIC_MESSAGES) != 0
1384 		&& bytesLeft > socket->send.buffer_size)
1385 		return EMSGSIZE;
1386 
1387 	if (socket->address.ss_len == 0) {
1388 		// try to bind first
1389 		status_t status = socket_bind(socket, NULL, 0);
1390 		if (status != B_OK)
1391 			return status;
1392 	}
1393 
1394 	// If the protocol has a send_data_no_buffer() hook, we use that one.
1395 	if (socket->first_info->send_data_no_buffer != NULL) {
1396 		iovec stackVec = { (void*)data, length };
1397 		iovec* vecs = header ? header->msg_iov : &stackVec;
1398 		int vecCount = header ? header->msg_iovlen : 1;
1399 
1400 		ssize_t written = socket->first_info->send_data_no_buffer(
1401 			socket->first_protocol, vecs, vecCount, ancillaryData, address,
1402 			addressLength);
1403 		if (written > 0)
1404 			ancillaryDataDeleter.Detach();
1405 		return written;
1406 	}
1407 
1408 	// By convention, if a header is given, the (data, length) equals the first
1409 	// iovec. So drop the header, if it is the only iovec. Otherwise compute
1410 	// the size of the remaining ones.
1411 	if (header != NULL) {
1412 		if (header->msg_iovlen <= 1)
1413 			header = NULL;
1414 		else {
1415 // TODO: The iovecs have already been copied to kernel space. Simplify!
1416 			bytesLeft += compute_user_iovec_length(header->msg_iov + 1,
1417 				header->msg_iovlen - 1);
1418 		}
1419 	}
1420 
1421 	ssize_t bytesSent = 0;
1422 	size_t vecOffset = 0;
1423 	uint32 vecIndex = 0;
1424 
1425 	while (bytesLeft > 0) {
1426 		// TODO: useful, maybe even computed header space!
1427 		net_buffer* buffer = gNetBufferModule.create(256);
1428 		if (buffer == NULL)
1429 			return ENOBUFS;
1430 
1431 		while (buffer->size < socket->send.buffer_size
1432 			&& buffer->size < bytesLeft) {
1433 			if (vecIndex > 0 && vecOffset == 0) {
1434 				// retrieve next iovec buffer from header
1435 				iovec vec;
1436 				if (user_memcpy(&vec, header->msg_iov + vecIndex, sizeof(iovec))
1437 						< B_OK) {
1438 					gNetBufferModule.free(buffer);
1439 					return B_BAD_ADDRESS;
1440 				}
1441 
1442 				data = vec.iov_base;
1443 				length = vec.iov_len;
1444 			}
1445 
1446 			size_t bytes = length;
1447 			if (buffer->size + bytes > socket->send.buffer_size)
1448 				bytes = socket->send.buffer_size - buffer->size;
1449 
1450 			if (gNetBufferModule.append(buffer, data, bytes) < B_OK) {
1451 				gNetBufferModule.free(buffer);
1452 				return ENOBUFS;
1453 			}
1454 
1455 			if (bytes != length) {
1456 				// partial send
1457 				vecOffset = bytes;
1458 				length -= vecOffset;
1459 				data = (uint8*)data + vecOffset;
1460 			} else if (header != NULL) {
1461 				// proceed with next buffer, if any
1462 				vecOffset = 0;
1463 				vecIndex++;
1464 
1465 				if (vecIndex >= (uint32)header->msg_iovlen)
1466 					break;
1467 			}
1468 		}
1469 
1470 		// attach ancillary data to the first buffer
1471 		status_t status;
1472 		if (ancillaryData != NULL) {
1473 			gNetBufferModule.set_ancillary_data(buffer, ancillaryData);
1474 			ancillaryDataDeleter.Detach();
1475 			ancillaryData = NULL;
1476 		}
1477 
1478 		size_t bufferSize = buffer->size;
1479 		buffer->flags = flags;
1480 		memcpy(buffer->source, &socket->address, socket->address.ss_len);
1481 		memcpy(buffer->destination, address, addressLength);
1482 		buffer->destination->sa_len = addressLength;
1483 
1484 		status = socket->first_info->send_data(socket->first_protocol, buffer);
1485 		if (status != B_OK) {
1486 			size_t sizeAfterSend = buffer->size;
1487 			gNetBufferModule.free(buffer);
1488 
1489 			if ((sizeAfterSend != bufferSize || bytesSent > 0)
1490 				&& (status == B_INTERRUPTED || status == B_WOULD_BLOCK)) {
1491 				// this appears to be a partial write
1492 				return bytesSent + (bufferSize - sizeAfterSend);
1493 			}
1494 			return status;
1495 		}
1496 
1497 		bytesLeft -= bufferSize;
1498 		bytesSent += bufferSize;
1499 	}
1500 
1501 	return bytesSent;
1502 }
1503 
1504 
1505 status_t
1506 socket_set_option(net_socket* socket, int level, int option, const void* value,
1507 	int length)
1508 {
1509 	if (level != SOL_SOCKET)
1510 		return ENOPROTOOPT;
1511 
1512 	TRACE("%s(socket %p, option %d\n", __FUNCTION__, socket, option);
1513 
1514 	switch (option) {
1515 		// TODO: implement other options!
