1 /* 2 * Copyright 2006-2007, Haiku, Inc. All Rights Reserved. 3 * Distributed under the terms of the MIT License. 4 * 5 * Authors: 6 * Oliver Tappe, zooey@hirschkaefer.de 7 * Hugo Santos, hugosantos@gmail.com 8 */ 9 10 11 #include <net_buffer.h> 12 #include <net_datalink.h> 13 #include <net_protocol.h> 14 #include <net_stack.h> 15 16 #include <lock.h> 17 #include <util/AutoLock.h> 18 #include <util/DoublyLinkedList.h> 19 #include <util/OpenHashTable.h> 20 21 #include <KernelExport.h> 22 23 #include <NetBufferUtilities.h> 24 #include <NetUtilities.h> 25 #include <ProtocolUtilities.h> 26 27 #include <netinet/in.h> 28 #include <new> 29 #include <stdlib.h> 30 #include <string.h> 31 #include <utility> 32 33 34 // NOTE the locking protocol dictates that we must hold UdpDomainSupport's 35 // lock before holding a child UdpEndpoint's lock. This restriction 36 // is dictated by the receive path as blind access to the endpoint 37 // hash is required when holding the DomainSuppport's lock. 38 39 40 //#define TRACE_UDP 41 #ifdef TRACE_UDP 42 # define TRACE_BLOCK(x) dump_block x 43 // do not remove the space before ', ##args' if you want this 44 // to compile with gcc 2.95 45 # define TRACE_EP(format, args...) dprintf("UDP [%llu] %p " format "\n", \ 46 system_time(), this , ##args) 47 # define TRACE_EPM(format, args...) dprintf("UDP [%llu] " format "\n", \ 48 system_time() , ##args) 49 # define TRACE_DOMAIN(format, args...) dprintf("UDP [%llu] (%d) " format \ 50 "\n", system_time(), Domain()->family , ##args) 51 #else 52 # define TRACE_BLOCK(x) 53 # define TRACE_EP(args...) do { } while (0) 54 # define TRACE_EPM(args...) do { } while (0) 55 # define TRACE_DOMAIN(args...) do { } while (0) 56 #endif 57 58 59 struct udp_header { 60 uint16 source_port; 61 uint16 destination_port; 62 uint16 udp_length; 63 uint16 udp_checksum; 64 } _PACKED; 65 66 67 typedef NetBufferField<uint16, offsetof(udp_header, udp_checksum)> 68 UDPChecksumField; 69 70 class UdpDomainSupport; 71 72 class UdpEndpoint : public net_protocol, public DatagramSocket<> { 73 public: 74 UdpEndpoint(net_socket *socket); 75 76 status_t Bind(const sockaddr *newAddr); 77 status_t Unbind(sockaddr *newAddr); 78 status_t Connect(const sockaddr *newAddr); 79 80 status_t Open(); 81 status_t Close(); 82 status_t Free(); 83 84 status_t SendRoutedData(net_buffer *buffer, net_route *route); 85 status_t SendData(net_buffer *buffer); 86 87 ssize_t BytesAvailable(); 88 status_t FetchData(size_t numBytes, uint32 flags, 89 net_buffer **_buffer); 90 91 status_t StoreData(net_buffer *buffer); 92 status_t DeliverData(net_buffer *buffer); 93 94 // only the domain support will change/check the Active flag so 95 // we don't really need to protect it with the socket lock. 96 bool IsActive() const { return fActive; } 97 void SetActive(bool newValue) { fActive = newValue; } 98 99 HashTableLink<UdpEndpoint> *HashTableLink() { return &fLink; } 100 101 private: 102 UdpDomainSupport *fManager; 103 bool fActive; 104 // an active UdpEndpoint is part of the endpoint 105 // hash (and it is bound and optionally connected) 106 107 ::HashTableLink<UdpEndpoint> fLink; 108 }; 109 110 111 class UdpDomainSupport; 112 113 struct UdpHashDefinition { 114 typedef net_address_module_info ParentType; 115 typedef std::pair<const sockaddr *, const sockaddr *> KeyType; 116 typedef UdpEndpoint ValueType; 117 118 UdpHashDefinition(net_address_module_info *parent) 119 : module(parent) {} 120 121 size_t HashKey(const KeyType &key) const 122 { 123 return _Mix(module->hash_address_pair(key.first, key.second)); 124 } 125 126 size_t Hash(UdpEndpoint *endpoint) const 127 { 128 return _Mix(endpoint->LocalAddress().HashPair(*endpoint->PeerAddress())); 129 } 130 131 static size_t _Mix(size_t hash) 132 { 133 // move the bits into the relevant range (as defined by kNumHashBuckets): 134 return (hash & 0x000007FF) ^ (hash & 0x003FF800) >> 11 135 ^ (hash & 0xFFC00000UL) >> 22; 136 } 137 138 bool Compare(const KeyType &key, UdpEndpoint *endpoint) const 139 { 140 return