xref: /haiku/src/add-ons/kernel/network/protocols/tcp/TCPEndpoint.cpp (revision 4c07199d8201fcf267e90be0d24b76799d03cea6)
1 /*
2  * Copyright 2006-2010, Haiku, Inc. All Rights Reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Authors:
6  *		Andrew Galante, haiku.galante@gmail.com
7  *		Axel Dörfler, axeld@pinc-software.de
8  *		Hugo Santos, hugosantos@gmail.com
9  */
10 
11 
12 #include "TCPEndpoint.h"
13 
14 #include <netinet/in.h>
15 #include <netinet/ip.h>
16 #include <netinet/tcp.h>
17 #include <new>
18 #include <signal.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <stdint.h>
22 
23 #include <KernelExport.h>
24 #include <Select.h>
25 
26 #include <net_buffer.h>
27 #include <net_datalink.h>
28 #include <net_stat.h>
29 #include <NetBufferUtilities.h>
30 #include <NetUtilities.h>
31 
32 #include <lock.h>
33 #include <tracing.h>
34 #include <util/AutoLock.h>
35 #include <util/list.h>
36 
37 #include "EndpointManager.h"
38 
39 
40 // References:
41 //	- RFC 793 - Transmission Control Protocol
42 //	- RFC 813 - Window and Acknowledgement Strategy in TCP
43 //	- RFC 1337 - TIME_WAIT Assassination Hazards in TCP
44 //
45 // Things this implementation currently doesn't implement:
46 //	- TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery,
47 //	  RFC 2001, RFC 2581, RFC 3042
48 //	- NewReno Modification to TCP's Fast Recovery, RFC 2582
49 //	- Explicit Congestion Notification (ECN), RFC 3168
50 //	- SYN-Cache
51 //	- SACK, Selective Acknowledgment - RFC 2018, RFC 2883, RFC 3517
52 //	- Forward RTO-Recovery, RFC 4138
53 //	- Time-Wait hash instead of keeping sockets alive
54 //
55 // Things incomplete in this implementation:
56 //	- TCP Extensions for High Performance, RFC 1323 - RTTM, PAWS
57 
58 #define PrintAddress(address) \
59 	AddressString(Domain(), address, true).Data()
60 
61 //#define TRACE_TCP
62 //#define PROBE_TCP
63 
64 #ifdef TRACE_TCP
65 // the space before ', ##args' is important in order for this to work with cpp 2.95
66 #	define TRACE(format, args...)	dprintf("%" B_PRId32 ": TCP [%" \
67 		B_PRIdBIGTIME "] %p (%12s) " format "\n", find_thread(NULL), \
68 		system_time(), this, name_for_state(fState) , ##args)
69 #else
70 #	define TRACE(args...)			do { } while (0)
71 #endif
72 
73 #ifdef PROBE_TCP
74 #	define PROBE(buffer, window) \
75 	dprintf("TCP PROBE %" B_PRIdBIGTIME " %s %s %" B_PRIu32 " snxt %" B_PRIu32 \
76 		" suna %" B_PRIu32 " cw %" B_PRIu32 " sst %" B_PRIu32 " win %" \
77 		B_PRIu32 " swin %" B_PRIu32 " smax-suna %" B_PRIu32 " savail %" \
78 		B_PRIuSIZE " sqused %" B_PRIuSIZE " rto %" B_PRIdBIGTIME "\n", \
79 		system_time(), PrintAddress(buffer->source), \
80 		PrintAddress(buffer->destination), buffer->size, fSendNext.Number(), \
81 		fSendUnacknowledged.Number(), fCongestionWindow, fSlowStartThreshold, \
82 		window, fSendWindow, (fSendMax - fSendUnacknowledged).Number(), \
83 		fSendQueue.Available(fSendNext), fSendQueue.Used(), fRetransmitTimeout)
84 #else
85 #	define PROBE(buffer, window)	do { } while (0)
86 #endif
87 
88 #if TCP_TRACING
89 namespace TCPTracing {
90 
91 class Receive : public AbstractTraceEntry {
92 public:
93 	Receive(TCPEndpoint* endpoint, tcp_segment_header& segment, uint32 window,
94 			net_buffer* buffer)
95 		:
96 		fEndpoint(endpoint),
97 		fBuffer(buffer),
98 		fBufferSize(buffer->size),
99 		fSequence(segment.sequence),
100 		fAcknowledge(segment.acknowledge),
101 		fWindow(window),
102 		fState(endpoint->State()),
103 		fFlags(segment.flags)
104 	{
105 		Initialized();
106 	}
107 
108 	virtual void AddDump(TraceOutput& out)
109 	{
110 		out.Print("tcp:%p (%12s) receive buffer %p (%" B_PRIu32 " bytes), "
111 			"flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32
112 			", wnd %" B_PRIu32, fEndpoint, name_for_state(fState), fBuffer,
113 			fBufferSize, fFlags, fSequence, fAcknowledge, fWindow);
114 	}
115 
116 protected:
117 	TCPEndpoint*	fEndpoint;
118 	net_buffer*		fBuffer;
119 	uint32			fBufferSize;
120 	uint32			fSequence;
121 	uint32			fAcknowledge;
122 	uint32			fWindow;
123 	tcp_state		fState;
124 	uint8			fFlags;
125 };
126 
127 class Send : public AbstractTraceEntry {
128 public:
129 	Send(TCPEndpoint* endpoint, tcp_segment_header& segment, net_buffer* buffer,
130 			tcp_sequence firstSequence, tcp_sequence lastSequence)
131 		:
132 		fEndpoint(endpoint),
133 		fBuffer(buffer),
134 		fBufferSize(buffer->size),
135 		fSequence(segment.sequence),
136 		fAcknowledge(segment.acknowledge),
137 		fFirstSequence(firstSequence.Number()),
138 		fLastSequence(lastSequence.Number()),
139 		fState(endpoint->State()),
140 		fFlags(segment.flags)
141 	{
142 		Initialized();
143 	}
144 
145 	virtual void AddDump(TraceOutput& out)
146 	{
147 		out.Print("tcp:%p (%12s) send buffer %p (%" B_PRIu32 " bytes), "
148 			"flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32
149 			", first %" B_PRIu32 ", last %" B_PRIu32, fEndpoint,
150 			name_for_state(fState), fBuffer, fBufferSize, fFlags, fSequence,
151 			fAcknowledge, fFirstSequence, fLastSequence);
152 	}
153 
154 protected:
155 	TCPEndpoint*	fEndpoint;
156 	net_buffer*		fBuffer;
157 	uint32			fBufferSize;
158 	uint32			fSequence;
159 	uint32			fAcknowledge;
160 	uint32			fFirstSequence;
161 	uint32			fLastSequence;
162 	tcp_state		fState;
163 	uint8			fFlags;
164 };
165 
166 class State : public AbstractTraceEntry {
167 public:
168 	State(TCPEndpoint* endpoint)
169 		:
170 		fEndpoint(endpoint),
171 		fState(endpoint->State())
172 	{
173 		Initialized();
174 	}
175 
176 	virtual void AddDump(TraceOutput& out)
177 	{
178 		out.Print("tcp:%p (%12s) state change", fEndpoint,
179 			name_for_state(fState));
180 	}
181 
182 protected:
183 	TCPEndpoint*	fEndpoint;
184 	tcp_state		fState;
185 };
186 
187 class Spawn : public AbstractTraceEntry {
188 public:
189 	Spawn(TCPEndpoint* listeningEndpoint, TCPEndpoint* spawnedEndpoint)
190 		:
191 		fListeningEndpoint(listeningEndpoint),
192 		fSpawnedEndpoint(spawnedEndpoint)
193 	{
194 		Initialized();
195 	}
196 
197 	virtual void AddDump(TraceOutput& out)
198 	{
199 		out.Print("tcp:%p spawns %p", fListeningEndpoint, fSpawnedEndpoint);
200 	}
201 
202 protected:
203 	TCPEndpoint*	fListeningEndpoint;
204 	TCPEndpoint*	fSpawnedEndpoint;
205 };
206 
207 class Error : public AbstractTraceEntry {
208 public:
209 	Error(TCPEndpoint* endpoint, const char* error, int32 line)
210 		:
211 		fEndpoint(endpoint),
212 		fLine(line),
213 		fError(error),
214 		fState(endpoint->State())
215 	{
216 		Initialized();
217 	}
218 
219 	virtual void AddDump(TraceOutput& out)
220 	{
221 		out.Print("tcp:%p (%12s) error at line %" B_PRId32 ": %s", fEndpoint,
222 			name_for_state(fState), fLine, fError);
223 	}
224 
225 protected:
226 	TCPEndpoint*	fEndpoint;
227 	int32			fLine;
228 	const char*		fError;
229 	tcp_state		fState;
230 };
231 
232 class TimerSet : public AbstractTraceEntry {
233 public:
234 	TimerSet(TCPEndpoint* endpoint, const char* which, bigtime_t timeout)
235 		:
236 		fEndpoint(endpoint),
237 		fWhich(which),
238 		fTimeout(timeout),
239 		fState(endpoint->State())
240 	{
241 		Initialized();
242 	}
243 
244 	virtual void AddDump(TraceOutput& out)
245 	{
246 		out.Print("tcp:%p (%12s) %s timer set to %" B_PRIdBIGTIME, fEndpoint,
247 			name_for_state(fState), fWhich, fTimeout);
248 	}
249 
250 protected:
251 	TCPEndpoint*	fEndpoint;
252 	const char*		fWhich;
253 	bigtime_t		fTimeout;
254 	tcp_state		fState;
255 };
256 
257 class TimerTriggered : public AbstractTraceEntry {
258 public:
259 	TimerTriggered(TCPEndpoint* endpoint, const char* which)
260 		:
261 		fEndpoint(endpoint),
262 		fWhich(which),
263 		fState(endpoint->State())
264 	{
265 		Initialized();
266 	}
267 
268 	virtual void AddDump(TraceOutput& out)
269 	{
270 		out.Print("tcp:%p (%12s) %s timer triggered", fEndpoint,
271 			name_for_state(fState), fWhich);
272 	}
273 
274 protected:
275 	TCPEndpoint*	fEndpoint;
276 	const char*		fWhich;
277 	tcp_state		fState;
278 };
279 
280 class APICall : public AbstractTraceEntry {
281 public:
282 	APICall(TCPEndpoint* endpoint, const char* which)
283 		:
284 		fEndpoint(endpoint),
285 		fWhich(which),
286 		fState(endpoint->State())
287 	{
288 		Initialized();
289 	}
290 
291 	virtual void AddDump(TraceOutput& out)
292 	{
293 		out.Print("tcp:%p (%12s) api call: %s", fEndpoint,
294 			name_for_state(fState), fWhich);
295 	}
296 
297 protected:
298 	TCPEndpoint*	fEndpoint;
299 	const char*		fWhich;
300 	tcp_state		fState;
301 };
302 
303 }	// namespace TCPTracing
304 
305 #	define T(x)	new(std::nothrow) TCPTracing::x
306 #else
307 #	define T(x)
308 #endif	// TCP_TRACING
309 
310 
311 // constants for the fFlags field
312 enum {
313 	FLAG_OPTION_WINDOW_SCALE	= 0x01,
314 	FLAG_OPTION_TIMESTAMP		= 0x02,
315 	// TODO: Should FLAG_NO_RECEIVE apply as well to received connections?
316 	//       That is, what is expected from accept() after a shutdown()
317 	//       is performed on a listen()ing socket.