1516 		case SO_LINGER:
1517 		{
1518 			if (length < (int)sizeof(struct linger))
1519 				return B_BAD_VALUE;
1520 
1521 			struct linger* linger = (struct linger*)value;
1522 			if (linger->l_onoff) {
1523 				socket->options |= SO_LINGER;
1524 				socket->linger = linger->l_linger;
1525 			} else {
1526 				socket->options &= ~SO_LINGER;
1527 				socket->linger = 0;
1528 			}
1529 			return B_OK;
1530 		}
1531 
1532 		case SO_SNDBUF:
1533 			if (length != sizeof(uint32))
1534 				return B_BAD_VALUE;
1535 
1536 			socket->send.buffer_size = *(const uint32*)value;
1537 			return B_OK;
1538 
1539 		case SO_RCVBUF:
1540 			if (length != sizeof(uint32))
1541 				return B_BAD_VALUE;
1542 
1543 			socket->receive.buffer_size = *(const uint32*)value;
1544 			return B_OK;
1545 
1546 		case SO_SNDLOWAT:
1547 			if (length != sizeof(uint32))
1548 				return B_BAD_VALUE;
1549 
1550 			socket->send.low_water_mark = *(const uint32*)value;
1551 			return B_OK;
1552 
1553 		case SO_RCVLOWAT:
1554 			if (length != sizeof(uint32))
1555 				return B_BAD_VALUE;
1556 
1557 			socket->receive.low_water_mark = *(const uint32*)value;
1558 			return B_OK;
1559 
1560 		case SO_RCVTIMEO:
1561 		case SO_SNDTIMEO:
1562 		{
1563 			if (length != sizeof(struct timeval))
1564 				return B_BAD_VALUE;
1565 
1566 			const struct timeval* timeval = (const struct timeval*)value;
1567 			bigtime_t timeout = timeval->tv_sec * 1000000LL + timeval->tv_usec;
1568 			if (timeout == 0)
1569 				timeout = B_INFINITE_TIMEOUT;
1570 
1571 			if (option == SO_SNDTIMEO)
1572 				socket->send.timeout = timeout;
1573 			else
1574 				socket->receive.timeout = timeout;
1575 			return B_OK;
1576 		}
1577 
1578 		case SO_NONBLOCK:
1579 			if (length != sizeof(int32))
1580 				return B_BAD_VALUE;
1581 
1582 			if (*(const int32*)value) {
1583 				socket->send.timeout = 0;
1584 				socket->receive.timeout = 0;
1585 			} else {
1586 				socket->send.timeout = B_INFINITE_TIMEOUT;
1587 				socket->receive.timeout = B_INFINITE_TIMEOUT;
1588 			}
1589 			return B_OK;
1590 
1591 		case SO_BROADCAST:
1592 		case SO_DEBUG:
1593 		case SO_DONTROUTE:
1594 		case SO_KEEPALIVE:
1595 		case SO_OOBINLINE:
1596 		case SO_REUSEADDR:
1597 		case SO_REUSEPORT:
1598 		case SO_USELOOPBACK:
1599 			if (length != sizeof(int32))
1600 				return B_BAD_VALUE;
1601 
1602 			if (*(const int32*)value)
1603 				socket->options |= option;
1604 			else
1605 				socket->options &= ~option;
1606 			return B_OK;
1607 
1608 		case SO_BINDTODEVICE:
1609 		{
1610 			if (length != sizeof(uint32))
1611 				return B_BAD_VALUE;
1612 
1613 			// TODO: we might want to check if the device exists at all
1614 			// (although it doesn't really harm when we don't)
1615 			socket->bound_to_device = *(const uint32*)value;
1616 			return B_OK;
1617 		}
1618 
1619 		default:
1620 			break;
1621 	}
1622 
1623 	dprintf("socket_setsockopt: unknown option %d\n", option);
1624 	return ENOPROTOOPT;
1625 }
1626 
1627 
1628 int
1629 socket_setsockopt(net_socket* socket, int level, int option, const void* value,
1630 	int length)
1631 {
1632 	return socket->first_protocol->module->setsockopt(socket->first_protocol,
1633 		level, option, value, length);
1634 }
1635 
1636 
1637 int
1638 socket_shutdown(net_socket* socket, int direction)
1639 {
1640 	return socket->first_info->shutdown(socket->first_protocol, direction);
1641 }
1642 
1643 