endpoint->LocalAddress().EqualTo(key.first, true) 141 && endpoint->PeerAddress().EqualTo(key.second, true); 142 } 143 144 HashTableLink<UdpEndpoint> *GetLink(UdpEndpoint *endpoint) const 145 { 146 return endpoint->HashTableLink(); 147 } 148 149 net_address_module_info *module; 150 }; 151 152 153 class UdpDomainSupport : public DoublyLinkedListLinkImpl<UdpDomainSupport> { 154 public: 155 UdpDomainSupport(net_domain *domain); 156 ~UdpDomainSupport(); 157 158 status_t InitCheck() const; 159 160 net_domain *Domain() const { return fDomain; } 161 162 void Ref() { fEndpointCount++; } 163 bool Put() { fEndpointCount--; return fEndpointCount == 0; } 164 165 status_t DemuxIncomingBuffer(net_buffer *buffer); 166 167 status_t BindEndpoint(UdpEndpoint *endpoint, const sockaddr *address); 168 status_t ConnectEndpoint(UdpEndpoint *endpoint, const sockaddr *address); 169 status_t UnbindEndpoint(UdpEndpoint *endpoint); 170 171 void DumpEndpoints() const; 172 173 private: 174 status_t _BindEndpoint(UdpEndpoint *endpoint, const sockaddr *address); 175 status_t _Bind(UdpEndpoint *endpoint, const sockaddr *address); 176 status_t _BindToEphemeral(UdpEndpoint *endpoint, const sockaddr *address); 177 status_t _FinishBind(UdpEndpoint *endpoint, const sockaddr *address); 178 179 UdpEndpoint *_FindActiveEndpoint(const sockaddr *ourAddress, 180 const sockaddr *peerAddress); 181 status_t _DemuxBroadcast(net_buffer *buffer); 182 status_t _DemuxUnicast(net_buffer *buffer); 183 184 uint16 _GetNextEphemeral(); 185 UdpEndpoint *_EndpointWithPort(uint16 port) const; 186 187 net_address_module_info *AddressModule() const 188 { return fDomain->address_module; } 189 190 typedef OpenHashTable<UdpHashDefinition, false> EndpointTable; 191 192 benaphore fLock; 193 net_domain *fDomain; 194 uint16 fLastUsedEphemeral; 195 EndpointTable fActiveEndpoints; 196 uint32 fEndpointCount; 197 198 static const uint16 kFirst = 49152; 199 static const uint16 kLast = 65535; 200 static const uint32 kNumHashBuckets = 0x800; 201 // if you change this, adjust the shifting in 202 // Hash() accordingly! 203 }; 204 205 206 typedef DoublyLinkedList<UdpDomainSupport> UdpDomainList; 207 208 209 class UdpEndpointManager { 210 public: 211 UdpEndpointManager(); 212 ~UdpEndpointManager(); 213 214 status_t ReceiveData(net_buffer *buffer); 215 status_t Deframe(net_buffer *buffer); 216 217 UdpDomainSupport *OpenEndpoint(UdpEndpoint *endpoint); 218 status_t FreeEndpoint(UdpDomainSupport *domain); 219 220 status_t InitCheck() const; 221 222 static int DumpEndpoints(int argc, char *argv[]); 223 224 private: 225 UdpDomainSupport *_GetDomain(net_domain *domain, bool create); 226 227 benaphore fLock; 228 status_t fStatus; 229 UdpDomainList fDomains; 230 }; 231 232 233 static UdpEndpointManager *sUdpEndpointManager; 234 235 net_buffer_module_info *gBufferModule; 236 net_datalink_module_info *gDatalinkModule; 237 net_stack_module_info *gStackModule; 238 239 240 // #pragma mark - 241 242 243 UdpDomainSupport::UdpDomainSupport(net_domain *domain) 244 : 245 fDomain(domain), 246 fActiveEndpoints(domain->address_module, kNumHashBuckets), 247 fEndpointCount(0) 248 { 249 benaphore_init(&fLock, "udp domain"); 250 251 fLastUsedEphemeral = kFirst + rand() % (kLast - kFirst); 252 } 253 254 255 UdpDomainSupport::~UdpDomainSupport() 256 { 257 benaphore_destroy(&fLock); 258 } 259 260 261 status_t 262 UdpDomainSupport::InitCheck() const 263 { 264 if (fLock.sem < B_OK) 265 return fLock.sem; 266 267 return fActiveEndpoints.InitCheck(); 268 } 269 270 271 status_t 272 UdpDomainSupport::DemuxIncomingBuffer(net_buffer *buffer) 273 { 274 // NOTE multicast is delivered directly to the endpoint 275 276 BenaphoreLocker _(fLock); 277 278 if (buffer->flags & MSG_BCAST) 279 return _DemuxBroadcast(buffer); 280 else if (buffer->flags & MSG_MCAST) 281 return B_ERROR; 282 283 return _DemuxUnicast(buffer); 284 } 285 286 287 status_t 288 UdpDomainSupport::BindEndpoint(UdpEndpoint *endpoint, 289 const sockaddr *address) 290 { 291 BenaphoreLocker _(fLock); 292 293 