1 /* 2 Copyright 2007-2011 Haiku, Inc. All rights reserved. 3 Distributed under the terms of the MIT license. 4 5 Authors: 6 Gerald Zajac 7 */ 8 9 #include <KernelExport.h> 10 #include <PCI.h> 11 #include <drivers/bios.h> 12 #include <malloc.h> 13 #include <stdio.h> 14 #include <string.h> 15 #include <graphic_driver.h> 16 #include <boot_item.h> 17 18 #include "DriverInterface.h" 19 20 21 #undef TRACE 22 23 #ifdef ENABLE_DEBUG_TRACE 24 # define TRACE(x...) dprintf("ati: " x) 25 #else 26 # define TRACE(x...) ; 27 #endif 28 29 30 #define ATI_ACCELERANT_NAME "ati.accelerant" 31 32 #define ROUND_TO_PAGE_SIZE(x) (((x) + (B_PAGE_SIZE) - 1) & ~((B_PAGE_SIZE) - 1)) 33 34 #define VESA_MODES_BOOT_INFO "vesa_modes/v1" 35 36 #define SKD_HANDLER_INSTALLED 0x80000000 37 #define MAX_DEVICES 4 38 #define DEVICE_FORMAT "%04X_%04X_%02X%02X%02X" 39 40 #define M64_BIOS_SIZE 0x10000 // 64KB 41 #define R128_BIOS_SIZE 0x10000 // 64KB 42 43 int32 api_version = B_CUR_DRIVER_API_VERSION; // revision of driver API used 44 45 #define VENDOR_ID 0x1002 // ATI vendor ID 46 47 // Mach64 register definitions. 48 #define M64_CLOCK_INTERNAL 4 49 #define M64_CONFIG_CHIP_ID 0x0CE0 // offset in register area 50 #define M64_CFG_CHIP_TYPE 0x0000FFFF 51 52 53 struct ChipInfo { 54 uint16 chipID; // PCI device id of the chip 55 ChipType chipType; // assigned chip type identifier 56 const char* chipName; // user recognizable name for chip 57 // (must be < 32 chars) 58 }; 59 60 61 // Names for chip types. 62 63 static char sRage128_GL[] = "RAGE 128 GL"; 64 static char sRage128_VR[] = "RAGE 128 VR"; 65 static char sRage128_Pro_GL[] = "RAGE 128 PRO GL"; 66 static char sRage128_Pro_VR[] = "RAGE 128 PRO VR"; 67 static char sRage128_Pro_Ultra[] = "RAGE 128 PRO Ultra"; 68 69 // This table maps a PCI device ID to a chip type identifier and the chip name. 70 // The table is split into two groups of chips, the Mach64 and Rage128 chips, 71 // with each group ordered by the chip ID. 72 73 static const ChipInfo chipTable[] = { 74 { 0x4742, MACH64_264GTPRO, "3D RAGE PRO, AGP" }, // GB 75 { 0x4744, MACH64_264GTPRO, "3D RAGE PRO, AGP" }, // GD 76 { 0x4749, MACH64_264GTPRO, "3D RAGE PRO, PCI" }, // GI 77 { 0x474C, MACH64_264XL, "3D RAGE XC, PCI" }, // GL 78 { 0x474D, MACH64_264XL, "3D RAGE XL, AGP" }, // GM 79 { 0x474E, MACH64_264XL, "3D RAGE XC, AGP" }, // GN 80 { 0x474F, MACH64_264XL, "3D RAGE XL, PCI" }, // GO 81 { 0x4750, MACH64_264GTPRO, "3D RAGE PRO, PCI" }, // GP 82 { 0x4751, MACH64_264GTPRO, "3D RAGE PRO, PCI" }, // GQ 83 { 0x4752, MACH64_264XL, "3D RAGE XL, PCI" }, // GR 84 { 0x4753, MACH64_264XL, "3D RAGE XC, PCI" }, // GS 85 { 0x4754, MACH64_264GT, "3D RAGE II" }, // GT 86 { 0x4755, MACH64_264GTDVD, "3D RAGE II+" }, // GU 87 { 0x4756, MACH64_264GT2C, "3D RAGE IIC, PCI" }, // GV 88 { 0x4757, MACH64_264GT2C, "3D RAGE IIC, AGP" }, // GW 89 { 0x4759, MACH64_264GT2C, "3D RAGE IIC, PCI" }, // GY 90 { 0x475A, MACH64_264GT2C, "3D RAGE IIC, AGP" }, // GZ 91 { 0x4C42, MACH64_264LTPRO, "3D RAGE LT PRO, AGP" }, // LB 92 { 0x4C44, MACH64_264LTPRO, "3D RAGE LT PRO, AGP" }, // LD 93 { 0x4C47, MACH64_264LT, "3D RAGE LT" }, // LG 94 { 0x4C49, MACH64_264LTPRO, "3D RAGE LT PRO, PCI" }, // LI 95 { 0x4C4D, MACH64_MOBILITY, "3D RAGE Mobility, AGP" }, // LM 96 { 0x4C4E, MACH64_MOBILITY, "3D RAGE Mobility, AGP" }, // LN 97 { 