xref: /haiku/src/add-ons/kernel/file_systems/fat/bsd/kern/subr_fattime.c (revision 909af08f4328301fbdef1ffb41f566c3b5bec0c7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2006 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  *
30  * Convert MS-DOS FAT format timestamps to and from unix timespecs
31  *
32  * FAT filestamps originally consisted of two 16 bit integers, encoded like
33  * this:
34  *
35  *	yyyyyyymmmmddddd (year - 1980, month, day)
36  *
37  *      hhhhhmmmmmmsssss (hour, minutes, seconds divided by two)
38  *
39  * Subsequently even Microsoft realized that files could be accessed in less
40  * than two seconds and a byte was added containing:
41  *
42  *      sfffffff	 (second mod two, 100ths of second)
43  *
44  * FAT timestamps are in the local timezone, with no indication of which
45  * timezone much less if daylight savings time applies.
46  *
47  * Later on again, in Windows NT, timestamps were defined relative to GMT.
48  *
49  * Purists will point out that UTC replaced GMT for such uses around
50  * half a century ago, already then. Ironically "NT" was an abbreviation of
51  * "New Technology". Anyway...
52  *
53  * The 'utc' argument determines if the resulting FATTIME timestamp
54  * should be on the UTC or local timezone calendar.
55  *
56  * The conversion functions below cut time into four-year leap-year
57  * cycles rather than single years and uses table lookups inside those
58  * cycles to get the months and years sorted out.
59  *
60  * Obviously we cannot calculate the correct table index going from
61  * a posix seconds count to Y/M/D, but we can get pretty close by
62  * dividing the daycount by 32 (giving a too low index), and then
63  * adjusting upwards a couple of steps if necessary.
64  *
65  * FAT timestamps have 7 bits for the year and starts at 1980, so
66  * they can represent up to 2107 which means that the non-leap-year
67  * 2100 must be handled.
68  *
69  * XXX: As long as time_t is 32 bits this is not relevant or easily
70  * XXX: testable. Revisit when time_t grows bigger.
71  * XXX: grepfodder: 64 bit time_t, y2100, y2.1k, 2100, leap year
72  *
73  */
74 
75 
76 // Modified to support the Haiku FAT driver.
77 
78 #include <sys/time.h>
79 
80 #include "sys/param.h"
81 #include "sys/types.h"
82 #include "sys/clock.h"
83 
84 
85 #define DAY (24 * 60 * 60) /* Length of day in seconds */
86 #define YEAR 365 /* Length of normal year */
87 #define LYC (4 * YEAR + 1) /* Length of 4 year leap-year cycle */
88 #define T1980 (10 * 365 + 2) /* Days from 1970 to 1980 */
89 
90 /* End of month is N days from start of (normal) year */
91 #define JAN 31
92 #define FEB (JAN + 28)
93 #define MAR (FEB + 31)
94 #define APR (MAR + 30)
95 #define MAY (APR + 31)
96 #define JUN (MAY + 30)
97 #define JUL (JUN + 31)
98 #define AUG (JUL + 31)
99 #define SEP (AUG + 30)
100 #define OCT (SEP + 31)
101 #define NOV (OCT + 30)