if (endpoint->IsActive()) 294 return EINVAL; 295 296 return _BindEndpoint(endpoint, address); 297 } 298 299 300 status_t 301 UdpDomainSupport::ConnectEndpoint(UdpEndpoint *endpoint, 302 const sockaddr *address) 303 { 304 BenaphoreLocker _(fLock); 305 306 if (endpoint->IsActive()) { 307 fActiveEndpoints.Remove(endpoint); 308 endpoint->SetActive(false); 309 } 310 311 if (address->sa_family == AF_UNSPEC) { 312 // [Stevens-UNP1, p226]: specifying AF_UNSPEC requests a "disconnect", 313 // so we reset the peer address: 314 endpoint->PeerAddress().SetToEmpty(); 315 } else { 316 status_t status = endpoint->PeerAddress().SetTo(address); 317 if (status < B_OK) 318 return status; 319 } 320 321 // we need to activate no matter whether or not we have just disconnected, 322 // as calling connect() always triggers an implicit bind(): 323 return _BindEndpoint(endpoint, *endpoint->LocalAddress()); 324 } 325 326 327 status_t 328 UdpDomainSupport::UnbindEndpoint(UdpEndpoint *endpoint) 329 { 330 BenaphoreLocker _(fLock); 331 332 if (endpoint->IsActive()) 333 fActiveEndpoints.Remove(endpoint); 334 335 endpoint->SetActive(false); 336 337 return B_OK; 338 } 339 340 341 void 342 UdpDomainSupport::DumpEndpoints() const 343 { 344 kprintf("-------- UDP Domain %p ---------\n", this); 345 kprintf("%10s %20s %20s %8s\n", "address", "local", "peer", "recv-q"); 346 347 EndpointTable::Iterator it = fActiveEndpoints.GetIterator(); 348 349 while (it.HasNext()) { 350 UdpEndpoint *endpoint = it.Next(); 351 352 char localBuf[64], peerBuf[64]; 353 endpoint->LocalAddress().AsString(localBuf, sizeof(localBuf), true); 354 endpoint->PeerAddress().AsString(peerBuf, sizeof(peerBuf), true); 355 356 kprintf("%p %20s %20s %8lu\n", endpoint, localBuf, peerBuf, 357 endpoint->AvailableData()); 358 } 359 } 360 361 362 status_t 363 UdpDomainSupport::_BindEndpoint(UdpEndpoint *endpoint, 364 const sockaddr *address) 365 { 366 if (AddressModule()->get_port(address) == 0) 367 return _BindToEphemeral(endpoint, address); 368 369 return _Bind(endpoint, address); 370 } 371 372 373 status_t 374 UdpDomainSupport::_Bind(UdpEndpoint *endpoint, const sockaddr *address) 375 { 376 int socketOptions = endpoint->Socket()->options; 377 378 EndpointTable::Iterator it = fActiveEndpoints.GetIterator(); 379 380 // Iterate over all active UDP-endpoints and check if the requested bind 381 // is allowed (see figure 22.24 in [Stevens - TCP2, p735]): 382 TRACE_DOMAIN("CheckBindRequest() for %s...", AddressString(fDomain, 383 address, true).Data()); 384 385 while (it.HasNext()) { 386 UdpEndpoint *otherEndpoint = it.Next(); 387 388 TRACE_DOMAIN(" ...checking endpoint %p (port=%u)...", otherEndpoint, 389 ntohs(otherEndpoint->LocalAddress().Port())); 390 391 if (otherEndpoint->LocalAddress().EqualPorts(address)) { 392 // port is already bound, SO_REUSEADDR or SO_REUSEPORT is required: 393 if (otherEndpoint->Socket()->options & (SO_REUSEADDR | SO_REUSEPORT) == 0 394 || socketOptions & (SO_REUSEADDR | SO_REUSEPORT) == 0) 395 return EADDRINUSE; 396 397 // if both addresses are the same, SO_REUSEPORT is required: 398 if (otherEndpoint->LocalAddress().EqualTo(address, false) 399 && (otherEndpoint->Socket()->options & SO_REUSEPORT == 0 400 || socketOptions & SO_REUSEPORT == 0)) 401 return EADDRINUSE; 402 } 403 } 404 405 return _FinishBind(endpoint, address); 406 } 407 408 409 status_t 410 UdpDomainSupport::_BindToEphemeral(UdpEndpoint *endpoint, 411 const sockaddr *address) 412 { 413 SocketAddressStorage newAddress(AddressModule()); 414 status_t status = newAddress.SetTo(address); 415 if (status < B_OK) 416 return status; 417 418 uint16 allocedPort = _GetNextEphemeral(); 419 if (allocedPort == 0) 420 return ENOBUFS; 421 422 newAddress.SetPort(allocedPort); 423 424 return _FinishBind(endpoint, *newAddress); 425 } 426 427 428 status_t 429 UdpDomainSupport::_FinishBind(UdpEndpoint *endpoint, const sockaddr *address) 430 { 431 status_t status = endpoint->next->module->bind(endpoint->next, address); 432 if (status < B_OK) 433 return status; 