xref: /haiku/src/add-ons/kernel/network/protocols/tcp/TCPEndpoint.cpp (revision 68d37cfb3a755a7270d772b505ee15c8b18aa5e0)
1 /*
2  * Copyright 2006-2010, Haiku, Inc. All Rights Reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Authors:
6  *		Andrew Galante, haiku.galante@gmail.com
7  *		Axel Dörfler, axeld@pinc-software.de
8  *		Hugo Santos, hugosantos@gmail.com
9  */
10 
11 
12 #include "TCPEndpoint.h"
13 
14 #include <netinet/in.h>
15 #include <netinet/ip.h>
16 #include <netinet/tcp.h>
17 #include <new>
18 #include <signal.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <stdint.h>
22 
23 #include <KernelExport.h>
24 #include <Select.h>
25 
26 #include <net_buffer.h>
27 #include <net_datalink.h>
28 #include <net_stat.h>
29 #include <NetBufferUtilities.h>
30 #include <NetUtilities.h>
31 
32 #include <lock.h>
33 #include <tracing.h>
34 #include <util/AutoLock.h>
35 #include <util/list.h>
36 
37 #include "EndpointManager.h"
38 
39 
40 // References:
41 //	- RFC 793 - Transmission Control Protocol
42 //	- RFC 813 - Window and Acknowledgement Strategy in TCP
43 //	- RFC 1337 - TIME_WAIT Assassination Hazards in TCP
44 //
45 // Things this implementation currently doesn't implement:
46 //	- TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery,
47 //	  RFC 2001, RFC 2581, RFC 3042
48 //	- NewReno Modification to TCP's Fast Recovery, RFC 2582
49 //	- Explicit Congestion Notification (ECN), RFC 3168
50 //	- SYN-Cache
51 //	- SACK, Selective Acknowledgment - RFC 2018, RFC 2883, RFC 3517
52 //	- Forward RTO-Recovery, RFC 4138
53 //	- Time-Wait hash instead of keeping sockets alive
54 //
55 // Things incomplete in this implementation:
56 //	- TCP Extensions for High Performance, RFC 1323 - RTTM, PAWS
57 
58 #define PrintAddress(address) \
59 	AddressString(Domain(), address, true).Data()
60 
61 //#define TRACE_TCP
62 //#define PROBE_TCP
63 
64 #ifdef TRACE_TCP
65 // the space before ', ##args' is important in order for this to work with cpp 2.95
66 #	define TRACE(format, args...)	dprintf("%" B_PRId32 ": TCP [%" \
67 		B_PRIdBIGTIME "] %p (%12s) " format "\n", find_thread(NULL), \
68 		system_time(), this, name_for_state(fState) , ##args)
69 #else
70 #	define TRACE(args...)			do { } while (0)
71 #endif
72 
73 #ifdef PROBE_TCP
74 #	define PROBE(buffer, window) \
75 	dprintf("TCP PROBE %" B_PRIdBIGTIME " %s %s %" B_PRIu32 " snxt %" B_PRIu32 \
76 		" suna %" B_PRIu32 " cw %" B_PRIu32 " sst %" B_PRIu32 " win %" \
77 		B_PRIu32 " swin %" B_PRIu32 " smax-suna %" B_PRIu32 " savail %" \
78 		B_PRIuSIZE " sqused %" B_PRIuSIZE " rto %" B_PRIdBIGTIME "\n", \
79 		system_time(), PrintAddress(buffer->source), \
80 		PrintAddress(buffer->destination), buffer->size, fSendNext.Number(), \
81 		fSendUnacknowledged.Number(), fCongestionWindow, fSlowStartThreshold, \
82 		window, fSendWindow, (fSendMax - fSendUnacknowledged).Number(), \
83 		fSendQueue.Available(fSendNext), fSendQueue.Used(), fRetransmitTimeout)
84 #else
85 #	define PROBE(buffer, window)	do { } while (0)
86 #endif
87 
88 #if TCP_TRACING
89 namespace TCPTracing {
90 
91 class Receive : public AbstractTraceEntry {
92 public:
93 	Receive(TCPEndpoint* endpoint, tcp_segment_header& segment, uint32 window,
94 			net_buffer* buffer)
95 		:
96 		fEndpoint(endpoint),
97 		fBuffer(buffer),
98 		fBufferSize(buffer->size),
99 		fSequence(segment.sequence),
100 		fAcknowledge(segment.acknowledge),
101 		fWindow(window),
102 		fState(endpoint->State()),
103 		fFlags(segment.flags)
104 	{
105 		Initialized();
106 	}
107 
108 	virtual void AddDump(TraceOutput& out)
109 	{
110 		out.Print("tcp:%p (%12s) receive buffer %p (%" B_PRIu32 " bytes), "
111 			"flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32
112 			", wnd %" B_PRIu32, fEndpoint, name_for_state(fState), fBuffer,
113 			fBufferSize, fFlags, fSequence, fAcknowledge, fWindow);
114 	}
115 
116 protected:
117 	TCPEndpoint*	fEndpoint;
118 	net_buffer*		fBuffer;
119 	uint32			fBufferSize;
120 	uint32			fSequence;
121 	uint32			fAcknowledge;
122 	uint32			fWindow;
123 	tcp_state		fState;
124 	uint8			fFlags;
125 };
126 
127 class Send : public AbstractTraceEntry {
128 public:
129 	Send(TCPEndpoint* endpoint, tcp_segment_header& segment, net_buffer* buffer,
130 			tcp_sequence firstSequence, tcp_sequence lastSequence)
131 		:
132 		fEndpoint(endpoint),
133 		fBuffer(buffer),
134 		fBufferSize(buffer->size),
135 		fSequence(segment.sequence),
136 		fAcknowledge(segment.acknowledge),
137 		fFirstSequence(firstSequence.Number()),
138 		fLastSequence(lastSequence.Number()),
139 		fState(endpoint->State()),
140 		fFlags(segment.flags)
141 	{
142 		Initialized();
143 	}
144 
145 	virtual void AddDump(TraceOutput& out)
146 	{
147 		out.Print("tcp:%p (%12s) send buffer %p (%" B_PRIu32 " bytes), "
148 			"flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32
149 			", first %" B_PRIu32 ", last %" B_PRIu32, fEndpoint,
150 			name_for_state(fState), fBuffer, fBufferSize, fFlags, fSequence,
151 			fAcknowledge, fFirstSequence, fLastSequence);
152 	}
153 
154 protected:
155 	TCPEndpoint*	fEndpoint;
156 	net_buffer*		fBuffer;
157 	uint32			fBufferSize;
158 	uint32			fSequence;
159 	uint32			fAcknowledge;
160 	uint32			fFirstSequence;
161 	uint32			fLastSequence;
162 	tcp_state		fState;
163 	uint8			fFlags;
164 };
165 
166 class State : public AbstractTraceEntry {
167 public:
168 	State(TCPEndpoint* endpoint)
169 		:
170 		fEndpoint(endpoint),
171 		fState(endpoint->State())
172 	{
173 		Initialized();
174 	}
175 
176 	virtual void AddDump(TraceOutput& out)
177 	{
178 		out.Print("tcp:%p (%12s) state change", fEndpoint,
179 			name_for_state(fState));
180 	}
181 
182 protected:
183 	TCPEndpoint*	fEndpoint;
184 	tcp_state		fState;
185 };
186 
187 class Spawn : public AbstractTraceEntry {
188 public:
189 	Spawn(TCPEndpoint* listeningEndpoint, TCPEndpoint* spawnedEndpoint)
190 		:
191 		fListeningEndpoint(listeningEndpoint),
192 		fSpawnedEndpoint(spawnedEndpoint)
193 	{
194 		Initialized();
195 	}
196 
197 	virtual void AddDump(TraceOutput& out)
198 	{
199 		out.Print("tcp:%p spawns %p", fListeningEndpoint, fSpawnedEndpoint);
200 	}
201 
202 protected:
203 	TCPEndpoint*	fListeningEndpoint;
204 	TCPEndpoint*	fSpawnedEndpoint;
205 };
206 
207 class Error : public AbstractTraceEntry {
208 public:
209 	Error(TCPEndpoint* endpoint, const char* error, int32 line)
210 		:
211 		fEndpoint(endpoint),
212 		fLine(line),
213 		fError(error),
214 		fState(endpoint->State())
215 	{
216 		Initialized();
217 	}
218 
219 	virtual void AddDump(TraceOutput& out)
220 	{
221 		out.Print("tcp:%p (%12s) error at line %" B_PRId32 ": %s", fEndpoint,
222 			name_for_state(fState), fLine, fError);
223 	}
224 
225 protected:
226 	TCPEndpoint*	fEndpoint;
227 	int32			fLine;
228 	const char*		fError;
229 	tcp_state		fState;
230 };
231 
232 class TimerSet : public AbstractTraceEntry {
233 public:
234 	TimerSet(TCPEndpoint* endpoint, const char* which, bigtime_t timeout)
235 		:
236 		fEndpoint(endpoint),
237 		fWhich(which),
238 		fTimeout(timeout),
239 		fState(endpoint->State())
240 	{
241 		Initialized();
242 	}
243 
244 	virtual void AddDump(TraceOutput& out)
245 	{
246 		out.Print("tcp:%p (%12s) %s timer set to %" B_PRIdBIGTIME, fEndpoint,
247 			name_for_state(fState), fWhich, fTimeout);
248 	}
249 
250 protected:
251 	TCPEndpoint*	fEndpoint;
252 	const char*		fWhich;
253 	bigtime_t		fTimeout;
254 	tcp_state		fState;
255 };
256 
257 class TimerTriggered : public AbstractTraceEntry {
258 public:
259 	TimerTriggered(TCPEndpoint* endpoint, const char* which)
260 		:
261 		fEndpoint(endpoint),
262 		fWhich(which),
263 		fState(endpoint->State())
264 	{
265 		Initialized();
266 	}
267 
268 	virtual void AddDump(TraceOutput& out)
269 	{
270 		out.Print("tcp:%p (%12s) %s timer triggered", fEndpoint,
271 			name_for_state(fState), fWhich);
272 	}
273 
274 protected:
275 	TCPEndpoint*	fEndpoint;
276 	const char*		fWhich;
277 	tcp_state		fState;
278 };
279 
280 class APICall : public AbstractTraceEntry {
281 public:
282 	APICall(TCPEndpoint* endpoint, const char* which)
283 		:
284 		fEndpoint(endpoint),
285 		fWhich(which),
286 		fState(endpoint->State())
287 	{
288 		Initialized();
289 	}
290 
291 	virtual void AddDump(TraceOutput& out)
292 	{
293 		out.Print("tcp:%p (%12s) api call: %s", fEndpoint,
294 			name_for_state(fState), fWhich);
295 	}
296 
297 protected:
298 	TCPEndpoint*	fEndpoint;
299 	const char*		fWhich;
300 	tcp_state		fState;
301 };
302 
303 }	// namespace TCPTracing
304 
305 #	define T(x)	new(std::nothrow) TCPTracing::x
306 #else
307 #	define T(x)
308 #endif	// TCP_TRACING
309 
310 
311 // constants for the fFlags field
312 enum {
313 	FLAG_OPTION_WINDOW_SCALE	= 0x01,
314 	FLAG_OPTION_TIMESTAMP		= 0x02,
315 	// TODO: Should FLAG_NO_RECEIVE apply as well to received connections?
316 	//       That is, what is expected from accept() after a shutdown()
317 	//       is performed on a listen()ing socket.
