1 /* 2 * Copyright 2006-2010, Haiku, Inc. All Rights Reserved. 3 * Distributed under the terms of the MIT License. 4 * 5 * Authors: 6 * Andrew Galante, haiku.galante@gmail.com 7 * Axel Dörfler, axeld@pinc-software.de 8 * Hugo Santos, hugosantos@gmail.com 9 */ 10 11 12 #include "TCPEndpoint.h" 13 14 #include <netinet/in.h> 15 #include <netinet/ip.h> 16 #include <netinet/tcp.h> 17 #include <new> 18 #include <signal.h> 19 #include <stdlib.h> 20 #include <string.h> 21 #include <stdint.h> 22 23 #include <KernelExport.h> 24 #include <Select.h> 25 26 #include <net_buffer.h> 27 #include <net_datalink.h> 28 #include <net_stat.h> 29 #include <NetBufferUtilities.h> 30 #include <NetUtilities.h> 31 32 #include <lock.h> 33 #include <tracing.h> 34 #include <util/AutoLock.h> 35 #include <util/list.h> 36 37 #include "EndpointManager.h" 38 39 40 // References: 41 // - RFC 793 - Transmission Control Protocol 42 // - RFC 813 - Window and Acknowledgement Strategy in TCP 43 // - RFC 1337 - TIME_WAIT Assassination Hazards in TCP 44 // 45 // Things this implementation currently doesn't implement: 46 // - TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery, 47 // RFC 2001, RFC 2581, RFC 3042 48 // - NewReno Modification to TCP's Fast Recovery, RFC 2582 49 // - Explicit Congestion Notification (ECN), RFC 3168 50 // - SYN-Cache 51 // - SACK, Selective Acknowledgment - RFC 2018, RFC 2883, RFC 3517 52 // - Forward RTO-Recovery, RFC 4138 53 // - Time-Wait hash instead of keeping sockets alive 54 // 55 // Things incomplete in this implementation: 56 // - TCP Extensions for High Performance, RFC 1323 - RTTM, PAWS 57 58 #define PrintAddress(address) \ 59 AddressString(Domain(), address, true).Data() 60 61 //#define TRACE_TCP 62 //#define PROBE_TCP 63 64 #ifdef TRACE_TCP 65 // the space before ', ##args' is important in order for this to work with cpp 2.95 66 # define TRACE(format, args...) dprintf("%" B_PRId32 ": TCP [%" \ 67 B_PRIdBIGTIME "] %p (%12s) " format "\n", find_thread(NULL), \ 68 system_time(), this, name_for_state(fState) , ##args) 69 #else 70 # define TRACE(args...) do { } while (0) 71 #endif 72 73 #ifdef PROBE_TCP 74 # define PROBE(buffer, window) \ 75 dprintf("TCP PROBE %" B_PRIdBIGTIME " %s %s %" B_PRIu32 " snxt %" B_PRIu32 \ 76 " suna %" B_PRIu32 " cw %" B_PRIu32 " sst %" B_PRIu32 " win %" \ 77 B_PRIu32 " swin %" B_PRIu32 " smax-suna %" B_PRIu32 " savail %" \ 78 B_PRIuSIZE " sqused %" B_PRIuSIZE " rto %" B_PRIdBIGTIME "\n", \ 79 system_time(), PrintAddress(buffer->source), \ 80 PrintAddress(buffer->destination), buffer->size, fSendNext.Number(), \ 81 fSendUnacknowledged.Number(), fCongestionWindow, fSlowStartThreshold, \ 82 window, fSendWindow, (fSendMax - fSendUnacknowledged).Number(), \ 83 fSendQueue.Available(fSendNext), fSendQueue.Used(), fRetransmitTimeout) 84 #else 85 # define PROBE(buffer, window) do { } while (0) 86 #endif 87 88 #if TCP_TRACING 89 namespace TCPTracing { 90 91 class Receive : public AbstractTraceEntry { 92 public: 93 Receive(TCPEndpoint* endpoint, tcp_segment_header& segment, uint32 window, 94 net_buffer* buffer) 95 : 96 fEndpoint(endpoint), 97 fBuffer(buffer), 98 fBufferSize(buffer->size), 99 fSequence(segment.sequence), 100 fAcknowledge(segment.acknowledge), 101 fWindow(window), 102 fState(endpoint->State()), 103 fFlags(segment.flags) 104 { 105 Initialized(); 106 } 107 108 virtual void AddDump(TraceOutput& out) 109 { 110 out.Print("tcp:%p (%12s) receive buffer %p (%" B_PRIu32 " bytes), " 111 "flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32 112 ", wnd %" B_PRIu32, fEndpoint, name_for_state(fState), fBuffer, 113 fBufferSize, fFlags, fSequence, fAcknowledge, fWindow); 114 } 115 116 protected: 117 TCPEndpoint* fEndpoint; 118 net_buffer* fBuffer; 119 uint32 fBufferSize; 120 uint32 fSequence; 121 uint32 fAcknowledge; 122 uint32 fWindow; 123 tcp_state fState; 124 uint8 fFlags; 125 }; 126 127 class Send : public AbstractTraceEntry { 128 public: 129 Send(TCPEndpoint* endpoint, tcp_segment_header& segment, net_buffer* buffer, 130 tcp_sequence firstSequence, tcp_sequence lastSequence) 131 : 132 fEndpoint(endpoint), 133 fBuffer(buffer), 134 fBufferSize(buffer->size), 135 fSequence(segment.sequence), 136 fAcknowledge(segment.acknowledge), 137 fFirstSequence(firstSequence.Number()), 138 fLastSequence(lastSequence.Number()), 139 fState(endpoint->State()), 140 fFlags(segment.flags) 141 { 142 Initialized(); 143 } 144 145 virtual void AddDump(TraceOutput& out) 146 { 147 out.Print("tcp:%p (%12s) send buffer %p (%" B_PRIu32 " bytes), " 148 "flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32 149 ", first %" B_PRIu32 ", last %" B_PRIu32, fEndpoint, 150 name_for_state(fState), fBuffer, fBufferSize, fFlags, fSequence, 151 fAcknowledge, fFirstSequence, fLastSequence); 152 } 153 154 protected: 155 TCPEndpoint* fEndpoint; 156 net_buffer* fBuffer; 157 uint32 fBufferSize; 158 uint32 fSequence; 159 uint32 fAcknowledge; 160 uint32 fFirstSequence; 161 uint32 fLastSequence; 162 tcp_state fState; 163 uint8 fFlags; 164 }; 165 166 class State : public AbstractTraceEntry { 167 public: 168 State(TCPEndpoint* endpoint) 169 : 170 fEndpoint(endpoint), 171 fState(endpoint->State()) 172 { 173 Initialized(); 174 } 175 176 virtual void AddDump(TraceOutput& out) 177 { 178 out.Print("tcp:%p (%12s) state change", fEndpoint, 179 name_for_state(fState)); 180 } 181 182 protected: 183 TCPEndpoint* fEndpoint; 184 tcp_state fState; 185 }; 186 187 class Spawn : public AbstractTraceEntry { 188 public: 189 Spawn(TCPEndpoint* listeningEndpoint, TCPEndpoint* spawnedEndpoint) 190 : 191 fListeningEndpoint(listeningEndpoint), 192 fSpawnedEndpoint(spawnedEndpoint) 193 { 194 Initialized(); 195 } 196 197 virtual void AddDump(TraceOutput& out) 198 { 199 out.Print("tcp:%p spawns %p", fListeningEndpoint, fSpawnedEndpoint); 200 } 201 202 protected: 203 TCPEndpoint* fListeningEndpoint; 204 TCPEndpoint* fSpawnedEndpoint; 205 }; 206 207 class Error : public AbstractTraceEntry { 208 public: 209 Error(TCPEndpoint* endpoint, const char* error, int32 line) 210 : 211 fEndpoint(endpoint), 212 fLine(line), 213 fError(error), 214 fState(endpoint->State()) 215 { 216 Initialized(); 217 } 218 219 virtual void AddDump(TraceOutput& out) 220 { 221 out.Print("tcp:%p (%12s) error at line %" B_PRId32 ": %s", fEndpoint, 222 name_for_state(fState), fLine, fError); 223 } 224 225 protected: 226 TCPEndpoint* fEndpoint; 227 int32 fLine; 228 const char* fError; 229 tcp_state fState; 230 }; 231 232 class TimerSet : public AbstractTraceEntry { 233 public: 234 TimerSet(TCPEndpoint* endpoint, const char* which, bigtime_t timeout) 235 : 236 fEndpoint(endpoint), 237 fWhich(which), 238 fTimeout(timeout), 239 fState(endpoint->State()) 240 { 241 Initialized(); 242 } 243 244 virtual void AddDump(TraceOutput& out) 245 { 246 out.Print("tcp:%p (%12s) %s timer set to %" B_PRIdBIGTIME, fEndpoint, 247 name_for_state(fState), fWhich, fTimeout); 248 } 249 250 protected: 251 TCPEndpoint* fEndpoint; 252 const char* fWhich; 253 bigtime_t fTimeout; 254 tcp_state fState; 255 }; 256 257 class TimerTriggered : public AbstractTraceEntry { 258 public: 259 TimerTriggered(TCPEndpoint* endpoint, const char* which) 260 : 261 fEndpoint(endpoint), 262 fWhich(which), 263 fState(endpoint->State()) 264 { 265 Initialized(); 266 } 267 268 virtual void AddDump(TraceOutput& out) 269 { 270 out.Print("tcp:%p (%12s) %s timer triggered", fEndpoint, 271 name_for_state(fState), fWhich); 272 } 273 274 protected: 275 TCPEndpoint* fEndpoint; 276 const char* fWhich; 277 tcp_state fState; 278 }; 279 280 class APICall : public AbstractTraceEntry { 281 public: 282 APICall(TCPEndpoint* endpoint, const char* which) 283 : 284 fEndpoint(endpoint), 285 fWhich(which), 286 fState(endpoint->State()) 287 { 288 Initialized(); 289 } 290 291 virtual void AddDump(TraceOutput& out) 292 { 293 out.Print("tcp:%p (%12s) api call: %s", fEndpoint, 294 name_for_state(fState), fWhich); 295 } 296 297 protected: 298 TCPEndpoint* fEndpoint; 299 const char* fWhich; 300 tcp_state fState; 301 }; 302 303 } // namespace TCPTracing 304 305 # define T(x) new(std::nothrow) TCPTracing::x 306 #else 307 # define T(x) 308 #endif // TCP_TRACING 309 310 311 // constants for the fFlags field 312 enum { 313 FLAG_OPTION_WINDOW_SCALE = 0x01, 314 FLAG_OPTION_TIMESTAMP = 0x02, 315 // TODO: Should FLAG_NO_RECEIVE apply as well to received connections? 316 // That is, what is expected from accept() after a shutdown() 317 // is performed on a listen()ing socket. 