318 	FLAG_NO_RECEIVE				= 0x04,
319 	FLAG_CLOSED					= 0x08,
320 	FLAG_DELETE_ON_CLOSE		= 0x10,
321 	FLAG_LOCAL					= 0x20,
322 	FLAG_RECOVERY				= 0x40,
323 	FLAG_OPTION_SACK_PERMITTED	= 0x80,
324 };
325 
326 
327 static const int kTimestampFactor = 1000;
328 	// conversion factor between usec system time and msec tcp time
329 
330 
331 static inline bigtime_t
332 absolute_timeout(bigtime_t timeout)
333 {
334 	if (timeout == 0 || timeout == B_INFINITE_TIMEOUT)
335 		return timeout;
336 
337 	return timeout + system_time();
338 }
339 
340 
341 static inline status_t
342 posix_error(status_t error)
343 {
344 	if (error == B_TIMED_OUT)
345 		return B_WOULD_BLOCK;
346 
347 	return error;
348 }
349 
350 
351 static inline bool
352 in_window(const tcp_sequence& sequence, const tcp_sequence& receiveNext,
353 	uint32 receiveWindow)
354 {
355 	return sequence >= receiveNext && sequence < (receiveNext + receiveWindow);
356 }
357 
358 
359 static inline bool
360 segment_in_sequence(const tcp_segment_header& segment, int size,
361 	const tcp_sequence& receiveNext, uint32 receiveWindow)
362 {
363 	tcp_sequence sequence(segment.sequence);
364 	if (size == 0) {
365 		if (receiveWindow == 0)
366 			return sequence == receiveNext;
367 		return in_window(sequence, receiveNext, receiveWindow);
368 	} else {
369 		if (receiveWindow == 0)
370 			return false;
371 		return in_window(sequence, receiveNext, receiveWindow)
372 			|| in_window(sequence + size - 1, receiveNext, receiveWindow);
373 	}
374 }
375 
376 
377 static inline bool
378 is_writable(tcp_state state)
379 {
380 	return state == ESTABLISHED || state == FINISH_RECEIVED;
381 }
382 
383 
384 static inline bool
385 is_establishing(tcp_state state)
386 {
387 	return state == SYNCHRONIZE_SENT || state == SYNCHRONIZE_RECEIVED;
388 }
389 
390 
391 static inline uint32 tcp_now()
392 {
393 	return system_time() / kTimestampFactor;
394 }
395 
396 
397 static inline uint32 tcp_diff_timestamp(uint32 base)
398 {
399 	uint32 now = tcp_now();
400 
401 	if (now > base)
402 		return now - base;
403 
404 	return now + UINT_MAX - base;
405 }
406 
407 
408 static inline bool
409 state_needs_finish(int32 state)
410 {
411 	return state == WAIT_FOR_FINISH_ACKNOWLEDGE
412 		|| state == FINISH_SENT || state == CLOSING;
413 }
414 
415 
416 //	#pragma mark -
417 
418 
419 TCPEndpoint::TCPEndpoint(net_socket* socket)
420 	:
421 	ProtocolSocket(socket),
422 	fManager(NULL),
423 	fOptions(0),
424 	fSendWindowShift(0),
425 	fReceiveWindowShift(0),
426 	fSendUnacknowledged(0),
427 	fSendNext(0),
428 	fSendMax(0),
429 	fSendUrgentOffset(0),
430 	fSendWindow(0),
431 	fSendMaxWindow(0),
432 	fSendMaxSegmentSize(TCP_DEFAULT_MAX_SEGMENT_SIZE),
433 	fSendMaxSegments(0),
434 	fSendQueue(socket->send.buffer_size),
435 	fInitialSendSequence(0),
436 	fPreviousHighestAcknowledge(0),
437 	fDuplicateAcknowledgeCount(0),
438 	fPreviousFlightSize(0),
439 	fRecover(0),
440 	fRoute(NULL),
441 	fReceiveNext(0),
442 	fReceiveMaxAdvertised(0),
443 	fReceiveWindow(socket->receive.buffer_size),
444 	fReceiveMaxSegmentSize(TCP_DEFAULT_MAX_SEGMENT_SIZE),
445 	fReceiveQueue(socket->receive.buffer_size),
446 	fSmoothedRoundTripTime(0),
447 	fRoundTripVariation(0),
448 	fSendTime(0),
449 	fRoundTripStartSequence(0),
450 	fRetransmitTimeout(TCP_INITIAL_RTT),
451 	fReceivedTimestamp(0),
452 	fCongestionWindow(0),
453 	fSlowStartThreshold(0),
454 	fState(CLOSED),
455 	fFlags(FLAG_OPTION_WINDOW_SCALE | FLAG_OPTION_TIMESTAMP | FLAG_OPTION_SACK_PERMITTED)
456 {
457 	// TODO: to be replaced with a real read/write locking strategy!
458 	mutex_init(&fLock, "tcp lock");
459 
460 	fReceiveCondition.Init(this, "tcp receive");
461 	fSendCondition.Init(this, "tcp send");
462 
463 	gStackModule->init_timer(&fPersistTimer, TCPEndpoint::_PersistTimer, this);
464 	gStackModule->init_timer(&fRetransmitTimer, TCPEndpoint::_RetransmitTimer,
465 		this);
466 	gStackModule->init_timer(&fDelayedAcknowledgeTimer,
467 		TCPEndpoint::_DelayedAcknowledgeTimer, this);
468 	gStackModule->init_timer(&fTimeWaitTimer, TCPEndpoint::_TimeWaitTimer,
469 		this);
470 
471 	T(APICall(this, "constructor"));
472 }
473 
474 
475 TCPEndpoint::~TCPEndpoint()
476 {
477 	mutex_lock(&fLock);
478 
479 	T(APICall(this, "destructor"));
480 
481 	_CancelConnectionTimers();
482 	gStackModule->cancel_timer(&fTimeWaitTimer);
483 	T(TimerSet(this, "time-wait", -1));
484 
485 	if (fManager != NULL) {
486 		fManager->Unbind(this);
487 		put_endpoint_manager(fManager);
488 	}
489 
490 	mutex_destroy(&fLock);
491 
492 	// we need to wait for all timers to return
493 	gStackModule->wait_for_timer(&fRetransmitTimer);
494 	gStackModule->wait_for_timer(&fPersistTimer);
495 	gStackModule->wait_for_timer(&fDelayedAcknowledgeTimer);
496 	gStackModule->wait_for_timer(&fTimeWaitTimer);
497 
498 	gDatalinkModule->put_route(Domain(), fRoute);
499 }
500 
501 
502 status_t
503 TCPEndpoint::InitCheck() const
504 {
505 	return B_OK;
506 }
507 
508 
509 //	#pragma mark - protocol API
510 
511 
512 status_t
513 TCPEndpoint::Open()
514 {
515 	TRACE("Open()");
516 	T(APICall(this, "open"));
517 
518 	status_t status = ProtocolSocket::Open();
519 	if (status < B_OK)
520 		return status;
521 
522 	fManager = get_endpoint_manager(Domain());
523 	if (fManager == NULL)
524 		return EAFNOSUPPORT;
525 
526 	return B_OK;
527 }
528 
529 
530 status_t
531 TCPEndpoint::Close()
532 {
533 	MutexLocker locker(fLock);
534 
535 	TRACE("Close()");
536 	T(APICall(this, "close"));
537 
538 	if (fState == LISTEN)
539 		delete_sem(fAcceptSemaphore);
540 
541 	if (fState == SYNCHRONIZE_SENT || fState == LISTEN) {
542 		// TODO: what about linger in case of SYNCHRONIZE_SENT?
543 		fState = CLOSED;
544 		T(State(this));
545 		return B_OK;
546 	}
547 
548 	// handle linger with zero timeout
549 	if ((socket->options & SO_LINGER) != 0 && socket->linger == 0) {
550 		fState = CLOSED;
551 		T(State(this));
552 		return _SendQueued(true);
553 	}
554 
555 	status_t status = _Disconnect(true);
556 	if (status != B_OK)
557 		return status;
558 
559 	if ((socket->options & SO_LINGER) != 0) {
560 		TRACE("Close(): Lingering for %i secs", socket->linger);
561 
562 		bigtime_t maximum = absolute_timeout(socket->linger * 1000000LL);
563 
564 		while (fSendQueue.Used() > 0) {
565 			status = _WaitForCondition(fSendCondition, locker, maximum);
566 			if (status == B_TIMED_OUT || status == B_WOULD_BLOCK)
567 				break;
568 			else if (status < B_OK)
569 				return status;
570 		}
571 
572 		TRACE("Close(): after waiting, the SendQ was left with %" B_PRIuSIZE
573 			" bytes.", fSendQueue.Used());
574 	}
575 	return B_OK;
576 }
577 
578 
579 void
580 TCPEndpoint::Free()
581 {
582 	MutexLocker _(fLock);
583 
584 	TRACE("Free()");
585 	T(APICall(this, "free"));
586 
587 	if (fState <= SYNCHRONIZE_SENT)
588 		return;
589 
590 	// we are only interested in the timer, not in changing state
591 	_EnterTimeWait();
592 
593 	fFlags |= FLAG_CLOSED;
594 	if ((fFlags & FLAG_DELETE_ON_CLOSE) == 0) {
595 		// we'll be freed later when the 2MSL timer expires
596 		gSocketModule->acquire_socket(socket);
597 	}
598 }
599 
600 
601 /*!	Creates and sends a synchronize packet to /a address, and then waits
602 	until the connection has been established or refused.
603 */
604 status_t
605 TCPEndpoint::Connect(const sockaddr* address)
606 {
607 	if (!AddressModule()->is_same_family(address))
608 		return EAFNOSUPPORT;
609 
610 	MutexLocker locker(fLock);
611 
612 	TRACE("Connect() on address %s", PrintAddress(address));
613 	T(APICall(this, "connect"));
614 
615 	if (gStackModule->is_restarted_syscall()) {
616 		bigtime_t timeout = gStackModule->restore_syscall_restart_timeout();
617 		status_t status = _WaitForEstablished(locker, timeout);
618 		TRACE("  Connect(): Connection complete: %s (timeout was %"
619 			B_PRIdBIGTIME ")", strerror(status), timeout);
620 		return posix_error(status);
621 	}
622 
623 	// Can only call connect() from CLOSED or LISTEN states
624 	// otherwise endpoint is considered already connected
625 	if (fState == LISTEN) {
626 		// this socket is about to connect; remove pending connections in the backlog
627 		gSocketModule->set_max_backlog(socket, 0);
628 	} else if (fState == ESTABLISHED) {
629 		return EISCONN;
630 	} else if (fState != CLOSED)
631 		return EALREADY;
632 
633 	// consider destination address INADDR_ANY as INADDR_LOOPBACK
634 	sockaddr_storage _address;
635 	if (AddressModule()->is_empty_address(address, false)) {
636 		AddressModule()->get_loopback_address((sockaddr *)&_address);
637 		// for IPv4 and IPv6 the port is at the same offset
638 		((sockaddr_in &)_address).sin_port = ((sockaddr_in *)address)->sin_port;
639 		address = (sockaddr *)&_address;
640 	}
641 
642 	status_t status = _PrepareSendPath(address);
643 	if (status < B_OK)
644 		return status;
645 
646 	TRACE("  Connect(): starting 3-way handshake...");
647 
648 	fState = SYNCHRONIZE_SENT;
649 	T(State(this));
650 
651 	// send SYN
652 	status = _SendQueued();
653 	if (status != B_OK) {
654 		_Close();
655 		return status;
656 	}
657 
658 	// If we are running over Loopback, after _SendQueued() returns we
659 	// may be in ESTABLISHED already.
660 	if (fState == ESTABLISHED) {
661 		TRACE("  Connect() completed after _SendQueued()");
662 		return B_OK;
663 	}
664 
665 	// wait until 3-way handshake is complete (if needed)
666 	bigtime_t timeout = min_c(socket->send.timeout, TCP_CONNECTION_TIMEOUT);
667 	if (timeout == 0) {
668 		// we're a non-blocking socket
669 		TRACE("  Connect() delayed, return EINPROGRESS");
670 		return EINPROGRESS;
671 	}
672 
673 	bigtime_t absoluteTimeout = absolute_timeout(timeout);
674 	gStackModule->store_syscall_restart_timeout(absoluteTimeout);
675 
676 	status = _WaitForEstablished(locker, absoluteTimeout);
677 	TRACE("  Connect(): Connection complete: %s (timeout was %" B_PRIdBIGTIME
678 		")", strerror(status), timeout);
679 	return posix_error(status);
680 }
681 
682 
683 status_t
684 TCPEndpoint::Accept(struct net_socket** _acceptedSocket)
685 {
686 	MutexLocker locker(fLock);
687 
688 	TRACE("Accept()");
689 	T(APICall(this, "accept"));
690 
691 	status_t status;
692 	bigtime_t timeout = absolute_timeout(socket->receive.timeout);
693 	if (gStackModule->is_restarted_syscall())
694 		timeout = gStackModule->restore_syscall_restart_timeout();
695 	else
696 		gStackModule->store_syscall_restart_timeout(timeout);
697 
698 	do {
699 		locker.Unlock();
700 
701 		status = acquire_sem_etc(fAcceptSemaphore, 1, B_ABSOLUTE_TIMEOUT
702 			| B_CAN_INTERRUPT, timeout);
703 		if (status != B_OK) {
704 			if (status == B_TIMED_OUT && socket->receive.timeout == 0)
705 				return B_WOULD_BLOCK;
706 
707 			return status;
708 		}
709 
710 		locker.Lock();
711 		status = gSocketModule->dequeue_connected(socket, _acceptedSocket);
712 #ifdef TRACE_TCP
713 		if (status == B_OK)
714 			TRACE("  Accept() returning %p", (*_acceptedSocket)->first_protocol);
715 #endif
716 	} while (status != B_OK);
717 
718 	return status;
719 }
720 
721 
722 status_t
723 TCPEndpoint::Bind(const sockaddr *address)
724 {
725 	if (address == NULL)
726 		return B_BAD_VALUE;
727 
728 	MutexLocker lock(fLock);
729 
730 	TRACE("Bind() on address %s", PrintAddress(address));
731 	T(APICall(this, "bind"));
732 
733 	if (fState != CLOSED)
734 		return EISCONN;
735 
736 	return fManager->Bind(this, address);
737 }
738 
739 
740 status_t
741 TCPEndpoint::Unbind(struct sockaddr *address)
742 {
743 	MutexLocker _(fLock);
744 
745 	TRACE("Unbind()");
746 	T(APICall(this, "unbind"));
747 
748 	return fManager->Unbind(this);
749 }
750 
751 
752 status_t
753 TCPEndpoint::Listen(int count)
754 {
755 	MutexLocker _(fLock);
756 
757 	TRACE("Listen()");
758 	T(APICall(this, "listen"));
759 
760 	if (fState != CLOSED && fState != LISTEN)
761 		return B_BAD_VALUE;
762 
763 	if (fState == CLOSED) {
764 		fAcceptSemaphore = create_sem(0, "tcp accept");
765 		if (fAcceptSemaphore < B_OK)
766 			return ENOBUFS;
767 
768 		status_t status = fManager->SetPassive(this);
769 		if (status != B_OK) {
770 			delete_sem(fAcceptSemaphore);
771 			fAcceptSemaphore = -1;
772 			return status;
773 		}
774 	}
775 
776 	gSocketModule->set_max_backlog(socket, count);
777 
778 	fState = LISTEN;
779 	T(State(this));
780 	return B_OK;
781 }
782 
783 
784 status_t
785 TCPEndpoint::Shutdown(int direction)
786 {
787 	MutexLocker lock(fLock);
788 
789 	TRACE("Shutdown(%i)", direction);
790 	T(APICall(this, "shutdown"));
791 
792 	if (direction == SHUT_RD || direction == SHUT_RDWR)
793 		fFlags |= FLAG_NO_RECEIVE;
794 
795 	if (direction == SHUT_WR || direction == SHUT_RDWR) {
796 		// TODO: That's not correct. After read/write shutting down the socket
797 		// one should still be able to read previously arrived data.