318 	FLAG_NO_RECEIVE				= 0x04,
319 	FLAG_CLOSED					= 0x08,
320 	FLAG_DELETE_ON_CLOSE		= 0x10,
321 	FLAG_LOCAL					= 0x20,
322 	FLAG_RECOVERY				= 0x40
323 };
324 
325 
326 static const int kTimestampFactor = 1000;
327 	// conversion factor between usec system time and msec tcp time
328 
329 
330 static inline bigtime_t
331 absolute_timeout(bigtime_t timeout)
332 {
333 	if (timeout == 0 || timeout == B_INFINITE_TIMEOUT)
334 		return timeout;
335 
336 	return timeout + system_time();
337 }
338 
339 
340 static inline status_t
341 posix_error(status_t error)
342 {
343 	if (error == B_TIMED_OUT)
344 		return B_WOULD_BLOCK;
345 
346 	return error;
347 }
348 
349 
350 static inline bool
351 in_window(const tcp_sequence& sequence, const tcp_sequence& receiveNext,
352 	uint32 receiveWindow)
353 {
354 	return sequence >= receiveNext && sequence < (receiveNext + receiveWindow);
355 }
356 
357 
358 static inline bool
359 segment_in_sequence(const tcp_segment_header& segment, int size,
360 	const tcp_sequence& receiveNext, uint32 receiveWindow)
361 {
362 	tcp_sequence sequence(segment.sequence);
363 	if (size == 0) {
364 		if (receiveWindow == 0)
365 			return sequence == receiveNext;
366 		return in_window(sequence, receiveNext, receiveWindow);
367 	} else {
368 		if (receiveWindow == 0)
369 			return false;
370 		return in_window(sequence, receiveNext, receiveWindow)
371 			|| in_window(sequence + size - 1, receiveNext, receiveWindow);
372 	}
373 }
374 
375 
376 static inline bool
377 is_writable(tcp_state state)
378 {
379 	return state == ESTABLISHED || state == FINISH_RECEIVED;
380 }
381 
382 
383 static inline bool
384 is_establishing(tcp_state state)
385 {
386 	return state == SYNCHRONIZE_SENT || state == SYNCHRONIZE_RECEIVED;
387 }
388 
389 
390 static inline uint32 tcp_now()
391 {
392 	return system_time() / kTimestampFactor;
393 }
394 
395 
396 static inline uint32 tcp_diff_timestamp(uint32 base)
397 {
398 	uint32 now = tcp_now();
399 
400 	if (now > base)
401 		return now - base;
402 
403 	return now + UINT_MAX - base;
404 }
405 
406 
407 static inline bool
408 state_needs_finish(int32 state)
409 {
410 	return state == WAIT_FOR_FINISH_ACKNOWLEDGE
411 		|| state == FINISH_SENT || state == CLOSING;
412 }
413 
414 
415 //	#pragma mark -
416 
417 
418 TCPEndpoint::TCPEndpoint(net_socket* socket)
419 	:
420 	ProtocolSocket(socket),
421 	fManager(NULL),
422 	fOptions(0),
423 	fSendWindowShift(0),
424 	fReceiveWindowShift(0),
425 	fSendUnacknowledged(0),
426 	fSendNext(0),
427 	fSendMax(0),
428 	fSendUrgentOffset(0),
429 	fSendWindow(0),
430 	fSendMaxWindow(0),
431 	fSendMaxSegmentSize(TCP_DEFAULT_MAX_SEGMENT_SIZE),
432 	fSendMaxSegments(0),
433 	fSendQueue(socket->send.buffer_size),
434 	fInitialSendSequence(0),
435 	fPreviousHighestAcknowledge(0),
436 	fDuplicateAcknowledgeCount(0),
437 	fPreviousFlightSize(0),
438 	fRecover(0),
439 	fRoute(NULL),
440 	fReceiveNext(0),
441 	fReceiveMaxAdvertised(0),
442 	fReceiveWindow(socket->receive.buffer_size),
443 	fReceiveMaxSegmentSize(TCP_DEFAULT_MAX_SEGMENT_SIZE),
444 	fReceiveQueue(socket->receive.buffer_size),
445 	fSmoothedRoundTripTime(0),
446 	fRoundTripVariation(0),
447 	fSendTime(0),
448 	fRoundTripStartSequence(0),
449 	fRetransmitTimeout(TCP_INITIAL_RTT),
450 	fReceivedTimestamp(0),
451 	fCongestionWindow(0),
452 	fSlowStartThreshold(0),
453 	fState(CLOSED),
454 	fFlags(FLAG_OPTION_WINDOW_SCALE | FLAG_OPTION_TIMESTAMP)
455 {
456 	// TODO: to be replaced with a real read/write locking strategy!
457 	mutex_init(&fLock, "tcp lock");
458 
459 	fReceiveCondition.Init(this, "tcp receive");
460 	fSendCondition.Init(this, "tcp send");
461 
462 	gStackModule->init_timer(&fPersistTimer, TCPEndpoint::_PersistTimer, this);
463 	gStackModule->init_timer(&fRetransmitTimer, TCPEndpoint::_RetransmitTimer,
464 		this);
465 	gStackModule->init_timer(&fDelayedAcknowledgeTimer,
466 		TCPEndpoint::_DelayedAcknowledgeTimer, this);
467 	gStackModule->init_timer(&fTimeWaitTimer, TCPEndpoint::_TimeWaitTimer,
468 		this);
469 
470 	T(APICall(this, "constructor"));
471 }
472 
473 
474 TCPEndpoint::~TCPEndpoint()
475 {
476 	mutex_lock(&fLock);
477 
478 	T(APICall(this, "destructor"));
479 
480 	_CancelConnectionTimers();
481 	gStackModule->cancel_timer(&fTimeWaitTimer);
482 	T(TimerSet(this, "time-wait", -1));
483 
484 	if (fManager != NULL) {
485 		fManager->Unbind(this);
486 		put_endpoint_manager(fManager);
487 	}
488 
489 	mutex_destroy(&fLock);
490 
491 	// we need to wait for all timers to return
492 	gStackModule->wait_for_timer(&fRetransmitTimer);
493 	gStackModule->wait_for_timer(&fPersistTimer);
494 	gStackModule->wait_for_timer(&fDelayedAcknowledgeTimer);
495 	gStackModule->wait_for_timer(&fTimeWaitTimer);
496 
497 	gDatalinkModule->put_route(Domain(), fRoute);
498 }
499 
500 
501 status_t
502 TCPEndpoint::InitCheck() const
503 {
504 	return B_OK;
505 }
506 
507 
508 //	#pragma mark - protocol API
509 
510 
511 status_t
512 TCPEndpoint::Open()
513 {
514 	TRACE("Open()");
515 	T(APICall(this, "open"));
516 
517 	status_t status = ProtocolSocket::Open();
518 	if (status < B_OK)
519 		return status;
520 
521 	fManager = get_endpoint_manager(Domain());
522 	if (fManager == NULL)
523 		return EAFNOSUPPORT;
524 
525 	return B_OK;
526 }
527 
528 
529 status_t
530 TCPEndpoint::Close()
531 {
532 	MutexLocker locker(fLock);
533 
534 	TRACE("Close()");
535 	T(APICall(this, "close"));
536 
537 	if (fState == LISTEN)
538 		delete_sem(fAcceptSemaphore);
539 
540 	if (fState == SYNCHRONIZE_SENT || fState == LISTEN) {
541 		// TODO: what about linger in case of SYNCHRONIZE_SENT?
542 		fState = CLOSED;
543 		T(State(this));
544 		return B_OK;
545 	}
546 
547 	status_t status = _Disconnect(true);
548 	if (status != B_OK)
549 		return status;
550 
551 	if (socket->options & SO_LINGER) {
552 		TRACE("Close(): Lingering for %i secs", socket->linger);
553 
554 		bigtime_t maximum = absolute_timeout(socket->linger * 1000000LL);
555 
556 		while (fSendQueue.Used() > 0) {
557 			status = _WaitForCondition(fSendCondition, locker, maximum);
558 			if (status == B_TIMED_OUT || status == B_WOULD_BLOCK)
559 				break;
560 			else if (status < B_OK)
561 				return status;
562 		}
563 
564 		TRACE("Close(): after waiting, the SendQ was left with %" B_PRIuSIZE
565 			" bytes.", fSendQueue.Used());
566 	}
567 	return B_OK;
568 }
569 
570 
571 void
572 TCPEndpoint::Free()
573 {
574 	MutexLocker _(fLock);
575 
576 	TRACE("Free()");
577 	T(APICall(this, "free"));
578 
579 	if (fState <= SYNCHRONIZE_SENT)
580 		return;
581 
582 	// we are only interested in the timer, not in changing state
583 	_EnterTimeWait();
584 
585 	fFlags |= FLAG_CLOSED;
586 	if ((fFlags & FLAG_DELETE_ON_CLOSE) == 0) {
587 		// we'll be freed later when the 2MSL timer expires
588 		gSocketModule->acquire_socket(socket);
589 	}
590 }
591 
592 
593 /*!	Creates and sends a synchronize packet to /a address, and then waits
594 	until the connection has been established or refused.
595 */
596 status_t
597 TCPEndpoint::Connect(const sockaddr* address)
598 {
599 	if (!AddressModule()->is_same_family(address))
600 		return EAFNOSUPPORT;
601 
602 	MutexLocker locker(fLock);
603 
604 	TRACE("Connect() on address %s", PrintAddress(address));
605 	T(APICall(this, "connect"));
606 
607 	if (gStackModule->is_restarted_syscall()) {
608 		bigtime_t timeout = gStackModule->restore_syscall_restart_timeout();
609 		status_t status = _WaitForEstablished(locker, timeout);
610 		TRACE("  Connect(): Connection complete: %s (timeout was %"
611 			B_PRIdBIGTIME ")", strerror(status), timeout);
612 		return posix_error(status);
613 	}
614 
615 	// Can only call connect() from CLOSED or LISTEN states
616 	// otherwise endpoint is considered already connected
617 	if (fState == LISTEN) {
618 		// this socket is about to connect; remove pending connections in the backlog
619 		gSocketModule->set_max_backlog(socket, 0);
620 	} else if (fState == ESTABLISHED) {
621 		return EISCONN;
622 	} else if (fState != CLOSED)
623 		return EALREADY;
624 
625 	// consider destination address INADDR_ANY as INADDR_LOOPBACK
626 	sockaddr_storage _address;
627 	if (AddressModule()->is_empty_address(address, false)) {
628 		AddressModule()->get_loopback_address((sockaddr *)&_address);
629 		// for IPv4 and IPv6 the port is at the same offset
630 		((sockaddr_in &)_address).sin_port = ((sockaddr_in *)address)->sin_port;
631 		address = (sockaddr *)&_address;
632 	}
633 
634 	status_t status = _PrepareSendPath(address);
635 	if (status < B_OK)
636 		return status;
637 
638 	TRACE("  Connect(): starting 3-way handshake...");
639 
640 	fState = SYNCHRONIZE_SENT;
641 	T(State(this));
642 
643 	// send SYN
644 	status = _SendQueued();
645 	if (status != B_OK) {
646 		_Close();
647 		return status;
648 	}
649 
650 	// If we are running over Loopback, after _SendQueued() returns we
651 	// may be in ESTABLISHED already.