318 FLAG_NO_RECEIVE = 0x04, 319 FLAG_CLOSED = 0x08, 320 FLAG_DELETE_ON_CLOSE = 0x10, 321 FLAG_LOCAL = 0x20, 322 FLAG_RECOVERY = 0x40, 323 FLAG_OPTION_SACK_PERMITTED = 0x80, 324 }; 325 326 327 static const int kTimestampFactor = 1000; 328 // conversion factor between usec system time and msec tcp time 329 330 331 static inline bigtime_t 332 absolute_timeout(bigtime_t timeout) 333 { 334 if (timeout == 0 || timeout == B_INFINITE_TIMEOUT) 335 return timeout; 336 337 return timeout + system_time(); 338 } 339 340 341 static inline status_t 342 posix_error(status_t error) 343 { 344 if (error == B_TIMED_OUT) 345 return B_WOULD_BLOCK; 346 347 return error; 348 } 349 350 351 static inline bool 352 in_window(const tcp_sequence& sequence, const tcp_sequence& receiveNext, 353 uint32 receiveWindow) 354 { 355 return sequence >= receiveNext && sequence < (receiveNext + receiveWindow); 356 } 357 358 359 static inline bool 360 segment_in_sequence(const tcp_segment_header& segment, int size, 361 const tcp_sequence& receiveNext, uint32 receiveWindow) 362 { 363 tcp_sequence sequence(segment.sequence); 364 if (size == 0) { 365 if (receiveWindow == 0) 366 return sequence == receiveNext; 367 return in_window(sequence, receiveNext, receiveWindow); 368 } else { 369 if (receiveWindow == 0) 370 return false; 371 return in_window(sequence, receiveNext, receiveWindow) 372 || in_window(sequence + size - 1, receiveNext, receiveWindow); 373 } 374 } 375 376 377 static inline bool 378 is_writable(tcp_state state) 379 { 380 return state == ESTABLISHED || state == FINISH_RECEIVED; 381 } 382 383 384 static inline bool 385 is_establishing(tcp_state state) 386 { 387 return state == SYNCHRONIZE_SENT || state == SYNCHRONIZE_RECEIVED; 388 } 389 390 391 static inline uint32 tcp_now() 392 { 393 return system_time() / kTimestampFactor; 394 } 395 396 397 static inline uint32 tcp_diff_timestamp(uint32 base) 398 { 399 uint32 now = tcp_now(); 400 401 if (now > base) 402 return now - base; 403 404 return now + UINT_MAX - base; 405 } 406 407 408 static inline bool 409 state_needs_finish(int32 state) 410 { 411 return state == WAIT_FOR_FINISH_ACKNOWLEDGE 412 || state == FINISH_SENT || state == CLOSING; 413 } 414 415 416 // #pragma mark - 417 418 419 TCPEndpoint::TCPEndpoint(net_socket* socket) 420 : 421 ProtocolSocket(socket), 422 fManager(NULL), 423 fOptions(0), 424 fSendWindowShift(0), 425 fReceiveWindowShift(0), 426 fSendUnacknowledged(0), 427 fSendNext(0), 428 fSendMax(0), 429 fSendUrgentOffset(0), 430 fSendWindow(0), 431 fSendMaxWindow(0), 432 fSendMaxSegmentSize(TCP_DEFAULT_MAX_SEGMENT_SIZE), 433 fSendMaxSegments(0), 434 fSendQueue(socket->send.buffer_size), 435 fInitialSendSequence(0), 436 fPreviousHighestAcknowledge(0), 437 fDuplicateAcknowledgeCount(0), 438 fPreviousFlightSize(0), 439 fRecover(0), 440 fRoute(NULL), 441 fReceiveNext(0), 442 fReceiveMaxAdvertised(0), 443 fReceiveWindow(socket->receive.buffer_size), 444 fReceiveMaxSegmentSize(TCP_DEFAULT_MAX_SEGMENT_SIZE), 445 fReceiveQueue(socket->receive.buffer_size), 446 fSmoothedRoundTripTime(0), 447 fRoundTripVariation(0), 448 fSendTime(0), 449 fRoundTripStartSequence(0), 450 fRetransmitTimeout(TCP_INITIAL_RTT), 451 fReceivedTimestamp(0), 452 fCongestionWindow(0), 453 fSlowStartThreshold(0), 454 fState(CLOSED), 455 fFlags(FLAG_OPTION_WINDOW_SCALE | FLAG_OPTION_TIMESTAMP | FLAG_OPTION_SACK_PERMITTED) 456 { 457 // TODO: to be replaced with a real read/write locking strategy! 458 mutex_init(&fLock, "tcp lock"); 459 460 fReceiveCondition.Init(this, "tcp receive"); 461 fSendCondition.Init(this, "tcp send"); 462 463 gStackModule->init_timer(&fPersistTimer, TCPEndpoint::_PersistTimer, this); 464 gStackModule->init_timer(&fRetransmitTimer, TCPEndpoint::_RetransmitTimer, 465 this); 466 gStackModule->init_timer(&fDelayedAcknowledgeTimer, 467 TCPEndpoint::_DelayedAcknowledgeTimer, this); 468 gStackModule->init_timer(&fTimeWaitTimer, TCPEndpoint::_TimeWaitTimer, 469 this); 470 471 T(APICall(this, "constructor")); 472 } 473 474 475 TCPEndpoint::~TCPEndpoint() 476 { 477 mutex_lock(&fLock); 478 479 T(APICall(this, "destructor")); 480 481 _CancelConnectionTimers(); 482 gStackModule->cancel_timer(&fTimeWaitTimer); 483 T(TimerSet(this, "time-wait", -1)); 484 485 if (fManager != NULL) { 486 fManager->Unbind(this); 487 put_endpoint_manager(fManager); 488 } 489 490 mutex_destroy(&fLock); 491 492 // we need to wait for all timers to return 493 gStackModule->wait_for_timer(&fRetransmitTimer); 494 gStackModule->wait_for_timer(&fPersistTimer); 495 gStackModule->wait_for_timer(&fDelayedAcknowledgeTimer); 496 gStackModule->wait_for_timer(&fTimeWaitTimer); 497 498 gDatalinkModule->put_route(Domain(), fRoute); 499 } 500 501 502 status_t 503 TCPEndpoint::InitCheck() const 504 { 505 return B_OK; 506 } 507 508 509 // #pragma mark - protocol API 510 511 512 status_t 513 TCPEndpoint::Open() 514 { 515 TRACE("Open()"); 516 T(APICall(this, "open")); 517 518 status_t status = ProtocolSocket::Open(); 519 if (status < B_OK) 520 return status; 521 522 fManager = get_endpoint_manager(Domain()); 523 if (fManager == NULL) 524 return EAFNOSUPPORT; 525 526 return B_OK; 527 } 528 529 530 status_t 531 TCPEndpoint::Close() 532 { 533 MutexLocker locker(fLock); 534 535 TRACE("Close()"); 536 T(APICall(this, "close")); 537 538 if (fState == LISTEN) 539 delete_sem(fAcceptSemaphore); 540 541 if (fState == SYNCHRONIZE_SENT || fState == LISTEN) { 542 // TODO: what about linger in case of SYNCHRONIZE_SENT? 543 fState = CLOSED; 544 T(State(this)); 545 return B_OK; 546 } 547 548 // handle linger with zero timeout 549 if ((socket->options & SO_LINGER) != 0 && socket->linger == 0) { 550 fState = CLOSED; 551 T(State(this)); 552 return _SendQueued(true); 553 } 554 555 status_t status = _Disconnect(true); 556 if (status != B_OK) 557 return status; 558 559 if ((socket->options & SO_LINGER) != 0) { 560 TRACE("Close(): Lingering for %i secs", socket->linger); 561 562 bigtime_t maximum = absolute_timeout(socket->linger * 1000000LL); 563 564 while (fSendQueue.Used() > 0) { 565 status = _WaitForCondition(fSendCondition, locker, maximum); 566 if (status == B_TIMED_OUT || status == B_WOULD_BLOCK) 567 break; 568 else if (status < B_OK) 569 return status; 570 } 571 572 TRACE("Close(): after waiting, the SendQ was left with %" B_PRIuSIZE 573 " bytes.", fSendQueue.Used()); 574 } 575 return B_OK; 576 } 577 578 579 void 580 TCPEndpoint::Free() 581 { 582 MutexLocker _(fLock); 583 584 TRACE("Free()"); 585 T(APICall(this, "free")); 586 587 if (fState <= SYNCHRONIZE_SENT) 588 return; 589 590 // we are only interested in the timer, not in changing state 591 _EnterTimeWait(); 592 593 fFlags |= FLAG_CLOSED; 594 if ((fFlags & FLAG_DELETE_ON_CLOSE) == 0) { 595 // we'll be freed later when the 2MSL timer expires 596 gSocketModule->acquire_socket(socket); 597 } 598 } 599 600 601 /*! Creates and sends a synchronize packet to /a address, and then waits 602 until the connection has been established or refused. 603 */ 604 status_t 605 TCPEndpoint::Connect(const sockaddr* address) 606 { 607 if (!AddressModule()->is_same_family(address)) 608 return EAFNOSUPPORT; 609 610 MutexLocker locker(fLock); 611 612 TRACE("Connect() on address %s", PrintAddress(address)); 613 T(APICall(this, "connect")); 614 615 if (gStackModule->is_restarted_syscall()) { 616 bigtime_t timeout = gStackModule->restore_syscall_restart_timeout(); 617 status_t status = _WaitForEstablished(locker, timeout); 618 TRACE(" Connect(): Connection complete: %s (timeout was %" 619 B_PRIdBIGTIME ")", strerror(status), timeout); 620 return posix_error(status); 621 } 622 623 // Can only call connect() from CLOSED or LISTEN states 624 // otherwise endpoint is considered already connected 625 if (fState == LISTEN) { 626 // this socket is about to connect; remove pending connections in the backlog 627 gSocketModule->set_max_backlog(socket, 0); 628 } else if (fState == ESTABLISHED) { 629 return EISCONN; 630 } else if (fState != CLOSED) 631 return EALREADY; 632 633 // consider destination address INADDR_ANY as INADDR_LOOPBACK 634 sockaddr_storage _address; 635 if (AddressModule()->is_empty_address(address, false)) { 636 AddressModule()->get_loopback_address((sockaddr *)&_address); 637 // for IPv4 and IPv6 the port is at the same offset 638 ((sockaddr_in &)_address).sin_port = ((sockaddr_in *)address)->sin_port; 639 address = (sockaddr *)&_address; 640 } 641 642 status_t status = _PrepareSendPath(address); 643 if (status < B_OK) 644 return status; 645 646 TRACE(" Connect(): starting 3-way handshake..."); 647 648 fState = SYNCHRONIZE_SENT; 649 T(State(this)); 650 651 // send SYN 652 status = _SendQueued(); 653 if (status != B_OK) { 654 _Close(); 655 return status; 656 } 657 658 // If we are running over Loopback, after _SendQueued() returns we 659 // may be in ESTABLISHED already. 660 if (fState == ESTABLISHED) { 661 TRACE(" Connect() completed after _SendQueued()"); 662 return B_OK; 663 } 664 665 // wait until 3-way handshake is complete (if needed) 666 bigtime_t timeout = min_c(socket->send.timeout, TCP_CONNECTION_TIMEOUT); 667 if (timeout == 0) { 668 // we're a non-blocking socket 669 TRACE(" Connect() delayed, return EINPROGRESS"); 670 return EINPROGRESS; 671 } 672 673 bigtime_t absoluteTimeout = absolute_timeout(timeout); 674 gStackModule->store_syscall_restart_timeout(absoluteTimeout); 675 676 status = _WaitForEstablished(locker, absoluteTimeout); 677 TRACE(" Connect(): Connection complete: %s (timeout was %" B_PRIdBIGTIME 678 ")", strerror(status), timeout); 679 return posix_error(status); 680 } 681 682 683 status_t 684 TCPEndpoint::Accept(struct net_socket** _acceptedSocket) 685 { 686 MutexLocker locker(fLock); 687 688 TRACE("Accept()"); 689 T(APICall(this, "accept")); 690 691 status_t status; 692 bigtime_t timeout = absolute_timeout(socket->receive.timeout); 693 if (gStackModule->is_restarted_syscall()) 694 timeout = gStackModule->restore_syscall_restart_timeout(); 695 else 696 gStackModule->store_syscall_restart_timeout(timeout); 697 698 do { 699 locker.Unlock(); 700 701 status = acquire_sem_etc(fAcceptSemaphore, 1, B_ABSOLUTE_TIMEOUT 702 | B_CAN_INTERRUPT, timeout); 703 if (status != B_OK) { 704 if (status == B_TIMED_OUT && socket->receive.timeout == 0) 705 return B_WOULD_BLOCK; 706 707 return status; 708 } 709 710 locker.Lock(); 711 status = gSocketModule->dequeue_connected(socket, _acceptedSocket); 712 #ifdef TRACE_TCP 