798 		_Disconnect(false);
799 	}
800 
801 	return B_OK;
802 }
803 
804 
805 /*!	Puts data contained in \a buffer into send buffer */
806 status_t
807 TCPEndpoint::SendData(net_buffer *buffer)
808 {
809 	MutexLocker lock(fLock);
810 
811 	TRACE("SendData(buffer %p, size %" B_PRIu32 ", flags %#" B_PRIx32
812 		") [total %" B_PRIuSIZE " bytes, has %" B_PRIuSIZE "]", buffer,
813 		buffer->size, buffer->flags, fSendQueue.Size(), fSendQueue.Free());
814 	T(APICall(this, "senddata"));
815 
816 	const uint32 flags = buffer->flags;
817 	if ((flags & ~(MSG_DONTWAIT | MSG_OOB | MSG_EOF)) != 0)
818 		return EOPNOTSUPP;
819 
820 	if (fState == CLOSED)
821 		return ENOTCONN;
822 	if (fState == LISTEN)
823 		return EDESTADDRREQ;
824 	if (!is_writable(fState) && !is_establishing(fState))
825 		return EPIPE;
826 
827 	size_t left = buffer->size;
828 
829 	bigtime_t timeout = 0;
830 	if ((flags & MSG_DONTWAIT) == 0) {
831 		timeout = absolute_timeout(socket->send.timeout);
832 		if (gStackModule->is_restarted_syscall())
833 			timeout = gStackModule->restore_syscall_restart_timeout();
834 		else
835 			gStackModule->store_syscall_restart_timeout(timeout);
836 	}
837 
838 	while (left > 0) {
839 		while (fSendQueue.Free() < socket->send.low_water_mark) {
840 			// wait until enough space is available
841 			status_t status = _WaitForCondition(fSendCondition, lock, timeout);
842 			if (status < B_OK) {
843 				TRACE("  SendData() returning %s (%d)",
844 					strerror(posix_error(status)), (int)posix_error(status));
845 				return posix_error(status);
846 			}
847 
848 			if (!is_writable(fState) && !is_establishing(fState))
849 				return EPIPE;
850 		}
851 
852 		size_t size = fSendQueue.Free();
853 		if (size < left) {
854 			// we need to split the original buffer
855 			net_buffer* clone = gBufferModule->clone(buffer, false);
856 				// TODO: add offset/size parameter to net_buffer::clone() or
857 				// even a move_data() function, as this is a bit inefficient
858 			if (clone == NULL)
859 				return ENOBUFS;
860 
861 			status_t status = gBufferModule->trim(clone, size);
862 			if (status != B_OK) {
863 				gBufferModule->free(clone);
864 				return status;
865 			}
866 
867 			gBufferModule->remove_header(buffer, size);
868 			left -= size;
869 			fSendQueue.Add(clone);
870 		} else {
871 			left -= buffer->size;
872 			fSendQueue.Add(buffer);
873 		}
874 	}
875 
876 	TRACE("  SendData(): %" B_PRIuSIZE " bytes used.", fSendQueue.Used());
877 
878 	bool force = false;
879 	if ((flags & MSG_OOB) != 0) {
880 		fSendUrgentOffset = fSendQueue.LastSequence();
881 			// RFC 961 specifies that the urgent offset points to the last
882 			// byte of urgent data. However, this is commonly implemented as
883 			// here, ie. it points to the first byte after the urgent data.
884 		force = true;
885 	}
886 	if ((flags & MSG_EOF) != 0)
887 		_Disconnect(false);
888 
889 	if (fState == ESTABLISHED || fState == FINISH_RECEIVED)
890 		_SendQueued(force);
891 
892 	return B_OK;
893 }
894 
895 
896 ssize_t
897 TCPEndpoint::SendAvailable()
898 {
899 	MutexLocker locker(fLock);
900 
901 	ssize_t available;
902 
903 	if (is_writable(fState))
904 		available = fSendQueue.Free();
905 	else if (is_establishing(fState))
906 		available = 0;
907 	else
908 		available = EPIPE;
909 
910 	TRACE("SendAvailable(): %" B_PRIdSSIZE, available);
911 	T(APICall(this, "sendavailable"));
912 	return available;
913 }
914 
915 
916 status_t
917 TCPEndpoint::FillStat(net_stat *stat)
918 {
919 	MutexLocker _(fLock);
920 
921 	strlcpy(stat->state, name_for_state(fState), sizeof(stat->state));
922 	stat->receive_queue_size = fReceiveQueue.Available();
923 	stat->send_queue_size = fSendQueue.Used();
924 
925 	return B_OK;
926 }
927 
928 
929 status_t
930 TCPEndpoint::ReadData(size_t numBytes, uint32 flags, net_buffer** _buffer)
931 {
932 	if ((flags & ~(MSG_DONTWAIT | MSG_WAITALL | MSG_PEEK)) != 0)
933 		return EOPNOTSUPP;
934 
935 	MutexLocker locker(fLock);
936 
937 	TRACE("ReadData(%" B_PRIuSIZE " bytes, flags %#" B_PRIx32 ")", numBytes,
938 		flags);
939 	T(APICall(this, "readdata"));
940 
941 	*_buffer = NULL;
942 
943 	if (fState == CLOSED) {
944 		if (socket->error != B_OK)
945 			return socket->error;
946 		return ENOTCONN;
947 	}
948 
949 	bigtime_t timeout = 0;
950 	if ((flags & MSG_DONTWAIT) == 0) {
951 		timeout = absolute_timeout(socket->receive.timeout);
952 		if (gStackModule->is_restarted_syscall())
953 			timeout = gStackModule->restore_syscall_restart_timeout();
954 		else
955 			gStackModule->store_syscall_restart_timeout(timeout);
956 	}
957 
958 	if (fState == SYNCHRONIZE_SENT || fState == SYNCHRONIZE_RECEIVED) {
959 		if (flags & MSG_DONTWAIT)
960 			return B_WOULD_BLOCK;
961 
962 		status_t status = _WaitForEstablished(locker, timeout);
963 		if (status < B_OK)
964 			return posix_error(status);
965 	}
966 
967 	size_t dataNeeded = socket->receive.low_water_mark;
968 
969 	// When MSG_WAITALL is set then the function should block
970 	// until the full amount of data can be returned.
971 	if (flags & MSG_WAITALL)
972 		dataNeeded = numBytes;
973 
974 	// TODO: add support for urgent data (MSG_OOB)
975 
976 	while (true) {
977 		if (fState == CLOSING || fState == WAIT_FOR_FINISH_ACKNOWLEDGE
978 			|| fState == TIME_WAIT) {
979 			// ``Connection closing''.
980 			if (fReceiveQueue.Available() > 0)
981 				break;
982 			return B_OK;
983 		}
984 
985 		if (fReceiveQueue.Available() > 0) {
986 			if (fReceiveQueue.Available() >= dataNeeded
987 				|| (fReceiveQueue.PushedData() > 0
988 					&& fReceiveQueue.PushedData() >= fReceiveQueue.Available()))
989 				break;
990 		} else if (fState == FINISH_RECEIVED) {
991 			// ``If no text is awaiting delivery, the RECEIVE will
992 			//   get a Connection closing''.
993 			return B_OK;
994 		}
995 
996 		if (timeout == 0)
997 			return B_WOULD_BLOCK;
998 
999 		if ((fFlags & FLAG_NO_RECEIVE) != 0)
1000 			return B_OK;
1001 
1002 		status_t status = _WaitForCondition(fReceiveCondition, locker, timeout);
1003 		if (status < B_OK) {
1004 			// The Open Group base specification mentions that EINTR should be
1005 			// returned if the recv() is interrupted before _any data_ is
1006 			// available. So we actually check if there is data, and if so,
1007 			// push it to the user.
1008 			if ((status == B_TIMED_OUT || status == B_INTERRUPTED)
1009 				&& fReceiveQueue.Available() > 0)
1010 				break;
1011 
1012 			return posix_error(status);
1013 		}
1014 	}
1015 
1016 	TRACE("  ReadData(): %" B_PRIuSIZE " are available.",
1017 		fReceiveQueue.Available());
1018 
1019 	if (numBytes < fReceiveQueue.Available())
1020 		fReceiveCondition.NotifyAll();
1021 
1022 	bool clone = (flags & MSG_PEEK) != 0;
1023 
1024 	ssize_t receivedBytes = fReceiveQueue.Get(numBytes, !clone, _buffer);
1025 
1026 	TRACE("  ReadData(): %" B_PRIuSIZE " bytes kept.",
1027 		fReceiveQueue.Available());
1028 
1029 	if (fReceiveQueue.Available() == 0 && fState == FINISH_RECEIVED)
1030 		socket->receive.low_water_mark = 0;
1031 
1032 	// if we are opening the window, check if we should send an ACK
1033 	if (!clone)
1034 		SendAcknowledge(false);
1035 
1036 	return receivedBytes;
1037 }
1038 
1039 
1040 ssize_t
1041 TCPEndpoint::ReadAvailable()
1042 {
1043 	MutexLocker locker(fLock);
1044 
1045 	TRACE("ReadAvailable(): %" B_PRIdSSIZE, _AvailableData());
1046 	T(APICall(this, "readavailable"));
1047 
1048 	return _AvailableData();
1049 }
1050 
1051 
1052 status_t
1053 TCPEndpoint::SetSendBufferSize(size_t length)
1054 {
1055 	MutexLocker _(fLock);
1056 	fSendQueue.SetMaxBytes(length);
1057 	return B_OK;
1058 }
1059 
1060 
1061 status_t
1062 TCPEndpoint::SetReceiveBufferSize(size_t length)
1063 {
1064 	MutexLocker _(fLock);
1065 	fReceiveQueue.SetMaxBytes(length);
1066 	return B_OK;
1067 }
1068 
1069 
1070 status_t
1071 TCPEndpoint::GetOption(int option, void* _value, int* _length)
1072 {
1073 	if (*_length != sizeof(int))
1074 		return B_BAD_VALUE;
1075 
1076 	int* value = (int*)_value;
1077 
1078 	switch (option) {
1079 		case TCP_NODELAY:
1080 			if ((fOptions & TCP_NODELAY) != 0)
1081 				*value = 1;
1082 			else
1083 				*value = 0;
1084 			return B_OK;
1085 
1086 		case TCP_MAXSEG:
1087 			*value = fReceiveMaxSegmentSize;
1088 			return B_OK;
1089 
1090 		default:
1091 			return B_BAD_VALUE;
1092 	}
1093 }
1094 
1095 
1096 status_t
1097 TCPEndpoint::SetOption(int option, const void* _value, int length)
1098 {
1099 	if (option != TCP_NODELAY)
1100 		return B_BAD_VALUE;
1101 
1102 	if (length != sizeof(int))
1103 		return B_BAD_VALUE;
1104 
1105 	const int* value = (const int*)_value;
1106 
1107 	MutexLocker _(fLock);
1108 	if (*value)
1109 		fOptions |= TCP_NODELAY;
1110 	else
1111 		fOptions &= ~TCP_NODELAY;
1112 
1113 	return B_OK;
1114 }
1115 
1116 
1117 //	#pragma mark - misc
1118 
1119 
1120 bool
1121 TCPEndpoint::IsBound() const
1122 {
1123 	return !LocalAddress().IsEmpty(true);
1124 }
1125 
1126 
1127 bool
1128 TCPEndpoint::IsLocal() const
1129 {
1130 	return (fFlags & FLAG_LOCAL) != 0;
1131 }
1132 
1133 
1134 status_t
1135 TCPEndpoint::DelayedAcknowledge()
1136 {
1137 	if (gStackModule->cancel_timer(&fDelayedAcknowledgeTimer)) {
1138 		// timer was active, send an ACK now (with the exception above,
1139 		// we send every other ACK)
1140 		T(TimerSet(this, "delayed ack", -1));
1141 		return SendAcknowledge(true);
1142 	}
1143 
1144 	gStackModule->set_timer(&fDelayedAcknowledgeTimer,
1145 		TCP_DELAYED_ACKNOWLEDGE_TIMEOUT);
1146 	T(TimerSet(this, "delayed ack", TCP_DELAYED_ACKNOWLEDGE_TIMEOUT));
1147 	return B_OK;
1148 }
1149 
1150 
1151 status_t
1152 TCPEndpoint::SendAcknowledge(bool force)
1153 {
1154 	return _SendQueued(force, 0);
1155 }
1156 
1157 
1158 void
1159 TCPEndpoint::_StartPersistTimer()
1160 {
1161 	gStackModule->set_timer(&fPersistTimer, TCP_PERSIST_TIMEOUT);
1162 	T(TimerSet(this, "persist", TCP_PERSIST_TIMEOUT));
1163 }
1164 
1165 
1166 void
1167 TCPEndpoint::_EnterTimeWait()
1168 {
1169 	TRACE("_EnterTimeWait()");
1170 
1171 	if (fState == TIME_WAIT) {
1172 		_CancelConnectionTimers();
1173 	}
1174 
1175 	_UpdateTimeWait();
1176 }
1177 
1178 
1179 void
1180 TCPEndpoint::_UpdateTimeWait()
1181 {
1182 	gStackModule->set_timer(&fTimeWaitTimer, TCP_MAX_SEGMENT_LIFETIME << 1);
1183 	T(TimerSet(this, "time-wait", TCP_MAX_SEGMENT_LIFETIME << 1));
1184 }
1185 
1186 
1187 void
1188 TCPEndpoint::_CancelConnectionTimers()
1189 {
1190 	gStackModule->cancel_timer(&fRetransmitTimer);
1191 	T(TimerSet(this, "retransmit", -1));
1192 	gStackModule->cancel_timer(&fPersistTimer);
1193 	T(TimerSet(this, "persist", -1));
1194 	gStackModule->cancel_timer(&fDelayedAcknowledgeTimer);
1195 	T(TimerSet(this, "delayed ack", -1));
1196 }
1197 
1198 
1199 /*!	Sends the FIN flag to the peer when the connection is still open.
