xref: /haiku/src/add-ons/kernel/drivers/graphics/radeon/PCI_GART.c (revision 9a6a20d4689307142a7ed26a1437ba47e244e73f)
1 /*
2 	Copyright (c) 2002, Thomas Kurschel
3 
4 	Part of Radeon kernel driver
5 
6 	PCI GART.
7 
8 	Currently, we use PCI DMA. Changing to AGP would
9 	only affect this file, but AGP-GART is specific to
10 	the chipset of the motherboard, and as DMA is really
11 	overkill for 2D, I cannot bother writing a dozen
12 	of AGP drivers just to gain little extra speedup.
13 */
14 
15 
16 #include "radeon_driver.h"
17 #include "mmio.h"
18 #include "buscntrl_regs.h"
19 #include "memcntrl_regs.h"
20 #include "cp_regs.h"
21 
22 #include <image.h>
23 
24 #include <stdlib.h>
25 #include <string.h>
26 
27 
28 #if 1
29 //! create actual GART buffer
30 static status_t
31 createGARTBuffer(GART_info *gart, size_t size)
32 {
33 	SHOW_FLOW0( 3, "" );
34 
35 	gart->buffer.size = size = (size + B_PAGE_SIZE - 1) & ~(B_PAGE_SIZE - 1);
36 
37 	// if this buffer is used for PCI BM, cache snooping
38 	// takes care of syncing memory accesses; if used for AGP,
39 	// we'll have to access via AGP aperture (and mark aperture
40 	// as write-combined) as cache consistency doesn't need to
41 	// be guaranteed
42 
43 	// the specs say that some chipsets do kind of lazy flushing
44 	// so the graphics card may read obsolete data; up to now
45 	// we use PCI only where this shouldn't happen by design;
46 	// if we change to AGP we may tweak the pre-charge time of
47 	// the write buffer pointer
48 
49 	// as some variables in accelerant point directly into
50 	// the DMA buffer, we have to grant access for all apps
51 	gart->buffer.area = create_area("Radeon PCI GART buffer",
52 		&gart->buffer.ptr, B_ANY_KERNEL_ADDRESS,
53 		size, B_FULL_LOCK,
54 		// TODO: really user read/write?
55 		B_READ_AREA | B_WRITE_AREA | B_CLONEABLE_AREA);
56 	if (gart->buffer.area < 0) {
57 		SHOW_ERROR(1, "cannot create PCI GART buffer (%s)",
58 			strerror(gart->buffer.area));
59 		return gart->buffer.area;
60 	}
61 
62 	gart->buffer.unaligned_area = -1;
63 
64 	memset( gart->buffer.ptr, 0, size );
65 
66 	return B_OK;
67 }
68 
69 #else
70 
71 static status_t createGARTBuffer( GART_info *gart, size_t size )
72 {
73 	physical_entry map[1];
74 	void *unaligned_addr, *aligned_phys;
75 
76 	SHOW_FLOW0( 3, "" );
77 
78 	gart->buffer.size = size = (size + B_PAGE_SIZE - 1) & ~(B_PAGE_SIZE - 1);
79 
80 	// we allocate an contiguous area having twice the size
81 	// to be able to find an aligned, contiguous range within it;
82 	// the graphics card doesn't care, but the CPU cannot
83 	// make an arbitrary area WC'ed, at least elder ones
84 	// question: is this necessary for a PCI GART because of bus snooping?
85 	gart->buffer.unaligned_area = create_area( "Radeon PCI GART buffer",
86 		&unaligned_addr, B_ANY_KERNEL_ADDRESS,
87 		2 * size, B_CONTIGUOUS/*B_FULL_LOCK*/, B_READ_AREA | B_WRITE_AREA | B_CLONEABLE_AREA );
88 		// TODO: Physical aligning can be done without waste using the
89 		// private create_area_etc().