102 #define DEC (NOV + 31)
103 
104 /* Table of months in a 4 year leap-year cycle */
105 
106 #define ENC(y, m) (((y) << 9) | ((m) << 5))
107 
108 static const struct {
109 	uint16_t days; /* month start in days relative to cycle */
110 	uint16_t coded; /* encoded year + month information */
111 } mtab[48] = {
112 	{   0 + 0 * YEAR,     ENC(0, 1)  },
113 
114 	{ JAN + 0 * YEAR,     ENC(0, 2)  }, { FEB + 0 * YEAR + 1, ENC(0, 3)  },
115 	{ MAR + 0 * YEAR + 1, ENC(0, 4)  }, { APR + 0 * YEAR + 1, ENC(0, 5)  },
116 	{ MAY + 0 * YEAR + 1, ENC(0, 6)  }, { JUN + 0 * YEAR + 1, ENC(0, 7)  },
117 	{ JUL + 0 * YEAR + 1, ENC(0, 8)  }, { AUG + 0 * YEAR + 1, ENC(0, 9)  },
118 	{ SEP + 0 * YEAR + 1, ENC(0, 10) }, { OCT + 0 * YEAR + 1, ENC(0, 11) },
119 	{ NOV + 0 * YEAR + 1, ENC(0, 12) }, { DEC + 0 * YEAR + 1, ENC(1, 1)  },
120 
121 	{ JAN + 1 * YEAR + 1, ENC(1, 2)  }, { FEB + 1 * YEAR + 1, ENC(1, 3)  },
122 	{ MAR + 1 * YEAR + 1, ENC(1, 4)  }, { APR + 1 * YEAR + 1, ENC(1, 5)  },
123 	{ MAY + 1 * YEAR + 1, ENC(1, 6)  }, { JUN + 1 * YEAR + 1, ENC(1, 7)  },
124 	{ JUL + 1 * YEAR + 1, ENC(1, 8)  }, { AUG + 1 * YEAR + 1, ENC(1, 9)  },
125 	{ SEP + 1 * YEAR + 1, ENC(1, 10) }, { OCT + 1 * YEAR + 1, ENC(1, 11) },
126 	{ NOV + 1 * YEAR + 1, ENC(1, 12) }, { DEC + 1 * YEAR + 1, ENC(2, 1)  },
127 
128 	{ JAN + 2 * YEAR + 1, ENC(2, 2)  }, { FEB + 2 * YEAR + 1, ENC(2, 3)  },
129 	{ MAR + 2 * YEAR + 1, ENC(2, 4)  }, { APR + 2 * YEAR + 1, ENC(2, 5)  },
130 	{ MAY + 2 * YEAR + 1, ENC(2, 6)  }, { JUN + 2 * YEAR + 1, ENC(2, 7)  },
131 	{ JUL + 2 * YEAR + 1, ENC(2, 8)  }, { AUG + 2 * YEAR + 1, ENC(2, 9)  },
132 	{ SEP + 2 * YEAR + 1, ENC(2, 10) }, { OCT + 2 * YEAR + 1, ENC(2, 11) },
133 	{ NOV + 2 * YEAR + 1, ENC(2, 12) }, { DEC + 2 * YEAR + 1, ENC(3, 1)  },
134 
135 	{ JAN + 3 * YEAR + 1, ENC(3, 2)  }, { FEB + 3 * YEAR + 1, ENC(3, 3)  },
136 	{ MAR + 3 * YEAR + 1, ENC(3, 4)  }, { APR + 3 * YEAR + 1, ENC(3, 5)  },
137 	{ MAY + 3 * YEAR + 1, ENC(3, 6)  }, { JUN + 3 * YEAR + 1, ENC(3, 7)  },
138 	{ JUL + 3 * YEAR + 1, ENC(3, 8)  }, { AUG + 3 * YEAR + 1, ENC(3, 9)  },
139 	{ SEP + 3 * YEAR + 1, ENC(3, 10) }, { OCT + 3 * YEAR + 1, ENC(3, 11) },
140 	{ NOV + 3 * YEAR + 1, ENC(3, 12) }
141 };
142 
143 
144 void
145 timespec2fattime(const struct timespec* tsp, int utc, uint16_t* ddp, uint16_t* dtp, uint8_t* dhp)
146 {
147 	time_t t1;
148 	unsigned t2, l, m;
149 
150 	t1 = tsp->tv_sec;
151 	if (!utc)
152 		t1 -= utc_offset();
153 	if (dhp != NULL)
154 		*dhp = (tsp->tv_sec & 1) * 100 + tsp->tv_nsec / 10000000;
155 	if (dtp != NULL) {
156 		*dtp = (t1 / 2) % 30;
157 		*dtp |= ((t1 / 60) % 60) << 5;
158 		*dtp |= ((t1 / 3600) % 24) << 11;
159 	}
160 	if (ddp != NULL) {
161 		t2 = t1 / DAY;
162 		if (t2 < T1980) {
163 			/* Impossible date, truncate to 1980-01-01 */
164 			*ddp = 0x0021;
165 		} else {
166 			t2 -= T1980;
167 
168 			/*
169 			 * 2100 is not a leap year.
170 			 * XXX: a 32 bit time_t can not get us here.