652 	if (fState == ESTABLISHED) {
653 		TRACE("  Connect() completed after _SendQueued()");
654 		return B_OK;
655 	}
656 
657 	// wait until 3-way handshake is complete (if needed)
658 	bigtime_t timeout = min_c(socket->send.timeout, TCP_CONNECTION_TIMEOUT);
659 	if (timeout == 0) {
660 		// we're a non-blocking socket
661 		TRACE("  Connect() delayed, return EINPROGRESS");
662 		return EINPROGRESS;
663 	}
664 
665 	bigtime_t absoluteTimeout = absolute_timeout(timeout);
666 	gStackModule->store_syscall_restart_timeout(absoluteTimeout);
667 
668 	status = _WaitForEstablished(locker, absoluteTimeout);
669 	TRACE("  Connect(): Connection complete: %s (timeout was %" B_PRIdBIGTIME
670 		")", strerror(status), timeout);
671 	return posix_error(status);
672 }
673 
674 
675 status_t
676 TCPEndpoint::Accept(struct net_socket** _acceptedSocket)
677 {
678 	MutexLocker locker(fLock);
679 
680 	TRACE("Accept()");
681 	T(APICall(this, "accept"));
682 
683 	status_t status;
684 	bigtime_t timeout = absolute_timeout(socket->receive.timeout);
685 	if (gStackModule->is_restarted_syscall())
686 		timeout = gStackModule->restore_syscall_restart_timeout();
687 	else
688 		gStackModule->store_syscall_restart_timeout(timeout);
689 
690 	do {
691 		locker.Unlock();
692 
693 		status = acquire_sem_etc(fAcceptSemaphore, 1, B_ABSOLUTE_TIMEOUT
694 			| B_CAN_INTERRUPT, timeout);
695 		if (status != B_OK) {
696 			if (status == B_TIMED_OUT && socket->receive.timeout == 0)
697 				return B_WOULD_BLOCK;
698 
699 			return status;
700 		}
701 
702 		locker.Lock();
703 		status = gSocketModule->dequeue_connected(socket, _acceptedSocket);
704 #ifdef TRACE_TCP
705 		if (status == B_OK)
706 			TRACE("  Accept() returning %p", (*_acceptedSocket)->first_protocol);
707 #endif
708 	} while (status != B_OK);
709 
710 	return status;
711 }
712 
713 
714 status_t
715 TCPEndpoint::Bind(const sockaddr *address)
716 {
717 	if (address == NULL)
718 		return B_BAD_VALUE;
719 
720 	MutexLocker lock(fLock);
721 
722 	TRACE("Bind() on address %s", PrintAddress(address));
723 	T(APICall(this, "bind"));
724 
725 	if (fState != CLOSED)
726 		return EISCONN;
727 
728 	return fManager->Bind(this, address);
729 }
730 
731 
732 status_t
733 TCPEndpoint::Unbind(struct sockaddr *address)
734 {
735 	MutexLocker _(fLock);
736 
737 	TRACE("Unbind()");
738 	T(APICall(this, "unbind"));
739 
740 	return fManager->Unbind(this);
741 }
742 
743 
744 status_t
745 TCPEndpoint::Listen(int count)
746 {
747 	MutexLocker _(fLock);
748 
749 	TRACE("Listen()");
750 	T(APICall(this, "listen"));
751 
752 	if (fState != CLOSED && fState != LISTEN)
753 		return B_BAD_VALUE;
754 
755 	if (fState == CLOSED) {
756 		fAcceptSemaphore = create_sem(0, "tcp accept");
757 		if (fAcceptSemaphore < B_OK)
758 			return ENOBUFS;
759 
760 		status_t status = fManager->SetPassive(this);
761 		if (status != B_OK) {
762 			delete_sem(fAcceptSemaphore);
763 			fAcceptSemaphore = -1;
764 			return status;
765 		}
766 	}
767 
768 	gSocketModule->set_max_backlog(socket, count);
769 
770 	fState = LISTEN;
771 	T(State(this));
772 	return B_OK;
773 }
774 
775 
776 status_t
777 TCPEndpoint::Shutdown(int direction)
778 {
779 	MutexLocker lock(fLock);
780 
781 	TRACE("Shutdown(%i)", direction);
782 	T(APICall(this, "shutdown"));
783 
784 	if (direction == SHUT_RD || direction == SHUT_RDWR)
785 		fFlags |= FLAG_NO_RECEIVE;
786 
787 	if (direction == SHUT_WR || direction == SHUT_RDWR) {
788 		// TODO: That's not correct. After read/write shutting down the socket
789 		// one should still be able to read previously arrived data.
790 		_Disconnect(false);
791 	}
792 
793 	return B_OK;
794 }
795 
796 
797 /*!	Puts data contained in \a buffer into send buffer */
798 status_t
799 TCPEndpoint::SendData(net_buffer *buffer)
800 {
801 	MutexLocker lock(fLock);
802 
803 	TRACE("SendData(buffer %p, size %" B_PRIu32 ", flags %#" B_PRIx32
804 		") [total %" B_PRIuSIZE " bytes, has %" B_PRIuSIZE "]", buffer,
805 		buffer->size, buffer->flags, fSendQueue.Size(), fSendQueue.Free());
806 	T(APICall(this, "senddata"));
807 
808 	uint32 flags = buffer->flags;
809 
810 	if (fState == CLOSED)
811 		return ENOTCONN;
812 	if (fState == LISTEN)
813 		return EDESTADDRREQ;
814 	if (!is_writable(fState) && !is_establishing(fState)) {
815 		// we only send signals when called from userland
816 		if (gStackModule->is_syscall() && (flags & MSG_NOSIGNAL) == 0)
817 			send_signal(find_thread(NULL), SIGPIPE);
818 		return EPIPE;
819 	}
820 
821 	size_t left = buffer->size;
822 
823 	bigtime_t timeout = absolute_timeout(socket->send.timeout);
824 	if (gStackModule->is_restarted_syscall())
825 		timeout = gStackModule->restore_syscall_restart_timeout();
826 	else
827 		gStackModule->store_syscall_restart_timeout(timeout);
828 
829 	while (left > 0) {
830 		while (fSendQueue.Free() < socket->send.low_water_mark) {
831 			// wait until enough space is available
832 			status_t status = _WaitForCondition(fSendCondition, lock, timeout);
833 			if (status < B_OK) {
834 				TRACE("  SendData() returning %s (%d)",
835 					strerror(posix_error(status)), (int)posix_error(status));
836 				return posix_error(status);
837 			}
838 
839 			if (!is_writable(fState) && !is_establishing(fState)) {
840 				// we only send signals when called from userland
841 				if (gStackModule->is_syscall())
842 					send_signal(find_thread(NULL), SIGPIPE);
843 				return EPIPE;
844 			}
845 		}
846 
847 		size_t size = fSendQueue.Free();
848 		if (size < left) {
849 			// we need to split the original buffer
850 			net_buffer* clone = gBufferModule->clone(buffer, false);
851 				// TODO: add offset/size parameter to net_buffer::clone() or
852 				// even a move_data() function, as this is a bit inefficient
853 			if (clone == NULL)
854 				return ENOBUFS;
855 
856 			status_t status = gBufferModule->trim(clone, size);
857 			if (status != B_OK) {
858 				gBufferModule->free(clone);
859 				return status;
860 			}
861 
862 			gBufferModule->remove_header(buffer, size);
863 			left -= size;
864 			fSendQueue.Add(clone);
865 		} else {
866 			left -= buffer->size;
867 			fSendQueue.Add(buffer);
868 		}
869 	}
870 
871 	TRACE("  SendData(): %" B_PRIuSIZE " bytes used.", fSendQueue.Used());
872 
873 	bool force = false;
874 	if ((flags & MSG_OOB) != 0) {
875 		fSendUrgentOffset = fSendQueue.LastSequence();
876 			// RFC 961 specifies that the urgent offset points to the last
877 			// byte of urgent data. However, this is commonly implemented as
878 			// here, ie. it points to the first byte after the urgent data.
879 		force = true;
880 	}
881 	if ((flags & MSG_EOF) != 0)
882 		_Disconnect(false);
883 
884 	if (fState == ESTABLISHED || fState == FINISH_RECEIVED)
885 		_SendQueued(force);
886 
887 	return B_OK;
888 }
889 
890 
891 ssize_t
892 TCPEndpoint::SendAvailable()
893 {
894 	MutexLocker locker(fLock);
895 
896 	ssize_t available;
897 
898 	if (is_writable(fState))
899 		available = fSendQueue.Free();
900 	else if (is_establishing(fState))
901 		available = 0;
902 	else
903 		available = EPIPE;
904 
905 	TRACE("SendAvailable(): %" B_PRIdSSIZE, available);
906 	T(APICall(this, "sendavailable"));
907 	return available;
908 }
909 
910 
911 status_t
912 TCPEndpoint::FillStat(net_stat *stat)
913 {
914 	MutexLocker _(fLock);
915 
916 	strlcpy(stat->state, name_for_state(fState), sizeof(stat->state));
917 	stat->receive_queue_size = fReceiveQueue.Available();
918 	stat->send_queue_size = fSendQueue.Used();
919 
920 	return B_OK;
921 }
922 
923 
924 status_t
925 TCPEndpoint::ReadData(size_t numBytes, uint32 flags, net_buffer** _buffer)
926 {
927 	MutexLocker locker(fLock);
928 
929 	TRACE("ReadData(%" B_PRIuSIZE " bytes, flags %#" B_PRIx32 ")", numBytes,
930 		flags);
931 	T(APICall(this, "readdata"));
932 
933 	*_buffer = NULL;
934 
935 	if (fState == CLOSED)
936 		return ENOTCONN;
937 
938 	bigtime_t timeout = absolute_timeout(socket->receive.timeout);
939 	if (gStackModule->is_restarted_syscall())
940 		timeout = gStackModule->restore_syscall_restart_timeout();
941 	else
942 		gStackModule->store_syscall_restart_timeout(timeout);
943 
944 	if (fState == SYNCHRONIZE_SENT || fState == SYNCHRONIZE_RECEIVED) {
945 		if (flags & MSG_DONTWAIT)
946 			return B_WOULD_BLOCK;
947 
948 		status_t status = _WaitForEstablished(locker, timeout);
949 		if (status < B_OK)
950 			return posix_error(status);
951 	}
952 
953 	size_t dataNeeded = socket->receive.low_water_mark;
954 
955 	// When MSG_WAITALL is set then the function should block
956 	// until the full amount of data can be returned.
957 	if (flags & MSG_WAITALL)
958 		dataNeeded = numBytes;
959 
960 	// TODO: add support for urgent data (MSG_OOB)
961 
962 	while (true) {
963 		if (fState == CLOSING || fState == WAIT_FOR_FINISH_ACKNOWLEDGE
964 			|| fState == TIME_WAIT) {
965 			// ``Connection closing''.
966 			return B_OK;
967 		}
968 
969 		if (fReceiveQueue.Available() > 0) {
970 			if (fReceiveQueue.Available() >= dataNeeded
971 				|| (fReceiveQueue.PushedData() > 0
972 					&& fReceiveQueue.PushedData() >= fReceiveQueue.Available()))
973 				break;
974 		} else if (fState == FINISH_RECEIVED) {
975 			// ``If no text is awaiting delivery, the RECEIVE will
976 			//   get a Connection closing''.
977 			return B_OK;
978 		}
979 
980 		if ((flags & MSG_DONTWAIT) != 0 || socket->receive.timeout == 0)
981 			return B_WOULD_BLOCK;
982 
983 		if ((fFlags & FLAG_NO_RECEIVE) != 0)
984 			return B_OK;
985 
986 		status_t status = _WaitForCondition(fReceiveCondition, locker, timeout);
987 		if (status < B_OK) {
988 			// The Open Group base specification mentions that EINTR should be
989 			// returned if the recv() is interrupted before _any data_ is
990 			// available. So we actually check if there is data, and if so,
991 			// push it to the user.