0x4C50, MACH64_264LTPRO, "3D RAGE LT PRO, PCI" }, // LP 98 { 0x4C51, MACH64_264LTPRO, "3D RAGE LT PRO, PCI" }, // LQ 99 { 0x4C52, MACH64_MOBILITY, "3D RAGE Mobility, PCI" }, // LR 100 { 0x4C53, MACH64_MOBILITY, "3D RAGE Mobility, PCI" }, // LS 101 { 0x5654, MACH64_264VT, "264VT2" }, // VT 102 { 0x5655, MACH64_264VT3, "264VT3" }, // VU 103 { 0x5656, MACH64_264VT4, "264VT4" }, // VV 104 105 { 0x4C45, RAGE128_MOBILITY, "RAGE 128 Mobility 3" }, // LE 106 { 0x4C46, RAGE128_MOBILITY, "RAGE 128 Mobility 3" }, // LF 107 { 0x4D46, RAGE128_MOBILITY, "RAGE 128 Mobility 4" }, // MF 108 { 0x4D4C, RAGE128_MOBILITY, "RAGE 128 Mobility 4" }, // ML 109 { 0x5041, RAGE128_PRO_GL, sRage128_Pro_GL }, // PA 110 { 0x5042, RAGE128_PRO_GL, sRage128_Pro_GL }, // PB 111 { 0x5043, RAGE128_PRO_GL, sRage128_Pro_GL }, // PC 112 { 0x5044, RAGE128_PRO_GL, sRage128_Pro_GL }, // PD 113 { 0x5045, RAGE128_PRO_GL, sRage128_Pro_GL }, // PE 114 { 0x5046, RAGE128_PRO_GL, sRage128_Pro_GL }, // PF 115 { 0x5047, RAGE128_PRO_VR, sRage128_Pro_VR }, // PG 116 { 0x5048, RAGE128_PRO_VR, sRage128_Pro_VR }, // PH 117 { 0x5049, RAGE128_PRO_VR, sRage128_Pro_VR }, // PI 118 { 0x504A, RAGE128_PRO_VR, sRage128_Pro_VR }, // PJ 119 { 0x504B, RAGE128_PRO_VR, sRage128_Pro_VR }, // PK 120 { 0x504C, RAGE128_PRO_VR, sRage128_Pro_VR }, // PL 121 { 0x504D, RAGE128_PRO_VR, sRage128_Pro_VR }, // PM 122 { 0x504E, RAGE128_PRO_VR, sRage128_Pro_VR }, // PN 123 { 0x504F, RAGE128_PRO_VR, sRage128_Pro_VR }, // PO 124 { 0x5050, RAGE128_PRO_VR, sRage128_Pro_VR }, // PP 125 { 0x5051, RAGE128_PRO_VR, sRage128_Pro_VR }, // PQ 126 { 0x5052, RAGE128_PRO_VR, sRage128_Pro_VR }, // PR 127 { 0x5053, RAGE128_PRO_VR, sRage128_Pro_VR }, // PS 128 { 0x5054, RAGE128_PRO_VR, sRage128_Pro_VR }, // PT 129 { 0x5055, RAGE128_PRO_VR, sRage128_Pro_VR }, // PU 130 { 0x5056, RAGE128_PRO_VR, sRage128_Pro_VR }, // PV 131 { 0x5057, RAGE128_PRO_VR, sRage128_Pro_VR }, // PW 132 { 0x5058, RAGE128_PRO_VR, sRage128_Pro_VR }, // PX 133 { 0x5245, RAGE128_GL, sRage128_GL }, // RE 134 { 0x5246, RAGE128_GL, sRage128_GL }, // RF 135 { 0x5247, RAGE128_GL, sRage128_GL }, // RG 136 { 0x524B, RAGE128_VR, sRage128_VR }, // RK 137 { 0x524C, RAGE128_VR, sRage128_VR }, // RL 138 { 0x5345, RAGE128_VR, sRage128_VR }, // SE 139 { 0x5346, RAGE128_VR, sRage128_VR }, // SF 140 { 0x5347, RAGE128_VR, sRage128_VR }, // SG 141 { 0x5348, RAGE128_VR, sRage128_VR }, // SH 142 { 0x534B, RAGE128_GL, sRage128_GL }, // SK 143 { 0x534C, RAGE128_GL, sRage128_GL }, // SL 144 { 0x534D, RAGE128_GL, sRage128_GL }, // SM 145 { 0x534E, RAGE128_GL, sRage128_GL }, // SN 146 { 0x5446, RAGE128_PRO_ULTRA, sRage128_Pro_Ultra }, // TF 147 { 0x544C, RAGE128_PRO_ULTRA, sRage128_Pro_Ultra }, // TL 148 { 0x5452, RAGE128_PRO_ULTRA, sRage128_Pro_Ultra }, // TR 149 { 0x5453, RAGE128_PRO_ULTRA, sRage128_Pro_Ultra }, // TS 150 { 0x5454, RAGE128_PRO_ULTRA, sRage128_Pro_Ultra }, // TT 151 { 0x5455, RAGE128_PRO_ULTRA, sRage128_Pro_Ultra }, // TU 152 { 0, ATI_NONE, NULL } 153 }; 154 155 156 struct DeviceInfo { 157 uint32 openCount; // count of how many times device has been opened 158 int32 flags; 159 area_id sharedArea; // area shared between driver and all accelerants 160 SharedInfo* sharedInfo; // pointer to shared info area memory 161 vuint8* regs; // pointer to memory mapped registers 162 const ChipInfo* pChipInfo; // info about the selected chip 163 pci_info pciInfo; // copy of pci info for this device 164 char name[B_OS_NAME_LENGTH]; // name of device 165 }; 166 167 168 static Benaphore gLock; 169 static DeviceInfo gDeviceInfo[MAX_DEVICES]; 170 static char* gDeviceNames[MAX_DEVICES + 1]; 171 static pci_module_info* gPCI; 172 173 174 // Prototypes for device hook functions. 