434 435 fActiveEndpoints.Insert(endpoint); 436 endpoint->SetActive(true); 437 438 return B_OK; 439 } 440 441 442 UdpEndpoint * 443 UdpDomainSupport::_FindActiveEndpoint(const sockaddr *ourAddress, 444 const sockaddr *peerAddress) 445 { 446 TRACE_DOMAIN("finding Endpoint for %s -> %s", 447 AddressString(fDomain, ourAddress, true).Data(), 448 AddressString(fDomain, peerAddress, true).Data()); 449 450 return fActiveEndpoints.Lookup(std::make_pair(ourAddress, peerAddress)); 451 } 452 453 454 status_t 455 UdpDomainSupport::_DemuxBroadcast(net_buffer *buffer) 456 { 457 sockaddr *peerAddr = buffer->source; 458 sockaddr *broadcastAddr = buffer->destination; 459 sockaddr *mask = NULL; 460 if (buffer->interface) 461 mask = (sockaddr *)buffer->interface->mask; 462 463 TRACE_DOMAIN("_DemuxBroadcast(%p)", buffer); 464 465 uint16 incomingPort = AddressModule()->get_port(broadcastAddr); 466 467 EndpointTable::Iterator it = fActiveEndpoints.GetIterator(); 468 469 while (it.HasNext()) { 470 UdpEndpoint *endpoint = it.Next(); 471 472 TRACE_DOMAIN(" _DemuxBroadcast(): checking endpoint %s...", 473 AddressString(fDomain, *endpoint->LocalAddress(), true).Data()); 474 475 if (endpoint->LocalAddress().Port() != incomingPort) { 476 // ports don't match, so we do not dispatch to this endpoint... 477 continue; 478 } 479 480 if (!endpoint->PeerAddress().IsEmpty(true)) { 481 // endpoint is connected to a specific destination, we check if 482 // this datagram is from there: 483 if (!endpoint->PeerAddress().EqualTo(peerAddr, true)) { 484 // no, datagram is from another peer, so we do not dispatch to 485 // this endpoint... 486 continue; 487 } 488 } 489 490 if (endpoint->LocalAddress().MatchMasked(broadcastAddr, mask) 491 || endpoint->LocalAddress().IsEmpty(false)) { 492 // address matches, dispatch to this endpoint: 493 endpoint->StoreData(buffer); 494 } 495 } 496 497 return B_OK; 498 } 499 500 501 status_t 502 UdpDomainSupport::_DemuxUnicast(net_buffer *buffer) 503 { 504 struct sockaddr *peerAddr = buffer->source; 505 struct sockaddr *localAddr = buffer->destination; 506 507 TRACE_DOMAIN("_DemuxUnicast(%p)", buffer); 508 509 UdpEndpoint *endpoint; 510 // look for full (most special) match: 511 endpoint = _FindActiveEndpoint(localAddr, peerAddr); 512 if (!endpoint) { 513 // look for endpoint matching local address & port: 514 endpoint = _FindActiveEndpoint(localAddr, NULL); 515 if (!endpoint) { 516 // look for endpoint matching peer address & port and local port: 517 SocketAddressStorage local(AddressModule()); 518 local.SetToEmpty(); 519 local.SetPort(AddressModule()->get_port(localAddr)); 520 endpoint = _FindActiveEndpoint(*local, peerAddr); 521 if (!endpoint) { 522 // last chance: look for endpoint matching local port only: 523 endpoint = _FindActiveEndpoint(*local, NULL); 524 } 525 } 526 } 527 528 if (!endpoint) 529 return B_NAME_NOT_FOUND; 530 531 endpoint->StoreData(buffer); 532 return B_OK; 533 } 534 535 536 uint16 537 UdpDomainSupport::_GetNextEphemeral() 538 { 539 uint16 stop, curr; 540 if (fLastUsedEphemeral < kLast) { 541 stop = fLastUsedEphemeral; 542 curr = fLastUsedEphemeral + 1; 543 } else { 544 stop = kLast; 545 curr = kFirst; 546 } 547 548 // TODO: a free list could be used to avoid the impact of these 549 // two nested loops most of the time... let's see how bad this really is 550 551 TRACE_DOMAIN("_GetNextEphemeral(), last %hu, curr %hu, stop %hu", 552 fLastUsedEphemeral, curr, stop); 553 554 for (; curr != stop; curr = (curr < kLast) ? (curr + 1) : kFirst) { 555 TRACE_DOMAIN(" _GetNextEphemeral(): trying port %hu...", curr); 556 557 if (_EndpointWithPort(htons(curr)) == NULL) { 558 TRACE_DOMAIN(" _GetNextEphemeral(): ...using port %hu", curr); 559 fLastUsedEphemeral = curr; 560 return curr; 561 } 562 } 563 564 return 0; 565 } 566 567 568 UdpEndpoint * 569 UdpDomainSupport::_EndpointWithPort(uint16 port) const 570 { 571 EndpointTable::Iterator it = fActiveEndpoints.GetIterator(); 572 573 while (it.HasNext()) { 574 UdpEndpoint *endpoint = it.Next(); 575 if (endpoint->LocalAddress().Port() == port) 576 return endpoint; 577 } 578 579 return NULL; 580 } 581 582 583 // #pragma mark - 584 585 586 UdpEndpointManager::UdpEndpointManager() 587 { 588 fStatus = benaphore_init(&fLock, "UDP endpoints"); 589 } 590 591 592 UdpEndpointManager::~UdpEndpointManager() 593 { 594 benaphore_destroy(&fLock); 595 } 596 597 598 status_t 599 UdpEndpointManager::InitCheck() const 600 { 601 return fStatus; 602 } 603 604 605 int 606 UdpEndpointManager::DumpEndpoints(int argc, char *argv[]) 607 { 608 UdpDomainList::Iterator it = sUdpEndpointManager->fDomains.GetIterator(); 609 610 while (it.HasNext()) 611 it.Next()->DumpEndpoints(); 612 613 return 0; 614 } 615 616 617 // #pragma mark - inbound 618 619 620 status_t 621 UdpEndpointManager::ReceiveData(net_buffer *buffer) 622 { 623 status_t status = Deframe(buffer); 624 if (status < B_OK) 625 return status; 626 627 TRACE_EPM("ReceiveData(%p [%ld bytes])", buffer, buffer->size); 628 629 net_domain *domain = buffer->interface->domain; 630 631 UdpDomainSupport *domainSupport = NULL; 632 633 { 634 BenaphoreLocker _(fLock); 635 domainSupport = _GetDomain(domain, false); 636 // TODO we don't want to hold to the manager's lock 637 // during the whole RX path, we may not hold an 638 // endpoint's lock with the manager lock held. 639 // But we should increase the domain's refcount 640 // here. 641 } 642 643 if (domainSupport == NULL) { 644 // we don't instantiate domain supports in the 645 // RX path as we are only interested in delivering 646 // data to existing sockets. 647 return B_ERROR; 648 } 649 650 status = domainSupport->DemuxIncomingBuffer(buffer); 651 if (status < B_OK) { 652 TRACE_EPM(" ReceiveData(): no endpoint."); 653 // TODO: send ICMP-error 654 return B_ERROR; 655 } 656 657 gBufferModule->free(buffer); 658 return B_OK; 659 } 660 661 662 status_t 663 UdpEndpointManager::Deframe(net_buffer *buffer) 664 { 665 TRACE_EPM("Deframe(%p [%ld bytes])", buffer, buffer->size); 666 667 NetBufferHeaderReader<udp_header> bufferHeader(buffer); 668 if (bufferHeader.Status() < B_OK) 669 return bufferHeader.Status(); 670 671 udp_header &header = bufferHeader.Data(); 672 673 if (buffer->interface == NULL || buffer->interface->domain == NULL) { 674 TRACE_EPM(" Deframe(): UDP packed dropped as there was no domain " 675 "specified (interface %p).", buffer->interface); 676 return B_BAD_VALUE; 677 } 678 679 net_domain *domain = buffer->interface->domain; 680 net_address_module_info *addressModule = domain->address_module; 681 682 SocketAddress source(addressModule, buffer->source); 683 SocketAddress destination(addressModule, buffer->destination); 684 685 source.SetPort(header.source_port); 686 destination.SetPort(header.destination_port); 687 688 TRACE_EPM(" Deframe(): data from %s to %s", source.AsString(true).Data(), 689 destination.AsString(true).Data()); 690 691 uint16 udpLength = ntohs(header.udp_length); 692 if (udpLength > buffer->size) { 693 TRACE_EPM(" Deframe(): buffer is too short, expected %hu.", 694 udpLength); 695 return B_MISMATCHED_VALUES; 696 } 697 698 if (buffer->size > udpLength) 699 gBufferModule->trim(buffer, udpLength); 700 701 if (header.udp_checksum != 0) { 702 // check UDP-checksum (simulating a so-called "pseudo-header"): 703 uint16 sum = Checksum::PseudoHeader(addressModule, gBufferModule, 704 buffer, IPPROTO_UDP); 705 if (sum != 0) { 706 TRACE_EPM(" Deframe(): bad checksum 0x%hx.", sum); 707 return B_BAD_VALUE; 708 } 709 } 710 711 bufferHeader.Remove(); 712 // remove UDP-header from buffer before passing it on 713 714 return B_OK; 715 } 716 717 718 UdpDomainSupport * 719 UdpEndpointManager::OpenEndpoint(UdpEndpoint *endpoint) 720 { 721 BenaphoreLocker _(fLock); 722 723 UdpDomainSupport *domain = _GetDomain(endpoint->Domain(), true); 724 if (domain) 725 domain->Ref(); 726 return domain; 727 } 728 729 730 status_t 731 UdpEndpointManager::FreeEndpoint(UdpDomainSupport *domain) 732 { 733 BenaphoreLocker _(fLock); 734 735 if (domain->Put()) { 736 fDomains.Remove(domain); 737 delete domain; 738 } 739 740 return B_OK; 741 } 742 743 744 // #pragma mark - 745 746 747 UdpDomainSupport * 748 UdpEndpointManager::_GetDomain(net_domain *domain, bool create) 749 { 750 UdpDomainList::Iterator it = fDomains.GetIterator(); 751 752 // TODO convert this into a Hashtable or install per-domain 753 // receiver handlers that forward the requests to the 754 // appropriate DemuxIncomingBuffer(). For instance, while 755 // being constructed UdpDomainSupport could call 756 // register_domain_receiving_protocol() with the right 757 // family. 