1200 	Moves the endpoint to the next state depending on where it was.
1201 */
1202 status_t
1203 TCPEndpoint::_Disconnect(bool closing)
1204 {
1205 	tcp_state previousState = fState;
1206 
1207 	if (fState == SYNCHRONIZE_RECEIVED || fState == ESTABLISHED)
1208 		fState = FINISH_SENT;
1209 	else if (fState == FINISH_RECEIVED)
1210 		fState = WAIT_FOR_FINISH_ACKNOWLEDGE;
1211 	else
1212 		return B_OK;
1213 
1214 	T(State(this));
1215 
1216 	status_t status = _SendQueued();
1217 	if (status != B_OK) {
1218 		fState = previousState;
1219 		T(State(this));
1220 		return status;
1221 	}
1222 
1223 	return B_OK;
1224 }
1225 
1226 
1227 void
1228 TCPEndpoint::_MarkEstablished()
1229 {
1230 	fState = ESTABLISHED;
1231 	T(State(this));
1232 
1233 	gSocketModule->set_connected(socket);
1234 	if (gSocketModule->has_parent(socket))
1235 		release_sem_etc(fAcceptSemaphore, 1, B_DO_NOT_RESCHEDULE);
1236 
1237 	fSendCondition.NotifyAll();
1238 	gSocketModule->notify(socket, B_SELECT_WRITE, fSendQueue.Free());
1239 }
1240 
1241 
1242 status_t
1243 TCPEndpoint::_WaitForEstablished(MutexLocker &locker, bigtime_t timeout)
1244 {
1245 	// TODO: Checking for CLOSED seems correct, but breaks several neon tests.
1246 	// When investigating this, also have a look at _Close() and _HandleReset().
1247 	while (fState < ESTABLISHED/* && fState != CLOSED*/) {
1248 		if (socket->error != B_OK)
1249 			return socket->error;
1250 
1251 		status_t status = _WaitForCondition(fSendCondition, locker, timeout);
1252 		if (status < B_OK)
1253 			return status;
1254 	}
1255 
1256 	return B_OK;
1257 }
1258 
1259 
1260 //	#pragma mark - receive
1261 
1262 
1263 void
1264 TCPEndpoint::_Close()
1265 {
1266 	_CancelConnectionTimers();
1267 	fState = CLOSED;
1268 	T(State(this));
1269 
1270 	fFlags |= FLAG_DELETE_ON_CLOSE;
1271 
1272 	fSendCondition.NotifyAll();
1273 	_NotifyReader();
1274 
1275 	if (gSocketModule->has_parent(socket)) {
1276 		// We still have a parent - obviously, we haven't been accepted yet,
1277 		// so no one could ever close us.
1278 		_CancelConnectionTimers();
1279 		gSocketModule->set_aborted(socket);
1280 	}
1281 }
1282 
1283 
1284 void
1285 TCPEndpoint::_HandleReset(status_t error)
1286 {
1287 	socket->error = error;
1288 	_Close();
1289 
1290 	gSocketModule->notify(socket, B_SELECT_WRITE, error);
1291 	gSocketModule->notify(socket, B_SELECT_ERROR, error);
1292 }
1293 
1294 
1295 void
1296 TCPEndpoint::_DuplicateAcknowledge(tcp_segment_header &segment)
1297 {
1298 	if (fDuplicateAcknowledgeCount == 0)
1299 		fPreviousFlightSize = (fSendMax - fSendUnacknowledged).Number();
1300 
1301 	if (++fDuplicateAcknowledgeCount < 3) {
1302 		if (fSendQueue.Available(fSendMax) != 0  && fSendWindow != 0) {
1303 			fSendNext = fSendMax;
1304 			fCongestionWindow += fDuplicateAcknowledgeCount * fSendMaxSegmentSize;
1305 			_SendQueued();
1306 			TRACE("_DuplicateAcknowledge(): packet sent under limited transmit on receipt of dup ack");
1307 			fCongestionWindow -= fDuplicateAcknowledgeCount * fSendMaxSegmentSize;
1308 		}
1309 	}
1310 
1311 	if (fDuplicateAcknowledgeCount == 3) {
1312 		if ((segment.acknowledge - 1) > fRecover || (fCongestionWindow > fSendMaxSegmentSize &&
1313 			(fSendUnacknowledged - fPreviousHighestAcknowledge) <= 4 * fSendMaxSegmentSize)) {
1314 			fFlags |= FLAG_RECOVERY;
1315 			fRecover = fSendMax.Number() - 1;
1316 			fSlowStartThreshold = max_c(fPreviousFlightSize / 2, 2 * fSendMaxSegmentSize);
1317 			fCongestionWindow = fSlowStartThreshold + 3 * fSendMaxSegmentSize;
1318 			fSendNext = segment.acknowledge;
1319 			_SendQueued();
1320 			TRACE("_DuplicateAcknowledge(): packet sent under fast restransmit on the receipt of 3rd dup ack");
1321 		}
1322 	} else if (fDuplicateAcknowledgeCount > 3) {
1323 		uint32 flightSize = (fSendMax - fSendUnacknowledged).Number();
1324 		if ((fDuplicateAcknowledgeCount - 3) * fSendMaxSegmentSize <= flightSize)
1325 			fCongestionWindow += fSendMaxSegmentSize;
1326 		if (fSendQueue.Available(fSendMax) != 0) {
1327 			fSendNext = fSendMax;
1328 			_SendQueued();
1329 		}
1330 	}
1331 }
1332 
1333 
1334 void
1335 TCPEndpoint::_UpdateTimestamps(tcp_segment_header& segment,
1336 	size_t segmentLength)
1337 {
1338 	if (fFlags & FLAG_OPTION_TIMESTAMP) {
1339 		tcp_sequence sequence(segment.sequence);
1340 
1341 		if (fLastAcknowledgeSent >= sequence
1342 			&& fLastAcknowledgeSent < (sequence + segmentLength))
1343 			fReceivedTimestamp = segment.timestamp_value;
1344 	}
1345 }
1346 
1347 
1348 ssize_t
1349 TCPEndpoint::_AvailableData() const
1350 {
1351 	// TODO: Refer to the FLAG_NO_RECEIVE comment above regarding
1352 	//       the application of FLAG_NO_RECEIVE in listen()ing
1353 	//       sockets.
1354 	if (fState == LISTEN)
1355 		return gSocketModule->count_connected(socket);
1356 	if (fState == SYNCHRONIZE_SENT)
1357 		return 0;
1358 
1359 	ssize_t availableData = fReceiveQueue.Available();
1360 
1361 	if (availableData == 0 && !_ShouldReceive())
1362 		return ENOTCONN;
1363 	if (availableData == 0 && (fState == FINISH_RECEIVED || fState == WAIT_FOR_FINISH_ACKNOWLEDGE))
1364 		return ESHUTDOWN;
1365 	return availableData;
1366 }
1367 
1368 
1369 void
1370 TCPEndpoint::_NotifyReader()
1371 {
1372 	fReceiveCondition.NotifyAll();
1373 	gSocketModule->notify(socket, B_SELECT_READ, _AvailableData());
1374 }
1375 
1376 
1377 bool
1378 TCPEndpoint::_AddData(tcp_segment_header& segment, net_buffer* buffer)
1379 {
1380 	if ((segment.flags & TCP_FLAG_FINISH) != 0) {
1381 		// Remember the position of the finish received flag
1382 		fFinishReceived = true;
1383 		fFinishReceivedAt = segment.sequence + buffer->size;
1384 	}
1385 
1386 	fReceiveQueue.Add(buffer, segment.sequence);
1387 	fReceiveNext = fReceiveQueue.NextSequence();
1388 
1389 	if (fFinishReceived) {
1390 		// Set or reset the finish flag on the current segment
1391 		if (fReceiveNext < fFinishReceivedAt)
1392 			segment.flags &= ~TCP_FLAG_FINISH;
1393 		else
1394 			segment.flags |= TCP_FLAG_FINISH;
1395 	}
1396 
1397 	TRACE("  _AddData(): adding data, receive next = %" B_PRIu32 ". Now have %"
1398 		B_PRIuSIZE " bytes.", fReceiveNext.Number(), fReceiveQueue.Available());
1399 
1400 	if ((segment.flags & TCP_FLAG_PUSH) != 0)
1401 		fReceiveQueue.SetPushPointer();
1402 
1403 	return fReceiveQueue.Available() > 0;
1404 }
1405 
1406 
1407 void
1408 TCPEndpoint::_PrepareReceivePath(tcp_segment_header& segment)
1409 {
1410 	fInitialReceiveSequence = segment.sequence;
1411 	fFinishReceived = false;
1412 
1413 	// count the received SYN
1414 	segment.sequence++;
1415 
1416 	fReceiveNext = segment.sequence;
1417 	fReceiveQueue.SetInitialSequence(segment.sequence);
1418 
1419 	if ((fOptions & TCP_NOOPT) == 0) {
1420 		if (segment.max_segment_size > 0) {
1421 			// The maximum size of a segment that a TCP endpoint really sends,
1422 			// the "effective send MSS", MUST be the smaller of the send MSS and
1423 			// the largest transmission size permitted by the IP layer:
1424 			fSendMaxSegmentSize = min_c(segment.max_segment_size,
1425 				_MaxSegmentSize(*PeerAddress()));
1426 		}
1427 
1428 		if (segment.options & TCP_HAS_WINDOW_SCALE) {
1429 			fFlags |= FLAG_OPTION_WINDOW_SCALE;
1430 			fSendWindowShift = segment.window_shift;
1431 		} else {
1432 			fFlags &= ~FLAG_OPTION_WINDOW_SCALE;
1433 			fReceiveWindowShift = 0;
1434 		}
1435 
1436 		if (segment.options & TCP_HAS_TIMESTAMPS) {
1437 			fFlags |= FLAG_OPTION_TIMESTAMP;
1438 			fReceivedTimestamp = segment.timestamp_value;
1439 		} else
1440 			fFlags &= ~FLAG_OPTION_TIMESTAMP;
1441 
1442 		if ((segment.options & TCP_SACK_PERMITTED) == 0)
1443 			fFlags &= ~FLAG_OPTION_SACK_PERMITTED;
1444 	}
1445 
1446 	if (fSendMaxSegmentSize > 2190)
1447 		fCongestionWindow = 2 * fSendMaxSegmentSize;
1448 	else if (fSendMaxSegmentSize > 1095)
1449 		fCongestionWindow = 3 * fSendMaxSegmentSize;
1450 	else
1451 		fCongestionWindow = 4 * fSendMaxSegmentSize;
1452 
1453 	fSendMaxSegments = fCongestionWindow / fSendMaxSegmentSize;
1454 	fSlowStartThreshold = (uint32)segment.advertised_window << fSendWindowShift;
1455 }
1456 
1457 
1458 bool
1459 TCPEndpoint::_ShouldReceive() const
1460 {
1461 	if ((fFlags & FLAG_NO_RECEIVE) != 0)
1462 		return false;
1463 
1464 	return fState == ESTABLISHED || fState == FINISH_SENT
1465 		|| fState == FINISH_ACKNOWLEDGED || fState == FINISH_RECEIVED;
1466 }
1467 
1468 
1469 int32
1470 TCPEndpoint::_Spawn(TCPEndpoint* parent, tcp_segment_header& segment,
1471 	net_buffer* buffer)
1472 {
1473 	MutexLocker _(fLock);
1474 
1475 	// TODO error checking
1476 	ProtocolSocket::Open();
1477 
1478 	fState = SYNCHRONIZE_RECEIVED;
1479 	T(Spawn(parent, this));
1480 
1481 	fManager = parent->fManager;
1482 
1483 	LocalAddress().SetTo(buffer->destination);
1484 	PeerAddress().SetTo(buffer->source);
1485 
1486 	TRACE("Spawn()");
1487 
1488 	// TODO: proper error handling!