1644 status_t
1645 socket_socketpair(int family, int type, int protocol, net_socket* sockets[2])
1646 {
1647 	sockets[0] = NULL;
1648 	sockets[1] = NULL;
1649 
1650 	// create sockets
1651 	status_t error = socket_open(family, type, protocol, &sockets[0]);
1652 	if (error != B_OK)
1653 		return error;
1654 
1655 	error = socket_open(family, type, protocol, &sockets[1]);
1656 
1657 	// bind one
1658 	if (error == B_OK)
1659 		error = socket_bind(sockets[0], NULL, 0);
1660 
1661 	// start listening
1662 	if (error == B_OK)
1663 		error = socket_listen(sockets[0], 1);
1664 
1665 	// connect them
1666 	if (error == B_OK) {
1667 		error = socket_connect(sockets[1], (sockaddr*)&sockets[0]->address,
1668 			sockets[0]->address.ss_len);
1669 	}
1670 
1671 	// accept a socket
1672 	net_socket* acceptedSocket = NULL;
1673 	if (error == B_OK)
1674 		error = socket_accept(sockets[0], NULL, NULL, &acceptedSocket);
1675 
1676 	if (error == B_OK) {
1677 		// everything worked: close the listener socket
1678 		socket_close(sockets[0]);
1679 		socket_free(sockets[0]);
1680 		sockets[0] = acceptedSocket;
1681 	} else {
1682 		// close sockets on error
1683 		for (int i = 0; i < 2; i++) {
1684 			if (sockets[i] != NULL) {
1685 				socket_close(sockets[i]);
1686 				socket_free(sockets[i]);
1687 				sockets[i] = NULL;
1688 			}
1689 		}
1690 	}
1691 
1692 	return error;
1693 }
1694 
1695 
1696 //	#pragma mark -
1697 
1698 
1699 static status_t
1700 socket_std_ops(int32 op, ...)
1701 {
1702 	switch (op) {
1703 		case B_MODULE_INIT:
1704 		{
1705 			new (&sSocketList) SocketList;
1706 			mutex_init(&sSocketLock, "socket list");
1707 
1708 #if ENABLE_DEBUGGER_COMMANDS
1709 			add_debugger_command("sockets", dump_sockets, "lists all sockets");
1710 			add_debugger_command("socket", dump_socket, "dumps a socket");
1711 #endif
1712 			return B_OK;
1713 		}
1714 		case B_MODULE_UNINIT:
1715 			ASSERT(sSocketList.IsEmpty());
1716 			mutex_destroy(&sSocketLock);
1717 
1718 #if ENABLE_DEBUGGER_COMMANDS
1719 			remove_debugger_command("socket", dump_socket);
1720 			remove_debugger_command("sockets", dump_sockets);
1721 #endif
1722 			return B_OK;
1723 
1724 		default:
1725 			return B_ERROR;
1726 	}
1727 }
1728 
1729 
1730 net_socket_module_info gNetSocketModule = {
1731 	{
1732 		NET_SOCKET_MODULE_NAME,
1733 		0,
1734 		socket_std_ops
1735 	},
1736 	socket_open,
1737 	socket_close,
1738 	socket_free,
1739 
1740 	socket_readv,
1741 	socket_writev,
1742 	socket_control,
1743 
1744 	socket_read_avail,
1745 	socket_send_avail,
1746 
1747 	socket_send_data,
1748 	socket_receive_data,
1749 
1750 	socket_get_option,
1751 	socket_set_option,
1752 
1753 	socket_get_next_stat,
1754 
1755 	// connections
1756 	socket_acquire,
1757 	socket_release,
1758 	socket_spawn_pending,
1759 	socket_dequeue_connected,
1760 	socket_count_connected,
1761 	socket_set_max_backlog,
1762 	socket_has_parent,
1763 	socket_connected,
1764 	socket_aborted,
1765 
1766 	// notifications
1767 	socket_request_notification,
1768 	socket_cancel_notification,
1769 	socket_notify,
1770 
1771 	// standard socket API
1772 	socket_accept,
1773 	socket_bind,
1774 	socket_connect,
1775 	socket_getpeername,
1776 	socket_getsockname,
1777 	socket_getsockopt,
1778 	socket_listen,
1779 	socket_receive,
1780 	socket_send,
1781 	socket_setsockopt,
1782 	socket_shutdown,
1783 	socket_socketpair
1784 };
1785 
1786