90 	if (gart->buffer.unaligned_area < 0) {
91 		SHOW_ERROR( 1, "cannot create PCI GART buffer (%s)",
92 			strerror( gart->buffer.unaligned_area ));
93 		return gart->buffer.unaligned_area;
94 	}
95 
96 	get_memory_map( unaligned_addr, B_PAGE_SIZE, map, 1 );
97 
98 	aligned_phys =
99 		(void **)((map[0].address + size - 1) & ~(size - 1));
100 
101 	SHOW_FLOW( 3, "aligned_phys=%p", aligned_phys );
102 
103 	gart->buffer.area = map_physical_memory( "Radeon aligned PCI GART buffer",
104 		(addr_t)aligned_phys,
105 		size, B_ANY_KERNEL_BLOCK_ADDRESS | B_WRITE_COMBINING_MEMORY,
106 		B_READ_AREA | B_WRITE_AREA, &gart->buffer.ptr );
107 
108 	if( gart->buffer.area < 0 ) {
109 		SHOW_ERROR0( 3, "cannot map buffer with WC" );
110 		gart->buffer.area = map_physical_memory( "Radeon aligned PCI GART buffer",
111 			(addr_t)aligned_phys,
112 			size, B_ANY_KERNEL_BLOCK_ADDRESS,
113 			B_READ_AREA | B_WRITE_AREA, &gart->buffer.ptr );
114 	}
115 
116 	if( gart->buffer.area < 0 ) {
117 		SHOW_ERROR0( 1, "cannot map GART buffer" );
118 		delete_area( gart->buffer.unaligned_area );
119 		gart->buffer.unaligned_area = -1;
120 		return gart->buffer.area;
121 	}
122 
123 	memset( gart->buffer.ptr, 0, size );
124 
125 	return B_OK;
126 }
127 
128 #endif
129 
130 // init GATT (could be used for both PCI and AGP)
131 static status_t initGATT( GART_info *gart )
132 {
133 	area_id map_area;
134 	uint32 map_area_size;
135 	physical_entry *map;
136 	physical_entry PTB_map[1];
137 	size_t map_count;
138 	uint32 i;
139 	uint32 *gatt_entry;
140 	size_t num_pages;
141 
142 	SHOW_FLOW0( 3, "" );
143 
144 	num_pages = (gart->buffer.size + B_PAGE_SIZE - 1) & ~(B_PAGE_SIZE - 1);
145 
146 	// GART must be contiguous
147 	gart->GATT.area = create_area("Radeon GATT", (void **)&gart->GATT.ptr,
148 		B_ANY_KERNEL_ADDRESS,
149 		(num_pages * sizeof( uint32 ) + B_PAGE_SIZE - 1) & ~(B_PAGE_SIZE - 1),
150 		B_32_BIT_CONTIGUOUS,
151 			// TODO: Physical address is cast to 32 bit below! Use B_CONTIGUOUS,
152 			// when that is (/can be) fixed!
153 		// TODO: really user read/write?
154 		B_READ_AREA | B_WRITE_AREA | B_CLONEABLE_AREA);
155 
156 	if (gart->GATT.area < 0) {
157 		SHOW_ERROR(1, "cannot create GATT table (%s)",
158 			strerror(gart->GATT.area));
159 		return gart->GATT.area;
160 	}
161 
162 	get_memory_map(gart->GATT.ptr, B_PAGE_SIZE, PTB_map, 1);
163 	gart->GATT.phys = PTB_map[0].address;
164 
165 	SHOW_INFO(3, "GATT_ptr=%p, GATT_phys=%p", gart->GATT.ptr,
166 		(void *)gart->GATT.phys);
167 
168 	// get address mapping
169 	memset(gart->GATT.ptr, 0, num_pages * sizeof(uint32));
170 
171 	map_count = num_pages + 1;
172 
173 	// align size to B_PAGE_SIZE
174 	map_area_size = map_count * sizeof(physical_entry);
175 	if ((map_area_size / B_PAGE_SIZE) * B_PAGE_SIZE != map_area_size)
176 		map_area_size = ((map_area_size / B_PAGE_SIZE) + 1) * B_PAGE_SIZE;
177 
178 	// temporary area where we fill in the memory map (deleted below)
179 	map_area = create_area("pci_gart_map_area", (void **)&map, B_ANY_ADDRESS,
180 		map_area_size, B_FULL_LOCK, B_READ_AREA | B_WRITE_AREA);
181 		// TODO: We actually have a working malloc() in the kernel. Why create
182 		// an area?