713 if (status == B_OK) 714 TRACE(" Accept() returning %p", (*_acceptedSocket)->first_protocol); 715 #endif 716 } while (status != B_OK); 717 718 return status; 719 } 720 721 722 status_t 723 TCPEndpoint::Bind(const sockaddr *address) 724 { 725 if (address == NULL) 726 return B_BAD_VALUE; 727 728 MutexLocker lock(fLock); 729 730 TRACE("Bind() on address %s", PrintAddress(address)); 731 T(APICall(this, "bind")); 732 733 if (fState != CLOSED) 734 return EISCONN; 735 736 return fManager->Bind(this, address); 737 } 738 739 740 status_t 741 TCPEndpoint::Unbind(struct sockaddr *address) 742 { 743 MutexLocker _(fLock); 744 745 TRACE("Unbind()"); 746 T(APICall(this, "unbind")); 747 748 return fManager->Unbind(this); 749 } 750 751 752 status_t 753 TCPEndpoint::Listen(int count) 754 { 755 MutexLocker _(fLock); 756 757 TRACE("Listen()"); 758 T(APICall(this, "listen")); 759 760 if (fState != CLOSED && fState != LISTEN) 761 return B_BAD_VALUE; 762 763 if (fState == CLOSED) { 764 fAcceptSemaphore = create_sem(0, "tcp accept"); 765 if (fAcceptSemaphore < B_OK) 766 return ENOBUFS; 767 768 status_t status = fManager->SetPassive(this); 769 if (status != B_OK) { 770 delete_sem(fAcceptSemaphore); 771 fAcceptSemaphore = -1; 772 return status; 773 } 774 } 775 776 gSocketModule->set_max_backlog(socket, count); 777 778 fState = LISTEN; 779 T(State(this)); 780 return B_OK; 781 } 782 783 784 status_t 785 TCPEndpoint::Shutdown(int direction) 786 { 787 MutexLocker lock(fLock); 788 789 TRACE("Shutdown(%i)", direction); 790 T(APICall(this, "shutdown")); 791 792 if (direction == SHUT_RD || direction == SHUT_RDWR) 793 fFlags |= FLAG_NO_RECEIVE; 794 795 if (direction == SHUT_WR || direction == SHUT_RDWR) { 796 // TODO: That's not correct. After read/write shutting down the socket 797 // one should still be able to read previously arrived data. 798 _Disconnect(false); 799 } 800 801 return B_OK; 802 } 803 804 805 /*! Puts data contained in \a buffer into send buffer */ 806 status_t 807 TCPEndpoint::SendData(net_buffer *buffer) 808 { 809 MutexLocker lock(fLock); 810 811 TRACE("SendData(buffer %p, size %" B_PRIu32 ", flags %#" B_PRIx32 812 ") [total %" B_PRIuSIZE " bytes, has %" B_PRIuSIZE "]", buffer, 813 buffer->size, buffer->flags, fSendQueue.Size(), fSendQueue.Free()); 814 T(APICall(this, "senddata")); 815 816 uint32 flags = buffer->flags; 817 818 if (fState == CLOSED) 819 return ENOTCONN; 820 if (fState == LISTEN) 821 return EDESTADDRREQ; 822 if (!is_writable(fState) && !is_establishing(fState)) { 823 // we only send signals when called from userland 824 if (gStackModule->is_syscall() && (flags & MSG_NOSIGNAL) == 0) 825 send_signal(find_thread(NULL), SIGPIPE); 826 return EPIPE; 827 } 828 829 size_t left = buffer->size; 830 831 bigtime_t timeout = absolute_timeout(socket->send.timeout); 832 if (gStackModule->is_restarted_syscall()) 833 timeout = gStackModule->restore_syscall_restart_timeout(); 834 else 835 gStackModule->store_syscall_restart_timeout(timeout); 836 837 while (left > 0) { 838 while (fSendQueue.Free() < socket->send.low_water_mark) { 839 // wait until enough space is available 840 status_t status = _WaitForCondition(fSendCondition, lock, timeout); 841 if (status < B_OK) { 842 TRACE(" SendData() returning %s (%d)", 843 strerror(posix_error(status)), (int)posix_error(status)); 844 return posix_error(status); 845 } 846 847 if (!is_writable(fState) && !is_establishing(fState)) { 848 // we only send signals when called from userland 849 if (gStackModule->is_syscall()) 850 send_signal(find_thread(NULL), SIGPIPE); 851 return EPIPE; 852 } 853 } 854 855 size_t size = fSendQueue.Free(); 856 if (size < left) { 857 // we need to split the original buffer 858 net_buffer* clone = gBufferModule->clone(buffer, false); 859 // TODO: add offset/size parameter to net_buffer::clone() or 860 // even a move_data() function, as this is a bit inefficient 861 if (clone == NULL) 862 return ENOBUFS; 863 864 status_t status = gBufferModule->trim(clone, size); 865 if (status != B_OK) { 866 gBufferModule->free(clone); 867 return status; 868 } 869 870 gBufferModule->remove_header(buffer, size); 871 left -= size; 872 fSendQueue.Add(clone); 873 } else { 874 left -= buffer->size; 875 fSendQueue.Add(buffer); 876 } 877 } 878 879 TRACE(" SendData(): %" B_PRIuSIZE " bytes used.", fSendQueue.Used()); 880 881 bool force = false; 882 if ((flags & MSG_OOB) != 0) { 883 fSendUrgentOffset = fSendQueue.LastSequence(); 884 // RFC 961 specifies that the urgent offset points to the last 885 // byte of urgent data. However, this is commonly implemented as 886 // here, ie. it points to the first byte after the urgent data. 887 force = true; 888 } 889 if ((flags & MSG_EOF) != 0) 890 _Disconnect(false); 891 892 if (fState == ESTABLISHED || fState == FINISH_RECEIVED) 893 _SendQueued(force); 894 895 return B_OK; 896 } 897 898 899 ssize_t 900 TCPEndpoint::SendAvailable() 901 { 902 MutexLocker locker(fLock); 903 904 ssize_t available; 905 906 if (is_writable(fState)) 907 available = fSendQueue.Free(); 908 else if (is_establishing(fState)) 909 available = 0; 910 else 911 available = EPIPE; 912 913 TRACE("SendAvailable(): %" B_PRIdSSIZE, available); 914 T(APICall(this, "sendavailable")); 915 return available; 916 } 917 918 919 status_t 920 TCPEndpoint::FillStat(net_stat *stat) 921 { 922 MutexLocker _(fLock); 923 924 strlcpy(stat->state, name_for_state(fState), sizeof(stat->state)); 925 stat->receive_queue_size = fReceiveQueue.Available(); 926 stat->send_queue_size = fSendQueue.Used(); 927 928 return B_OK; 929 } 930 931 932 status_t 933 TCPEndpoint::ReadData(size_t numBytes, uint32 flags, net_buffer** _buffer) 934 { 935 MutexLocker locker(fLock); 936 937 TRACE("ReadData(%" B_PRIuSIZE " bytes, flags %#" B_PRIx32 ")", numBytes, 938 flags); 939 T(APICall(this, "readdata")); 940 941 *_buffer = NULL; 942 943 if (fState == CLOSED) { 944 if (socket->error != B_OK) 945 return socket->error; 946 return ENOTCONN; 947 } 948 949 bigtime_t timeout = absolute_timeout(socket->receive.timeout); 950 if (gStackModule->is_restarted_syscall()) 951 timeout = gStackModule->restore_syscall_restart_timeout(); 952 else 953 gStackModule->store_syscall_restart_timeout(timeout); 954 955 if (fState == SYNCHRONIZE_SENT || fState == SYNCHRONIZE_RECEIVED) { 956 if (flags & MSG_DONTWAIT) 957 return B_WOULD_BLOCK; 958 959 status_t status = _WaitForEstablished(locker, timeout); 960 if (status < B_OK) 961 return posix_error(status); 962 } 963 964 size_t dataNeeded = socket->receive.low_water_mark; 965 966 // When MSG_WAITALL is set then the function should block 967 // until the full amount of data can be returned. 968 if (flags & MSG_WAITALL) 969 dataNeeded = numBytes; 970 971 // TODO: add support for urgent data (MSG_OOB) 972 973 while (true) { 974 if (fState == CLOSING || fState == WAIT_FOR_FINISH_ACKNOWLEDGE 975 || fState == TIME_WAIT) { 976 // ``Connection closing''. 977 if (fReceiveQueue.Available() > 0) 978 break; 979 return B_OK; 980 } 981 982 if (fReceiveQueue.Available() > 0) { 983 if (fReceiveQueue.Available() >= dataNeeded 984 || (fReceiveQueue.PushedData() > 0 985 && fReceiveQueue.PushedData() >= fReceiveQueue.Available())) 986 break; 987 } else if (fState == FINISH_RECEIVED) { 988 // ``If no text is awaiting delivery, the RECEIVE will 989 // get a Connection closing''. 990 return B_OK; 991 } 992 993 if ((flags & MSG_DONTWAIT) != 0 || socket->receive.timeout == 0) 994 return B_WOULD_BLOCK; 995 996 if ((fFlags & FLAG_NO_RECEIVE) != 0) 997 return B_OK; 998 999 status_t status = _WaitForCondition(fReceiveCondition, locker, timeout); 1000 if (status < B_OK) { 1001 // The Open Group base specification mentions that EINTR should be 1002 // returned if the recv() is interrupted before _any data_ is 1003 // available. So we actually check if there is data, and if so, 1004 // push it to the user. 1005 if ((status == B_TIMED_OUT || status == B_INTERRUPTED) 1006 && fReceiveQueue.Available() > 0) 1007 break; 1008 1009 return posix_error(status); 1010 } 1011 } 1012 1013 TRACE(" ReadData(): %" B_PRIuSIZE " are available.", 1014 fReceiveQueue.Available()); 1015 1016 if (numBytes < fReceiveQueue.Available()) 1017 fReceiveCondition.NotifyAll(); 1018 1019 bool clone = (flags & MSG_PEEK) != 0; 1020 1021 ssize_t receivedBytes = fReceiveQueue.Get(numBytes, !clone, _buffer); 1022 1023 TRACE(" ReadData(): %" B_PRIuSIZE " bytes kept.", 1024 fReceiveQueue.Available()); 1025 1026 if (fReceiveQueue.Available() == 0 && fState == FINISH_RECEIVED) 1027 socket->receive.low_water_mark = 0; 1028 1029 // if we are opening the window, check if we should send an ACK 1030 if (!clone) 1031 SendAcknowledge(false); 1032 1033 return receivedBytes; 1034 } 1035 1036 1037 ssize_t 1038 TCPEndpoint::ReadAvailable() 1039 { 1040 MutexLocker locker(fLock); 1041 1042 TRACE("ReadAvailable(): %" B_PRIdSSIZE, _AvailableData()); 1043 T(APICall(this, "readavailable")); 1044 1045 return _AvailableData(); 1046 } 1047 1048 1049 status_t 1050 TCPEndpoint::SetSendBufferSize(size_t length) 1051 { 1052 MutexLocker _(fLock); 1053 fSendQueue.SetMaxBytes(length); 1054 return B_OK; 1055 } 1056 1057 1058 status_t 1059 TCPEndpoint::SetReceiveBufferSize(size_t length) 1060 { 1061 MutexLocker _(fLock); 1062 fReceiveQueue.SetMaxBytes(length); 1063 return B_OK; 1064 } 1065 1066 1067 status_t 1068 TCPEndpoint::GetOption(int option, void* _value, int* _length) 1069 { 1070 if (*_length != sizeof(int)) 1071 return B_BAD_VALUE; 