175 176 static status_t device_open(const char* name, uint32 flags, void** cookie); 177 static status_t device_close(void* dev); 178 static status_t device_free(void* dev); 179 static status_t device_read(void* dev, off_t pos, void* buf, size_t* len); 180 static status_t device_write(void* dev, off_t pos, const void* buf, size_t* len); 181 static status_t device_ioctl(void* dev, uint32 msg, void* buf, size_t len); 182 183 static device_hooks gDeviceHooks = 184 { 185 device_open, 186 device_close, 187 device_free, 188 device_ioctl, 189 device_read, 190 device_write, 191 NULL, 192 NULL, 193 NULL, 194 NULL 195 }; 196 197 198 199 static inline uint32 200 GetPCI(pci_info& info, uint8 offset, uint8 size) 201 { 202 return gPCI->read_pci_config(info.bus, info.device, info.function, offset, 203 size); 204 } 205 206 207 static inline void 208 SetPCI(pci_info& info, uint8 offset, uint8 size, uint32 value) 209 { 210 gPCI->write_pci_config(info.bus, info.device, info.function, offset, size, 211 value); 212 } 213 214 215 // Functions for dealing with Vertical Blanking Interrupts. Currently, I do 216 // not know the commands to handle these operations; thus, these functions 217 // currently do nothing. 218 219 static bool 220 InterruptIsVBI() 221 { 222 // return true only if a vertical blanking interrupt has occured 223 return false; 224 } 225 226 227 static void 228 ClearVBI() 229 { 230 } 231 232 static void 233 EnableVBI() 234 { 235 } 236 237 static void 238 DisableVBI() 239 { 240 } 241 242 243 244 static status_t 245 GetEdidFromBIOS(edid1_raw& edidRaw) 246 { 247 // Get the EDID info from the video BIOS, and return B_OK if successful. 248 249 #define ADDRESS_SEGMENT(address) ((addr_t)(address) >> 4) 250 #define ADDRESS_OFFSET(address) ((addr_t)(address) & 0xf) 251 252 bios_module_info* biosModule; 253 status_t status = get_module(B_BIOS_MODULE_NAME, (module_info**)&biosModule); 254 if (status != B_OK) { 255 TRACE("GetEdidFromBIOS(): failed to get BIOS module: 0x%" B_PRIx32 "\n", 256 status); 257 return status; 258 } 259 260 bios_state* state; 261 status = biosModule->prepare(&state); 262 if (status != B_OK) { 263 TRACE("GetEdidFromBIOS(): bios_prepare() failed: 0x%" B_PRIx32 "\n", 264 status); 265 put_module(B_BIOS_MODULE_NAME); 266 return status; 267 } 268 269 bios_regs regs = {}; 270 regs.eax = 0x4f15; 271 regs.ebx = 0; // 0 = report DDC service 272 regs.ecx = 0; 273 regs.es = 0; 274 regs.edi = 0; 275 276 status = biosModule->interrupt(state, 0x10, ®s); 277 if (status == B_OK) { 278 // AH contains the error code, and AL determines whether or not the 279 // function is supported. 280 if (regs.eax != 0x4f) 281 status = B_NOT_SUPPORTED; 282 283 // Test if DDC is supported by the monitor. 