758 while (it.HasNext()) { 759 UdpDomainSupport *domainSupport = it.Next(); 760 if (domainSupport->Domain() == domain) 761 return domainSupport; 762 } 763 764 if (!create) 765 return NULL; 766 767 UdpDomainSupport *domainSupport = 768 new (std::nothrow) UdpDomainSupport(domain); 769 if (domainSupport == NULL || domainSupport->InitCheck() < B_OK) { 770 delete domainSupport; 771 return NULL; 772 } 773 774 fDomains.Add(domainSupport); 775 return domainSupport; 776 } 777 778 779 // #pragma mark - 780 781 782 UdpEndpoint::UdpEndpoint(net_socket *socket) 783 : DatagramSocket<>("udp endpoint", socket), fActive(false) {} 784 785 786 // #pragma mark - activation 787 788 789 status_t 790 UdpEndpoint::Bind(const sockaddr *address) 791 { 792 TRACE_EP("Bind(%s)", AddressString(Domain(), address, true).Data()); 793 return fManager->BindEndpoint(this, address); 794 } 795 796 797 status_t 798 UdpEndpoint::Unbind(sockaddr *address) 799 { 800 TRACE_EP("Unbind()"); 801 return fManager->UnbindEndpoint(this); 802 } 803 804 805 status_t 806 UdpEndpoint::Connect(const sockaddr *address) 807 { 808 TRACE_EP("Connect(%s)", AddressString(Domain(), address, true).Data()); 809 return fManager->ConnectEndpoint(this, address); 810 } 811 812 813 status_t 814 UdpEndpoint::Open() 815 { 816 TRACE_EP("Open()"); 817 818 BenaphoreLocker _(fLock); 819 820 status_t status = ProtocolSocket::Open(); 821 if (status < B_OK) 822 return status; 823 824 fManager = sUdpEndpointManager->OpenEndpoint(this); 825 if (fManager == NULL) 826 return EAFNOSUPPORT; 827 828 return B_OK; 829 } 830 831 832 status_t 833 UdpEndpoint::Close() 834 { 835 TRACE_EP("Close()"); 836 return B_OK; 837 } 838 839 840 status_t 841 UdpEndpoint::Free() 842 { 843 TRACE_EP("Free()"); 844 fManager->UnbindEndpoint(this); 845 return sUdpEndpointManager->FreeEndpoint(fManager); 846 } 847 848 849 // #pragma mark - outbound 850 851 852 status_t 853 UdpEndpoint::SendRoutedData(net_buffer *buffer, net_route *route) 854 { 855 TRACE_EP("SendRoutedData(%p [%lu bytes], %p)", buffer, buffer->size, route); 856 857 if (buffer->size > (0xffff - sizeof(udp_header))) 858 return EMSGSIZE; 859 860 buffer->protocol = IPPROTO_UDP; 861 862 // add and fill UDP-specific header: 863 NetBufferPrepend<udp_header> header(buffer); 864 if (header.Status() < B_OK) 865 return header.Status(); 866 867 header->source_port = AddressModule()->get_port(buffer->source); 868 header->destination_port = AddressModule()->get_port(buffer->destination); 869 header->udp_length = htons(buffer->size); 870 // the udp-header is already included in the buffer-size 871 header->udp_checksum = 0; 872 873 header.Sync(); 874 875 uint16 calculatedChecksum = Checksum::PseudoHeader(AddressModule(), 876 gBufferModule, buffer, IPPROTO_UDP); 877 if (calculatedChecksum == 0) 878 calculatedChecksum = 0xffff; 879 880 *UDPChecksumField(buffer) = calculatedChecksum; 881 882 TRACE_BLOCK(((char*)&header, sizeof(udp_header), "udp-hdr: ")); 883 884 return next->module->send_routed_data(next, route, buffer); 885 } 886 887 888 status_t 889 UdpEndpoint::SendData(net_buffer *buffer) 890 { 891 TRACE_EP("SendData(%p [%lu bytes])", buffer, buffer->size); 892 893 return gDatalinkModule->send_datagram(this, NULL, buffer); 894 } 895 896 897 // #pragma mark - inbound 898 899 900 ssize_t 901 UdpEndpoint::BytesAvailable() 902 { 903 size_t bytes = AvailableData(); 904 TRACE_EP("BytesAvailable(): %lu", bytes); 905 return bytes; 906 } 907 908 909 status_t 910 