183 	dprintf("pci_gart_map_area: %" B_PRId32 "\n", map_area);
184 
185 	get_memory_map( gart->buffer.ptr, gart->buffer.size, map, map_count );
186 
187 	// the following looks a bit strange as the kernel
188 	// combines successive entries
189 	gatt_entry = gart->GATT.ptr;
190 
191 	for( i = 0; i < map_count; ++i ) {
192 		phys_addr_t addr = map[i].address;
193 		size_t size = map[i].size;
194 
195 		if( size == 0 )
196 			break;
197 
198 		while( size > 0 ) {
199 			*gatt_entry++ = addr;
200 			//SHOW_FLOW( 3, "%lx", *(gart_entry-1) );
201 			addr += ATI_PCIGART_PAGE_SIZE;
202 			size -= ATI_PCIGART_PAGE_SIZE;
203 		}
204 	}
205 
206 	delete_area(map_area);
207 
208 	if( i == map_count ) {
209 		// this case should never happen
210 		SHOW_ERROR0( 0, "memory map of GART buffer too large!" );
211 		delete_area( gart->GATT.area );
212 		gart->GATT.area = -1;
213 		return B_ERROR;
214 	}
215 
216 	// this might be a bit more than needed, as
217 	// 1. Intel CPUs have "processor order", i.e. writes appear to external
218 	//    devices in program order, so a simple final write should be sufficient
219 	// 2. if it is a PCI GART, bus snooping should provide cache coherence
220 	// 3. this function is a no-op :(
221 	clear_caches( gart->GATT.ptr, num_pages * sizeof( uint32 ),
222 		B_FLUSH_DCACHE );
223 
224 	// back to real live - some chipsets have write buffers that
225 	// proove all previous assumptions wrong
226 	// (don't know whether this really helps though)
227 	#if defined(__i386__)
228 	asm volatile ( "wbinvd" ::: "memory" );
229 	#elif defined(__POWERPC__)
230 	// TODO : icbi on PowerPC to flush instruction cache?
231 	#endif
232 	return B_OK;
233 }
234 
235 // destroy GART buffer
236 static void destroyGARTBuffer( GART_info *gart )
237 {
238 	if( gart->buffer.area > 0 )
239 		delete_area( gart->buffer.area );
240 
241 	if( gart->buffer.unaligned_area > 0 )
242 		delete_area( gart->buffer.unaligned_area );
243 
244 	gart->buffer.area = gart->buffer.unaligned_area = -1;
245 }
246 
247 
248 // destroy GATT
249 static void destroyGATT( GART_info *gart )
250 {
251 	if( gart->GATT.area > 0 )
252 		delete_area( gart->GATT.area );
253 
254 	gart->GATT.area = -1;
255 }
256 
257 
258 // init PCI GART
259 status_t Radeon_InitPCIGART( device_info *di )
260 {
261 	status_t result;
262 
263 	result = createGARTBuffer( &di->pci_gart, PCI_GART_SIZE );
264 	if( result < 0 )
265 		goto err1;
266 
267 	result = initGATT( &di->pci_gart );
268 	if( result < 0 )
269 		goto err2;
270 
271 	return B_OK;
272 
273 err2:
274 	destroyGARTBuffer( &di->pci_gart );
275 
276 err1:
277 	return result;
278 }
279 
280 
281 // cleanup PCI GART
282 void Radeon_CleanupPCIGART( device_info *di )
283 {
284 	vuint8 *regs = di->regs;
285 
286 	SHOW_FLOW0( 3, "" );
287 
288 	// perhaps we should wait for FIFO space before messing around with registers, but
289 	// 1. I don't want to add all the sync stuff to the kernel driver
290 	// 2. I doubt that these regs are buffered by FIFO
291 	// but still: in worst case CP has written some commands to register FIFO,
292 	// which can do any kind of nasty things
293 
294 	// disable CP BM
295 	OUTREG( regs, RADEON_CP_CSQ_CNTL, RADEON_CSQ_PRIDIS_INDDIS );
296 	// read-back for flushing
297 	INREG( regs, RADEON_CP_CSQ_CNTL );
298 
299 	// disable bus mastering
300 	OUTREGP( regs, RADEON_BUS_CNTL, RADEON_BUS_MASTER_DIS, ~RADEON_BUS_MASTER_DIS );
301 	// disable PCI GART
302 	OUTREGP( regs, RADEON_AIC_CNTL, 0, ~RADEON_PCIGART_TRANSLATE_EN );
303 
304 	destroyGATT( &di->pci_gart );
305 	destroyGARTBuffer( &di->pci_gart );
306 }
307