284 if ((regs.ebx & 3) == 0) 285 status = B_NOT_SUPPORTED; 286 } 287 288 if (status == B_OK) { 289 edid1_raw* edid = (edid1_raw*)biosModule->allocate_mem(state, 290 sizeof(edid1_raw)); 291 if (edid == NULL) { 292 status = B_NO_MEMORY; 293 goto out; 294 } 295 296 regs.eax = 0x4f15; 297 regs.ebx = 1; // 1 = read EDID 298 regs.ecx = 0; 299 regs.edx = 0; 300 regs.es = ADDRESS_SEGMENT(edid); 301 regs.edi = ADDRESS_OFFSET(edid); 302 303 status = biosModule->interrupt(state, 0x10, ®s); 304 if (status == B_OK) { 305 if (regs.eax != 0x4f) { 306 status = B_NOT_SUPPORTED; 307 } else { 308 // Copy the EDID info to the caller's location, and compute the 309 // checksum of the EDID info while copying. 310 311 uint8 sum = 0; 312 uint8 allOr = 0; 313 uint8* dest = (uint8*)&edidRaw; 314 uint8* src = (uint8*)edid; 315 316 for (uint32 j = 0; j < sizeof(edidRaw); j++) { 317 sum += *src; 318 allOr |= *src; 319 *dest++ = *src++; 320 } 321 322 if (allOr == 0) { 323 TRACE("GetEdidFromBIOS(); EDID info contains only zeros\n"); 324 status = B_ERROR; 325 } else if (sum != 0) { 326 TRACE("GetEdidFromBIOS(); Checksum error in EDID info\n"); 327 status = B_ERROR; 328 } 329 } 330 } 331 } 332 333 out: 334 biosModule->finish(state); 335 put_module(B_BIOS_MODULE_NAME); 336 return status; 337 } 338 339 340 static status_t 341 SetVesaDisplayMode(uint16 mode) 342 { 343 // Set the VESA display mode, and return B_OK if successful. 344 345 #define SET_MODE_MASK 0x01ff 346 #define SET_MODE_LINEAR_BUFFER (1 << 14) 347 348 bios_module_info* biosModule; 349 status_t status = get_module(B_BIOS_MODULE_NAME, (module_info**)&biosModule); 350 if (status != B_OK) { 351 TRACE("SetVesaDisplayMode(0x%x): failed to get BIOS module: 0x%" B_PRIx32 352 "\n", mode, status); 353 return status; 354 } 355 356 bios_state* state; 357 status = biosModule->prepare(&state); 358 if (status != B_OK) { 359 TRACE("SetVesaDisplayMode(0x%x): bios_prepare() failed: 0x%" B_PRIx32 360 "\n", mode, status); 361 put_module(B_BIOS_MODULE_NAME); 362 return status; 363 } 364 365 bios_regs regs = {}; 366 regs.eax = 0x4f02; 367 regs.ebx = (mode & SET_MODE_MASK) | SET_MODE_LINEAR_BUFFER; 368 369 status = biosModule->interrupt(state, 0x10, ®s); 370 if (status != B_OK) { 371 TRACE("SetVesaDisplayMode(0x%x): BIOS interrupt failed\n", mode); 372 } 373 374 if (status == B_OK && (regs.eax & 0xffff) != 0x4f) { 375 TRACE("SetVesaDisplayMode(0x%x): BIOS returned 0x%04" B_PRIx32 "\n", 376 mode, regs.eax & 0xffff); 377 status = B_ERROR; 378 } 379 380 biosModule->finish(state); 381 put_module(B_BIOS_MODULE_NAME); 382 return status; 383 } 384 385 386 387 // Macros for accessing BIOS info. 388 389 #define BIOS8(v) (romAddr[v]) 390 #define BIOS16(v) (romAddr[v] | \ 391 (romAddr[(v) + 1] << 8)) 392 #define BIOS32(v) (romAddr[v] | \ 393 (romAddr[(v) + 1] << 8) | \ 394 (romAddr[(v) + 2] << 16) | \ 395 (romAddr[(v) + 3] << 24)) 396 397 398 static status_t 399 Mach64_GetBiosParameters(DeviceInfo& di, uint8& clockType) 400 { 401 // Get some clock parameters from the video BIOS, and if Mobility chip, 402 // also get the LCD panel width & height. 403 404 // In case mapping the ROM area fails or other error occurs, set default 405 // values for the parameters which will be obtained from the BIOS ROM. 406 407 clockType = M64_CLOCK_INTERNAL; 408 409 SharedInfo& si = *(di.sharedInfo); 410 M64_Params& params = si.m64Params; 411 params.clockNumberToProgram = 3; 412 413 si.panelX = 0; 414 si.panelY = 0; 415 416 // Map the ROM area. The Mach64 chips do not assign a ROM address in the 417 // PCI info; thus, access the ROM via the ISA legacy memory map. 418 419 uint8* romAddr; 420 area_id romArea = map_physical_memory("ATI Mach64 ROM", 421 0x000c0000, 422 M64_BIOS_SIZE, 423 B_ANY_KERNEL_ADDRESS, 424 B_READ_AREA, 425 (void**)&(romAddr)); 426 427 if (romArea < 0) { 428 TRACE("Mach64_GetBiosParameters(), ROM mapping error: %ld\n", romArea); 429 return romArea; // ROM mapping failed; return error code 430 } 431 432 // Check if we have the BIOS signature (might fail on laptops..). 