UdpEndpoint::FetchData(size_t numBytes, uint32 flags, net_buffer **_buffer) 911 { 912 TRACE_EP("FetchData(%ld, 0x%lx)", numBytes, flags); 913 914 status_t status = SocketDequeue(flags, _buffer); 915 TRACE_EP(" FetchData(): returned from fifo status=0x%lx", status); 916 if (status < B_OK) 917 return status; 918 919 TRACE_EP(" FetchData(): returns buffer with %ld bytes", (*_buffer)->size); 920 return B_OK; 921 } 922 923 924 status_t 925 UdpEndpoint::StoreData(net_buffer *buffer) 926 { 927 TRACE_EP("StoreData(%p [%ld bytes])", buffer, buffer->size); 928 929 return SocketEnqueue(buffer); 930 } 931 932 933 status_t 934 UdpEndpoint::DeliverData(net_buffer *_buffer) 935 { 936 TRACE_EP("DeliverData(%p [%ld bytes])", _buffer, _buffer->size); 937 938 net_buffer *buffer = gBufferModule->clone(_buffer, false); 939 if (buffer == NULL) 940 return B_NO_MEMORY; 941 942 status_t status = sUdpEndpointManager->Deframe(buffer); 943 if (status < B_OK) { 944 gBufferModule->free(buffer); 945 return status; 946 } 947 948 // we call Enqueue() instead of SocketEnqueue() as there is 949 // no need to clone the buffer again. 950 return Enqueue(buffer); 951 } 952 953 954 // #pragma mark - protocol interface 955 956 957 net_protocol * 958 udp_init_protocol(net_socket *socket) 959 { 960 socket->protocol = IPPROTO_UDP; 961 962 UdpEndpoint *endpoint = new (std::nothrow) UdpEndpoint(socket); 963 if (endpoint == NULL || endpoint->InitCheck() < B_OK) { 964 delete endpoint; 965 return NULL; 966 } 967 968 return endpoint; 969 } 970 971 972 status_t 973 udp_uninit_protocol(net_protocol *protocol) 974 { 975 delete (UdpEndpoint *)protocol; 976 return B_OK; 977 } 978 979 980 status_t 981 udp_open(net_protocol *protocol) 982 { 983 return ((UdpEndpoint *)protocol)->Open(); 984 } 985 986 987 status_t 988 udp_close(net_protocol *protocol) 989 { 990 return ((UdpEndpoint *)protocol)->Close(); 991 } 992 993 994 status_t 995 udp_free(net_protocol *protocol) 996 { 997 return ((UdpEndpoint *)protocol)->Free(); 998 } 999 1000 1001 status_t 1002 udp_connect(net_protocol *protocol, const struct sockaddr *address) 1003 { 1004 return ((UdpEndpoint *)protocol)->Connect(address); 1005 } 1006 1007 1008 status_t 1009 udp_accept(net_protocol *protocol, struct net_socket **_acceptedSocket) 1010 { 1011 return EOPNOTSUPP; 1012 } 1013 1014 1015 status_t 1016 udp_control(net_protocol *protocol, int level, int option, void *value, 1017 size_t *_length) 1018 { 1019 return protocol->next->module->control(protocol->next, level, option, 1020 value, _length); 1021 } 1022 1023 1024 status_t 1025 udp_getsockopt(net_protocol *protocol, int level, int option, void *value, 1026 int *length) 1027 { 1028 return protocol->next->module->getsockopt(protocol->next, level, option, 1029 value, length); 1030 } 1031 1032 1033 status_t 1034 udp_setsockopt(net_protocol *protocol, int level, int option, 1035 const void *value, int length) 1036 { 1037 return protocol->next->module->setsockopt(protocol->next, level, option, 1038 value, length); 1039 } 1040 1041 1042 status_t 1043 udp_bind(net_protocol *protocol, const struct sockaddr *address) 1044 { 1045 return ((UdpEndpoint *)protocol)->Bind(address); 1046 } 1047 1048 1049 status_t 1050 udp_unbind(net_protocol *protocol, struct sockaddr *address) 1051 { 1052 return ((UdpEndpoint *)protocol)->Unbind(address); 1053 } 1054 1055 1056 status_t 1057 udp_listen(net_protocol *protocol, int count) 1058 { 1059 return EOPNOTSUPP; 1060 } 1061 1062 1063 status_t 1064 udp_shutdown(net_protocol *protocol, int direction) 1065 { 1066 return EOPNOTSUPP; 1067 } 1068 1069 1070 status_t 1071 udp_send_routed_data(net_protocol *protocol, struct net_route *route, 1072 net_buffer *buffer) 1073 { 1074 return ((UdpEndpoint *)protocol)->SendRoutedData(buffer, route); 1075 } 1076 1077 1078 status_t 1079 udp_send_data(net_protocol *protocol, net_buffer *buffer) 1080 { 1081 return ((UdpEndpoint *)protocol)->SendData(buffer); 1082 } 1083 1084 1085 ssize_t 1086 udp_send_avail(net_protocol *protocol) 1087 { 1088 return