1072 1073 int* value = (int*)_value; 1074 1075 switch (option) { 1076 case TCP_NODELAY: 1077 if ((fOptions & TCP_NODELAY) != 0) 1078 *value = 1; 1079 else 1080 *value = 0; 1081 return B_OK; 1082 1083 case TCP_MAXSEG: 1084 *value = fReceiveMaxSegmentSize; 1085 return B_OK; 1086 1087 default: 1088 return B_BAD_VALUE; 1089 } 1090 } 1091 1092 1093 status_t 1094 TCPEndpoint::SetOption(int option, const void* _value, int length) 1095 { 1096 if (option != TCP_NODELAY) 1097 return B_BAD_VALUE; 1098 1099 if (length != sizeof(int)) 1100 return B_BAD_VALUE; 1101 1102 const int* value = (const int*)_value; 1103 1104 MutexLocker _(fLock); 1105 if (*value) 1106 fOptions |= TCP_NODELAY; 1107 else 1108 fOptions &= ~TCP_NODELAY; 1109 1110 return B_OK; 1111 } 1112 1113 1114 // #pragma mark - misc 1115 1116 1117 bool 1118 TCPEndpoint::IsBound() const 1119 { 1120 return !LocalAddress().IsEmpty(true); 1121 } 1122 1123 1124 bool 1125 TCPEndpoint::IsLocal() const 1126 { 1127 return (fFlags & FLAG_LOCAL) != 0; 1128 } 1129 1130 1131 status_t 1132 TCPEndpoint::DelayedAcknowledge() 1133 { 1134 if (gStackModule->cancel_timer(&fDelayedAcknowledgeTimer)) { 1135 // timer was active, send an ACK now (with the exception above, 1136 // we send every other ACK) 1137 T(TimerSet(this, "delayed ack", -1)); 1138 return SendAcknowledge(true); 1139 } 1140 1141 gStackModule->set_timer(&fDelayedAcknowledgeTimer, 1142 TCP_DELAYED_ACKNOWLEDGE_TIMEOUT); 1143 T(TimerSet(this, "delayed ack", TCP_DELAYED_ACKNOWLEDGE_TIMEOUT)); 1144 return B_OK; 1145 } 1146 1147 1148 status_t 1149 TCPEndpoint::SendAcknowledge(bool force) 1150 { 1151 return _SendQueued(force, 0); 1152 } 1153 1154 1155 void 1156 TCPEndpoint::_StartPersistTimer() 1157 { 1158 gStackModule->set_timer(&fPersistTimer, TCP_PERSIST_TIMEOUT); 1159 T(TimerSet(this, "persist", TCP_PERSIST_TIMEOUT)); 1160 } 1161 1162 1163 void 1164 TCPEndpoint::_EnterTimeWait() 1165 { 1166 TRACE("_EnterTimeWait()"); 1167 1168 if (fState == TIME_WAIT) { 1169 _CancelConnectionTimers(); 1170 } 1171 1172 _UpdateTimeWait(); 1173 } 1174 1175 1176 void 1177 TCPEndpoint::_UpdateTimeWait() 1178 { 1179 gStackModule->set_timer(&fTimeWaitTimer, TCP_MAX_SEGMENT_LIFETIME << 1); 1180 T(TimerSet(this, "time-wait", TCP_MAX_SEGMENT_LIFETIME << 1)); 1181 } 1182 1183 1184 void 1185 TCPEndpoint::_CancelConnectionTimers() 1186 { 1187 gStackModule->cancel_timer(&fRetransmitTimer); 1188 T(TimerSet(this, "retransmit", -1)); 1189 gStackModule->cancel_timer(&fPersistTimer); 1190 T(TimerSet(this, "persist", -1)); 1191 gStackModule->cancel_timer(&fDelayedAcknowledgeTimer); 1192 T(TimerSet(this, "delayed ack", -1)); 1193 } 1194 1195 1196 /*! Sends the FIN flag to the peer when the connection is still open. 1197 Moves the endpoint to the next state depending on where it was. 1198 */ 1199 status_t 1200 TCPEndpoint::_Disconnect(bool closing) 1201 { 1202 tcp_state previousState = fState; 1203 1204 if (fState == SYNCHRONIZE_RECEIVED || fState == ESTABLISHED) 1205 fState = FINISH_SENT; 1206 else if (fState == FINISH_RECEIVED) 1207 fState = WAIT_FOR_FINISH_ACKNOWLEDGE; 1208 else 1209 return B_OK; 1210 1211 T(State(this)); 1212 1213 status_t status = _SendQueued(); 1214 if (status != B_OK) { 1215 fState = previousState; 1216 T(State(this)); 1217 return status; 1218 } 1219 1220 return B_OK; 1221 } 1222 1223 1224 void 1225 TCPEndpoint::_MarkEstablished() 1226 { 1227 fState = ESTABLISHED; 1228 T(State(this)); 1229 1230 gSocketModule->set_connected(socket); 1231 if (gSocketModule->has_parent(socket)) 1232 release_sem_etc(fAcceptSemaphore, 1, B_DO_NOT_RESCHEDULE); 1233 1234 fSendCondition.NotifyAll(); 1235 gSocketModule->notify(socket, B_SELECT_WRITE, fSendQueue.Free()); 1236 } 1237 1238 1239 status_t 1240 TCPEndpoint::_WaitForEstablished(MutexLocker &locker, bigtime_t timeout) 1241 { 1242 // TODO: Checking for CLOSED seems correct, but breaks several neon tests. 1243 // When investigating this, also have a look at _Close() and _HandleReset(). 1244 while (fState < ESTABLISHED/* && fState != CLOSED*/) { 1245 if (socket->error != B_OK) 1246 return socket->error; 1247 1248 status_t status = _WaitForCondition(fSendCondition, locker, timeout); 1249 if (status < B_OK) 1250 return status; 1251 } 1252 1253 return B_OK; 1254 } 1255 1256 1257 // #pragma mark - receive 1258 1259 1260 void 1261 TCPEndpoint::_Close() 1262 { 1263 _CancelConnectionTimers(); 1264 fState = CLOSED; 1265 T(State(this)); 1266 1267 fFlags |= FLAG_DELETE_ON_CLOSE; 1268 1269 fSendCondition.NotifyAll(); 1270 _NotifyReader(); 1271 1272 if (gSocketModule->has_parent(socket)) { 1273 // We still have a parent - obviously, we haven't been accepted yet, 1274 // so no one could ever close us. 1275 _CancelConnectionTimers(); 1276 gSocketModule->set_aborted(socket); 1277 } 1278 } 1279 1280 1281 void 1282 TCPEndpoint::_HandleReset(status_t error) 1283 { 1284 socket->error = error; 1285 _Close(); 1286 1287 gSocketModule->notify(socket, B_SELECT_WRITE, error); 1288 gSocketModule->notify(socket, B_SELECT_ERROR, error); 1289 } 1290 1291 1292 void 1293 TCPEndpoint::_DuplicateAcknowledge(tcp_segment_header &segment) 1294 { 1295 if (fDuplicateAcknowledgeCount == 0) 1296 fPreviousFlightSize = (fSendMax - fSendUnacknowledged).Number(); 1297 1298 if (++fDuplicateAcknowledgeCount < 3) { 1299 if (fSendQueue.Available(fSendMax) != 0 && fSendWindow != 0) { 1300 fSendNext = fSendMax; 1301 fCongestionWindow += fDuplicateAcknowledgeCount * fSendMaxSegmentSize; 1302 _SendQueued(); 1303 TRACE("_DuplicateAcknowledge(): packet sent under limited transmit on receipt of dup ack"); 1304 fCongestionWindow -= fDuplicateAcknowledgeCount * fSendMaxSegmentSize; 1305 } 1306 } 1307 1308 if (fDuplicateAcknowledgeCount == 3) { 1309 if ((segment.acknowledge - 1) > fRecover || (fCongestionWindow > fSendMaxSegmentSize && 1310 (fSendUnacknowledged - fPreviousHighestAcknowledge) <= 4 * fSendMaxSegmentSize)) { 1311 fFlags |= FLAG_RECOVERY; 1312 fRecover = fSendMax.Number() - 1; 1313 fSlowStartThreshold = max_c(fPreviousFlightSize / 2, 2 * fSendMaxSegmentSize); 1314 fCongestionWindow = fSlowStartThreshold + 3 * fSendMaxSegmentSize; 1315 fSendNext = segment.acknowledge; 1316 _SendQueued(); 1317 TRACE("_DuplicateAcknowledge(): packet sent under fast restransmit on the receipt of 3rd dup ack"); 1318 } 1319 } else if (fDuplicateAcknowledgeCount > 3) { 1320 uint32 flightSize = (fSendMax - fSendUnacknowledged).Number(); 1321 if ((fDuplicateAcknowledgeCount - 3) * fSendMaxSegmentSize <= flightSize) 1322 fCongestionWindow += fSendMaxSegmentSize; 1323 if (fSendQueue.Available(fSendMax) != 0) { 1324 fSendNext = fSendMax; 1325 _SendQueued(); 1326 } 1327 } 1328 } 1329 1330 1331 void 1332 TCPEndpoint::_UpdateTimestamps(tcp_segment_header& segment, 1333 size_t segmentLength) 1334 { 1335 if (fFlags & FLAG_OPTION_TIMESTAMP) { 1336 tcp_sequence sequence(segment.sequence); 1337 1338 if (fLastAcknowledgeSent >= sequence 1339 && fLastAcknowledgeSent < (sequence + segmentLength)) 1340 fReceivedTimestamp = segment.timestamp_value; 1341 } 1342 } 1343 1344 1345 ssize_t 1346 TCPEndpoint::_AvailableData() const 1347 { 1348 // TODO: Refer to the FLAG_NO_RECEIVE comment above regarding 1349 // the application of FLAG_NO_RECEIVE in listen()ing 1350 // sockets. 1351 if (fState == LISTEN) 1352 return gSocketModule->count_connected(socket); 1353 if (fState == SYNCHRONIZE_SENT) 1354 return 0; 1355 1356 ssize_t availableData = fReceiveQueue.Available(); 1357 1358 if (availableData == 0 && !_ShouldReceive()) 1359 return ENOTCONN; 1360 if (availableData == 0 && (fState == FINISH_RECEIVED || fState == WAIT_FOR_FINISH_ACKNOWLEDGE)) 1361 return ESHUTDOWN; 1362 return availableData; 1363 } 1364 1365 1366 void 1367 TCPEndpoint::_NotifyReader() 1368 { 1369 fReceiveCondition.NotifyAll(); 1370 gSocketModule->notify(socket, B_SELECT_READ, _AvailableData()); 1371 } 1372 1373 1374 bool 1375 TCPEndpoint::_AddData(tcp_segment_header& segment, net_buffer* buffer) 1376 { 1377 if ((segment.flags & TCP_FLAG_FINISH) != 0) { 1378 // Remember the position of the finish received flag 1379 fFinishReceived = true; 1380 fFinishReceivedAt = segment.sequence + buffer->size; 1381 } 1382 1383 fReceiveQueue.Add(buffer, segment.sequence); 1384 fReceiveNext = fReceiveQueue.NextSequence(); 1385 1386 if (fFinishReceived) { 1387 // Set or reset the finish flag on the current segment 1388 if (fReceiveNext < fFinishReceivedAt) 1389 segment.flags &= ~TCP_FLAG_FINISH; 1390 else 1391 segment.flags |= TCP_FLAG_FINISH; 1392 } 1393 1394 TRACE(" _AddData(): adding data, receive next = %" B_PRIu32 ". Now have %" 1395 B_PRIuSIZE " bytes.", fReceiveNext.Number(), fReceiveQueue.Available()); 1396 1397 if ((segment.flags & TCP_FLAG_PUSH) != 0) 1398 fReceiveQueue.SetPushPointer(); 1399 1400 return fReceiveQueue.Available() > 0; 1401 } 1402 1403 1404 void 1405 TCPEndpoint::_PrepareReceivePath(tcp_segment_header& segment) 1406 { 1407 fInitialReceiveSequence = segment.sequence; 1408 fFinishReceived = false; 1409 1410 // count the received SYN 1411 segment.sequence++; 1412 1413 fReceiveNext = segment.sequence; 1414 fReceiveQueue.SetInitialSequence(segment.sequence); 1415 1416 if ((fOptions & TCP_NOOPT) == 0) { 1417 if (segment.max_segment_size > 0) { 1418 // The maximum size of a segment that a TCP endpoint really sends, 1419 // the "effective send MSS", MUST be the smaller of the send MSS and 1420 // the largest transmission size permitted by the IP layer: 1421 fSendMaxSegmentSize = min_c(segment.max_segment_size, 1422 _MaxSegmentSize(*PeerAddress())); 1423 } 1424 1425 if (segment.options & TCP_HAS_WINDOW_SCALE) { 1426 fFlags |= FLAG_OPTION_WINDOW_SCALE; 1427 fSendWindowShift = segment.window_shift; 1428 } else { 1429 fFlags &= ~FLAG_OPTION_WINDOW_SCALE; 1430 fReceiveWindowShift = 0; 1431 } 1432 1433 if (segment.options & TCP_HAS_TIMESTAMPS) { 1434 fFlags |= FLAG_OPTION_TIMESTAMP; 1435 fReceivedTimestamp = segment.timestamp_value; 1436 } else 1437 fFlags &= ~FLAG_OPTION_TIMESTAMP; 1438 1439 if ((segment.options & TCP_SACK_PERMITTED) == 0) 1440 fFlags &= ~FLAG_OPTION_SACK_PERMITTED; 1441 } 1442 1443 if (fSendMaxSegmentSize > 2190) 1444 fCongestionWindow = 2 * fSendMaxSegmentSize; 1445 else if (fSendMaxSegmentSize > 1095) 1446 fCongestionWindow = 3 * fSendMaxSegmentSize; 1447 else 1448 fCongestionWindow = 4 * fSendMaxSegmentSize; 1449 1450 fSendMaxSegments = fCongestionWindow / fSendMaxSegmentSize; 1451 fSlowStartThreshold = (uint32)segment.advertised_window << fSendWindowShift; 1452 } 1453 1454 1455 bool 1456 TCPEndpoint::_ShouldReceive() const 1457 { 1458 if ((fFlags & FLAG_NO_RECEIVE) != 0) 1459 return false; 1460 1461 return fState == ESTABLISHED || fState == FINISH_SENT 1462 || fState == FINISH_ACKNOWLEDGED || fState == FINISH_RECEIVED; 1463 } 1464 1465 1466 int32 1467 TCPEndpoint::_Spawn(TCPEndpoint* parent, tcp_segment_header& segment, 1468 net_buffer* buffer) 1469 { 1470 MutexLocker _(fLock); 1471 1472 // TODO error checking 1473 ProtocolSocket::Open(); 1474 1475 fState = SYNCHRONIZE_RECEIVED; 1476 T(Spawn(parent, this)); 1477 1478 fManager = parent->fManager; 1479 1480 LocalAddress().SetTo(buffer->destination); 1481 PeerAddress().SetTo(buffer->source); 1482 1483 TRACE("Spawn()"); 1484 1485 // TODO: proper error handling! 1486 if (fManager->BindChild(this) != B_OK) { 1487 T(Error(this, "binding failed", __LINE__)); 1488 return DROP; 1489 } 1490 if (_PrepareSendPath(*PeerAddress()) != B_OK) { 1491 T(Error(this, "prepare send faild", __LINE__)); 1492 return DROP; 1493 } 1494 1495 fOptions = parent->fOptions; 1496 fAcceptSemaphore = parent->fAcceptSemaphore; 1497 1498 _PrepareReceivePath(segment); 1499 1500 // send SYN+ACK 1501 if (_SendQueued() != B_OK) { 1502 T(Error(this, "sending failed", __LINE__)); 1503 return DROP; 1504 } 1505 1506 segment.flags &= ~TCP_FLAG_SYNCHRONIZE; 1507 // we handled this flag now, it must not be set for further processing 1508 1509 return _Receive(segment, buffer); 1510 } 1511 1512 1513 int32 1514 TCPEndpoint::_ListenReceive(tcp_segment_header& segment, net_buffer* buffer) 1515 { 1516 TRACE("ListenReceive()"); 1517 1518 // Essentially, we accept only TCP_FLAG_SYNCHRONIZE in this state, 1519 // but the error behaviour differs 1520 if (segment.flags & TCP_FLAG_RESET) 1521 return DROP; 1522 if (segment.flags & TCP_FLAG_ACKNOWLEDGE) 1523 return DROP | RESET; 1524 if ((segment.flags & TCP_FLAG_SYNCHRONIZE) == 0) 1525 return DROP; 1526 1527 // TODO: drop broadcast/multicast 1528 1529 // spawn new endpoint for accept() 1530 net_socket* newSocket; 1531 if (gSocketModule->spawn_pending_socket(socket, &newSocket) < B_OK) { 1532 T(Error(this, "spawning failed", __LINE__)); 1533 return DROP; 1534 } 1535 1536 return ((TCPEndpoint *)newSocket->first_protocol)->_Spawn(this, 1537 segment, buffer); 1538 } 1539 1540 1541 int32 1542 TCPEndpoint::_SynchronizeSentReceive(tcp_segment_header &segment, 1543 net_buffer *buffer) 1544 { 1545 TRACE("_SynchronizeSentReceive()"); 1546 1547 if ((segment.flags & TCP_FLAG_ACKNOWLEDGE) != 0 1548 && (fInitialSendSequence >= segment.acknowledge 1549 || fSendMax < segment.acknowledge)) 1550 return DROP | RESET; 1551 1552 if (segment.flags & TCP_FLAG_RESET) { 1553 _HandleReset(ECONNREFUSED); 1554 return DROP; 1555 } 1556 1557 if ((segment.flags & TCP_FLAG_SYNCHRONIZE) == 0) 1558 return DROP; 1559 1560 fSendUnacknowledged = segment.acknowledge; 1561 _PrepareReceivePath(segment); 1562 1563 if (segment.flags & TCP_FLAG_ACKNOWLEDGE) { 1564 _MarkEstablished(); 1565 } else { 1566 // simultaneous open 1567 fState = SYNCHRONIZE_RECEIVED; 1568 T(State(this)); 1569 } 1570 1571 segment.flags &= ~TCP_FLAG_SYNCHRONIZE; 1572 // we handled this flag now, it must not be set for further processing 1573 1574 return _Receive(segment, buffer) | IMMEDIATE_ACKNOWLEDGE; 1575 } 1576 1577 1578 int32 1579 TCPEndpoint::_Receive(tcp_segment_header& segment, net_buffer* buffer) 1580 { 1581 // PAWS processing takes precedence over regular TCP acceptability check 1582 if ((fFlags & FLAG_OPTION_TIMESTAMP) != 0 && (segment.flags & TCP_FLAG_RESET) == 0) { 1583 if ((segment.options & TCP_HAS_TIMESTAMPS) == 0) 1584 return DROP; 1585 if ((int32)(fReceivedTimestamp - segment.timestamp_value) > 0 1586 && (fReceivedTimestamp - segment.timestamp_value) <= INT32_MAX) 1587 return DROP | IMMEDIATE_ACKNOWLEDGE; 1588 } 1589 1590 uint32 advertisedWindow = (uint32)segment.advertised_window 1591 << fSendWindowShift; 1592 size_t segmentLength = buffer->size; 1593 1594 // First, handle the most common case for uni-directional data transfer 1595 // (known as header prediction - the segment must not change the window, 1596 // and must be the expected sequence, and contain no control flags) 1597 1598 if (fState == ESTABLISHED 1599 && segment.AcknowledgeOnly() 1600 && fReceiveNext == segment.sequence 1601 && advertisedWindow > 0 && advertisedWindow == fSendWindow 1602 && fSendNext == fSendMax) { 1603 _UpdateTimestamps(segment, segmentLength); 1604 1605 if (segmentLength == 0) { 1606 // this is a pure acknowledge segment - we're on the sending end 1607 if (fSendUnacknowledged < segment.acknowledge 1608 && fSendMax >= segment.acknowledge) { 1609 _Acknowledged(segment); 1610 return DROP; 1611 } 1612 } else if (segment.acknowledge == fSendUnacknowledged 1613 && fReceiveQueue.IsContiguous() 1614 && fReceiveQueue.Free() >= segmentLength 1615 && (fFlags & FLAG_NO_RECEIVE) == 0) { 1616 if (_AddData(segment, buffer)) 1617 _NotifyReader(); 1618 1619 return KEEP | ((segment.flags & TCP_FLAG_PUSH) != 0 1620 ? IMMEDIATE_ACKNOWLEDGE : ACKNOWLEDGE); 1621 } 1622 } 1623 1624 // The fast path was not applicable, so we continue with the standard 1625 // processing of the incoming segment 1626 1627 ASSERT(fState != SYNCHRONIZE_SENT && fState != LISTEN); 1628 1629 if (fState != CLOSED && fState != TIME_WAIT) { 1630 // Check sequence number 1631 if (!segment_in_sequence(segment, segmentLength, fReceiveNext, 1632 fReceiveWindow)) { 1633 TRACE(" Receive(): segment out of window, next: %" B_PRIu32 1634 " wnd: %" B_PRIu32, fReceiveNext.Number(), fReceiveWindow); 1635 if ((segment.flags & TCP_FLAG_RESET) != 0) { 1636 // TODO: this doesn't look right - review! 1637 return DROP; 1638 } 1639 return DROP | IMMEDIATE_ACKNOWLEDGE; 1640 } 1641 } 1642 1643 if ((segment.flags & TCP_FLAG_RESET) != 0) { 1644 // Is this a valid reset? 1645 // We generally ignore resets in time wait state (see RFC 1337) 1646 if (fLastAcknowledgeSent <= segment.sequence 1647 && tcp_sequence(segment.sequence) < (fLastAcknowledgeSent 1648 + fReceiveWindow) 1649 && fState != TIME_WAIT) { 1650 status_t error; 1651 if (fState == SYNCHRONIZE_RECEIVED) 1652 error = ECONNREFUSED; 1653 else if (fState == CLOSING || fState == WAIT_FOR_FINISH_ACKNOWLEDGE) 1654 error = ENOTCONN; 1655 else 1656 error = ECONNRESET; 1657 1658 _HandleReset(error); 1659 } 1660 1661 return DROP; 1662 } 1663 1664 if ((segment.flags & TCP_FLAG_SYNCHRONIZE) != 0 1665 || (fState == SYNCHRONIZE_RECEIVED 1666 && (fInitialReceiveSequence > segment.sequence 1667 || ((segment.flags & TCP_FLAG_ACKNOWLEDGE) != 0 1668 && (fSendUnacknowledged > segment.acknowledge 1669 || fSendMax < segment.acknowledge))))) { 1670 // reset the connection - either the initial SYN was faulty, or we 1671 // received a SYN within the data stream 1672 return DROP | RESET; 1673 } 1674 1675 // TODO: Check this! Why do we advertize a window outside of what we should 1676 // buffer? 1677 fReceiveWindow = max_c(fReceiveQueue.Free(), fReceiveWindow); 1678 // the window must not shrink 1679 1680 // trim buffer to be within the receive window 1681 int32 drop = (int32)(fReceiveNext - segment.sequence).Number(); 1682 if (drop > 0) { 1683 if ((uint32)drop > buffer->size 1684 || ((uint32)drop == buffer->size 1685 && (segment.flags & TCP_FLAG_FINISH) == 0)) { 1686 // don't accidently remove a FIN we shouldn't remove 1687 segment.flags &= ~TCP_FLAG_FINISH; 1688 drop = buffer->size; 1689 } 1690 1691 // remove duplicate data at the start 1692 TRACE("* remove %" B_PRId32 " bytes from the start", drop); 1693 gBufferModule->remove_header(buffer, drop); 1694 segment.sequence += drop; 1695 } 1696 1697 int32 action = KEEP; 1698 1699 // immediately acknowledge out-of-order segment to trigger fast-retransmit at the sender 1700 if (drop != 0) 1701 action |= IMMEDIATE_ACKNOWLEDGE; 1702 1703 drop = (int32)(segment.sequence + buffer->size 1704 - (fReceiveNext + fReceiveWindow)).Number(); 1705 if (drop > 0) { 1706 // remove data exceeding our window 1707 if ((uint32)drop >= buffer->size) { 1708 // if we can accept data, or the segment is not what we'd expect, 1709 // drop the segment (an immediate acknowledge is always triggered) 1710 if (fReceiveWindow != 0 || segment.sequence != fReceiveNext) 1711 return DROP | IMMEDIATE_ACKNOWLEDGE; 1712 1713 action |= IMMEDIATE_ACKNOWLEDGE; 1714 } 1715 1716 if ((segment.flags & TCP_FLAG_FINISH) != 0) { 1717 // we need to remove the finish, too, as