433 434 if (BIOS8(0) != 0x55 || BIOS8(1) != 0xaa) { 435 TRACE("Mach64_GetBiosParameters(), ROM does not contain BIOS signature\n"); 436 delete_area(romArea); 437 return B_ERROR; 438 } 439 440 // Get clock info from BIOS. 441 442 uint32 romTable = BIOS16(0x48); 443 uint32 clockTable = BIOS16(romTable + 16); 444 clockType = BIOS8(clockTable); 445 params.clockNumberToProgram = BIOS8(clockTable + 6); 446 params.maxPixelClock = BIOS16(clockTable + 4) * 10; 447 params.refFreq = BIOS16(clockTable + 8); 448 params.refDivider = BIOS16(clockTable + 10); 449 450 // If Mobility chip, get the LCD panel width & height. 451 452 if (si.chipType == MACH64_MOBILITY) { 453 uint32 lcdTable = BIOS16(0x78); 454 if (BIOS32(lcdTable) == 0x544d5224) { // is LCD table signature correct? 455 uint32 lcdPanelInfo = BIOS16(lcdTable + 10); 456 si.panelX = BIOS16(lcdPanelInfo + 25); 457 si.panelY = BIOS16(lcdPanelInfo + 27); 458 TRACE("Mobility LCD Panel size: %dx%d\n", si.panelX, si.panelY); 459 } else { 460 TRACE("Mobility LCD table signature 0x%x in BIOS is incorrect\n", 461 BIOS32(lcdTable)); 462 } 463 } 464 465 delete_area(romArea); 466 467 return B_OK; 468 } 469 470 471 472 static status_t 473 Rage128_GetBiosParameters(DeviceInfo& di) 474 { 475 // Get the PLL parameters from the video BIOS, and if Mobility chips, also 476 // get the LCD panel width & height and a few other related parameters. 477 478 // In case mapping the ROM area fails or other error occurs, set default 479 // values for the parameters which will be obtained from the BIOS ROM. 480 // The default PLL parameters values probably will not work for all chips. 481 // For example, reference freq can be 29.50MHz, 28.63MHz, or 14.32MHz. 482 483 SharedInfo& si = *(di.sharedInfo); 484 R128_PLLParams& pll = si.r128PLLParams; 485 pll.reference_freq = 2950; 486 pll.reference_div = 65; 487 pll.min_pll_freq = 12500; 488 pll.max_pll_freq = 25000; 489 pll.xclk = 10300; 490 491 si.panelX = 0; 492 si.panelY = 0; 493 si.panelPowerDelay = 1; 494 495 // Map the ROM area. The Rage128 chips do not assign a ROM address in the 496 // PCI info; thus, access the ROM via the ISA legacy memory map. 497 498 uint8* romAddr; 499 area_id romArea = map_physical_memory("ATI Rage128 ROM", 500 0x000c0000, 501 R128_BIOS_SIZE, 502 B_ANY_KERNEL_ADDRESS, 503 B_READ_AREA, 504 (void**)&(romAddr)); 505 506 if (romArea < 0) { 507 TRACE("Rage128_GetBiosParameters(), ROM mapping error: %ld\n", romArea); 508 return romArea; // ROM mapping failed; return error code 509 } 510 511 // Check if we got the BIOS signature (might fail on laptops..). 