992 			if ((status == B_TIMED_OUT || status == B_INTERRUPTED)
993 				&& fReceiveQueue.Available() > 0)
994 				break;
995 
996 			return posix_error(status);
997 		}
998 	}
999 
1000 	TRACE("  ReadData(): %" B_PRIuSIZE " are available.",
1001 		fReceiveQueue.Available());
1002 
1003 	if (numBytes < fReceiveQueue.Available())
1004 		fReceiveCondition.NotifyAll();
1005 
1006 	bool clone = (flags & MSG_PEEK) != 0;
1007 
1008 	ssize_t receivedBytes = fReceiveQueue.Get(numBytes, !clone, _buffer);
1009 
1010 	TRACE("  ReadData(): %" B_PRIuSIZE " bytes kept.",
1011 		fReceiveQueue.Available());
1012 
1013 	// if we are opening the window, check if we should send an ACK
1014 	if (!clone)
1015 		SendAcknowledge(false);
1016 
1017 	return receivedBytes;
1018 }
1019 
1020 
1021 ssize_t
1022 TCPEndpoint::ReadAvailable()
1023 {
1024 	MutexLocker locker(fLock);
1025 
1026 	TRACE("ReadAvailable(): %" B_PRIdSSIZE, _AvailableData());
1027 	T(APICall(this, "readavailable"));
1028 
1029 	return _AvailableData();
1030 }
1031 
1032 
1033 status_t
1034 TCPEndpoint::SetSendBufferSize(size_t length)
1035 {
1036 	MutexLocker _(fLock);
1037 	fSendQueue.SetMaxBytes(length);
1038 	return B_OK;
1039 }
1040 
1041 
1042 status_t
1043 TCPEndpoint::SetReceiveBufferSize(size_t length)
1044 {
1045 	MutexLocker _(fLock);
1046 	fReceiveQueue.SetMaxBytes(length);
1047 	return B_OK;
1048 }
1049 
1050 
1051 status_t
1052 TCPEndpoint::GetOption(int option, void* _value, int* _length)
1053 {
1054 	if (*_length != sizeof(int))
1055 		return B_BAD_VALUE;
1056 
1057 	int* value = (int*)_value;
1058 
1059 	switch (option) {
1060 		case TCP_NODELAY:
1061 			if ((fOptions & TCP_NODELAY) != 0)
1062 				*value = 1;
1063 			else
1064 				*value = 0;
1065 			return B_OK;
1066 
1067 		case TCP_MAXSEG:
1068 			*value = fReceiveMaxSegmentSize;
1069 			return B_OK;
1070 
1071 		default:
1072 			return B_BAD_VALUE;
1073 	}
1074 }
1075 
1076 
1077 status_t
1078 TCPEndpoint::SetOption(int option, const void* _value, int length)
1079 {
1080 	if (option != TCP_NODELAY)
1081 		return B_BAD_VALUE;
1082 
1083 	if (length != sizeof(int))
1084 		return B_BAD_VALUE;
1085 
1086 	const int* value = (const int*)_value;
1087 
1088 	MutexLocker _(fLock);
1089 	if (*value)
1090 		fOptions |= TCP_NODELAY;
1091 	else
1092 		fOptions &= ~TCP_NODELAY;
1093 
1094 	return B_OK;
1095 }
1096 
1097 
1098 //	#pragma mark - misc
1099 
1100 
1101 bool
1102 TCPEndpoint::IsBound() const
1103 {
1104 	return !LocalAddress().IsEmpty(true);
1105 }
1106 
1107 
1108 bool
1109 TCPEndpoint::IsLocal() const
1110 {
1111 	return (fFlags & FLAG_LOCAL) != 0;
1112 }
1113 
1114 
1115 status_t
1116 TCPEndpoint::DelayedAcknowledge()
1117 {
1118 	if (gStackModule->cancel_timer(&fDelayedAcknowledgeTimer)) {
1119 		// timer was active, send an ACK now (with the exception above,
1120 		// we send every other ACK)
1121 		T(TimerSet(this, "delayed ack", -1));
1122 		return SendAcknowledge(true);
1123 	}
1124 
1125 	gStackModule->set_timer(&fDelayedAcknowledgeTimer,
1126 		TCP_DELAYED_ACKNOWLEDGE_TIMEOUT);
1127 	T(TimerSet(this, "delayed ack", TCP_DELAYED_ACKNOWLEDGE_TIMEOUT));
1128 	return B_OK;
1129 }
1130 
1131 
1132 status_t
1133 TCPEndpoint::SendAcknowledge(bool force)
1134 {
1135 	return _SendQueued(force, 0);
1136 }
1137 
1138 
1139 void
1140 TCPEndpoint::_StartPersistTimer()
1141 {
1142 	gStackModule->set_timer(&fPersistTimer, TCP_PERSIST_TIMEOUT);
1143 	T(TimerSet(this, "persist", TCP_PERSIST_TIMEOUT));
1144 }
1145 
1146 
1147 void
1148 TCPEndpoint::_EnterTimeWait()
1149 {
1150 	TRACE("_EnterTimeWait()");
1151 
1152 	if (fState == TIME_WAIT) {
1153 		_CancelConnectionTimers();
1154 	}
1155 
1156 	_UpdateTimeWait();
1157 }
1158 
1159 
1160 void
1161 TCPEndpoint::_UpdateTimeWait()
1162 {
1163 	gStackModule->set_timer(&fTimeWaitTimer, TCP_MAX_SEGMENT_LIFETIME << 1);
1164 	T(TimerSet(this, "time-wait", TCP_MAX_SEGMENT_LIFETIME << 1));
1165 }
1166 
1167 
1168 void
1169 TCPEndpoint::_CancelConnectionTimers()
1170 {
1171 	gStackModule->cancel_timer(&fRetransmitTimer);
1172 	T(TimerSet(this, "retransmit", -1));
1173 	gStackModule->cancel_timer(&fPersistTimer);
1174 	T(TimerSet(this, "persist", -1));
1175 	gStackModule->cancel_timer(&fDelayedAcknowledgeTimer);
1176 	T(TimerSet(this, "delayed ack", -1));
1177 }
1178 
1179 
1180 /*!	Sends the FIN flag to the peer when the connection is still open.
1181 	Moves the endpoint to the next state depending on where it was.
1182 */
1183 status_t
1184 TCPEndpoint::_Disconnect(bool closing)
1185 {
1186 	tcp_state previousState = fState;
1187 
1188 	if (fState == SYNCHRONIZE_RECEIVED || fState == ESTABLISHED)
1189 		fState = FINISH_SENT;
1190 	else if (fState == FINISH_RECEIVED)
1191 		fState = WAIT_FOR_FINISH_ACKNOWLEDGE;
1192 	else
1193 		return B_OK;
1194 
1195 	T(State(this));
1196 
1197 	status_t status = _SendQueued();
1198 	if (status != B_OK) {
1199 		fState = previousState;
1200 		T(State(this));
1201 		return status;
1202 	}
1203 
1204 	return B_OK;
1205 }
1206 
1207 
1208 void
1209 TCPEndpoint::_MarkEstablished()
1210 {
1211 	fState = ESTABLISHED;
1212 	T(State(this));
1213 
1214 	gSocketModule->set_connected(socket);
1215 	if (gSocketModule->has_parent(socket))
1216 		release_sem_etc(fAcceptSemaphore, 1, B_DO_NOT_RESCHEDULE);
1217 
1218 	fSendCondition.NotifyAll();
1219 	gSocketModule->notify(socket, B_SELECT_WRITE, fSendQueue.Free());
1220 }
1221 
1222 
1223 status_t
1224 TCPEndpoint::_WaitForEstablished(MutexLocker &locker, bigtime_t timeout)
1225 {
1226 	// TODO: Checking for CLOSED seems correct, but breaks several neon tests.
1227 	// When investigating this, also have a look at _Close() and _HandleReset().
1228 	while (fState < ESTABLISHED/* && fState != CLOSED*/) {
1229 		if (socket->error != B_OK)
1230 			return socket->error;
1231 
1232 		status_t status = _WaitForCondition(fSendCondition, locker, timeout);
1233 		if (status < B_OK)
1234 			return status;
1235 	}
1236 
1237 	return B_OK;
1238 }
1239 
1240 
1241 //	#pragma mark - receive
1242 
1243 
1244 void
1245 TCPEndpoint::_Close()
1246 {
1247 	_CancelConnectionTimers();
1248 	fState = CLOSED;
1249 	T(State(this));
1250 
1251 	fFlags |= FLAG_DELETE_ON_CLOSE;
1252 
1253 	fSendCondition.NotifyAll();
1254 	_NotifyReader();
1255 
1256 	if (gSocketModule->has_parent(socket)) {
1257 		// We still have a parent - obviously, we haven't been accepted yet,
1258 		// so no one could ever close us.
1259 		_CancelConnectionTimers();
1260 		gSocketModule->set_aborted(socket);
1261 	}
1262 }
1263 
1264 
1265 void
1266 TCPEndpoint::_HandleReset(status_t error)
1267 {
1268 	socket->error = error;
1269 	_Close();
1270 
1271 	gSocketModule->notify(socket, B_SELECT_WRITE, error);
1272 	gSocketModule->notify(socket, B_SELECT_ERROR, error);
1273 }
1274 
1275 
1276 void
1277 TCPEndpoint::_DuplicateAcknowledge(tcp_segment_header &segment)
1278 {
1279 	if (fDuplicateAcknowledgeCount == 0)
1280 		fPreviousFlightSize = (fSendMax - fSendUnacknowledged).Number();
1281 
1282 	if (++fDuplicateAcknowledgeCount < 3) {
1283 		if (fSendQueue.Available(fSendMax) != 0  && fSendWindow != 0) {
1284 			fSendNext = fSendMax;
1285 			fCongestionWindow += fDuplicateAcknowledgeCount * fSendMaxSegmentSize;
1286 			_SendQueued();
1287 			TRACE("_DuplicateAcknowledge(): packet sent under limited transmit on receipt of dup ack");
1288 			fCongestionWindow -= fDuplicateAcknowledgeCount * fSendMaxSegmentSize;
1289 		}
1290 	}
1291 
1292 	if (fDuplicateAcknowledgeCount == 3) {
1293 		if ((segment.acknowledge - 1) > fRecover || (fCongestionWindow > fSendMaxSegmentSize &&
1294 			(fSendUnacknowledged - fPreviousHighestAcknowledge) <= 4 * fSendMaxSegmentSize)) {
1295 			fFlags |= FLAG_RECOVERY;
1296 			fRecover = fSendMax.Number() - 1;
1297 			fSlowStartThreshold = max_c(fPreviousFlightSize / 2, 2 * fSendMaxSegmentSize);
1298 			fCongestionWindow = fSlowStartThreshold + 3 * fSendMaxSegmentSize;
1299 			fSendNext = segment.acknowledge;
1300 			_SendQueued();
1301 			TRACE("_DuplicateAcknowledge(): packet sent under fast restransmit on the receipt of 3rd dup ack");
1302 		}
1303 	} else if (fDuplicateAcknowledgeCount > 3) {
1304 		uint32 flightSize = (fSendMax - fSendUnacknowledged).Number();
1305 		if ((fDuplicateAcknowledgeCount - 3) * fSendMaxSegmentSize <= flightSize)
1306 			fCongestionWindow += fSendMaxSegmentSize;
1307 		if (fSendQueue.Available(fSendMax) != 0) {
1308 			fSendNext = fSendMax;
1309 			_SendQueued();
1310 		}
1311 	}
1312 }
1313 
1314 
1315 void
1316 TCPEndpoint::_UpdateTimestamps(tcp_segment_header& segment,
1317 	size_t segmentLength)
1318 {
1319 	if (fFlags & FLAG_OPTION_TIMESTAMP) {
1320 		tcp_sequence sequence(segment.sequence);
1321 
1322 		if (fLastAcknowledgeSent >= sequence
1323 			&& fLastAcknowledgeSent < (sequence + segmentLength))
1324 			fReceivedTimestamp = segment.timestamp_value;
1325 	}
1326 }
1327 
1328 
1329 ssize_t
1330 TCPEndpoint::_AvailableData() const
1331 {
1332 	// TODO: Refer to the FLAG_NO_RECEIVE comment above regarding
1333 	//       the application of FLAG_NO_RECEIVE in listen()ing
1334 	//       sockets.
1335 	if (fState == LISTEN)
1336 		return gSocketModule->count_connected(socket);
1337 	if (fState == SYNCHRONIZE_SENT)
1338 		return 0;
1339 
1340 	ssize_t availableData = fReceiveQueue.Available();
1341 
1342 	if (availableData == 0 && !_ShouldReceive())
1343 		return ENOTCONN;
1344 
1345 	return availableData;
1346 }
1347 
1348 
1349 void
1350 TCPEndpoint::_NotifyReader()
1351 {
1352 	fReceiveCondition.NotifyAll();
1353 	gSocketModule->notify(socket, B_SELECT_READ, _AvailableData());
1354 }
1355 
1356 
1357 bool
1358 TCPEndpoint::_AddData(tcp_segment_header& segment, net_buffer* buffer)
1359 {
1360 	if ((segment.flags & TCP_FLAG_FINISH) != 0) {
1361 		// Remember the position of the finish received flag
1362 		fFinishReceived = true;
1363 		fFinishReceivedAt = segment.sequence + buffer->size;
1364 	}
1365 
1366 	fReceiveQueue.Add(buffer, segment.sequence);
1367 	fReceiveNext = fReceiveQueue.NextSequence();
1368 
1369 	if (fFinishReceived) {
1370 		// Set or reset the finish flag on the current segment
1371 		if (fReceiveNext < fFinishReceivedAt)
1372 			segment.flags &= ~TCP_FLAG_FINISH;
1373 		else
1374 			segment.flags |= TCP_FLAG_FINISH;
1375 	}
1376 
1377 	TRACE("  _AddData(): adding data, receive next = %" B_PRIu32 ". Now have %"
1378 		B_PRIuSIZE " bytes.", fReceiveNext.Number(), fReceiveQueue.Available());
1379 
1380 	if ((segment.flags & TCP_FLAG_PUSH) != 0)
1381 		fReceiveQueue.SetPushPointer();
1382 
1383 	return fReceiveQueue.Available() > 0;
1384 }
1385 
1386 
1387 void
1388 TCPEndpoint::_PrepareReceivePath(tcp_segment_header& segment)
1389 {
1390 	fInitialReceiveSequence = segment.sequence;
1391 	fFinishReceived = false;
1392 
1393 	// count the received SYN
1394 	segment.sequence++;
1395 
1396 	fReceiveNext = segment.sequence;
1397 	fReceiveQueue.SetInitialSequence(segment.sequence);
1398 
1399 	if ((fOptions & TCP_NOOPT) == 0) {
1400 		if (segment.max_segment_size > 0)
1401 			fSendMaxSegmentSize = segment.max_segment_size;
1402 
1403 		if (segment.options & TCP_HAS_WINDOW_SCALE) {
1404 			fFlags |= FLAG_OPTION_WINDOW_SCALE;
1405 			fSendWindowShift = segment.window_shift;
1406 		} else {
1407 			fFlags &= ~FLAG_OPTION_WINDOW_SCALE;
1408 			fReceiveWindowShift = 0;
1409 		}
1410 
1411 		if (segment.options & TCP_HAS_TIMESTAMPS) {
1412 			fFlags |= FLAG_OPTION_TIMESTAMP;
1413 			fReceivedTimestamp = segment.timestamp_value;
1414 		} else
1415 			fFlags &= ~FLAG_OPTION_TIMESTAMP;
1416 	}
1417 
1418 	if (fSendMaxSegmentSize > 2190)
1419 		fCongestionWindow = 2 * fSendMaxSegmentSize;
1420 	else if (fSendMaxSegmentSize > 1095)
1421 		fCongestionWindow = 3 * fSendMaxSegmentSize;
1422 	else
1423 		fCongestionWindow = 4 * fSendMaxSegmentSize;
1424 
1425 	fSendMaxSegments = fCongestionWindow / fSendMaxSegmentSize;
1426 	fSlowStartThreshold = (uint32)segment.advertised_window << fSendWindowShift;
1427 }
1428 
1429 
1430 bool
1431 TCPEndpoint::_ShouldReceive() const
1432 {
1433 	if ((fFlags & FLAG_NO_RECEIVE) != 0)
1434 		return false;
1435 
1436 	return fState == ESTABLISHED || fState == FINISH_SENT
1437 		|| fState == FINISH_ACKNOWLEDGED;
1438 }
1439 
1440 
1441 int32
1442 TCPEndpoint::_Spawn(TCPEndpoint* parent, tcp_segment_header& segment,
1443 	net_buffer* buffer)
1444 {
1445 	MutexLocker _(fLock);
1446 
1447 	// TODO error checking
1448 	ProtocolSocket::Open();
1449 
1450 	fState = SYNCHRONIZE_RECEIVED;
1451 	T(Spawn(parent, this));
1452 
1453 	fManager = parent->fManager;
1454 
1455 	LocalAddress().SetTo(buffer->destination);
1456 	PeerAddress().SetTo(buffer->source);
1457 
1458 	TRACE("Spawn()");
1459 
1460 	// TODO: proper error handling!