protocol->socket->send.buffer_size; 1089 } 1090 1091 1092 status_t 1093 udp_read_data(net_protocol *protocol, size_t numBytes, uint32 flags, 1094 net_buffer **_buffer) 1095 { 1096 return ((UdpEndpoint *)protocol)->FetchData(numBytes, flags, _buffer); 1097 } 1098 1099 1100 ssize_t 1101 udp_read_avail(net_protocol *protocol) 1102 { 1103 return ((UdpEndpoint *)protocol)->BytesAvailable(); 1104 } 1105 1106 1107 struct net_domain * 1108 udp_get_domain(net_protocol *protocol) 1109 { 1110 return protocol->next->module->get_domain(protocol->next); 1111 } 1112 1113 1114 size_t 1115 udp_get_mtu(net_protocol *protocol, const struct sockaddr *address) 1116 { 1117 return protocol->next->module->get_mtu(protocol->next, address); 1118 } 1119 1120 1121 status_t 1122 udp_receive_data(net_buffer *buffer) 1123 { 1124 return sUdpEndpointManager->ReceiveData(buffer); 1125 } 1126 1127 1128 status_t 1129 udp_deliver_data(net_protocol *protocol, net_buffer *buffer) 1130 { 1131 return ((UdpEndpoint *)protocol)->DeliverData(buffer); 1132 } 1133 1134 1135 status_t 1136 udp_error(uint32 code, net_buffer *data) 1137 { 1138 return B_ERROR; 1139 } 1140 1141 1142 status_t 1143 udp_error_reply(net_protocol *protocol, net_buffer *causedError, uint32 code, 1144 void *errorData) 1145 { 1146 return B_ERROR; 1147 } 1148 1149 1150 // #pragma mark - module interface 1151 1152 1153 static status_t 1154 init_udp() 1155 { 1156 status_t status; 1157 TRACE_EPM("init_udp()"); 1158 1159 sUdpEndpointManager = new (std::nothrow) UdpEndpointManager; 1160 if (sUdpEndpointManager == NULL) 1161 return B_NO_MEMORY; 1162 1163 status = sUdpEndpointManager->InitCheck(); 1164 if (status != B_OK) 1165 goto err1; 1166 1167 status = gStackModule->register_domain_protocols(AF_INET, SOCK_DGRAM, IPPROTO_IP, 1168 "network/protocols/udp/v1", 1169 "network/protocols/ipv4/v1", 1170 NULL); 1171 if (status < B_OK) 1172 goto err1; 1173 status = gStackModule->register_domain_protocols(AF_INET, SOCK_DGRAM, IPPROTO_UDP, 1174 "network/protocols/udp/v1", 1175 "network/protocols/ipv4/v1", 1176 NULL); 1177 if (status < B_OK) 1178 goto err1; 1179 1180 status = gStackModule->register_domain_receiving_protocol(AF_INET, IPPROTO_UDP, 1181 "network/protocols/udp/v1"); 1182 if (status < B_OK) 1183 goto err1; 1184 1185 add_debugger_command("udp_endpoints", UdpEndpointManager::DumpEndpoints, 1186 "lists all open UDP endpoints"); 1187 1188 return B_OK; 1189 1190 err1: 1191 delete sUdpEndpointManager; 1192 1193 TRACE_EPM("init_udp() fails with %lx (%s)", status, strerror(status)); 1194 return status; 1195 } 1196 1197 1198 static status_t 1199 uninit_udp() 1200 { 1201 TRACE_EPM("uninit_udp()"); 1202 remove_debugger_command("udp_endpoints", 1203 UdpEndpointManager::DumpEndpoints); 1204 delete sUdpEndpointManager; 1205 return B_OK; 1206 } 1207 1208 1209 static status_t 1210 udp_std_ops(int32 op, ...) 1211 { 1212 switch (op) { 1213 case B_MODULE_INIT: 1214 return init_udp(); 1215 1216 case B_MODULE_UNINIT: 1217 return uninit_udp(); 1218 1219 default: 1220 return B_ERROR; 1221 } 1222 } 1223 1224 1225 net_protocol_module_info sUDPModule = { 1226 { 1227 "network/protocols/udp/v1", 1228 0, 1229 udp_std_ops 1230 }, 1231 udp_init_protocol, 1232 udp_uninit_protocol, 1233 udp_open, 1234 udp_close, 1235 udp_free, 1236 udp_connect, 1237 udp_accept, 1238 udp_control, 1239 udp_getsockopt, 1240 udp_setsockopt, 1241 udp_bind, 1242 udp_unbind, 1243 udp_listen, 1244 udp_shutdown, 1245 udp_send_data, 1246 udp_send_routed_data, 1247 udp_send_avail, 1248 udp_read_data, 1249 udp_read_avail, 1250 udp_get_domain, 1251 udp_get_mtu, 1252 udp_receive_data, 1253 udp_deliver_data, 1254 udp_error, 1255 udp_error_reply, 1256 }; 1257 1258 module_dependency module_dependencies[] = { 1259 {NET_STACK_MODULE_NAME, (module_info **)&gStackModule}, 1260 {NET_BUFFER_MODULE_NAME, (module_info **)&gBufferModule}, 1261 {NET_DATALINK_MODULE_NAME, (module_info **)&gDatalinkModule}, 1262 {} 1263 }; 1264 1265 module_info *modules[] = { 1266 (module_info *)&sUDPModule, 1267 NULL 1268 }; 1269