512 513 if (BIOS8(0) != 0x55 || BIOS8(1) != 0xaa) { 514 TRACE("Rage128_GetBiosParameters(), ROM does not contain BIOS signature\n"); 515 delete_area(romArea); 516 return B_ERROR; 517 } 518 519 // Get the PLL values from the mapped ROM area. 520 521 uint16 biosHeader = BIOS16(0x48); 522 uint16 pllInfoBlock = BIOS16(biosHeader + 0x30); 523 524 pll.reference_freq = BIOS16(pllInfoBlock + 0x0e); 525 pll.reference_div = BIOS16(pllInfoBlock + 0x10); 526 pll.min_pll_freq = BIOS32(pllInfoBlock + 0x12); 527 pll.max_pll_freq = BIOS32(pllInfoBlock + 0x16); 528 pll.xclk = BIOS16(pllInfoBlock + 0x08); 529 530 TRACE("PLL parameters: rf=%d rd=%d min=%ld max=%ld; xclk=%d\n", 531 pll.reference_freq, pll.reference_div, pll.min_pll_freq, 532 pll.max_pll_freq, pll.xclk); 533 534 // If Mobility chip, get the LCD panel width & height and a few other 535 // related parameters. 536 537 if (si.chipType == RAGE128_MOBILITY) { 538 // There should be direct access to the start of the FP info table, but 539 // until we find out where that offset is stored, we must search for 540 // the ATI signature string: "M3 ". 541 542 int i; 543 for (i = 4; i < R128_BIOS_SIZE - 8; i++) { 544 if (BIOS8(i) == 'M' && 545 BIOS8(i + 1) == '3' && 546 BIOS8(i + 2) == ' ' && 547 BIOS8(i + 3) == ' ' && 548 BIOS8(i + 4) == ' ' && 549 BIOS8(i + 5) == ' ' && 550 BIOS8(i + 6) == ' ' && 551 BIOS8(i + 7) == ' ') { 552 int fpHeader = i - 2; 553 554 // Assume that only one panel is attached and supported. 555 556 for (i = fpHeader + 20; i < fpHeader + 84; i += 2) { 557 if (BIOS16(i) != 0) { 558 int fpStart = BIOS16(i); 559 si.panelX = BIOS16(fpStart + 25); 560 si.panelY = BIOS16(fpStart + 27); 561 si.panelPowerDelay = BIOS8(fpStart + 56); 562 TRACE("LCD Panel size: %dx%d Panel type: 0x%x power delay: %d\n", 563 si.panelX, si.panelY, BIOS16(fpStart + 29), 564 si.panelPowerDelay); 565 break; 566 } 567 } 568 569 break; 570 } 571 } 572 } 573 574 delete_area(romArea); 575 576 return B_OK; 577 } 578 579 580 static status_t 581 MapDevice(DeviceInfo& di) 582 { 583 SharedInfo& si = *(di.sharedInfo); 584 pci_info& pciInfo = di.pciInfo; 585 586 // Enable memory mapped IO and bus master. 587 588 SetPCI(pciInfo, PCI_command, 2, GetPCI(pciInfo, PCI_command, 2) 589 | PCI_command_io | PCI_command_memory | PCI_command_master); 590 591 // Map the video memory. 592 593 phys_addr_t videoRamAddr = pciInfo.u.h0.base_registers[0]; 594 uint32 videoRamSize = pciInfo.u.h0.base_register_sizes[0]; 595 si.videoMemPCI = videoRamAddr; 596 char frameBufferAreaName[] = "ATI frame buffer"; 597 598 si.videoMemArea = map_physical_memory( 599 frameBufferAreaName, 600 videoRamAddr, 601 videoRamSize, 602 B_ANY_KERNEL_BLOCK_ADDRESS | B_MTR_WC, 603 B_READ_AREA + B_WRITE_AREA, 604 (void**)&(si.videoMemAddr)); 605 606 if (si.videoMemArea < 0) { 607 // Try to map this time without write combining. 608 si.videoMemArea = map_physical_memory( 609 frameBufferAreaName, 610 videoRamAddr, 611 videoRamSize, 612 B_ANY_KERNEL_BLOCK_ADDRESS, 613 B_READ_AREA + B_WRITE_AREA, 614 (void**)&(si.videoMemAddr)); 615 } 616 617 if (si.videoMemArea < 0) 618 return si.videoMemArea; 619 620 // Map the MMIO register area. 621 622 phys_addr_t regsBase = pciInfo.u.h0.base_registers[2]; 623 uint32 regAreaSize = pciInfo.u.h0.base_register_sizes[2]; 624 625 // If the register area address or size is not in the PCI info, it should 626 // be at the end of the video memory. Check if it is there. 