1461 	if (fManager->BindChild(this) != B_OK) {
1462 		T(Error(this, "binding failed", __LINE__));
1463 		return DROP;
1464 	}
1465 	if (_PrepareSendPath(*PeerAddress()) != B_OK) {
1466 		T(Error(this, "prepare send faild", __LINE__));
1467 		return DROP;
1468 	}
1469 
1470 	fOptions = parent->fOptions;
1471 	fAcceptSemaphore = parent->fAcceptSemaphore;
1472 
1473 	_PrepareReceivePath(segment);
1474 
1475 	// send SYN+ACK
1476 	if (_SendQueued() != B_OK) {
1477 		T(Error(this, "sending failed", __LINE__));
1478 		return DROP;
1479 	}
1480 
1481 	segment.flags &= ~TCP_FLAG_SYNCHRONIZE;
1482 		// we handled this flag now, it must not be set for further processing
1483 
1484 	return _Receive(segment, buffer);
1485 }
1486 
1487 
1488 int32
1489 TCPEndpoint::_ListenReceive(tcp_segment_header& segment, net_buffer* buffer)
1490 {
1491 	TRACE("ListenReceive()");
1492 
1493 	// Essentially, we accept only TCP_FLAG_SYNCHRONIZE in this state,
1494 	// but the error behaviour differs
1495 	if (segment.flags & TCP_FLAG_RESET)
1496 		return DROP;
1497 	if (segment.flags & TCP_FLAG_ACKNOWLEDGE)
1498 		return DROP | RESET;
1499 	if ((segment.flags & TCP_FLAG_SYNCHRONIZE) == 0)
1500 		return DROP;
1501 
1502 	// TODO: drop broadcast/multicast
1503 
1504 	// spawn new endpoint for accept()
1505 	net_socket* newSocket;
1506 	if (gSocketModule->spawn_pending_socket(socket, &newSocket) < B_OK) {
1507 		T(Error(this, "spawning failed", __LINE__));
1508 		return DROP;
1509 	}
1510 
1511 	return ((TCPEndpoint *)newSocket->first_protocol)->_Spawn(this,
1512 		segment, buffer);
1513 }
1514 
1515 
1516 int32
1517 TCPEndpoint::_SynchronizeSentReceive(tcp_segment_header &segment,
1518 	net_buffer *buffer)
1519 {
1520 	TRACE("_SynchronizeSentReceive()");
1521 
1522 	if ((segment.flags & TCP_FLAG_ACKNOWLEDGE) != 0
1523 		&& (fInitialSendSequence >= segment.acknowledge
1524 			|| fSendMax < segment.acknowledge))
1525 		return DROP | RESET;
1526 
1527 	if (segment.flags & TCP_FLAG_RESET) {
1528 		_HandleReset(ECONNREFUSED);
1529 		return DROP;
1530 	}
1531 
1532 	if ((segment.flags & TCP_FLAG_SYNCHRONIZE) == 0)
1533 		return DROP;
1534 
1535 	fSendUnacknowledged = segment.acknowledge;
1536 	_PrepareReceivePath(segment);
1537 
1538 	if (segment.flags & TCP_FLAG_ACKNOWLEDGE) {
1539 		_MarkEstablished();
1540 	} else {
1541 		// simultaneous open
1542 		fState = SYNCHRONIZE_RECEIVED;
1543 		T(State(this));
1544 	}
1545 
1546 	segment.flags &= ~TCP_FLAG_SYNCHRONIZE;
1547 		// we handled this flag now, it must not be set for further processing
1548 
1549 	return _Receive(segment, buffer) | IMMEDIATE_ACKNOWLEDGE;
1550 }
1551 
1552 
1553 int32
1554 TCPEndpoint::_Receive(tcp_segment_header& segment, net_buffer* buffer)
1555 {
1556 	// PAWS processing takes precedence over regular TCP acceptability check
1557 	if ((fFlags & FLAG_OPTION_TIMESTAMP) != 0 && (segment.flags & TCP_FLAG_RESET) == 0) {
1558 		if ((segment.options & TCP_HAS_TIMESTAMPS) == 0)
1559 			return DROP;
1560 		if ((int32)(fReceivedTimestamp - segment.timestamp_value) > 0
1561 			&& (fReceivedTimestamp - segment.timestamp_value) <= INT32_MAX)
1562 			return DROP | IMMEDIATE_ACKNOWLEDGE;
1563 	}
1564 
1565 	uint32 advertisedWindow = (uint32)segment.advertised_window
1566 		<< fSendWindowShift;
1567 	size_t segmentLength = buffer->size;
1568 
1569 	// First, handle the most common case for uni-directional data transfer
1570 	// (known as header prediction - the segment must not change the window,
1571 	// and must be the expected sequence, and contain no control flags)
1572 
1573 	if (fState == ESTABLISHED
1574 		&& segment.AcknowledgeOnly()
1575 		&& fReceiveNext == segment.sequence
1576 		&& advertisedWindow > 0 && advertisedWindow == fSendWindow
1577 		&& fSendNext == fSendMax) {
1578 		_UpdateTimestamps(segment, segmentLength);
1579 
1580 		if (segmentLength == 0) {
1581 			// this is a pure acknowledge segment - we're on the sending end
1582 			if (fSendUnacknowledged < segment.acknowledge
1583 				&& fSendMax >= segment.acknowledge) {
1584 				_Acknowledged(segment);
1585 				return DROP;
1586 			}
1587 		} else if (segment.acknowledge == fSendUnacknowledged
1588 			&& fReceiveQueue.IsContiguous()
1589 			&& fReceiveQueue.Free() >= segmentLength
1590 			&& (fFlags & FLAG_NO_RECEIVE) == 0) {
1591 			if (_AddData(segment, buffer))
1592 				_NotifyReader();
1593 
1594 			return KEEP | ((segment.flags & TCP_FLAG_PUSH) != 0
1595 				? IMMEDIATE_ACKNOWLEDGE : ACKNOWLEDGE);
1596 		}
1597 	}
1598 
1599 	// The fast path was not applicable, so we continue with the standard
1600 	// processing of the incoming segment
1601 
1602 	ASSERT(fState != SYNCHRONIZE_SENT && fState != LISTEN);
1603 
1604 	if (fState != CLOSED && fState != TIME_WAIT) {
1605 		// Check sequence number
1606 		if (!segment_in_sequence(segment, segmentLength, fReceiveNext,
1607 				fReceiveWindow)) {
1608 			TRACE("  Receive(): segment out of window, next: %" B_PRIu32
1609 				" wnd: %" B_PRIu32, fReceiveNext.Number(), fReceiveWindow);
1610 			if ((segment.flags & TCP_FLAG_RESET) != 0) {
1611 				// TODO: this doesn't look right - review!
1612 				return DROP;
1613 			}
1614 			return DROP | IMMEDIATE_ACKNOWLEDGE;
1615 		}
1616 	}
1617 
1618 	if ((segment.flags & TCP_FLAG_RESET) != 0) {
1619 		// Is this a valid reset?
1620 		// We generally ignore resets in time wait state (see RFC 1337)
1621 		if (fLastAcknowledgeSent <= segment.sequence
1622 			&& tcp_sequence(segment.sequence) < (fLastAcknowledgeSent
1623 				+ fReceiveWindow)
1624 			&& fState != TIME_WAIT) {
1625 			status_t error;
1626 			if (fState == SYNCHRONIZE_RECEIVED)
1627 				error = ECONNREFUSED;
1628 			else if (fState == CLOSING || fState == WAIT_FOR_FINISH_ACKNOWLEDGE)
1629 				error = ENOTCONN;
1630 			else
1631 				error = ECONNRESET;
1632 
1633 			_HandleReset(error);
1634 		}
1635 
1636 		return DROP;
1637 	}
1638 
1639 	if ((segment.flags & TCP_FLAG_SYNCHRONIZE) != 0
1640 		|| (fState == SYNCHRONIZE_RECEIVED
1641 			&& (fInitialReceiveSequence > segment.sequence
1642 				|| ((segment.flags & TCP_FLAG_ACKNOWLEDGE) != 0
1643 					&& (fSendUnacknowledged > segment.acknowledge
1644 						|| fSendMax < segment.acknowledge))))) {
1645 		// reset the connection - either the initial SYN was faulty, or we
1646 		// received a SYN within the data stream
1647 		return DROP | RESET;
1648 	}
1649 
1650 	// TODO: Check this! Why do we advertize a window outside of what we should
1651 	// buffer?
1652 	fReceiveWindow = max_c(fReceiveQueue.Free(), fReceiveWindow);
1653 		// the window must not shrink
1654 
1655 	// trim buffer to be within the receive window
1656 	int32 drop = (int32)(fReceiveNext - segment.sequence).Number();
1657 	if (drop > 0) {
1658 		if ((uint32)drop > buffer->size
1659 			|| ((uint32)drop == buffer->size
1660 				&& (segment.flags & TCP_FLAG_FINISH) == 0)) {
1661 			// don't accidently remove a FIN we shouldn't remove
1662 			segment.flags &= ~TCP_FLAG_FINISH;
1663 			drop = buffer->size;
1664 		}
1665 
1666 		// remove duplicate data at the start
1667 		TRACE("* remove %" B_PRId32 " bytes from the start", drop);
1668 		gBufferModule->remove_header(buffer, drop);
1669 		segment.sequence += drop;
1670 	}
1671 
1672 	int32 action = KEEP;
1673 
1674 	// immediately acknowledge out-of-order segment to trigger fast-retransmit at the sender
1675 	if (drop != 0)
1676 		action |= IMMEDIATE_ACKNOWLEDGE;
1677 
1678 	drop = (int32)(segment.sequence + buffer->size
1679 		- (fReceiveNext + fReceiveWindow)).Number();
1680 	if (drop > 0) {
1681 		// remove data exceeding our window
1682 		if ((uint32)drop >= buffer->size) {
1683 			// if we can accept data, or the segment is not what we'd expect,
1684 			// drop the segment (an immediate acknowledge is always triggered)
1685 			if (fReceiveWindow != 0 || segment.sequence != fReceiveNext)
1686 				return DROP | IMMEDIATE_ACKNOWLEDGE;
1687 
1688 			action |= IMMEDIATE_ACKNOWLEDGE;
1689 		}
1690 
1691 		if ((segment.flags & TCP_FLAG_FINISH) != 0) {
1692 			// we need to remove the finish, too, as part of the data
1693 			drop--;
1694 		}
1695 
1696 		segment.flags &= ~(TCP_FLAG_FINISH | TCP_FLAG_PUSH);
1697 		TRACE("* remove %" B_PRId32 " bytes from the end", drop);
1698 		gBufferModule->remove_trailer(buffer, drop);
1699 	}
1700 
1701 #ifdef TRACE_TCP
1702 	if (advertisedWindow > fSendWindow) {
1703 		TRACE("  Receive(): Window update %" B_PRIu32 " -> %" B_PRIu32,
1704 			fSendWindow, advertisedWindow);
1705 	}
1706 #endif
1707 
1708 	if (advertisedWindow > fSendWindow)
1709 		action |= IMMEDIATE_ACKNOWLEDGE;
1710 
1711 	fSendWindow = advertisedWindow;
1712 	if (advertisedWindow > fSendMaxWindow)
1713 		fSendMaxWindow = advertisedWindow;
1714 
1715 	// Then look at the acknowledgement for any updates
1716 
1717 	if ((segment.flags & TCP_FLAG_ACKNOWLEDGE) != 0) {
1718 		// process acknowledged data
1719 		if (fState == SYNCHRONIZE_RECEIVED)
1720 			_MarkEstablished();
1721 
1722 		if (fSendMax < segment.acknowledge)
1723 			return DROP | IMMEDIATE_ACKNOWLEDGE;
1724 
1725 		if (segment.acknowledge == fSendUnacknowledged) {
1726 			if (buffer->size == 0 && advertisedWindow == fSendWindow
1727 				&& (segment.flags & TCP_FLAG_FINISH) == 0 && fSendUnacknowledged != fSendMax) {
1728 				TRACE("Receive(): duplicate ack!");
1729 				_DuplicateAcknowledge(segment);
1730 			}
1731 		} else if (segment.acknowledge < fSendUnacknowledged) {
1732 			return DROP;
1733 		} else {
1734 			// this segment acknowledges in flight data
1735 
1736 			if (fDuplicateAcknowledgeCount >= 3) {
1737 				// deflate the window.