171 			 */
172 			if (t2 >= ((2100 - 1980) / 4 * LYC + FEB))
173 				t2++;
174 
175 			/* Account for full leapyear cycles */
176 			l = t2 / LYC;
177 			*ddp = (l * 4) << 9;
178 			t2 -= l * LYC;
179 
180 			/* Find approximate table entry */
181 			m = t2 / 32;
182 
183 			/* Find correct table entry */
184 			while (m < 47 && mtab[m + 1].days <= t2)
185 				m++;
186 
187 			/* Get year + month from the table */
188 			*ddp += mtab[m].coded;
189 
190 			/* And apply the day in the month */
191 			t2 -= mtab[m].days - 1;
192 			*ddp |= t2;
193 		}
194 	}
195 }
196 
197 
198 /*
199  * Table indexed by the bottom two bits of year + four bits of the month
200  * from the FAT timestamp, returning number of days into 4 year long
201  * leap-year cycle
202  */
203 
204 #define DCOD(m, y, l) ((m) + YEAR * (y) + (l))
205 static const uint16_t daytab[64] = {
206 	0, 		 DCOD(  0, 0, 0), DCOD(JAN, 0, 0), DCOD(FEB, 0, 1),
207 	DCOD(MAR, 0, 1), DCOD(APR, 0, 1), DCOD(MAY, 0, 1), DCOD(JUN, 0, 1),
208 	DCOD(JUL, 0, 1), DCOD(AUG, 0, 1), DCOD(SEP, 0, 1), DCOD(OCT, 0, 1),
209 	DCOD(NOV, 0, 1), DCOD(DEC, 0, 1), 0,               0,
210 	0, 		 DCOD(  0, 1, 1), DCOD(JAN, 1, 1), DCOD(FEB, 1, 1),
211 	DCOD(MAR, 1, 1), DCOD(APR, 1, 1), DCOD(MAY, 1, 1), DCOD(JUN, 1, 1),
212 	DCOD(JUL, 1, 1), DCOD(AUG, 1, 1), DCOD(SEP, 1, 1), DCOD(OCT, 1, 1),
213 	DCOD(NOV, 1, 1), DCOD(DEC, 1, 1), 0,               0,
214 	0,		 DCOD(  0, 2, 1), DCOD(JAN, 2, 1), DCOD(FEB, 2, 1),
215 	DCOD(MAR, 2, 1), DCOD(APR, 2, 1), DCOD(MAY, 2, 1), DCOD(JUN, 2, 1),
216 	DCOD(JUL, 2, 1), DCOD(AUG, 2, 1), DCOD(SEP, 2, 1), DCOD(OCT, 2, 1),
217 	DCOD(NOV, 2, 1), DCOD(DEC, 2, 1), 0,               0,
218 	0,		 DCOD(  0, 3, 1), DCOD(JAN, 3, 1), DCOD(FEB, 3, 1),
219 	DCOD(MAR, 3, 1), DCOD(APR, 3, 1), DCOD(MAY, 3, 1), DCOD(JUN, 3, 1),
220 	DCOD(JUL, 3, 1), DCOD(AUG, 3, 1), DCOD(SEP, 3, 1), DCOD(OCT, 3, 1),
221 	DCOD(NOV, 3, 1), DCOD(DEC, 3, 1), 0,               0
222 };
223 
224 
225 void
226 fattime2timespec(unsigned dd, unsigned dt, unsigned dh, int utc, struct timespec* tsp)
227 {
228 	unsigned day;
229 
230 	/* Unpack time fields */
231 	tsp->tv_sec = (dt & 0x1f) << 1;
232 	tsp->tv_sec += ((dt & 0x7e0) >> 5) * 60;
233 	tsp->tv_sec += ((dt & 0xf800) >> 11) * 3600;
234 	tsp->tv_sec += dh / 100;
235 	tsp->tv_nsec = (dh % 100) * 10000000;
236 
237 	/* Day of month */
238 	day = (dd & 0x1f) - 1;
239 
240 	/* Full leap-year cycles */
241 	day += LYC * ((dd >> 11) & 0x1f);
242 
243 	/* Month offset from leap-year cycle */
244 	day += daytab[(dd >> 5) & 0x3f];
245 
246 	/*
247 	 * 2100 is not a leap year.
248 	 * XXX: a 32 bit time_t can not get us here.
249 	 */
250 	if (day >= ((2100 - 1980) / 4 * LYC + FEB))
251 		day--;
252 
253 	/* Align with time_t epoch */
254 	day += T1980;
255 
256 	tsp->tv_sec += DAY * day;
257 	if (!utc)
258 		tsp->tv_sec += utc_offset();
259 }
260