1489 	if (fManager->BindChild(this) != B_OK) {
1490 		T(Error(this, "binding failed", __LINE__));
1491 		return DROP;
1492 	}
1493 	if (_PrepareSendPath(*PeerAddress()) != B_OK) {
1494 		T(Error(this, "prepare send faild", __LINE__));
1495 		return DROP;
1496 	}
1497 
1498 	fOptions = parent->fOptions;
1499 	fAcceptSemaphore = parent->fAcceptSemaphore;
1500 
1501 	_PrepareReceivePath(segment);
1502 
1503 	// send SYN+ACK
1504 	if (_SendQueued() != B_OK) {
1505 		T(Error(this, "sending failed", __LINE__));
1506 		return DROP;
1507 	}
1508 
1509 	segment.flags &= ~TCP_FLAG_SYNCHRONIZE;
1510 		// we handled this flag now, it must not be set for further processing
1511 
1512 	return _Receive(segment, buffer);
1513 }
1514 
1515 
1516 int32
1517 TCPEndpoint::_ListenReceive(tcp_segment_header& segment, net_buffer* buffer)
1518 {
1519 	TRACE("ListenReceive()");
1520 
1521 	// Essentially, we accept only TCP_FLAG_SYNCHRONIZE in this state,
1522 	// but the error behaviour differs
1523 	if (segment.flags & TCP_FLAG_RESET)
1524 		return DROP;
1525 	if (segment.flags & TCP_FLAG_ACKNOWLEDGE)
1526 		return DROP | RESET;
1527 	if ((segment.flags & TCP_FLAG_SYNCHRONIZE) == 0)
1528 		return DROP;
1529 
1530 	// TODO: drop broadcast/multicast
1531 
1532 	// spawn new endpoint for accept()
1533 	net_socket* newSocket;
1534 	if (gSocketModule->spawn_pending_socket(socket, &newSocket) < B_OK) {
1535 		T(Error(this, "spawning failed", __LINE__));
1536 		return DROP;
1537 	}
1538 
1539 	return ((TCPEndpoint *)newSocket->first_protocol)->_Spawn(this,
1540 		segment, buffer);
1541 }
1542 
1543 
1544 int32
1545 TCPEndpoint::_SynchronizeSentReceive(tcp_segment_header &segment,
1546 	net_buffer *buffer)
1547 {
1548 	TRACE("_SynchronizeSentReceive()");
1549 
1550 	if ((segment.flags & TCP_FLAG_ACKNOWLEDGE) != 0
1551 		&& (fInitialSendSequence >= segment.acknowledge
1552 			|| fSendMax < segment.acknowledge))
1553 		return DROP | RESET;
1554 
1555 	if (segment.flags & TCP_FLAG_RESET) {
1556 		_HandleReset(ECONNREFUSED);
1557 		return DROP;
1558 	}
1559 
1560 	if ((segment.flags & TCP_FLAG_SYNCHRONIZE) == 0)
1561 		return DROP;
1562 
1563 	fSendUnacknowledged = segment.acknowledge;
1564 	_PrepareReceivePath(segment);
1565 
1566 	if (segment.flags & TCP_FLAG_ACKNOWLEDGE) {
1567 		_MarkEstablished();
1568 	} else {
1569 		// simultaneous open
1570 		fState = SYNCHRONIZE_RECEIVED;
1571 		T(State(this));
1572 	}
1573 
1574 	segment.flags &= ~TCP_FLAG_SYNCHRONIZE;
1575 		// we handled this flag now, it must not be set for further processing
1576 
1577 	return _Receive(segment, buffer) | IMMEDIATE_ACKNOWLEDGE;
1578 }
1579 
1580 
1581 int32
1582 TCPEndpoint::_Receive(tcp_segment_header& segment, net_buffer* buffer)
1583 {
1584 	// PAWS processing takes precedence over regular TCP acceptability check
1585 	if ((fFlags & FLAG_OPTION_TIMESTAMP) != 0 && (segment.flags & TCP_FLAG_RESET) == 0) {
1586 		if ((segment.options & TCP_HAS_TIMESTAMPS) == 0)
1587 			return DROP;
1588 		if ((int32)(fReceivedTimestamp - segment.timestamp_value) > 0
1589 			&& (fReceivedTimestamp - segment.timestamp_value) <= INT32_MAX)
1590 			return DROP | IMMEDIATE_ACKNOWLEDGE;
1591 	}
1592 
1593 	uint32 advertisedWindow = (uint32)segment.advertised_window
1594 		<< fSendWindowShift;
1595 	size_t segmentLength = buffer->size;
1596 
1597 	// First, handle the most common case for uni-directional data transfer
1598 	// (known as header prediction - the segment must not change the window,
1599 	// and must be the expected sequence, and contain no control flags)
1600 
1601 	if (fState == ESTABLISHED
1602 		&& segment.AcknowledgeOnly()
1603 		&& fReceiveNext == segment.sequence
1604 		&& advertisedWindow > 0 && advertisedWindow == fSendWindow
1605 		&& fSendNext == fSendMax) {
1606 		_UpdateTimestamps(segment, segmentLength);
1607 
1608 		if (segmentLength == 0) {
1609 			// this is a pure acknowledge segment - we're on the sending end
1610 			if (fSendUnacknowledged < segment.acknowledge
1611 				&& fSendMax >= segment.acknowledge) {
1612 				_Acknowledged(segment);
1613 				return DROP;
1614 			}
1615 		} else if (segment.acknowledge == fSendUnacknowledged
1616 			&& fReceiveQueue.IsContiguous()
1617 			&& fReceiveQueue.Free() >= segmentLength
1618 			&& (fFlags & FLAG_NO_RECEIVE) == 0) {
1619 			if (_AddData(segment, buffer))
1620 				_NotifyReader();
1621 
1622 			return KEEP | ((segment.flags & TCP_FLAG_PUSH) != 0
1623 				? IMMEDIATE_ACKNOWLEDGE : ACKNOWLEDGE);
1624 		}
1625 	}
1626 
1627 	// The fast path was not applicable, so we continue with the standard
1628 	// processing of the incoming segment
1629 
1630 	ASSERT(fState != SYNCHRONIZE_SENT && fState != LISTEN);
1631 
1632 	if (fState != CLOSED && fState != TIME_WAIT) {
1633 		// Check sequence number
1634 		if (!segment_in_sequence(segment, segmentLength, fReceiveNext,
1635 				fReceiveWindow)) {
1636 			TRACE("  Receive(): segment out of window, next: %" B_PRIu32
1637 				" wnd: %" B_PRIu32, fReceiveNext.Number(), fReceiveWindow);
1638 			if ((segment.flags & TCP_FLAG_RESET) != 0) {
1639 				// TODO: this doesn't look right - review!
1640 				return DROP;
1641 			}
1642 			return DROP | IMMEDIATE_ACKNOWLEDGE;
1643 		}
1644 	}
1645 
1646 	if ((segment.flags & TCP_FLAG_RESET) != 0) {
1647 		// Is this a valid reset?
1648 		// We generally ignore resets in time wait state (see RFC 1337)
1649 		if (fLastAcknowledgeSent <= segment.sequence
1650 			&& tcp_sequence(segment.sequence) < (fLastAcknowledgeSent
1651 				+ fReceiveWindow)
1652 			&& fState != TIME_WAIT) {
1653 			status_t error;
1654 			if (fState == SYNCHRONIZE_RECEIVED)
1655 				error = ECONNREFUSED;
1656 			else if (fState == CLOSING || fState == WAIT_FOR_FINISH_ACKNOWLEDGE)
1657 				error = ENOTCONN;
1658 			else
1659 				error = ECONNRESET;
1660 
1661 			_HandleReset(error);
1662 		}
1663 
1664 		return DROP;
1665 	}
1666 
1667 	if ((segment.flags & TCP_FLAG_SYNCHRONIZE) != 0
1668 		|| (fState == SYNCHRONIZE_RECEIVED
1669 			&& (fInitialReceiveSequence > segment.sequence
1670 				|| ((segment.flags & TCP_FLAG_ACKNOWLEDGE) != 0
1671 					&& (fSendUnacknowledged > segment.acknowledge
1672 						|| fSendMax < segment.acknowledge))))) {
1673 		// reset the connection - either the initial SYN was faulty, or we
1674 		// received a SYN within the data stream
1675 		return DROP | RESET;
1676 	}
1677 
1678 	// TODO: Check this! Why do we advertize a window outside of what we should
1679 	// buffer?
1680 	fReceiveWindow = max_c(fReceiveQueue.Free(), fReceiveWindow);
1681 		// the window must not shrink
1682 
1683 	// trim buffer to be within the receive window
1684 	int32 drop = (int32)(fReceiveNext - segment.sequence).Number();
1685 	if (drop > 0) {
1686 		if ((uint32)drop > buffer->size
1687 			|| ((uint32)drop == buffer->size
1688 				&& (segment.flags & TCP_FLAG_FINISH) == 0)) {
1689 			// don't accidently remove a FIN we shouldn't remove
1690 			segment.flags &= ~TCP_FLAG_FINISH;
1691 			drop = buffer->size;
1692 		}
1693 
1694 		// remove duplicate data at the start
1695 		TRACE("* remove %" B_PRId32 " bytes from the start", drop);
1696 		gBufferModule->remove_header(buffer, drop);
1697 		segment.sequence += drop;
1698 	}
1699 
1700 	int32 action = KEEP;
1701 
1702 	// immediately acknowledge out-of-order segment to trigger fast-retransmit at the sender
1703 	if (drop != 0)
1704 		action |= IMMEDIATE_ACKNOWLEDGE;
1705 
1706 	drop = (int32)(segment.sequence + buffer->size
1707 		- (fReceiveNext + fReceiveWindow)).Number();
1708 	if (drop > 0) {
1709 		// remove data exceeding our window
1710 		if ((uint32)drop >= buffer->size) {
1711 			// if we can accept data, or the segment is not what we'd expect,
1712 			// drop the segment (an immediate acknowledge is always triggered)
1713 			if (fReceiveWindow != 0 || segment.sequence != fReceiveNext)
1714 				return DROP | IMMEDIATE_ACKNOWLEDGE;
1715 
1716 			action |= IMMEDIATE_ACKNOWLEDGE;
1717 		}
1718 
1719 		if ((segment.flags & TCP_FLAG_FINISH) != 0) {
1720 			// we need to remove the finish, too, as part of the data
1721 			drop--;
1722 		}
1723 
1724 		segment.flags &= ~(TCP_FLAG_FINISH | TCP_FLAG_PUSH);
1725 		TRACE("* remove %" B_PRId32 " bytes from the end", drop);
1726 		gBufferModule->remove_trailer(buffer, drop);
1727 	}
1728 
1729 #ifdef TRACE_TCP
1730 	if (advertisedWindow > fSendWindow) {
1731 		TRACE("  Receive(): Window update %" B_PRIu32 " -> %" B_PRIu32,
1732 			fSendWindow, advertisedWindow);
1733 	}
1734 #endif
1735 
1736 	if (advertisedWindow > fSendWindow)
1737 		action |= IMMEDIATE_ACKNOWLEDGE;
1738 
1739 	fSendWindow = advertisedWindow;
1740 	if (advertisedWindow > fSendMaxWindow)
1741 		fSendMaxWindow = advertisedWindow;
1742 
1743 	// Then look at the acknowledgement for any updates
1744 
1745 	if ((segment.flags & TCP_FLAG_ACKNOWLEDGE) != 0) {
1746 		// process acknowledged data
1747 		if (fState == SYNCHRONIZE_RECEIVED)
1748 			_MarkEstablished();
1749 
1750 		if (fSendMax < segment.acknowledge)
1751 			return DROP | IMMEDIATE_ACKNOWLEDGE;
1752 
1753 		if (segment.acknowledge == fSendUnacknowledged) {
1754 			if (buffer->size == 0 && advertisedWindow == fSendWindow
1755 				&& (segment.flags & TCP_FLAG_FINISH) == 0 && fSendUnacknowledged != fSendMax) {
1756 				TRACE("Receive(): duplicate ack!");
1757 				_DuplicateAcknowledge(segment);
1758 			}
1759 		} else if (segment.acknowledge < fSendUnacknowledged) {
1760 			return DROP;
1761 		} else {
1762 			// this segment acknowledges in flight data
1763 
1764 			if (fDuplicateAcknowledgeCount >= 3) {
1765 				// deflate the window.