1738 				if (segment.acknowledge > fRecover) {
1739 					uint32 flightSize = (fSendMax - fSendUnacknowledged).Number();
1740 					fCongestionWindow = min_c(fSlowStartThreshold,
1741 						max_c(flightSize, fSendMaxSegmentSize) + fSendMaxSegmentSize);
1742 					fFlags &= ~FLAG_RECOVERY;
1743 				}
1744 			}
1745 
1746 			if (fSendMax == segment.acknowledge)
1747 				TRACE("Receive(): all inflight data ack'd!");
1748 
1749 			if (segment.acknowledge > fSendQueue.LastSequence()
1750 					&& fState > ESTABLISHED) {
1751 				TRACE("Receive(): FIN has been acknowledged!");
1752 
1753 				switch (fState) {
1754 					case FINISH_SENT:
1755 						fState = FINISH_ACKNOWLEDGED;
1756 						T(State(this));
1757 						break;
1758 					case CLOSING:
1759 						fState = TIME_WAIT;
1760 						T(State(this));
1761 						_EnterTimeWait();
1762 						return DROP;
1763 					case WAIT_FOR_FINISH_ACKNOWLEDGE:
1764 						_Close();
1765 						break;
1766 
1767 					default:
1768 						break;
1769 				}
1770 			}
1771 
1772 			if (fState != CLOSED)
1773 				_Acknowledged(segment);
1774 		}
1775 	}
1776 
1777 	if (segment.flags & TCP_FLAG_URGENT) {
1778 		if (fState == ESTABLISHED || fState == FINISH_SENT
1779 			|| fState == FINISH_ACKNOWLEDGED) {
1780 			// TODO: Handle urgent data:
1781 			//  - RCV.UP <- max(RCV.UP, SEG.UP)
1782 			//  - signal the user that urgent data is available (SIGURG)
1783 		}
1784 	}
1785 
1786 	bool notify = false;
1787 
1788 	// The buffer may be freed if its data is added to the queue, so cache
1789 	// the size as we still need it later.
1790 	uint32 bufferSize = buffer->size;
1791 
1792 	if ((bufferSize > 0 || (segment.flags & TCP_FLAG_FINISH) != 0)
1793 		&& _ShouldReceive())
1794 		notify = _AddData(segment, buffer);
1795 	else {
1796 		if ((fFlags & FLAG_NO_RECEIVE) != 0)
1797 			fReceiveNext += buffer->size;
1798 
1799 		action = (action & ~KEEP) | DROP;
1800 	}
1801 
1802 	if ((segment.flags & TCP_FLAG_FINISH) != 0) {
1803 		segmentLength++;
1804 		if (fState != CLOSED && fState != LISTEN && fState != SYNCHRONIZE_SENT) {
1805 			TRACE("Receive(): peer is finishing connection!");
1806 			fReceiveNext++;
1807 			notify = true;
1808 
1809 			// FIN implies PUSH
1810 			fReceiveQueue.SetPushPointer();
1811 
1812 			// we'll reply immediately to the FIN if we are not
1813 			// transitioning to TIME WAIT so we immediatly ACK it.
1814 			action |= IMMEDIATE_ACKNOWLEDGE;
1815 
1816 			// other side is closing connection; change states
1817 			switch (fState) {
1818 				case ESTABLISHED:
1819 				case SYNCHRONIZE_RECEIVED:
1820 					fState = FINISH_RECEIVED;
1821 					T(State(this));
1822 					break;
1823 				case FINISH_SENT:
1824 					// simultaneous close
1825 					fState = CLOSING;
1826 					T(State(this));
1827 					break;
1828 				case FINISH_ACKNOWLEDGED:
1829 					fState = TIME_WAIT;
1830 					T(State(this));
1831 					_EnterTimeWait();
1832 					break;
1833 				case TIME_WAIT:
1834 					_UpdateTimeWait();
1835 					break;
1836 
1837 				default:
1838 					break;
1839 			}
1840 		}
1841 	}
1842 
1843 	if (notify)
1844 		_NotifyReader();
1845 
1846 	if (bufferSize > 0 || (segment.flags & TCP_FLAG_SYNCHRONIZE) != 0)
1847 		action |= ACKNOWLEDGE;
1848 
1849 	_UpdateTimestamps(segment, segmentLength);
1850 
1851 	TRACE("Receive() Action %" B_PRId32, action);
1852 
1853 	return action;
1854 }
1855 
1856 
1857 int32
1858 TCPEndpoint::SegmentReceived(tcp_segment_header& segment, net_buffer* buffer)
1859 {
1860 	MutexLocker locker(fLock);
1861 
1862 	TRACE("SegmentReceived(): buffer %p (%" B_PRIu32 " bytes) address %s "
1863 		"to %s flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32
1864 		", wnd %" B_PRIu32, buffer, buffer->size, PrintAddress(buffer->source),
1865 		PrintAddress(buffer->destination), segment.flags, segment.sequence,
1866 		segment.acknowledge,
1867 		(uint32)segment.advertised_window << fSendWindowShift);
1868 	T(Receive(this, segment,
1869 		(uint32)segment.advertised_window << fSendWindowShift, buffer));
1870 	int32 segmentAction = DROP;
1871 
1872 	switch (fState) {
1873 		case LISTEN:
1874 			segmentAction = _ListenReceive(segment, buffer);
1875 			break;
1876 
1877 		case SYNCHRONIZE_SENT:
1878 			segmentAction = _SynchronizeSentReceive(segment, buffer);
1879 			break;
1880 
1881 		case SYNCHRONIZE_RECEIVED:
1882 		case ESTABLISHED:
1883 		case FINISH_RECEIVED:
1884 		case WAIT_FOR_FINISH_ACKNOWLEDGE:
1885 		case FINISH_SENT:
1886 		case FINISH_ACKNOWLEDGED:
1887 		case CLOSING:
1888 		case TIME_WAIT:
1889 		case CLOSED:
1890 			segmentAction = _Receive(segment, buffer);
1891 			break;
1892 	}
1893 
1894 	// process acknowledge action as asked for by the *Receive() method
1895 	if (segmentAction & IMMEDIATE_ACKNOWLEDGE)
1896 		SendAcknowledge(true);
1897 	else if (segmentAction & ACKNOWLEDGE)
1898 		DelayedAcknowledge();
1899 
1900 	if ((fFlags & (FLAG_CLOSED | FLAG_DELETE_ON_CLOSE))
1901 			== (FLAG_CLOSED | FLAG_DELETE_ON_CLOSE)) {
1902 
1903 		locker.Unlock();
1904 		if (gSocketModule->release_socket(socket))
1905 			segmentAction |= DELETED_ENDPOINT;
1906 	}
1907 
1908 	return segmentAction;
1909 }
1910 
1911 
1912 //	#pragma mark - send
1913 
1914 
1915 inline uint8
1916 TCPEndpoint::_CurrentFlags()
1917 {
1918 	// we don't set FLAG_FINISH here, instead we do it
1919 	// conditionally below depending if we are sending
1920 	// the last bytes of the send queue.
1921 
1922 	switch (fState) {
1923 		case CLOSED:
1924 			return TCP_FLAG_RESET | TCP_FLAG_ACKNOWLEDGE;
1925 
1926 		case SYNCHRONIZE_SENT:
1927 			return TCP_FLAG_SYNCHRONIZE;
1928 		case SYNCHRONIZE_RECEIVED:
1929 			return TCP_FLAG_SYNCHRONIZE | TCP_FLAG_ACKNOWLEDGE;
1930 
1931 		case ESTABLISHED:
1932 		case FINISH_RECEIVED:
1933 		case FINISH_ACKNOWLEDGED:
1934 		case TIME_WAIT:
1935 		case WAIT_FOR_FINISH_ACKNOWLEDGE:
1936 		case FINISH_SENT:
1937 		case CLOSING:
1938 			return TCP_FLAG_ACKNOWLEDGE;
1939 
1940 		default:
1941 			return 0;
1942 	}
1943 }
1944 
1945 
1946 inline bool
1947 TCPEndpoint::_ShouldSendSegment(tcp_segment_header& segment, uint32 length,
1948 	uint32 segmentMaxSize, uint32 flightSize)
1949 {
1950 	if (fState == ESTABLISHED && fSendMaxSegments == 0)
1951 		return false;
1952 
1953 	if (length > 0) {
1954 		// Avoid the silly window syndrome - we only send a segment in case:
1955 		// - we have a full segment to send, or
1956 		// - we're at the end of our buffer queue, or
1957 		// - the buffer is at least larger than half of the maximum send window,
1958 		//   or
1959 		// - we're retransmitting data
1960 		if (length == segmentMaxSize
1961 			|| (fOptions & TCP_NODELAY) != 0
1962 			|| tcp_sequence(fSendNext + length) == fSendQueue.LastSequence()
1963 			|| (fSendMaxWindow > 0 && length >= fSendMaxWindow / 2))
1964 			return true;
1965 	}
1966 
1967 	// check if we need to send a window update to the peer
1968 	if (segment.advertised_window > 0) {
1969 		// correct the window to take into account what already has been advertised
1970 		uint32 window = (segment.advertised_window << fReceiveWindowShift)
1971 			- (fReceiveMaxAdvertised - fReceiveNext).Number();
1972 
1973 		// if we can advertise a window larger than twice the maximum segment
1974 		// size, or half the maximum buffer size we send a window update
1975 		if (window >= (fReceiveMaxSegmentSize << 1)
1976 			|| window >= (socket->receive.buffer_size >> 1))
1977 			return true;
1978 	}
1979 
1980 	if ((segment.flags & (TCP_FLAG_SYNCHRONIZE | TCP_FLAG_FINISH
1981 			| TCP_FLAG_RESET)) != 0)
1982 		return true;
1983 
1984 	// We do have urgent data pending
1985 	if (fSendUrgentOffset > fSendNext)
1986 		return true;
1987 
1988 	// there is no reason to send a segment just now
1989 	return false;
1990 }
1991 
1992 
1993 status_t
1994 TCPEndpoint::_SendQueued(bool force)
1995 {
1996 	return _SendQueued(force, fSendWindow);
1997 }
1998 
1999 
2000 /*!	Sends one or more TCP segments with the data waiting in the queue, or some
2001 	specific flags that need to be sent.
2002 */
2003 status_t
2004 TCPEndpoint::_SendQueued(bool force, uint32 sendWindow)
2005 {
2006 	if (fRoute == NULL)
2007 		return B_ERROR;
2008 
2009 	// in passive state?