627 628 if (MACH64_FAMILY(si.chipType) && (regsBase == 0 || regAreaSize == 0)) { 629 uint32 regsOffset = 0x7ff000; // offset to regs area in video memory 630 uint32 regs = uint32(si.videoMemAddr) + regsOffset; 631 uint32 chipInfo = *((vuint32*)(regs + M64_CONFIG_CHIP_ID)); 632 633 if (si.deviceID != (chipInfo & M64_CFG_CHIP_TYPE)) { 634 // Register area not found; delete any other areas that were 635 // created. 636 delete_area(si.videoMemArea); 637 si.videoMemArea = -1; 638 TRACE("Mach64 register area not found\n"); 639 return B_ERROR; 640 } 641 642 // Adjust params for creating register area below. 643 644 regsBase = videoRamAddr + regsOffset; 645 regAreaSize = 0x1000; 646 TRACE("Register address is at end of frame buffer memory at 0x%lx\n", 647 uint32(regsBase)); 648 } 649 650 si.regsArea = map_physical_memory("ATI mmio registers", 651 regsBase, 652 regAreaSize, 653 B_ANY_KERNEL_ADDRESS, 654 B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA | B_CLONEABLE_AREA, 655 (void**)&di.regs); 656 657 // If there was an error, delete other areas. 658 if (si.regsArea < 0) { 659 delete_area(si.videoMemArea); 660 si.videoMemArea = -1; 661 } 662 663 return si.regsArea; 664 } 665 666 667 static void 668 UnmapDevice(DeviceInfo& di) 669 { 670 SharedInfo& si = *(di.sharedInfo); 671 672 if (si.regsArea >= 0) 673 delete_area(si.regsArea); 674 if (si.videoMemArea >= 0) 675 delete_area(si.videoMemArea); 676 677 si.regsArea = si.videoMemArea = -1; 678 si.videoMemAddr = (addr_t)NULL; 679 di.regs = NULL; 680 } 681 682 683 static int32 684 InterruptHandler(void* data) 685 { 686 int32 handled = B_UNHANDLED_INTERRUPT; 687 DeviceInfo& di = *((DeviceInfo*)data); 688 int32* flags = &(di.flags); 689 690 // Is someone already handling an interrupt for this device? 691 if (atomic_or(flags, SKD_HANDLER_INSTALLED) & SKD_HANDLER_INSTALLED) 692 return B_UNHANDLED_INTERRUPT; 693 694 if (InterruptIsVBI()) { // was interrupt a VBI? 695 ClearVBI(); // clear interrupt 696 697 handled = B_HANDLED_INTERRUPT; 698 699 // Release vertical blanking semaphore. 700 sem_id& sem = di.sharedInfo->vertBlankSem; 701 702 if (sem >= 0) { 703 int32 blocked; 704 if ((get_sem_count(sem, &blocked) == B_OK) && (blocked < 0)) { 705 release_sem_etc(sem, -blocked, B_DO_NOT_RESCHEDULE); 706 handled = B_INVOKE_SCHEDULER; 707 } 708 } 709 } 710 711 atomic_and(flags, ~SKD_HANDLER_INSTALLED); // note we're not in handler anymore 712 713 return handled; 714 } 715 716 717 static void 718 InitInterruptHandler(DeviceInfo& di) 719 { 720 SharedInfo& si = *(di.sharedInfo); 721 722 DisableVBI(); // disable & clear any pending interrupts 723 si.bInterruptAssigned = false; // indicate interrupt not assigned yet 724 725 // Create a semaphore for vertical blank management. 726 si.vertBlankSem = create_sem(0, di.name); 727 if (si.vertBlankSem < 0) 728 return; 729 730 // Change the owner of the semaphores to the calling team (usually the 731 // app_server). This is required because apps can't aquire kernel 732 // semaphores. 733 734 thread_id threadID = find_thread(NULL); 735 thread_info threadInfo; 736 status_t status = get_thread_info(threadID, &threadInfo); 737 if (status == B_OK) 738 status = set_sem_owner(si.vertBlankSem, threadInfo.team); 739 740 // If there is a valid interrupt assigned, set up interrupts. 