1766 				if (segment.acknowledge > fRecover) {
1767 					uint32 flightSize = (fSendMax - fSendUnacknowledged).Number();
1768 					fCongestionWindow = min_c(fSlowStartThreshold,
1769 						max_c(flightSize, fSendMaxSegmentSize) + fSendMaxSegmentSize);
1770 					fFlags &= ~FLAG_RECOVERY;
1771 				}
1772 			}
1773 
1774 			if (fSendMax == segment.acknowledge)
1775 				TRACE("Receive(): all inflight data ack'd!");
1776 
1777 			if (segment.acknowledge > fSendQueue.LastSequence()
1778 					&& fState > ESTABLISHED) {
1779 				TRACE("Receive(): FIN has been acknowledged!");
1780 
1781 				switch (fState) {
1782 					case FINISH_SENT:
1783 						fState = FINISH_ACKNOWLEDGED;
1784 						T(State(this));
1785 						break;
1786 					case CLOSING:
1787 						fState = TIME_WAIT;
1788 						T(State(this));
1789 						_EnterTimeWait();
1790 						return DROP;
1791 					case WAIT_FOR_FINISH_ACKNOWLEDGE:
1792 						_Close();
1793 						break;
1794 
1795 					default:
1796 						break;
1797 				}
1798 			}
1799 
1800 			if (fState != CLOSED) {
1801 				tcp_sequence last = fLastAcknowledgeSent;
1802 				_Acknowledged(segment);
1803 				// we just sent an acknowledge, remove from action
1804 				if (last < fLastAcknowledgeSent)
1805 					action &= ~IMMEDIATE_ACKNOWLEDGE;
1806 			}
1807 		}
1808 	}
1809 
1810 	if (segment.flags & TCP_FLAG_URGENT) {
1811 		if (fState == ESTABLISHED || fState == FINISH_SENT
1812 			|| fState == FINISH_ACKNOWLEDGED) {
1813 			// TODO: Handle urgent data:
1814 			//  - RCV.UP <- max(RCV.UP, SEG.UP)
1815 			//  - signal the user that urgent data is available (SIGURG)
1816 		}
1817 	}
1818 
1819 	bool notify = false;
1820 
1821 	// The buffer may be freed if its data is added to the queue, so cache
1822 	// the size as we still need it later.
1823 	uint32 bufferSize = buffer->size;
1824 
1825 	if ((bufferSize > 0 || (segment.flags & TCP_FLAG_FINISH) != 0)
1826 		&& _ShouldReceive())
1827 		notify = _AddData(segment, buffer);
1828 	else {
1829 		if ((fFlags & FLAG_NO_RECEIVE) != 0)
1830 			fReceiveNext += buffer->size;
1831 
1832 		action = (action & ~KEEP) | DROP;
1833 	}
1834 
1835 	if ((segment.flags & TCP_FLAG_FINISH) != 0) {
1836 		segmentLength++;
1837 		if (fState != CLOSED && fState != LISTEN && fState != SYNCHRONIZE_SENT) {
1838 			TRACE("Receive(): peer is finishing connection!");
1839 			fReceiveNext++;
1840 			notify = true;
1841 
1842 			// FIN implies PUSH
1843 			fReceiveQueue.SetPushPointer();
1844 
1845 			// we'll reply immediately to the FIN if we are not
1846 			// transitioning to TIME WAIT so we immediatly ACK it.
1847 			action |= IMMEDIATE_ACKNOWLEDGE;
1848 
1849 			// other side is closing connection; change states
1850 			switch (fState) {
1851 				case ESTABLISHED:
1852 				case SYNCHRONIZE_RECEIVED:
1853 					fState = FINISH_RECEIVED;
1854 					T(State(this));
1855 					break;
1856 				case FINISH_SENT:
1857 					// simultaneous close
1858 					fState = CLOSING;
1859 					T(State(this));
1860 					break;
1861 				case FINISH_ACKNOWLEDGED:
1862 					fState = TIME_WAIT;
1863 					T(State(this));
1864 					_EnterTimeWait();
1865 					break;
1866 				case TIME_WAIT:
1867 					_UpdateTimeWait();
1868 					break;
1869 
1870 				default:
1871 					break;
1872 			}
1873 		}
1874 	}
1875 
1876 	if (notify)
1877 		_NotifyReader();
1878 
1879 	if (bufferSize > 0 || (segment.flags & TCP_FLAG_SYNCHRONIZE) != 0)
1880 		action |= ACKNOWLEDGE;
1881 
1882 	_UpdateTimestamps(segment, segmentLength);
1883 
1884 	TRACE("Receive() Action %" B_PRId32, action);
1885 
1886 	return action;
1887 }
1888 
1889 
1890 int32
1891 TCPEndpoint::SegmentReceived(tcp_segment_header& segment, net_buffer* buffer)
1892 {
1893 	MutexLocker locker(fLock);
1894 
1895 	TRACE("SegmentReceived(): buffer %p (%" B_PRIu32 " bytes) address %s "
1896 		"to %s flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32
1897 		", wnd %" B_PRIu32, buffer, buffer->size, PrintAddress(buffer->source),
1898 		PrintAddress(buffer->destination), segment.flags, segment.sequence,
1899 		segment.acknowledge,
1900 		(uint32)segment.advertised_window << fSendWindowShift);
1901 	T(Receive(this, segment,
1902 		(uint32)segment.advertised_window << fSendWindowShift, buffer));
1903 	int32 segmentAction = DROP;
1904 
1905 	switch (fState) {
1906 		case LISTEN:
1907 			segmentAction = _ListenReceive(segment, buffer);
1908 			break;
1909 
1910 		case SYNCHRONIZE_SENT:
1911 			segmentAction = _SynchronizeSentReceive(segment, buffer);
1912 			break;
1913 
1914 		case SYNCHRONIZE_RECEIVED:
1915 		case ESTABLISHED:
1916 		case FINISH_RECEIVED:
1917 		case WAIT_FOR_FINISH_ACKNOWLEDGE:
1918 		case FINISH_SENT:
1919 		case FINISH_ACKNOWLEDGED:
1920 		case CLOSING:
1921 		case TIME_WAIT:
1922 		case CLOSED:
1923 			segmentAction = _Receive(segment, buffer);
1924 			break;
1925 	}
1926 
1927 	// process acknowledge action as asked for by the *Receive() method
1928 	if (segmentAction & IMMEDIATE_ACKNOWLEDGE)
1929 		SendAcknowledge(true);
1930 	else if (segmentAction & ACKNOWLEDGE)
1931 		DelayedAcknowledge();
1932 
1933 	if ((fFlags & (FLAG_CLOSED | FLAG_DELETE_ON_CLOSE))
1934 			== (FLAG_CLOSED | FLAG_DELETE_ON_CLOSE)) {
1935 
1936 		locker.Unlock();
1937 		if (gSocketModule->release_socket(socket))
1938 			segmentAction |= DELETED_ENDPOINT;
1939 	}
1940 
1941 	return segmentAction;
1942 }
1943 
1944 
1945 //	#pragma mark - send
1946 
1947 
1948 inline uint8
1949 TCPEndpoint::_CurrentFlags()
1950 {
1951 	// we don't set FLAG_FINISH here, instead we do it
1952 	// conditionally below depending if we are sending
1953 	// the last bytes of the send queue.
1954 
1955 	switch (fState) {
1956 		case CLOSED:
1957 			return TCP_FLAG_RESET | TCP_FLAG_ACKNOWLEDGE;
1958 
1959 		case SYNCHRONIZE_SENT:
1960 			return TCP_FLAG_SYNCHRONIZE;
1961 		case SYNCHRONIZE_RECEIVED:
1962 			return TCP_FLAG_SYNCHRONIZE | TCP_FLAG_ACKNOWLEDGE;
1963 
1964 		case ESTABLISHED:
1965 		case FINISH_RECEIVED:
1966 		case FINISH_ACKNOWLEDGED:
1967 		case TIME_WAIT:
1968 		case WAIT_FOR_FINISH_ACKNOWLEDGE:
1969 		case FINISH_SENT:
1970 		case CLOSING:
1971 			return TCP_FLAG_ACKNOWLEDGE;
1972 
1973 		default:
1974 			return 0;
1975 	}
1976 }
1977 
1978 
1979 inline bool
1980 TCPEndpoint::_ShouldSendSegment(tcp_segment_header& segment, uint32 length,
1981 	uint32 segmentMaxSize, uint32 flightSize)
1982 {
1983 	if (fState == ESTABLISHED && fSendMaxSegments == 0)
1984 		return false;
1985 
1986 	if (length > 0) {
1987 		// Avoid the silly window syndrome - we only send a segment in case:
1988 		// - we have a full segment to send, or
1989 		// - we're at the end of our buffer queue, or
1990 		// - the buffer is at least larger than half of the maximum send window,
1991 		//   or
1992 		// - we're retransmitting data
1993 		if (length == segmentMaxSize
1994 			|| (fOptions & TCP_NODELAY) != 0
1995 			|| tcp_sequence(fSendNext + length) == fSendQueue.LastSequence()
1996 			|| (fSendMaxWindow > 0 && length >= fSendMaxWindow / 2))
1997 			return true;
1998 	}
1999 
2000 	// check if we need to send a window update to the peer
2001 	if (segment.advertised_window > 0) {
2002 		// correct the window to take into account what already has been advertised
2003 		uint32 window = (segment.advertised_window << fReceiveWindowShift)
2004 			- (fReceiveMaxAdvertised - fReceiveNext).Number();
2005 
2006 		// if we can advertise a window larger than twice the maximum segment
2007 		// size, or half the maximum buffer size we send a window update
2008 		if (window >= (fReceiveMaxSegmentSize << 1)
2009 			|| window >= (socket->receive.buffer_size >> 1))
2010 			return true;
2011 	}
2012 
2013 	if ((segment.flags & (TCP_FLAG_SYNCHRONIZE | TCP_FLAG_FINISH
2014 			| TCP_FLAG_RESET)) != 0)
2015 		return true;
2016 
2017 	// We do have urgent data pending
2018 	if (fSendUrgentOffset > fSendNext)
2019 		return true;
2020 
2021 	// there is no reason to send a segment just now
2022 	return false;
2023 }
2024 
2025 
2026 status_t
2027 TCPEndpoint::_SendQueued(bool force)
2028 {
2029 	return _SendQueued(force, fSendWindow);
2030 }
2031 
2032 
2033 /*!	Sends one or more TCP segments with the data waiting in the queue, or some
2034 	specific flags that need to be sent.
2035 */
2036 status_t
2037 TCPEndpoint::_SendQueued(bool force, uint32 sendWindow)
2038 {
2039 	if (fRoute == NULL)
2040 		return B_ERROR;
2041 
2042 	// in passive state?