part of the data 1718 drop--; 1719 } 1720 1721 segment.flags &= ~(TCP_FLAG_FINISH | TCP_FLAG_PUSH); 1722 TRACE("* remove %" B_PRId32 " bytes from the end", drop); 1723 gBufferModule->remove_trailer(buffer, drop); 1724 } 1725 1726 #ifdef TRACE_TCP 1727 if (advertisedWindow > fSendWindow) { 1728 TRACE(" Receive(): Window update %" B_PRIu32 " -> %" B_PRIu32, 1729 fSendWindow, advertisedWindow); 1730 } 1731 #endif 1732 1733 if (advertisedWindow > fSendWindow) 1734 action |= IMMEDIATE_ACKNOWLEDGE; 1735 1736 fSendWindow = advertisedWindow; 1737 if (advertisedWindow > fSendMaxWindow) 1738 fSendMaxWindow = advertisedWindow; 1739 1740 // Then look at the acknowledgement for any updates 1741 1742 if ((segment.flags & TCP_FLAG_ACKNOWLEDGE) != 0) { 1743 // process acknowledged data 1744 if (fState == SYNCHRONIZE_RECEIVED) 1745 _MarkEstablished(); 1746 1747 if (fSendMax < segment.acknowledge) 1748 return DROP | IMMEDIATE_ACKNOWLEDGE; 1749 1750 if (segment.acknowledge == fSendUnacknowledged) { 1751 if (buffer->size == 0 && advertisedWindow == fSendWindow 1752 && (segment.flags & TCP_FLAG_FINISH) == 0 && fSendUnacknowledged != fSendMax) { 1753 TRACE("Receive(): duplicate ack!"); 1754 _DuplicateAcknowledge(segment); 1755 } 1756 } else if (segment.acknowledge < fSendUnacknowledged) { 1757 return DROP; 1758 } else { 1759 // this segment acknowledges in flight data 1760 1761 if (fDuplicateAcknowledgeCount >= 3) { 1762 // deflate the window. 1763 if (segment.acknowledge > fRecover) { 1764 uint32 flightSize = (fSendMax - fSendUnacknowledged).Number(); 1765 fCongestionWindow = min_c(fSlowStartThreshold, 1766 max_c(flightSize, fSendMaxSegmentSize) + fSendMaxSegmentSize); 1767 fFlags &= ~FLAG_RECOVERY; 1768 } 1769 } 1770 1771 if (fSendMax == segment.acknowledge) 1772 TRACE("Receive(): all inflight data ack'd!"); 1773 1774 if (segment.acknowledge > fSendQueue.LastSequence() 1775 && fState > ESTABLISHED) { 1776 TRACE("Receive(): FIN has been acknowledged!"); 1777 1778 switch (fState) { 1779 case FINISH_SENT: 1780 fState = FINISH_ACKNOWLEDGED; 1781 T(State(this)); 1782 break; 1783 case CLOSING: 1784 fState = TIME_WAIT; 1785 T(State(this)); 1786 _EnterTimeWait(); 1787 return DROP; 1788 case WAIT_FOR_FINISH_ACKNOWLEDGE: 1789 _Close(); 1790 break; 1791 1792 default: 1793 break; 1794 } 1795 } 1796 1797 if (fState != CLOSED) { 1798 tcp_sequence last = fLastAcknowledgeSent; 1799 _Acknowledged(segment); 1800 // we just sent an acknowledge, remove from action 1801 if (last < fLastAcknowledgeSent) 1802 action &= ~IMMEDIATE_ACKNOWLEDGE; 1803 } 1804 } 1805 } 1806 1807 if (segment.flags & TCP_FLAG_URGENT) { 1808 if (fState == ESTABLISHED || fState == FINISH_SENT 1809 || fState == FINISH_ACKNOWLEDGED) { 1810 // TODO: Handle urgent data: 1811 // - RCV.UP <- max(RCV.UP, SEG.UP) 1812 // - signal the user that urgent data is available (SIGURG) 1813 } 1814 } 1815 1816 bool notify = false; 1817 1818 // The buffer may be freed if its data is added to the queue, so cache 1819 // the size as we still need it later. 1820 uint32 bufferSize = buffer->size; 1821 1822 if ((bufferSize > 0 || (segment.flags & TCP_FLAG_FINISH) != 0) 1823 && _ShouldReceive()) 1824 notify = _AddData(segment, buffer); 1825 else { 1826 if ((fFlags & FLAG_NO_RECEIVE) != 0) 1827 fReceiveNext += buffer->size; 1828 1829 action = (action & ~KEEP) | DROP; 1830 } 1831 1832 if ((segment.flags & TCP_FLAG_FINISH) != 0) { 1833 segmentLength++; 1834 if (fState != CLOSED && fState != LISTEN && fState != SYNCHRONIZE_SENT) { 1835 TRACE("Receive(): peer is finishing connection!"); 1836 fReceiveNext++; 1837 notify = true; 1838 1839 // FIN implies PUSH 1840 fReceiveQueue.SetPushPointer(); 1841 1842 // we'll reply immediately to the FIN if we are not 1843 // transitioning to TIME WAIT so we immediatly ACK it. 1844 action |= IMMEDIATE_ACKNOWLEDGE; 1845 1846 // other side is closing connection; change states 1847 switch (fState) { 1848 case ESTABLISHED: 1849 case SYNCHRONIZE_RECEIVED: 1850 fState = FINISH_RECEIVED; 1851 T(State(this)); 1852 break; 1853 case FINISH_SENT: 1854 // simultaneous close 1855 fState = CLOSING; 1856 T(State(this)); 1857 break; 1858 case FINISH_ACKNOWLEDGED: 1859 fState = TIME_WAIT; 1860 T(State(this)); 1861 _EnterTimeWait(); 1862 break; 1863 case TIME_WAIT: 1864 _UpdateTimeWait(); 1865 break; 1866 1867 default: 1868 break; 1869 } 1870 } 1871 } 1872 1873 if (notify) 1874 _NotifyReader(); 1875 1876 if (bufferSize > 0 || (segment.flags & TCP_FLAG_SYNCHRONIZE) != 0) 1877 action |= ACKNOWLEDGE; 1878 1879 _UpdateTimestamps(segment, segmentLength); 1880 1881 TRACE("Receive() Action %" B_PRId32, action); 1882 1883 return action; 1884 } 1885 1886 1887 int32 1888 TCPEndpoint::SegmentReceived(tcp_segment_header& segment, net_buffer* buffer) 1889 { 1890 MutexLocker locker(fLock); 1891 1892 TRACE("SegmentReceived(): buffer %p (%" B_PRIu32 " bytes) address %s " 1893 "to %s flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32 1894 ", wnd %" B_PRIu32, buffer, buffer->size, PrintAddress(buffer->source), 1895 PrintAddress(buffer->destination), segment.flags, segment.sequence, 1896 segment.acknowledge, 1897 (uint32)segment.advertised_window << fSendWindowShift); 1898 T(Receive(this, segment, 1899 (uint32)segment.advertised_window << fSendWindowShift, buffer)); 1900 int32 segmentAction = DROP; 1901 1902 switch (fState) { 1903 case LISTEN: 1904 segmentAction = _ListenReceive(segment, buffer); 1905 break; 1906 1907 case SYNCHRONIZE_SENT: 1908 segmentAction = _SynchronizeSentReceive(segment, buffer); 1909 break; 1910 1911 case SYNCHRONIZE_RECEIVED: 1912 case ESTABLISHED: 1913 case FINISH_RECEIVED: 1914 case WAIT_FOR_FINISH_ACKNOWLEDGE: 1915 case FINISH_SENT: 1916 case FINISH_ACKNOWLEDGED: 1917 case CLOSING: 1918 case TIME_WAIT: 1919 case CLOSED: 1920 segmentAction = _Receive(segment, buffer); 1921 break; 1922 } 1923 1924 // process acknowledge action as asked for by the *Receive() method 1925 if (segmentAction & IMMEDIATE_ACKNOWLEDGE) 1926 SendAcknowledge(true); 1927 else if (segmentAction & ACKNOWLEDGE) 1928 DelayedAcknowledge(); 1929 1930 if ((fFlags & (FLAG_CLOSED | FLAG_DELETE_ON_CLOSE)) 1931 == (FLAG_CLOSED | FLAG_DELETE_ON_CLOSE)) { 1932 1933 locker.Unlock(); 1934 if (gSocketModule->release_socket(socket)) 1935 segmentAction |= DELETED_ENDPOINT; 1936 } 1937 1938 return segmentAction; 1939 } 1940 1941 1942 // #pragma mark - send 1943 1944 1945 inline uint8 1946 TCPEndpoint::_CurrentFlags() 1947 { 1948 // we don't set FLAG_FINISH here, instead we do it 1949 // conditionally below depending if we are sending 1950 // the last bytes of the send queue. 1951 1952 switch (fState) { 1953 case CLOSED: 1954 return TCP_FLAG_RESET | TCP_FLAG_ACKNOWLEDGE; 1955 1956 case SYNCHRONIZE_SENT: 1957 return TCP_FLAG_SYNCHRONIZE; 1958 case SYNCHRONIZE_RECEIVED: 1959 return TCP_FLAG_SYNCHRONIZE | TCP_FLAG_ACKNOWLEDGE; 1960 1961 case ESTABLISHED: 1962 case FINISH_RECEIVED: 1963 case FINISH_ACKNOWLEDGED: 1964 case TIME_WAIT: 1965 case WAIT_FOR_FINISH_ACKNOWLEDGE: 1966 case FINISH_SENT: 1967 case CLOSING: 1968 return TCP_FLAG_ACKNOWLEDGE; 1969 1970 default: 1971 return 0; 1972 } 1973 } 1974 1975 1976 inline bool 1977 TCPEndpoint::_ShouldSendSegment(tcp_segment_header& segment, uint32 length, 1978 uint32 segmentMaxSize, uint32 flightSize) 1979 { 1980 if (fState == ESTABLISHED && fSendMaxSegments == 0) 1981 return false; 1982 1983 if (length > 0) { 1984 // Avoid the silly window syndrome - we only send a segment in case: 1985 // - we have a full segment to send, or 1986 // - we're at the end of our buffer queue, or 1987 // - the buffer is at least larger than half of the maximum send window, 1988 // or 1989 // - we're retransmitting data 1990 if (length == segmentMaxSize 1991 || (fOptions & TCP_NODELAY) != 0 1992 || tcp_sequence(fSendNext + length) == fSendQueue.LastSequence() 1993 || (fSendMaxWindow > 0 && length >= fSendMaxWindow / 2)) 1994 return true; 1995 } 1996 1997 // check if we need to send a window update to the peer 1998 if (segment.advertised_window > 0) { 1999 // correct the window to take into account what already has been advertised 2000 uint32 window = (segment.advertised_window << fReceiveWindowShift) 2001 - (fReceiveMaxAdvertised - fReceiveNext).Number(); 2002 2003 // if we can advertise a window larger than twice the maximum segment 2004 // size, or half the maximum buffer size we send a window update 2005 if (window >= (fReceiveMaxSegmentSize << 1) 2006 || window >= (socket->receive.buffer_size >> 1)) 2007 return true; 2008 } 2009 2010 if ((segment.flags & (TCP_FLAG_SYNCHRONIZE | TCP_FLAG_FINISH 2011 | TCP_FLAG_RESET)) != 0) 2012 return true; 2013 2014 // We do have urgent data pending 2015 if (fSendUrgentOffset > fSendNext) 2016 return true; 2017 2018 // there is no reason to send a segment just now 2019 return false; 2020 } 2021 2022 2023 status_t 2024 TCPEndpoint::_SendQueued(bool force) 2025 { 2026 return _SendQueued(force, fSendWindow); 2027 } 2028 2029 2030 /*! Sends one or more TCP segments with the data waiting in the queue, or some 2031 specific flags that need to be sent. 2032 */ 2033 status_t 2034 TCPEndpoint::_SendQueued(bool force, uint32 sendWindow) 2035 { 2036 if (fRoute == NULL) 2037 return B_ERROR; 2038 2039 // in passive state? 