2010 	if (fState == LISTEN)
2011 		return B_ERROR;
2012 
2013 	tcp_segment_header segment(_CurrentFlags());
2014 
2015 	if ((fOptions & TCP_NOOPT) == 0) {
2016 		if ((fFlags & FLAG_OPTION_TIMESTAMP) != 0) {
2017 			segment.options |= TCP_HAS_TIMESTAMPS;
2018 			segment.timestamp_reply = fReceivedTimestamp;
2019 			segment.timestamp_value = tcp_now();
2020 		}
2021 
2022 		if ((segment.flags & TCP_FLAG_SYNCHRONIZE) != 0
2023 			&& fSendNext == fInitialSendSequence) {
2024 			// add connection establishment options
2025 			segment.max_segment_size = fReceiveMaxSegmentSize;
2026 			if (fFlags & FLAG_OPTION_WINDOW_SCALE) {
2027 				segment.options |= TCP_HAS_WINDOW_SCALE;
2028 				segment.window_shift = fReceiveWindowShift;
2029 			}
2030 		}
2031 	}
2032 
2033 	size_t availableBytes = fReceiveQueue.Free();
2034 	// window size must remain same for duplicate acknowledgements
2035 	if (!fReceiveQueue.IsContiguous())
2036 		availableBytes = (fReceiveMaxAdvertised - fReceiveNext).Number();
2037 
2038 	if (fFlags & FLAG_OPTION_WINDOW_SCALE)
2039 		segment.advertised_window = availableBytes >> fReceiveWindowShift;
2040 	else
2041 		segment.advertised_window = min_c(TCP_MAX_WINDOW, availableBytes);
2042 
2043 	segment.acknowledge = fReceiveNext.Number();
2044 
2045 	// Process urgent data
2046 	if (fSendUrgentOffset > fSendNext) {
2047 		segment.flags |= TCP_FLAG_URGENT;
2048 		segment.urgent_offset = (fSendUrgentOffset - fSendNext).Number();
2049 	} else {
2050 		fSendUrgentOffset = fSendUnacknowledged.Number();
2051 			// Keep urgent offset updated, so that it doesn't reach into our
2052 			// send window on overlap
2053 		segment.urgent_offset = 0;
2054 	}
2055 
2056 	if (fCongestionWindow > 0 && fCongestionWindow < sendWindow)
2057 		sendWindow = fCongestionWindow;
2058 
2059 	// fSendUnacknowledged
2060 	//  |    fSendNext      fSendMax
2061 	//  |        |              |
2062 	//  v        v              v
2063 	//  -----------------------------------
2064 	//  | effective window           |
2065 	//  -----------------------------------
2066 
2067 	// Flight size represents the window of data which is currently in the
2068 	// ether. We should never send data such as the flight size becomes larger
2069 	// than the effective window. Note however that the effective window may be
2070 	// reduced (by congestion for instance), so at some point in time flight
2071 	// size may be larger than the currently calculated window.
2072 
2073 	uint32 flightSize = (fSendMax - fSendUnacknowledged).Number();
2074 	uint32 consumedWindow = (fSendNext - fSendUnacknowledged).Number();
2075 
2076 	if (consumedWindow > sendWindow) {
2077 		sendWindow = 0;
2078 		// TODO: enter persist state? try to get a window update.
2079 	} else
2080 		sendWindow -= consumedWindow;
2081 
2082 	uint32 length = min_c(fSendQueue.Available(fSendNext), sendWindow);
2083 	bool shouldStartRetransmitTimer = fSendNext == fSendUnacknowledged;
2084 	bool retransmit = fSendNext < fSendMax;
2085 
2086 	if (fDuplicateAcknowledgeCount != 0) {
2087 		// send at most 1 SMSS of data when under limited transmit, fast transmit/recovery
2088 		length = min_c(length, fSendMaxSegmentSize);
2089 	}
2090 
2091 	do {
2092 		uint32 segmentMaxSize = fSendMaxSegmentSize
2093 			- tcp_options_length(segment);
2094 		uint32 segmentLength = min_c(length, segmentMaxSize);
2095 
2096 		if (fSendNext + segmentLength == fSendQueue.LastSequence() && !force) {
2097 			if (state_needs_finish(fState))
2098 				segment.flags |= TCP_FLAG_FINISH;
2099 			if (length > 0)
2100 				segment.flags |= TCP_FLAG_PUSH;
2101 		}
2102 
2103 		// Determine if we should really send this segment
2104 		if (!force && !retransmit && !_ShouldSendSegment(segment, segmentLength,
2105 				segmentMaxSize, flightSize)) {
2106 			if (fSendQueue.Available()
2107 				&& !gStackModule->is_timer_active(&fPersistTimer)
2108 				&& !gStackModule->is_timer_active(&fRetransmitTimer))
2109 				_StartPersistTimer();
2110 			break;
2111 		}
2112 
2113 		net_buffer *buffer = gBufferModule->create(256);
2114 		if (buffer == NULL)
2115 			return B_NO_MEMORY;
2116 
2117 		status_t status = B_OK;
2118 		if (segmentLength > 0)
2119 			status = fSendQueue.Get(buffer, fSendNext, segmentLength);
2120 		if (status < B_OK) {
2121 			gBufferModule->free(buffer);
2122 			return status;
2123 		}
2124 
2125 		LocalAddress().CopyTo(buffer->source);
2126 		PeerAddress().CopyTo(buffer->destination);
2127 
2128 		uint32 size = buffer->size;
2129 		segment.sequence = fSendNext.Number();
2130 
2131 		TRACE("SendQueued(): buffer %p (%" B_PRIu32 " bytes) address %s to "
2132 			"%s flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32
2133 			", rwnd %" B_PRIu16 ", cwnd %" B_PRIu32 ", ssthresh %" B_PRIu32
2134 			", len %" B_PRIu32 ", first %" B_PRIu32 ", last %" B_PRIu32,
2135 			buffer, buffer->size, PrintAddress(buffer->source),
2136 			PrintAddress(buffer->destination), segment.flags, segment.sequence,
2137 			segment.acknowledge, segment.advertised_window,
2138 			fCongestionWindow, fSlowStartThreshold, segmentLength,
2139 			fSendQueue.FirstSequence().Number(),
2140 			fSendQueue.LastSequence().Number());
2141 		T(Send(this, segment, buffer, fSendQueue.FirstSequence(),
2142 			fSendQueue.LastSequence()));
2143 
2144 		PROBE(buffer, sendWindow);
2145 		sendWindow -= buffer->size;
2146 
2147 		status = add_tcp_header(AddressModule(), segment, buffer);
2148 		if (status != B_OK) {
2149 			gBufferModule->free(buffer);
2150 			return status;
2151 		}
2152 
2153 		// Update send status - we need to do this before we send the data
2154 		// for local connections as the answer is directly handled
2155 
2156 		if (segment.flags & TCP_FLAG_SYNCHRONIZE) {
2157 			segment.options &= ~TCP_HAS_WINDOW_SCALE;
2158 			segment.max_segment_size = 0;
2159 			size++;
2160 		}
2161 
2162 		if (segment.flags & TCP_FLAG_FINISH)
2163 			size++;
2164 
2165 		uint32 sendMax = fSendMax.Number();
2166 		fSendNext += size;
2167 		if (fSendMax < fSendNext)
2168 			fSendMax = fSendNext;
2169 
2170 		fReceiveMaxAdvertised = fReceiveNext
2171 			+ ((uint32)segment.advertised_window << fReceiveWindowShift);
2172 
2173 		if (segmentLength != 0 && fState == ESTABLISHED)
2174 			--fSendMaxSegments;
2175 
2176 		status = next->module->send_routed_data(next, fRoute, buffer);
2177 		if (status < B_OK) {
2178 			gBufferModule->free(buffer);
2179 
2180 			fSendNext = segment.sequence;
2181 			fSendMax = sendMax;
2182 				// restore send status
2183 			return status;
2184 		}
2185 
2186 		if (fSendTime == 0 && !retransmit
2187 			&& (segmentLength != 0 || (segment.flags & TCP_FLAG_SYNCHRONIZE) !=0)) {
2188 			fSendTime = tcp_now();
2189 			fRoundTripStartSequence = segment.sequence;
2190 		}
2191 
2192 		if (shouldStartRetransmitTimer && size > 0) {
2193 			TRACE("starting initial retransmit timer of: %" B_PRIdBIGTIME,
2194 				fRetransmitTimeout);
2195 			gStackModule->set_timer(&fRetransmitTimer, fRetransmitTimeout);
2196 			T(TimerSet(this, "retransmit", fRetransmitTimeout));
2197 			shouldStartRetransmitTimer = false;
2198 		}
2199 
2200 		if (segment.flags & TCP_FLAG_ACKNOWLEDGE)
2201 			fLastAcknowledgeSent = segment.acknowledge;
2202 
2203 		length -= segmentLength;
2204 		segment.flags &= ~(TCP_FLAG_SYNCHRONIZE | TCP_FLAG_RESET
2205 			| TCP_FLAG_FINISH);
2206 
2207 		if (retransmit)
2208 			break;
2209 
2210 	} while (length > 0);
2211 
2212 	return B_OK;
2213 }
2214 
2215 
2216 int
2217 TCPEndpoint::_MaxSegmentSize(const sockaddr* address) const
2218 {
2219 	return next->module->get_mtu(next, address) - sizeof(tcp_header);
2220 }
2221 
2222 
2223 status_t
2224 TCPEndpoint::_PrepareSendPath(const sockaddr* peer)
2225 {
2226 	if (fRoute == NULL) {
2227 		fRoute = gDatalinkModule->get_route(Domain(), peer);
2228 		if (fRoute == NULL)
2229 			return ENETUNREACH;
2230 
2231 		if ((fRoute->flags & RTF_LOCAL) != 0)
2232 			fFlags |= FLAG_LOCAL;
2233 	}
2234 
2235 	// make sure connection does not already exist
2236 	status_t status = fManager->SetConnection(this, *LocalAddress(), peer,
2237 		fRoute->interface_address->local);
2238 	if (status < B_OK)
2239 		return status;
2240 
2241 	fInitialSendSequence = system_time() >> 4;
2242 	fSendNext = fInitialSendSequence;
2243 	fSendUnacknowledged = fInitialSendSequence;
2244 	fSendMax = fInitialSendSequence;
2245 	fSendUrgentOffset = fInitialSendSequence;
2246 	fRecover = fInitialSendSequence.Number();
2247 
2248 	// we are counting the SYN here
2249 	fSendQueue.SetInitialSequence(fSendNext + 1);
2250 
2251 	fReceiveMaxSegmentSize = _MaxSegmentSize(peer);
2252 
2253 	// Compute the window shift we advertise to our peer - if it doesn't support
2254 	// this option, this will be reset to 0 (when its SYN is received)
2255 	fReceiveWindowShift = 0;
2256 	while (fReceiveWindowShift < TCP_MAX_WINDOW_SHIFT
2257 		&& (0xffffUL << fReceiveWindowShift) < socket->receive.buffer_size) {
2258 		fReceiveWindowShift++;
2259 	}
2260 
2261 	return B_OK;
2262 }
2263 
2264 
2265 void
2266 TCPEndpoint::_Acknowledged(tcp_segment_header& segment)
2267 {
2268 	TRACE("_Acknowledged(): ack %" B_PRIu32 "; uack %" B_PRIu32 "; next %"
2269 		B_PRIu32 "; max %" B_PRIu32, segment.acknowledge,
2270 		fSendUnacknowledged.Number(), fSendNext.Number(), fSendMax.Number());
2271 
2272 	ASSERT(fSendUnacknowledged <= segment.acknowledge);
2273 
2274 	if (fSendUnacknowledged < segment.acknowledge) {
2275 		fSendQueue.RemoveUntil(segment.acknowledge);
2276 
2277 		uint32 bytesAcknowledged = segment.acknowledge - fSendUnacknowledged.Number();
2278 		fPreviousHighestAcknowledge = fSendUnacknowledged;
2279 		fSendUnacknowledged = segment.acknowledge;
2280 		uint32 flightSize = (fSendMax - fSendUnacknowledged).Number();