2043 	if (fState == LISTEN)
2044 		return B_ERROR;
2045 
2046 	tcp_segment_header segment(_CurrentFlags());
2047 
2048 	if ((fOptions & TCP_NOOPT) == 0) {
2049 		if ((fFlags & FLAG_OPTION_TIMESTAMP) != 0) {
2050 			segment.options |= TCP_HAS_TIMESTAMPS;
2051 			segment.timestamp_reply = fReceivedTimestamp;
2052 			segment.timestamp_value = tcp_now();
2053 		}
2054 
2055 		// SACK information is embedded with duplicate acknowledgements
2056 		if (!fReceiveQueue.IsContiguous()
2057 			&& fLastAcknowledgeSent <= fReceiveNext
2058 			&& (fFlags & FLAG_OPTION_SACK_PERMITTED) != 0) {
2059 			segment.options |= TCP_HAS_SACK;
2060 			int maxSackCount = MAX_SACK_BLKS
2061 				- ((fFlags & FLAG_OPTION_TIMESTAMP) != 0);
2062 			memset(segment.sacks, 0, sizeof(segment.sacks));
2063 			segment.sackCount = fReceiveQueue.PopulateSackInfo(fReceiveNext,
2064 				maxSackCount, segment.sacks);
2065 		}
2066 
2067 		if ((segment.flags & TCP_FLAG_SYNCHRONIZE) != 0
2068 			&& fSendNext == fInitialSendSequence) {
2069 			// add connection establishment options
2070 			segment.max_segment_size = fReceiveMaxSegmentSize;
2071 			if (fFlags & FLAG_OPTION_WINDOW_SCALE) {
2072 				segment.options |= TCP_HAS_WINDOW_SCALE;
2073 				segment.window_shift = fReceiveWindowShift;
2074 			}
2075 			if ((fFlags & FLAG_OPTION_SACK_PERMITTED) != 0)
2076 				segment.options |= TCP_SACK_PERMITTED;
2077 		}
2078 	}
2079 
2080 	size_t availableBytes = fReceiveQueue.Free();
2081 	// window size must remain same for duplicate acknowledgements
2082 	if (!fReceiveQueue.IsContiguous())
2083 		availableBytes = (fReceiveMaxAdvertised - fReceiveNext).Number();
2084 
2085 	if (fFlags & FLAG_OPTION_WINDOW_SCALE)
2086 		availableBytes >>= fReceiveWindowShift;
2087 	segment.advertised_window = min_c(TCP_MAX_WINDOW, availableBytes);
2088 
2089 	segment.acknowledge = fReceiveNext.Number();
2090 
2091 	// Process urgent data
2092 	if (fSendUrgentOffset > fSendNext) {
2093 		segment.flags |= TCP_FLAG_URGENT;
2094 		segment.urgent_offset = (fSendUrgentOffset - fSendNext).Number();
2095 	} else {
2096 		fSendUrgentOffset = fSendUnacknowledged.Number();
2097 			// Keep urgent offset updated, so that it doesn't reach into our
2098 			// send window on overlap
2099 		segment.urgent_offset = 0;
2100 	}
2101 
2102 	if (fCongestionWindow > 0 && fCongestionWindow < sendWindow)
2103 		sendWindow = fCongestionWindow;
2104 
2105 	// fSendUnacknowledged
2106 	//  |    fSendNext      fSendMax
2107 	//  |        |              |
2108 	//  v        v              v
2109 	//  -----------------------------------
2110 	//  | effective window           |
2111 	//  -----------------------------------
2112 
2113 	// Flight size represents the window of data which is currently in the
2114 	// ether. We should never send data such as the flight size becomes larger
2115 	// than the effective window. Note however that the effective window may be
2116 	// reduced (by congestion for instance), so at some point in time flight
2117 	// size may be larger than the currently calculated window.
2118 
2119 	uint32 flightSize = (fSendMax - fSendUnacknowledged).Number();
2120 	uint32 consumedWindow = (fSendNext - fSendUnacknowledged).Number();
2121 
2122 	if (consumedWindow > sendWindow) {
2123 		sendWindow = 0;
2124 		// TODO: enter persist state? try to get a window update.
2125 	} else
2126 		sendWindow -= consumedWindow;
2127 
2128 	uint32 length = min_c(fSendQueue.Available(fSendNext), sendWindow);
2129 	bool shouldStartRetransmitTimer = fSendNext == fSendUnacknowledged;
2130 	bool retransmit = fSendNext < fSendMax;
2131 
2132 	if (fDuplicateAcknowledgeCount != 0) {
2133 		// send at most 1 SMSS of data when under limited transmit, fast transmit/recovery
2134 		length = min_c(length, fSendMaxSegmentSize);
2135 	}
2136 
2137 	do {
2138 		uint32 segmentMaxSize = fSendMaxSegmentSize
2139 			- tcp_options_length(segment);
2140 		uint32 segmentLength = min_c(length, segmentMaxSize);
2141 
2142 		if (fSendNext + segmentLength == fSendQueue.LastSequence() && !force) {
2143 			if (state_needs_finish(fState))
2144 				segment.flags |= TCP_FLAG_FINISH;
2145 			if (length > 0)
2146 				segment.flags |= TCP_FLAG_PUSH;
2147 		}
2148 
2149 		// Determine if we should really send this segment
2150 		if (!force && !retransmit && !_ShouldSendSegment(segment, segmentLength,
2151 				segmentMaxSize, flightSize)) {
2152 			if (fSendQueue.Available()
2153 				&& !gStackModule->is_timer_active(&fPersistTimer)
2154 				&& !gStackModule->is_timer_active(&fRetransmitTimer))
2155 				_StartPersistTimer();
2156 			break;
2157 		}
2158 
2159 		net_buffer *buffer = gBufferModule->create(256);
2160 		if (buffer == NULL)
2161 			return B_NO_MEMORY;
2162 
2163 		status_t status = B_OK;
2164 		if (segmentLength > 0)
2165 			status = fSendQueue.Get(buffer, fSendNext, segmentLength);
2166 		if (status < B_OK) {
2167 			gBufferModule->free(buffer);
2168 			return status;
2169 		}
2170 
2171 		LocalAddress().CopyTo(buffer->source);
2172 		PeerAddress().CopyTo(buffer->destination);
2173 
2174 		uint32 size = buffer->size;
2175 		segment.sequence = fSendNext.Number();
2176 
2177 		TRACE("SendQueued(): buffer %p (%" B_PRIu32 " bytes) address %s to "
2178 			"%s flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32
2179 			", rwnd %" B_PRIu16 ", cwnd %" B_PRIu32 ", ssthresh %" B_PRIu32
2180 			", len %" B_PRIu32 ", first %" B_PRIu32 ", last %" B_PRIu32,
2181 			buffer, buffer->size, PrintAddress(buffer->source),
2182 			PrintAddress(buffer->destination), segment.flags, segment.sequence,
2183 			segment.acknowledge, segment.advertised_window,
2184 			fCongestionWindow, fSlowStartThreshold, segmentLength,
2185 			fSendQueue.FirstSequence().Number(),
2186 			fSendQueue.LastSequence().Number());
2187 		T(Send(this, segment, buffer, fSendQueue.FirstSequence(),
2188 			fSendQueue.LastSequence()));
2189 
2190 		PROBE(buffer, sendWindow);
2191 		sendWindow -= buffer->size;
2192 
2193 		status = add_tcp_header(AddressModule(), segment, buffer);
2194 		if (status != B_OK) {
2195 			gBufferModule->free(buffer);
2196 			return status;
2197 		}
2198 
2199 		// Update send status - we need to do this before we send the data
2200 		// for local connections as the answer is directly handled
2201 
2202 		if (segment.flags & TCP_FLAG_SYNCHRONIZE) {
2203 			segment.options &= ~TCP_HAS_WINDOW_SCALE;
2204 			segment.max_segment_size = 0;
2205 			size++;
2206 		}
2207 
2208 		if (segment.flags & TCP_FLAG_FINISH)
2209 			size++;
2210 
2211 		uint32 sendMax = fSendMax.Number();
2212 		fSendNext += size;
2213 		if (fSendMax < fSendNext)
2214 			fSendMax = fSendNext;
2215 
2216 		fReceiveMaxAdvertised = fReceiveNext
2217 			+ ((uint32)segment.advertised_window << fReceiveWindowShift);
2218 
2219 		if (segmentLength != 0 && fState == ESTABLISHED)
2220 			--fSendMaxSegments;
2221 
2222 		status = next->module->send_routed_data(next, fRoute, buffer);
2223 		if (status < B_OK) {
2224 			gBufferModule->free(buffer);
2225 
2226 			fSendNext = segment.sequence;
2227 			fSendMax = sendMax;
2228 				// restore send status
2229 			return status;
2230 		}
2231 
2232 		if (fSendTime == 0 && !retransmit
2233 			&& (segmentLength != 0 || (segment.flags & TCP_FLAG_SYNCHRONIZE) !=0)) {
2234 			fSendTime = tcp_now();
2235 			fRoundTripStartSequence = segment.sequence;
2236 		}
2237 
2238 		if (shouldStartRetransmitTimer && size > 0) {
2239 			TRACE("starting initial retransmit timer of: %" B_PRIdBIGTIME,
2240 				fRetransmitTimeout);
2241 			gStackModule->set_timer(&fRetransmitTimer, fRetransmitTimeout);
2242 			T(TimerSet(this, "retransmit", fRetransmitTimeout));
2243 			shouldStartRetransmitTimer = false;
2244 		}
2245 
2246 		if (segment.flags & TCP_FLAG_ACKNOWLEDGE) {
2247 			fLastAcknowledgeSent = segment.acknowledge;
2248 			gStackModule->cancel_timer(&fDelayedAcknowledgeTimer);
2249 		}
2250 
2251 		length -= segmentLength;
2252 		segment.flags &= ~(TCP_FLAG_SYNCHRONIZE | TCP_FLAG_RESET
2253 			| TCP_FLAG_FINISH);
2254 
2255 		if (retransmit)
2256 			break;
2257 
2258 	} while (length > 0);
2259 
2260 	return B_OK;
2261 }
2262 
2263 
2264 int
2265 TCPEndpoint::_MaxSegmentSize(const sockaddr* address) const
2266 {
2267 	return next->module->get_mtu(next, address) - sizeof(tcp_header);
2268 }
2269 
2270 
2271 status_t
2272 TCPEndpoint::_PrepareSendPath(const sockaddr* peer)
2273 {
2274 	if (fRoute == NULL) {
2275 		fRoute = gDatalinkModule->get_route(Domain(), peer);
2276 		if (fRoute == NULL)
2277 			return ENETUNREACH;
2278 
2279 		if ((fRoute->flags & RTF_LOCAL) != 0)
2280 			fFlags |= FLAG_LOCAL;
2281 	}
2282 
2283 	// make sure connection does not already exist
2284 	status_t status = fManager->SetConnection(this, *LocalAddress(), peer,
2285 		fRoute->interface_address->local);
2286 	if (status < B_OK)
2287 		return status;
2288 
2289 	fInitialSendSequence = system_time() >> 4;
2290 	fSendNext = fInitialSendSequence;
2291 	fSendUnacknowledged = fInitialSendSequence;
2292 	fSendMax = fInitialSendSequence;
2293 	fSendUrgentOffset = fInitialSendSequence;
2294 	fRecover = fInitialSendSequence.Number();
2295 
2296 	// we are counting the SYN here
2297 	fSendQueue.SetInitialSequence(fSendNext + 1);
2298 
2299 	fReceiveMaxSegmentSize = _MaxSegmentSize(peer);
2300 
2301 	// Compute the window shift we advertise to our peer - if it doesn't support
2302 	// this option, this will be reset to 0 (when its SYN is received)
2303 	fReceiveWindowShift = 0;
2304 	while (fReceiveWindowShift < TCP_MAX_WINDOW_SHIFT
2305 		&& (0xffffUL << fReceiveWindowShift) < socket->receive.buffer_size) {
2306 		fReceiveWindowShift++;
2307 	}
2308 
2309 	return B_OK;
2310 }
2311 
2312 
2313 void
2314 TCPEndpoint::_Acknowledged(tcp_segment_header& segment)
2315 {
2316 	TRACE("_Acknowledged(): ack %" B_PRIu32 "; uack %" B_PRIu32 "; next %"
2317 		B_PRIu32 "; max %" B_PRIu32, segment.acknowledge,
2318 		fSendUnacknowledged.Number(), fSendNext.Number(), fSendMax.Number());
2319 
2320 	ASSERT(fSendUnacknowledged <= segment.acknowledge);
2321 