2040 if (fState == LISTEN) 2041 return B_ERROR; 2042 2043 tcp_segment_header segment(_CurrentFlags()); 2044 2045 if ((fOptions & TCP_NOOPT) == 0) { 2046 if ((fFlags & FLAG_OPTION_TIMESTAMP) != 0) { 2047 segment.options |= TCP_HAS_TIMESTAMPS; 2048 segment.timestamp_reply = fReceivedTimestamp; 2049 segment.timestamp_value = tcp_now(); 2050 } 2051 2052 // SACK information is embedded with duplicate acknowledgements 2053 if (!fReceiveQueue.IsContiguous() 2054 && fLastAcknowledgeSent <= fReceiveNext 2055 && (fFlags & FLAG_OPTION_SACK_PERMITTED) != 0) { 2056 segment.options |= TCP_HAS_SACK; 2057 int maxSackCount = MAX_SACK_BLKS 2058 - ((fFlags & FLAG_OPTION_TIMESTAMP) != 0); 2059 memset(segment.sacks, 0, sizeof(segment.sacks)); 2060 segment.sackCount = fReceiveQueue.PopulateSackInfo(fReceiveNext, 2061 maxSackCount, segment.sacks); 2062 } 2063 2064 if ((segment.flags & TCP_FLAG_SYNCHRONIZE) != 0 2065 && fSendNext == fInitialSendSequence) { 2066 // add connection establishment options 2067 segment.max_segment_size = fReceiveMaxSegmentSize; 2068 if (fFlags & FLAG_OPTION_WINDOW_SCALE) { 2069 segment.options |= TCP_HAS_WINDOW_SCALE; 2070 segment.window_shift = fReceiveWindowShift; 2071 } 2072 if ((fFlags & FLAG_OPTION_SACK_PERMITTED) != 0) 2073 segment.options |= TCP_SACK_PERMITTED; 2074 } 2075 } 2076 2077 size_t availableBytes = fReceiveQueue.Free(); 2078 // window size must remain same for duplicate acknowledgements 2079 if (!fReceiveQueue.IsContiguous()) 2080 availableBytes = (fReceiveMaxAdvertised - fReceiveNext).Number(); 2081 2082 if (fFlags & FLAG_OPTION_WINDOW_SCALE) 2083 availableBytes >>= fReceiveWindowShift; 2084 segment.advertised_window = min_c(TCP_MAX_WINDOW, availableBytes); 2085 2086 segment.acknowledge = fReceiveNext.Number(); 2087 2088 // Process urgent data 2089 if (fSendUrgentOffset > fSendNext) { 2090 segment.flags |= TCP_FLAG_URGENT; 2091 segment.urgent_offset = (fSendUrgentOffset - fSendNext).Number(); 2092 } else { 2093 fSendUrgentOffset = fSendUnacknowledged.Number(); 2094 // Keep urgent offset updated, so that it doesn't reach into our 2095 // send window on overlap 2096 segment.urgent_offset = 0; 2097 } 2098 2099 if (fCongestionWindow > 0 && fCongestionWindow < sendWindow) 2100 sendWindow = fCongestionWindow; 2101 2102 // fSendUnacknowledged 2103 // | fSendNext fSendMax 2104 // | | | 2105 // v v v 2106 // ----------------------------------- 2107 // | effective window | 2108 // ----------------------------------- 2109 2110 // Flight size represents the window of data which is currently in the 2111 // ether. We should never send data such as the flight size becomes larger 2112 // than the effective window. Note however that the effective window may be 2113 // reduced (by congestion for instance), so at some point in time flight 2114 // size may be larger than the currently calculated window. 2115 2116 uint32 flightSize = (fSendMax - fSendUnacknowledged).Number(); 2117 uint32 consumedWindow = (fSendNext - fSendUnacknowledged).Number(); 2118 2119 if (consumedWindow > sendWindow) { 2120 sendWindow = 0; 2121 // TODO: enter persist state? try to get a window update. 2122 } else 2123 sendWindow -= consumedWindow; 2124 2125 uint32 length = min_c(fSendQueue.Available(fSendNext), sendWindow); 2126 bool shouldStartRetransmitTimer = fSendNext == fSendUnacknowledged; 2127 bool retransmit = fSendNext < fSendMax; 2128 2129 if (fDuplicateAcknowledgeCount != 0) { 2130 // send at most 1 SMSS of data when under limited transmit, fast transmit/recovery 2131 length = min_c(length, fSendMaxSegmentSize); 2132 } 2133 2134 do { 2135 uint32 segmentMaxSize = fSendMaxSegmentSize 2136 - tcp_options_length(segment); 2137 uint32 segmentLength = min_c(length, segmentMaxSize); 2138 2139 if (fSendNext + segmentLength == fSendQueue.LastSequence() && !force) { 2140 if (state_needs_finish(fState)) 2141 segment.flags |= TCP_FLAG_FINISH; 2142 if (length > 0) 2143 segment.flags |= TCP_FLAG_PUSH; 2144 } 2145 2146 // Determine if we should really send this segment 2147 if (!force && !retransmit && !_ShouldSendSegment(segment, segmentLength, 2148 segmentMaxSize, flightSize)) { 2149 if (fSendQueue.Available() 2150 && !gStackModule->is_timer_active(&fPersistTimer) 2151 && !gStackModule->is_timer_active(&fRetransmitTimer)) 2152 _StartPersistTimer(); 2153 break; 2154 } 2155 2156 net_buffer *buffer = gBufferModule->create(256); 2157 if (buffer == NULL) 2158 return B_NO_MEMORY; 2159 2160 status_t status = B_OK; 2161 if (segmentLength > 0) 2162 status = fSendQueue.Get(buffer, fSendNext, segmentLength); 2163 if (status < B_OK) { 2164 gBufferModule->free(buffer); 2165 return status; 2166 } 2167 2168 LocalAddress().CopyTo(buffer->source); 2169 PeerAddress().CopyTo(buffer->destination); 2170 2171 uint32 size = buffer->size; 2172 segment.sequence = fSendNext.Number(); 2173 2174 TRACE("SendQueued(): buffer %p (%" B_PRIu32 " bytes) address %s to " 2175 "%s flags %#" B_PRIx8 ", seq %" B_PRIu32 ", ack %" B_PRIu32 2176 ", rwnd %" B_PRIu16 ", cwnd %" B_PRIu32 ", ssthresh %" B_PRIu32 2177 ", len %" B_PRIu32 ", first %" B_PRIu32 ", last %" B_PRIu32, 2178 buffer, buffer->size, PrintAddress(buffer->source), 2179 PrintAddress(buffer->destination), segment.flags, segment.sequence, 2180 segment.acknowledge, segment.advertised_window, 2181 fCongestionWindow, fSlowStartThreshold, segmentLength, 2182 fSendQueue.FirstSequence().Number(), 2183 fSendQueue.LastSequence().Number()); 2184 T(Send(this, segment, buffer, fSendQueue.FirstSequence(), 2185 fSendQueue.LastSequence())); 2186 2187 PROBE(buffer, sendWindow); 2188 sendWindow -= buffer->size; 2189 2190 status = add_tcp_header(AddressModule(), segment, buffer); 2191 if (status != B_OK) { 2192 gBufferModule->free(buffer); 2193 return status; 2194 } 2195 2196 // Update send status - we need to do this before we send the data 2197 // for local connections as the answer is directly handled 2198 2199 if (segment.flags & TCP_FLAG_SYNCHRONIZE) { 2200 segment.options &= ~TCP_HAS_WINDOW_SCALE; 2201 segment.max_segment_size = 0; 2202 size++; 2203 } 2204 2205 if (segment.flags & TCP_FLAG_FINISH) 2206 size++; 2207 2208 uint32 sendMax = fSendMax.Number(); 2209 fSendNext += size; 2210 if (fSendMax < fSendNext) 2211 fSendMax = fSendNext; 2212 2213 fReceiveMaxAdvertised = fReceiveNext 2214 + ((uint32)segment.advertised_window << fReceiveWindowShift); 2215 2216 if (segmentLength != 0 && fState == ESTABLISHED) 2217 --fSendMaxSegments; 2218 2219 status = next->module->send_routed_data(next, fRoute, buffer); 2220 if (status < B_OK) { 2221 gBufferModule->free(buffer); 2222 2223 fSendNext = segment.sequence; 2224 fSendMax = sendMax; 2225 // restore send status 2226 return status; 2227 } 2228 2229 if (fSendTime == 0 && !retransmit 2230 && (segmentLength != 0 || (segment.flags & TCP_FLAG_SYNCHRONIZE) !=0)) { 2231 fSendTime = tcp_now(); 2232 fRoundTripStartSequence = segment.sequence; 2233 } 2234 2235 if (shouldStartRetransmitTimer && size > 0) { 2236 TRACE("starting initial retransmit timer of: %" B_PRIdBIGTIME, 2237 fRetransmitTimeout); 2238 gStackModule->set_timer(&fRetransmitTimer, fRetransmitTimeout); 2239 T(TimerSet(this, "retransmit", fRetransmitTimeout)); 2240 shouldStartRetransmitTimer = false; 2241 } 2242 2243 if (segment.flags & TCP_FLAG_ACKNOWLEDGE) { 2244 fLastAcknowledgeSent = segment.acknowledge; 2245 gStackModule->cancel_timer(&fDelayedAcknowledgeTimer); 2246 } 2247 2248 length -= segmentLength; 2249 segment.flags &= ~(TCP_FLAG_SYNCHRONIZE | TCP_FLAG_RESET 2250 | TCP_FLAG_FINISH); 2251 2252 if (retransmit) 2253 break; 2254 2255 } while (length > 0); 2256 2257 return B_OK; 2258 } 2259 2260 2261 int 2262 TCPEndpoint::_MaxSegmentSize(const sockaddr* address) const 2263 { 2264 return next->module->get_mtu(next, address) - sizeof(tcp_header); 2265 } 2266 2267 2268 status_t 2269 TCPEndpoint::_PrepareSendPath(const sockaddr* peer) 2270 { 2271 if (fRoute == NULL) { 2272 fRoute = gDatalinkModule->get_route(Domain(), peer); 2273 if (fRoute == NULL) 2274 return ENETUNREACH; 2275 2276 if ((fRoute->flags & RTF_LOCAL) != 0) 2277 fFlags |= FLAG_LOCAL; 2278 } 2279 2280 // make sure connection does not already exist 2281 status_t status = fManager->SetConnection(this, *LocalAddress(), peer, 2282 fRoute->interface_address->local); 2283 if (status < B_OK) 2284 return status; 2285 2286 fInitialSendSequence = system_time() >> 4; 2287 fSendNext = fInitialSendSequence; 2288 fSendUnacknowledged = fInitialSendSequence; 2289 fSendMax = fInitialSendSequence; 2290 fSendUrgentOffset = fInitialSendSequence; 2291 fRecover = fInitialSendSequence.Number(); 2292 2293 // we are counting the SYN here 2294 fSendQueue.SetInitialSequence(fSendNext + 1); 2295 2296 fReceiveMaxSegmentSize = _MaxSegmentSize(peer); 2297 2298 // Compute the window shift we advertise to our peer - if it doesn't support 2299 // this option, this will be reset to 0 (when its SYN is received) 2300 fReceiveWindowShift = 0; 2301 while (fReceiveWindowShift < TCP_MAX_WINDOW_SHIFT 2302 && (0xffffUL << fReceiveWindowShift) < socket->receive.buffer_size) { 2303 fReceiveWindowShift++; 2304 } 2305 2306 return B_OK; 2307 } 2308 2309 2310 void 2311 TCPEndpoint::_Acknowledged(tcp_segment_header& segment) 2312 { 2313 TRACE("_Acknowledged(): ack %" B_PRIu32 "; uack %" B_PRIu32 "; next %" 2314 B_PRIu32 "; max %" B_PRIu32, segment.acknowledge, 2315 fSendUnacknowledged.Number(), fSendNext.Number(), fSendMax.Number()); 2316 2317 ASSERT(fSendUnacknowledged <= segment.acknowledge); 2318 2319 if (fSendUnacknowledged < segment.acknowledge) { 2320 fSendQueue.RemoveUntil(segment.acknowledge); 2321 2322 uint32 bytesAcknowledged = segment.acknowledge - fSendUnacknowledged.Number(); 2323 fPreviousHighestAcknowledge = fSendUnacknowledged; 2324 fSendUnacknowledged = segment.acknowledge; 2325 uint32 flightSize = (fSendMax - fSendUnacknowledged).Number(); 2326 int32 expectedSamples = flightSize / (fSendMaxSegmentSize << 1); 2327 2328 if (fPreviousHighestAcknowledge > fSendUnacknowledged) { 2329 // need to update the recover variable upon a sequence wraparound 2330 fRecover = segment.acknowledge - 1; 2331 } 2332 2333 // the acknowledgment of the SYN/ACK MUST NOT increase the size of the congestion window 2334 if (fSendUnacknowledged != fInitialSendSequence) { 2335 if (fCongestionWindow < fSlowStartThreshold) 2336 fCongestionWindow += min_c(bytesAcknowledged, fSendMaxSegmentSize); 2337 else { 2338 uint32 increment = fSendMaxSegmentSize * fSendMaxSegmentSize; 2339 2340 if (increment < fCongestionWindow) 2341 increment = 1; 2342 else 2343 increment /= fCongestionWindow; 2344 2345 fCongestionWindow += increment; 2346 } 2347 2348 fSendMaxSegments = UINT32_MAX; 2349 } 2350 2351 if ((fFlags & FLAG_RECOVERY) != 0) { 2352 fSendNext = fSendUnacknowledged; 2353 _SendQueued(); 2354 fCongestionWindow -= bytesAcknowledged; 2355 2356 if (bytesAcknowledged > fSendMaxSegmentSize) 2357 fCongestionWindow += fSendMaxSegmentSize; 2358 2359 fSendNext = fSendMax; 2360 } else 2361 fDuplicateAcknowledgeCount = 0; 2362 2363 if (fSendNext < fSendUnacknowledged) 2364 fSendNext = fSendUnacknowledged; 2365 2366 if (fFlags & FLAG_OPTION_TIMESTAMP) { 2367 _UpdateRoundTripTime(tcp_diff_timestamp(segment.timestamp_reply), 2368 expectedSamples > 0 ? expectedSamples : 1); 2369 } else if (fSendTime != 0 && fRoundTripStartSequence < segment.acknowledge) { 2370 _UpdateRoundTripTime(tcp_diff_timestamp(fSendTime), 1); 2371 fSendTime = 0; 2372 } 2373 2374 if (fSendUnacknowledged == fSendMax) { 2375 TRACE("all acknowledged, cancelling retransmission timer."); 2376 gStackModule->cancel_timer(&fRetransmitTimer); 2377 T(TimerSet(this, "retransmit", -1)); 2378 } else { 2379 TRACE("data acknowledged, resetting retransmission timer to: %" 2380 B_PRIdBIGTIME, fRetransmitTimeout); 2381 gStackModule->set_timer(&fRetransmitTimer, fRetransmitTimeout); 2382 T(TimerSet(this, "retransmit", fRetransmitTimeout)); 2383 } 2384 2385 if (is_writable(fState)) { 2386 // notify threads waiting on the socket to become writable again 2387 fSendCondition.NotifyAll(); 2388 gSocketModule->notify(socket, B_SELECT_WRITE, fSendQueue.Free()); 2389 } 2390 } 2391 2392 // if there is data left to be sent, send it now 2393 if (fSendQueue.Used() > 0) 2394 _SendQueued(); 2395 } 2396 2397 2398 void 2399 TCPEndpoint::_Retransmit() 2400 { 2401 TRACE("Retransmit()"); 2402 2403 if (fState < ESTABLISHED) { 2404 fRetransmitTimeout = TCP_SYN_RETRANSMIT_TIMEOUT; 2405 fCongestionWindow = fSendMaxSegmentSize; 2406 } else { 2407 _ResetSlowStart(); 2408 fDuplicateAcknowledgeCount = 0; 2409 // Do exponential back off of the retransmit timeout 2410 fRetransmitTimeout *= 2; 2411 if (fRetransmitTimeout > TCP_MAX_RETRANSMIT_TIMEOUT) 2412 fRetransmitTimeout = TCP_MAX_RETRANSMIT_TIMEOUT; 2413 } 2414 2415 fSendNext = fSendUnacknowledged; 2416 _SendQueued(); 2417 2418 fRecover = fSendNext.Number() - 1; 2419 if ((fFlags & FLAG_RECOVERY) != 0) 2420 fFlags &= ~FLAG_RECOVERY; 2421 } 2422 2423 2424 void 2425 TCPEndpoint::_UpdateRoundTripTime(int32 roundTripTime, int32 expectedSamples) 2426 { 2427 if (fSmoothedRoundTripTime == 0) { 2428 fSmoothedRoundTripTime = roundTripTime; 2429 fRoundTripVariation = roundTripTime / 2; 2430 fRetransmitTimeout = (fSmoothedRoundTripTime + max_c(100, fRoundTripVariation * 4)) 2431 * kTimestampFactor; 2432 } else { 2433 int32 delta = fSmoothedRoundTripTime - roundTripTime; 2434 if (delta < 0) 2435 delta = -delta; 2436 fRoundTripVariation += (delta - fRoundTripVariation) / (expectedSamples * 4); 2437 fSmoothedRoundTripTime += (roundTripTime - fSmoothedRoundTripTime) / (expectedSamples * 8); 2438 fRetransmitTimeout = (fSmoothedRoundTripTime + max_c(100, fRoundTripVariation * 4)) 2439 * kTimestampFactor; 2440 } 2441 2442 if (fRetransmitTimeout > TCP_MAX_RETRANSMIT_TIMEOUT) 2443 fRetransmitTimeout = TCP_MAX_RETRANSMIT_TIMEOUT; 2444 2445 if (fRetransmitTimeout < TCP_MIN_RETRANSMIT_TIMEOUT) 2446 fRetransmitTimeout = TCP_MIN_RETRANSMIT_TIMEOUT; 2447 2448 TRACE(" RTO is now %" B_PRIdBIGTIME " (after rtt %" B_PRId32 "ms)", 2449 fRetransmitTimeout, roundTripTime); 2450 } 2451 2452 2453 void 2454 TCPEndpoint::_ResetSlowStart() 2455 { 2456 fSlowStartThreshold = max_c((fSendMax - fSendUnacknowledged).Number() / 2, 2457 2 * fSendMaxSegmentSize); 2458 fCongestionWindow = fSendMaxSegmentSize; 2459 } 2460 2461 2462 // #pragma mark - timer 2463 2464 2465 /*static*/ void 2466 TCPEndpoint::_RetransmitTimer(net_timer* timer, void* _endpoint) 2467 { 2468 TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint; 2469 T(TimerTriggered(endpoint, "retransmit")); 2470 2471 MutexLocker locker(endpoint->fLock); 2472 if (!locker.IsLocked() || gStackModule->is_timer_active(timer)) 2473 return; 2474 2475 endpoint->_Retransmit(); 2476 } 2477 2478 2479 /*static*/ void 2480 TCPEndpoint::_PersistTimer(net_timer* timer, void* _endpoint) 2481 { 2482 TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint; 2483 T(TimerTriggered(endpoint, "persist")); 2484 2485 MutexLocker locker(endpoint->fLock); 2486 if (!locker.IsLocked()) 2487 return; 2488 2489 // the timer might not have been canceled early enough 2490 if (endpoint->State() == CLOSED) 2491 return; 2492 2493 endpoint->_SendQueued(true); 2494 } 2495 2496 2497 /*static*/ void 2498 TCPEndpoint::_DelayedAcknowledgeTimer(net_timer* timer, void* _endpoint) 2499 { 2500 TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint; 2501 T(TimerTriggered(endpoint, "delayed ack")); 2502 2503 MutexLocker locker(endpoint->fLock); 2504 if (!locker.IsLocked()) 2505 return; 2506 2507 // the timer might not have been canceled early enough 2508 if (endpoint->State() == CLOSED) 2509 return; 2510 2511 endpoint->SendAcknowledge(true); 2512 } 2513 2514 2515 /*static*/ void 2516 TCPEndpoint::_TimeWaitTimer(net_timer* timer, void* _endpoint) 2517 { 2518 TCPEndpoint* endpoint = (TCPEndpoint*)_endpoint; 2519 T(TimerTriggered(endpoint, "time-wait")); 2520 2521 MutexLocker locker(endpoint->fLock); 2522 if (!locker.IsLocked()) 2523 return; 2524 2525 if ((endpoint->fFlags & FLAG_CLOSED) == 0) { 2526 endpoint->fFlags |= FLAG_DELETE_ON_CLOSE; 2527 return; 2528 } 2529 2530 locker.Unlock(); 2531 2532 gSocketModule->release_socket(endpoint->socket); 2533 } 2534 2535 2536 /*static*/ status_t 2537 TCPEndpoint::_WaitForCondition(ConditionVariable& condition, 2538 MutexLocker& locker, bigtime_t timeout) 2539 { 2540 ConditionVariableEntry entry; 2541 condition.Add(&entry); 2542 2543 locker.Unlock(); 2544 status_t result = entry.Wait(B_ABSOLUTE_TIMEOUT | B_CAN_INTERRUPT, timeout); 2545 locker.Lock(); 2546 2547 return result; 2548 } 2549 2550 2551 // #pragma mark - 2552 2553 2554 void 2555 TCPEndpoint::Dump() const 2556 { 2557 kprintf("TCP endpoint %p\n", this); 2558 kprintf(" state: %s\n", name_for_state(fState)); 2559 kprintf(" flags: 0x%" B_PRIx32 "\n", fFlags); 2560 #if KDEBUG 2561 kprintf(" lock: { %p, holder: %" B_PRId32 " }\n", &fLock, fLock.holder); 2562 #endif 2563 kprintf(" accept sem: %" B_PRId32 "\n", fAcceptSemaphore); 2564 kprintf(" options: 0x%" B_PRIx32 "\n", (uint32)fOptions); 2565 kprintf(" send\n"); 2566 kprintf(" window shift: %" B_PRIu8 "\n", fSendWindowShift); 2567 kprintf(" unacknowledged: %" B_PRIu32 "\n", 2568 fSendUnacknowledged.Number()); 2569 kprintf(" next: %" B_PRIu32 "\n", fSendNext.Number()); 2570 kprintf(" max: %" B_PRIu32 "\n", fSendMax.Number()); 2571 kprintf(" urgent offset: %" B_PRIu32 "\n", fSendUrgentOffset.Number()); 2572 kprintf(" window: %" B_PRIu32 "\n", fSendWindow); 2573 kprintf(" max window: %" B_PRIu32 "\n", fSendMaxWindow); 2574 kprintf(" max segment size: %" B_PRIu32 "\n", fSendMaxSegmentSize); 2575 kprintf(" queue: %" B_PRIuSIZE " / %" B_PRIuSIZE "\n", fSendQueue.Used(), 2576 fSendQueue.Size()); 2577 #if DEBUG_TCP_BUFFER_QUEUE 2578 fSendQueue.Dump(); 2579 #endif 2580 kprintf(" last acknowledge sent: %" B_PRIu32 "\n", 2581 fLastAcknowledgeSent.Number()); 2582 kprintf(" initial sequence: %" B_PRIu32 "\n", 2583 fInitialSendSequence.Number()); 2584 kprintf(" receive\n"); 2585 kprintf(" window shift: %" B_PRIu8 "\n", fReceiveWindowShift); 2586 kprintf(" next: %" B_PRIu32 "\n", fReceiveNext.Number()); 2587 kprintf(" max advertised: %" B_PRIu32 "\n", 2588 fReceiveMaxAdvertised.Number()); 2589 kprintf(" window: %" B_PRIu32 "\n", fReceiveWindow); 2590 kprintf(" max segment size: %" B_PRIu32 "\n", fReceiveMaxSegmentSize); 2591 kprintf(" queue: %" B_PRIuSIZE " / %" B_PRIuSIZE "\n", 2592 fReceiveQueue.Available(), fReceiveQueue.Size()); 2593 #if DEBUG_TCP_BUFFER_QUEUE 2594 fReceiveQueue.Dump(); 2595 #endif 2596 kprintf(" initial sequence: %" B_PRIu32 "\n", 2597 fInitialReceiveSequence.Number()); 2598 kprintf(" duplicate acknowledge count: %" B_PRIu32 "\n", 2599 fDuplicateAcknowledgeCount); 2600 kprintf(" smoothed round trip time: %" B_PRId32 " (deviation %" B_PRId32 ")\n", 2601 fSmoothedRoundTripTime, fRoundTripVariation); 2602 kprintf(" retransmit timeout: %" B_PRId64 "\n", fRetransmitTimeout); 2603 kprintf(" congestion window: %" B_PRIu32 "\n", fCongestionWindow); 2604 kprintf(" slow start threshold: %" B_PRIu32 "\n", fSlowStartThreshold); 2605 } 2606 2607