2281 		int32 expectedSamples = flightSize / (fSendMaxSegmentSize << 1);
2282 
2283 		if (fPreviousHighestAcknowledge > fSendUnacknowledged) {
2284 			// need to update the recover variable upon a sequence wraparound
2285 			fRecover = segment.acknowledge - 1;
2286 		}
2287 
2288 		// the acknowledgment of the SYN/ACK MUST NOT increase the size of the congestion window
2289 		if (fSendUnacknowledged != fInitialSendSequence) {
2290 			if (fCongestionWindow < fSlowStartThreshold)
2291 				fCongestionWindow += min_c(bytesAcknowledged, fSendMaxSegmentSize);
2292 			else {
2293 				uint32 increment = fSendMaxSegmentSize * fSendMaxSegmentSize;
2294 
2295 				if (increment < fCongestionWindow)
2296 					increment = 1;
2297 				else
2298 					increment /= fCongestionWindow;
2299 
2300 				fCongestionWindow += increment;
2301 			}
2302 
2303 			fSendMaxSegments = UINT32_MAX;
2304 		}
2305 
2306 		if ((fFlags & FLAG_RECOVERY) != 0) {
2307 			fSendNext = fSendUnacknowledged;
2308 			_SendQueued();
2309 			fCongestionWindow -= bytesAcknowledged;
2310 
2311 			if (bytesAcknowledged > fSendMaxSegmentSize)
2312 				fCongestionWindow += fSendMaxSegmentSize;
2313 
2314 			fSendNext = fSendMax;
2315 		} else
2316 			fDuplicateAcknowledgeCount = 0;
2317 
2318 		if (fSendNext < fSendUnacknowledged)
2319 			fSendNext = fSendUnacknowledged;
2320 
2321 		if (fFlags & FLAG_OPTION_TIMESTAMP) {
2322 			_UpdateRoundTripTime(tcp_diff_timestamp(segment.timestamp_reply),
2323 				expectedSamples > 0 ? expectedSamples : 1);
2324 		} else if (fSendTime != 0 && fRoundTripStartSequence < segment.acknowledge) {
2325 			_UpdateRoundTripTime(tcp_diff_timestamp(fSendTime), 1);
2326 			fSendTime = 0;
2327 		}
2328 
2329 		if (fSendUnacknowledged == fSendMax) {
2330 			TRACE("all acknowledged, cancelling retransmission timer.");
2331 			gStackModule->cancel_timer(&fRetransmitTimer);
2332 			T(TimerSet(this, "retransmit", -1));
2333 		} else {
2334 			TRACE("data acknowledged, resetting retransmission timer to: %"
2335 				B_PRIdBIGTIME, fRetransmitTimeout);
2336 			gStackModule->set_timer(&fRetransmitTimer, fRetransmitTimeout);
2337 			T(TimerSet(this, "retransmit", fRetransmitTimeout));
2338 		}
2339 
2340 		if (is_writable(fState)) {
2341 			// notify threads waiting on the socket to become writable again
2342 			fSendCondition.NotifyAll();
2343 			gSocketModule->notify(socket, B_SELECT_WRITE, fSendQueue.Free());
2344 		}
2345 	}
2346 
2347 	// if there is data left to be sent, send it now
2348 	if (fSendQueue.Used() > 0)
2349 		_SendQueued();
2350 }
2351 
2352 
2353 void
2354 TCPEndpoint::_Retransmit()
2355 {
2356 	TRACE("Retransmit()");
2357 
2358 	if (fState < ESTABLISHED) {
2359 		fRetransmitTimeout = TCP_SYN_RETRANSMIT_TIMEOUT;
2360 		fCongestionWindow = fSendMaxSegmentSize;
2361 	} else {
2362 		_ResetSlowStart();
2363 		fDuplicateAcknowledgeCount = 0;
2364 		// Do exponential back off of the retransmit timeout
2365 		fRetransmitTimeout *= 2;
2366 		if (fRetransmitTimeout > TCP_MAX_RETRANSMIT_TIMEOUT)
2367 			fRetransmitTimeout = TCP_MAX_RETRANSMIT_TIMEOUT;
2368 	}
2369 
2370 	fSendNext = fSendUnacknowledged;
2371 	_SendQueued();
2372 
2373 	fRecover = fSendNext.Number() - 1;
2374 	if ((fFlags & FLAG_RECOVERY) != 0)
2375 		fFlags &= ~FLAG_RECOVERY;
2376 }
2377 
2378 
2379 void
2380 TCPEndpoint::_UpdateRoundTripTime(int32 roundTripTime, int32 expectedSamples)
2381 {
2382 	if (fSmoothedRoundTripTime == 0) {
2383 		fSmoothedRoundTripTime = roundTripTime;
2384 		fRoundTripVariation = roundTripTime / 2;
2385 		fRetransmitTimeout = (fSmoothedRoundTripTime + max_c(100, fRoundTripVariation * 4))
2386 				* kTimestampFactor;
2387 	} else {
2388 		int32 delta = fSmoothedRoundTripTime - roundTripTime;
2389 		if (delta < 0)
2390 			delta = -delta;
2391 		fRoundTripVariation += (delta - fRoundTripVariation) / (expectedSamples * 4);
2392 		fSmoothedRoundTripTime += (roundTripTime - fSmoothedRoundTripTime) / (expectedSamples * 8);
2393 		fRetransmitTimeout = (fSmoothedRoundTripTime + max_c(100, fRoundTripVariation * 4))
2394 			* kTimestampFactor;
2395 	}
2396 
2397 	if (fRetransmitTimeout > TCP_MAX_RETRANSMIT_TIMEOUT)
2398 		fRetransmitTimeout = TCP_MAX_RETRANSMIT_TIMEOUT;
2399 
2400 	if (fRetransmitTimeout < TCP_MIN_RETRANSMIT_TIMEOUT)
2401 		fRetransmitTimeout = TCP_MIN_RETRANSMIT_TIMEOUT;
2402 
2403 	TRACE("  RTO is now %" B_PRIdBIGTIME " (after rtt %" B_PRId32 "ms)",
2404 		fRetransmitTimeout, roundTripTime);
2405 }
2406 
2407 
2408 void
2409 TCPEndpoint::_ResetSlowStart()
2410 {
2411 	fSlowStartThreshold = max_c((fSendMax - fSendUnacknowledged).Number() / 2,
2412 		2 * fSendMaxSegmentSize);
2413 	fCongestionWindow = fSendMaxSegmentSize;
2414 }
2415 
2416 
2417 //	#pragma mark - timer
2418 
2419 
2420 /*static*/ void
2421 TCPEndpoint::_RetransmitTimer(net_timer* timer, void* _endpoint)
2422 {
2423 	TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint;
2424 	T(TimerTriggered(endpoint, "retransmit"));
2425 
2426 	MutexLocker locker(endpoint->fLock);
2427 	if (!locker.IsLocked() || gStackModule->is_timer_active(timer))
2428 		return;
2429 
2430 	endpoint->_Retransmit();
2431 }
2432 
2433 
2434 /*static*/ void
2435 TCPEndpoint::_PersistTimer(net_timer* timer, void* _endpoint)
2436 {
2437 	TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint;
2438 	T(TimerTriggered(endpoint, "persist"));
2439 
2440 	MutexLocker locker(endpoint->fLock);
2441 	if (!locker.IsLocked())
2442 		return;
2443 
2444 	// the timer might not have been canceled early enough
2445 	if (endpoint->State() == CLOSED)
2446 		return;
2447 
2448 	endpoint->_SendQueued(true);
2449 }
2450 
2451 
2452 /*static*/ void
2453 TCPEndpoint::_DelayedAcknowledgeTimer(net_timer* timer, void* _endpoint)
2454 {
2455 	TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint;
2456 	T(TimerTriggered(endpoint, "delayed ack"));
2457 
2458 	MutexLocker locker(endpoint->fLock);
2459 	if (!locker.IsLocked())
2460 		return;
2461 
2462 	// the timer might not have been canceled early enough
2463 	if (endpoint->State() == CLOSED)
2464 		return;
2465 
2466 	endpoint->SendAcknowledge(true);
2467 }
2468 
2469 
2470 /*static*/ void
2471 TCPEndpoint::_TimeWaitTimer(net_timer* timer, void* _endpoint)
2472 {
2473 	TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint;
2474 	T(TimerTriggered(endpoint, "time-wait"));
2475 
2476 	MutexLocker locker(endpoint->fLock);
2477 	if (!locker.IsLocked())
2478 		return;
2479 
2480 	if ((endpoint->fFlags & FLAG_CLOSED) == 0) {
2481 		endpoint->fFlags |= FLAG_DELETE_ON_CLOSE;
2482 		return;
2483 	}
2484 
2485 	locker.Unlock();
2486 
2487 	gSocketModule->release_socket(endpoint->socket);
2488 }
2489 
2490 
2491 /*static*/ status_t
2492 TCPEndpoint::_WaitForCondition(ConditionVariable& condition,
2493 	MutexLocker& locker, bigtime_t timeout)
2494 {
2495 	ConditionVariableEntry entry;
2496 	condition.Add(&entry);
2497 
2498 	locker.Unlock();
2499 	status_t result = entry.Wait(B_ABSOLUTE_TIMEOUT | B_CAN_INTERRUPT, timeout);
2500 	locker.Lock();
2501 
2502 	return result;
2503 }
2504 
2505 
2506 //	#pragma mark -
2507 
2508 
2509 void
2510 TCPEndpoint::Dump() const
2511 {
2512 	kprintf("TCP endpoint %p\n", this);
2513 	kprintf("  state: %s\n", name_for_state(fState));
2514 	kprintf("  flags: 0x%" B_PRIx32 "\n", fFlags);
2515 #if KDEBUG
2516 	kprintf("  lock: { %p, holder: %" B_PRId32 " }\n", &fLock, fLock.holder);
2517 #endif
2518 	kprintf("  accept sem: %" B_PRId32 "\n", fAcceptSemaphore);
2519 	kprintf("  options: 0x%" B_PRIx32 "\n", (uint32)fOptions);
2520 	kprintf("  send\n");
2521 	kprintf("    window shift: %" B_PRIu8 "\n", fSendWindowShift);
2522 	kprintf("    unacknowledged: %" B_PRIu32 "\n",
2523 		fSendUnacknowledged.Number());
2524 	kprintf("    next: %" B_PRIu32 "\n", fSendNext.Number());
2525 	kprintf("    max: %" B_PRIu32 "\n", fSendMax.Number());
2526 	kprintf("    urgent offset: %" B_PRIu32 "\n", fSendUrgentOffset.Number());
2527 	kprintf("    window: %" B_PRIu32 "\n", fSendWindow);
2528 	kprintf("    max window: %" B_PRIu32 "\n", fSendMaxWindow);
2529 	kprintf("    max segment size: %" B_PRIu32 "\n", fSendMaxSegmentSize);
2530 	kprintf("    queue: %" B_PRIuSIZE " / %" B_PRIuSIZE "\n", fSendQueue.Used(),
2531 		fSendQueue.Size());
2532 #if DEBUG_TCP_BUFFER_QUEUE
2533 	fSendQueue.Dump();
2534 #endif
2535 	kprintf("    last acknowledge sent: %" B_PRIu32 "\n",
2536 		fLastAcknowledgeSent.Number());
2537 	kprintf("    initial sequence: %" B_PRIu32 "\n",
2538 		fInitialSendSequence.Number());
2539 	kprintf("  receive\n");
2540 	kprintf("    window shift: %" B_PRIu8 "\n", fReceiveWindowShift);
2541 	kprintf("    next: %" B_PRIu32 "\n", fReceiveNext.Number());
2542 	kprintf("    max advertised: %" B_PRIu32 "\n",
2543 		fReceiveMaxAdvertised.Number());
2544 	kprintf("    window: %" B_PRIu32 "\n", fReceiveWindow);
2545 	kprintf("    max segment size: %" B_PRIu32 "\n", fReceiveMaxSegmentSize);
2546 	kprintf("    queue: %" B_PRIuSIZE " / %" B_PRIuSIZE "\n",
2547 		fReceiveQueue.Available(), fReceiveQueue.Size());
2548 #if DEBUG_TCP_BUFFER_QUEUE
2549 	fReceiveQueue.Dump();
2550 #endif
2551 	kprintf("    initial sequence: %" B_PRIu32 "\n",
2552 		fInitialReceiveSequence.Number());
2553 	kprintf("    duplicate acknowledge count: %" B_PRIu32 "\n",
2554 		fDuplicateAcknowledgeCount);
2555 	kprintf("  smoothed round trip time: %" B_PRId32 " (deviation %" B_PRId32 ")\n",
2556 		fSmoothedRoundTripTime, fRoundTripVariation);
2557 	kprintf("  retransmit timeout: %" B_PRId64 "\n", fRetransmitTimeout);
2558 	kprintf("  congestion window: %" B_PRIu32 "\n", fCongestionWindow);
2559 	kprintf("  slow start threshold: %" B_PRIu32 "\n", fSlowStartThreshold);
2560 }
2561 
2562