2322 	if (fSendUnacknowledged < segment.acknowledge) {
2323 		fSendQueue.RemoveUntil(segment.acknowledge);
2324 
2325 		uint32 bytesAcknowledged = segment.acknowledge - fSendUnacknowledged.Number();
2326 		fPreviousHighestAcknowledge = fSendUnacknowledged;
2327 		fSendUnacknowledged = segment.acknowledge;
2328 		uint32 flightSize = (fSendMax - fSendUnacknowledged).Number();
2329 		int32 expectedSamples = flightSize / (fSendMaxSegmentSize << 1);
2330 
2331 		if (fPreviousHighestAcknowledge > fSendUnacknowledged) {
2332 			// need to update the recover variable upon a sequence wraparound
2333 			fRecover = segment.acknowledge - 1;
2334 		}
2335 
2336 		// the acknowledgment of the SYN/ACK MUST NOT increase the size of the congestion window
2337 		if (fSendUnacknowledged != fInitialSendSequence) {
2338 			if (fCongestionWindow < fSlowStartThreshold)
2339 				fCongestionWindow += min_c(bytesAcknowledged, fSendMaxSegmentSize);
2340 			else {
2341 				uint32 increment = fSendMaxSegmentSize * fSendMaxSegmentSize;
2342 
2343 				if (increment < fCongestionWindow)
2344 					increment = 1;
2345 				else
2346 					increment /= fCongestionWindow;
2347 
2348 				fCongestionWindow += increment;
2349 			}
2350 
2351 			fSendMaxSegments = UINT32_MAX;
2352 		}
2353 
2354 		if ((fFlags & FLAG_RECOVERY) != 0) {
2355 			fSendNext = fSendUnacknowledged;
2356 			_SendQueued();
2357 			fCongestionWindow -= bytesAcknowledged;
2358 
2359 			if (bytesAcknowledged > fSendMaxSegmentSize)
2360 				fCongestionWindow += fSendMaxSegmentSize;
2361 
2362 			fSendNext = fSendMax;
2363 		} else
2364 			fDuplicateAcknowledgeCount = 0;
2365 
2366 		if (fSendNext < fSendUnacknowledged)
2367 			fSendNext = fSendUnacknowledged;
2368 
2369 		if (fFlags & FLAG_OPTION_TIMESTAMP) {
2370 			_UpdateRoundTripTime(tcp_diff_timestamp(segment.timestamp_reply),
2371 				expectedSamples > 0 ? expectedSamples : 1);
2372 		} else if (fSendTime != 0 && fRoundTripStartSequence < segment.acknowledge) {
2373 			_UpdateRoundTripTime(tcp_diff_timestamp(fSendTime), 1);
2374 			fSendTime = 0;
2375 		}
2376 
2377 		if (fSendUnacknowledged == fSendMax) {
2378 			TRACE("all acknowledged, cancelling retransmission timer.");
2379 			gStackModule->cancel_timer(&fRetransmitTimer);
2380 			T(TimerSet(this, "retransmit", -1));
2381 		} else {
2382 			TRACE("data acknowledged, resetting retransmission timer to: %"
2383 				B_PRIdBIGTIME, fRetransmitTimeout);
2384 			gStackModule->set_timer(&fRetransmitTimer, fRetransmitTimeout);
2385 			T(TimerSet(this, "retransmit", fRetransmitTimeout));
2386 		}
2387 
2388 		if (is_writable(fState)) {
2389 			// notify threads waiting on the socket to become writable again
2390 			fSendCondition.NotifyAll();
2391 			gSocketModule->notify(socket, B_SELECT_WRITE, fSendQueue.Free());
2392 		}
2393 	}
2394 
2395 	// if there is data left to be sent, send it now
2396 	if (fSendQueue.Used() > 0)
2397 		_SendQueued();
2398 }
2399 
2400 
2401 void
2402 TCPEndpoint::_Retransmit()
2403 {
2404 	TRACE("Retransmit()");
2405 
2406 	if (fState < ESTABLISHED) {
2407 		fRetransmitTimeout = TCP_SYN_RETRANSMIT_TIMEOUT;
2408 		fCongestionWindow = fSendMaxSegmentSize;
2409 	} else {
2410 		_ResetSlowStart();
2411 		fDuplicateAcknowledgeCount = 0;
2412 		// Do exponential back off of the retransmit timeout
2413 		fRetransmitTimeout *= 2;
2414 		if (fRetransmitTimeout > TCP_MAX_RETRANSMIT_TIMEOUT)
2415 			fRetransmitTimeout = TCP_MAX_RETRANSMIT_TIMEOUT;
2416 	}
2417 
2418 	fSendNext = fSendUnacknowledged;
2419 	_SendQueued();
2420 
2421 	fRecover = fSendNext.Number() - 1;
2422 	if ((fFlags & FLAG_RECOVERY) != 0)
2423 		fFlags &= ~FLAG_RECOVERY;
2424 }
2425 
2426 
2427 void
2428 TCPEndpoint::_UpdateRoundTripTime(int32 roundTripTime, int32 expectedSamples)
2429 {
2430 	if (fSmoothedRoundTripTime == 0) {
2431 		fSmoothedRoundTripTime = roundTripTime;
2432 		fRoundTripVariation = roundTripTime / 2;
2433 		fRetransmitTimeout = (fSmoothedRoundTripTime + max_c(100, fRoundTripVariation * 4))
2434 				* kTimestampFactor;
2435 	} else {
2436 		int32 delta = fSmoothedRoundTripTime - roundTripTime;
2437 		if (delta < 0)
2438 			delta = -delta;
2439 		fRoundTripVariation += (delta - fRoundTripVariation) / (expectedSamples * 4);
2440 		fSmoothedRoundTripTime += (roundTripTime - fSmoothedRoundTripTime) / (expectedSamples * 8);
2441 		fRetransmitTimeout = (fSmoothedRoundTripTime + max_c(100, fRoundTripVariation * 4))
2442 			* kTimestampFactor;
2443 	}
2444 
2445 	if (fRetransmitTimeout > TCP_MAX_RETRANSMIT_TIMEOUT)
2446 		fRetransmitTimeout = TCP_MAX_RETRANSMIT_TIMEOUT;
2447 
2448 	if (fRetransmitTimeout < TCP_MIN_RETRANSMIT_TIMEOUT)
2449 		fRetransmitTimeout = TCP_MIN_RETRANSMIT_TIMEOUT;
2450 
2451 	TRACE("  RTO is now %" B_PRIdBIGTIME " (after rtt %" B_PRId32 "ms)",
2452 		fRetransmitTimeout, roundTripTime);
2453 }
2454 
2455 
2456 void
2457 TCPEndpoint::_ResetSlowStart()
2458 {
2459 	fSlowStartThreshold = max_c((fSendMax - fSendUnacknowledged).Number() / 2,
2460 		2 * fSendMaxSegmentSize);
2461 	fCongestionWindow = fSendMaxSegmentSize;
2462 }
2463 
2464 
2465 //	#pragma mark - timer
2466 
2467 
2468 /*static*/ void
2469 TCPEndpoint::_RetransmitTimer(net_timer* timer, void* _endpoint)
2470 {
2471 	TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint;
2472 	T(TimerTriggered(endpoint, "retransmit"));
2473 
2474 	MutexLocker locker(endpoint->fLock);
2475 	if (!locker.IsLocked() || gStackModule->is_timer_active(timer))
2476 		return;
2477 
2478 	endpoint->_Retransmit();
2479 }
2480 
2481 
2482 /*static*/ void
2483 TCPEndpoint::_PersistTimer(net_timer* timer, void* _endpoint)
2484 {
2485 	TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint;
2486 	T(TimerTriggered(endpoint, "persist"));
2487 
2488 	MutexLocker locker(endpoint->fLock);
2489 	if (!locker.IsLocked())
2490 		return;
2491 
2492 	// the timer might not have been canceled early enough
2493 	if (endpoint->State() == CLOSED)
2494 		return;
2495 
2496 	endpoint->_SendQueued(true);
2497 }
2498 
2499 
2500 /*static*/ void
2501 TCPEndpoint::_DelayedAcknowledgeTimer(net_timer* timer, void* _endpoint)
2502 {
2503 	TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint;
2504 	T(TimerTriggered(endpoint, "delayed ack"));
2505 
2506 	MutexLocker locker(endpoint->fLock);
2507 	if (!locker.IsLocked())
2508 		return;
2509 
2510 	// the timer might not have been canceled early enough
2511 	if (endpoint->State() == CLOSED)
2512 		return;
2513 
2514 	endpoint->SendAcknowledge(true);
2515 }
2516 
2517 
2518 /*static*/ void
2519 TCPEndpoint::_TimeWaitTimer(net_timer* timer, void* _endpoint)
2520 {
2521 	TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint;
2522 	T(TimerTriggered(endpoint, "time-wait"));
2523 
2524 	MutexLocker locker(endpoint->fLock);
2525 	if (!locker.IsLocked())
2526 		return;
2527 
2528 	if ((endpoint->fFlags & FLAG_CLOSED) == 0) {
2529 		endpoint->fFlags |= FLAG_DELETE_ON_CLOSE;
2530 		return;
2531 	}
2532 
2533 	locker.Unlock();
2534 
2535 	gSocketModule->release_socket(endpoint->socket);
2536 }
2537 
2538 
2539 /*static*/ status_t
2540 TCPEndpoint::_WaitForCondition(ConditionVariable& condition,
2541 	MutexLocker& locker, bigtime_t timeout)
2542 {
2543 	ConditionVariableEntry entry;
2544 	condition.Add(&entry);
2545 
2546 	locker.Unlock();
2547 	status_t result = entry.Wait(B_ABSOLUTE_TIMEOUT | B_CAN_INTERRUPT, timeout);
2548 	locker.Lock();
2549 
2550 	return result;
2551 }
2552 
2553 
2554 //	#pragma mark -
2555 
2556 
2557 void
2558 TCPEndpoint::Dump() const
2559 {
2560 	kprintf("TCP endpoint %p\n", this);
2561 	kprintf("  state: %s\n", name_for_state(fState));
2562 	kprintf("  flags: 0x%" B_PRIx32 "\n", fFlags);
2563 #if KDEBUG
2564 	kprintf("  lock: { %p, holder: %" B_PRId32 " }\n", &fLock, fLock.holder);
2565 #endif
2566 	kprintf("  accept sem: %" B_PRId32 "\n", fAcceptSemaphore);
2567 	kprintf("  options: 0x%" B_PRIx32 "\n", (uint32)fOptions);
2568 	kprintf("  send\n");
2569 	kprintf("    window shift: %" B_PRIu8 "\n", fSendWindowShift);
2570 	kprintf("    unacknowledged: %" B_PRIu32 "\n",
2571 		fSendUnacknowledged.Number());
2572 	kprintf("    next: %" B_PRIu32 "\n", fSendNext.Number());
2573 	kprintf("    max: %" B_PRIu32 "\n", fSendMax.Number());
2574 	kprintf("    urgent offset: %" B_PRIu32 "\n", fSendUrgentOffset.Number());
2575 	kprintf("    window: %" B_PRIu32 "\n", fSendWindow);
2576 	kprintf("    max window: %" B_PRIu32 "\n", fSendMaxWindow);
2577 	kprintf("    max segment size: %" B_PRIu32 "\n", fSendMaxSegmentSize);
2578 	kprintf("    queue: %" B_PRIuSIZE " / %" B_PRIuSIZE "\n", fSendQueue.Used(),
2579 		fSendQueue.Size());
2580 #if DEBUG_TCP_BUFFER_QUEUE
2581 	fSendQueue.Dump();
2582 #endif
2583 	kprintf("    last acknowledge sent: %" B_PRIu32 "\n",
2584 		fLastAcknowledgeSent.Number());
2585 	kprintf("    initial sequence: %" B_PRIu32 "\n",
2586 		fInitialSendSequence.Number());
2587 	kprintf("  receive\n");
2588 	kprintf("    window shift: %" B_PRIu8 "\n", fReceiveWindowShift);
2589 	kprintf("    next: %" B_PRIu32 "\n", fReceiveNext.Number());
2590 	kprintf("    max advertised: %" B_PRIu32 "\n",
2591 		fReceiveMaxAdvertised.Number());
2592 	kprintf("    window: %" B_PRIu32 "\n", fReceiveWindow);
2593 	kprintf("    max segment size: %" B_PRIu32 "\n", fReceiveMaxSegmentSize);
2594 	kprintf("    queue: %" B_PRIuSIZE " / %" B_PRIuSIZE "\n",
2595 		fReceiveQueue.Available(), fReceiveQueue.Size());
2596 #if DEBUG_TCP_BUFFER_QUEUE
2597 	fReceiveQueue.Dump();
2598 #endif
2599 	kprintf("    initial sequence: %" B_PRIu32 "\n",
2600 		fInitialReceiveSequence.Number());
2601 	kprintf("    duplicate acknowledge count: %" B_PRIu32 "\n",
2602 		fDuplicateAcknowledgeCount);
2603 	kprintf("  smoothed round trip time: %" B_PRId32 " (deviation %" B_PRId32 ")\n",
2604 		fSmoothedRoundTripTime, fRoundTripVariation);
2605 	kprintf("  retransmit timeout: %" B_PRId64 "\n", fRetransmitTimeout);
2606 	kprintf("  congestion window: %" B_PRIu32 "\n", fCongestionWindow);
2607 	kprintf("  slow start threshold: %" B_PRIu32 "\n", fSlowStartThreshold);
2608 }
2609 
2610