741 742 if (status == B_OK && di.pciInfo.u.h0.interrupt_pin != 0x00 743 && di.pciInfo.u.h0.interrupt_line != 0xff) { 744 // We have a interrupt line to use. 745 746 status = install_io_interrupt_handler(di.pciInfo.u.h0.interrupt_line, 747 InterruptHandler, (void*)(&di), 0); 748 749 if (status == B_OK) 750 si.bInterruptAssigned = true; // we can use interrupt related functions 751 } 752 753 if (status != B_OK) { 754 // Interrupt does not exist; thus delete semaphore as it won't be used. 755 delete_sem(si.vertBlankSem); 756 si.vertBlankSem = -1; 757 } 758 } 759 760 761 static status_t 762 InitDevice(DeviceInfo& di) 763 { 764 // Perform initialization and mapping of the device, and return B_OK if 765 // sucessful; else, return error code. 766 767 // Get the table of VESA modes that the chip supports. Note that we will 768 // need this table only for chips that are currently connected to a laptop 769 // display or a monitor connected via a DVI interface. 770 771 size_t vesaModeTableSize = 0; 772 VesaMode* vesaModes = (VesaMode*)get_boot_item(VESA_MODES_BOOT_INFO, 773 &vesaModeTableSize); 774 775 size_t sharedSize = (sizeof(SharedInfo) + 7) & ~7; 776 777 // Create the area for shared info with NO user-space read or write 778 // permissions, to prevent accidental damage. 779 780 di.sharedArea = create_area("ATI shared info", 781 (void**) &(di.sharedInfo), 782 B_ANY_KERNEL_ADDRESS, 783 ROUND_TO_PAGE_SIZE(sharedSize + vesaModeTableSize), 784 B_FULL_LOCK, 785 B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA | B_CLONEABLE_AREA); 786 if (di.sharedArea < 0) 787 return di.sharedArea; // return error code 788 789 SharedInfo& si = *(di.sharedInfo); 790 791 memset(&si, 0, sharedSize); 792 793 if (vesaModes != NULL) { 794 si.vesaModeTableOffset = sharedSize; 795 si.vesaModeCount = vesaModeTableSize / sizeof(VesaMode); 796 797 memcpy((uint8*)&si + si.vesaModeTableOffset, vesaModes, 798 vesaModeTableSize); 799 } 800 801 pci_info& pciInfo = di.pciInfo; 802 803 si.vendorID = pciInfo.vendor_id; 804 si.deviceID = pciInfo.device_id; 805 si.revision = pciInfo.revision; 806 si.chipType = di.pChipInfo->chipType; 807 strcpy(si.chipName, di.pChipInfo->chipName); 808 809 TRACE("Chip revision: 0x%x\n", si.revision); 810 811 // 264GT has two chip versions. If version is non-zero, chip is 264GTB. 812 813 if (si.chipType == MACH64_264GT && si.revision & 0x7) 814 si.chipType = MACH64_264GTB; 815 816 // 264VT has two chip versions. If version is non-zero, chip is 264VTB. 817 818 if (si.chipType == MACH64_264VT && si.revision & 0x7) 819 si.chipType = MACH64_264VTB; 820 821 status_t status = MapDevice(di); 822 823 // If device mapped without any error, get the bios parameters from the 824 // chip's BIOS ROM. 825 826 if (status >= 0) { 827 if (MACH64_FAMILY(si.chipType)) { 828 uint8 clockType; 829 Mach64_GetBiosParameters(di, clockType); 830 831 // All chips supported by this driver should have an internal clock. 832 // If the clock is not an internal clock, the video chip is not 833 // supported. 834 835 if (clockType != M64_CLOCK_INTERNAL) { 836 TRACE("Video chip clock type %d not supported\n", clockType); 837 status = B_UNSUPPORTED; 838 } 839 } 840 else if (RAGE128_FAMILY(si.chipType)) 841 Rage128_GetBiosParameters(di); 842 } 843 844 if (status < 0) { 845 delete_area(di.sharedArea); 846 di.sharedArea = -1; 847 di.sharedInfo = NULL; 848 return status; // return error code 849 } 850 851 InitInterruptHandler(di); 852 853 TRACE("Interrupt assigned: %s\n", si.bInterruptAssigned ? "yes" : "no"); 854 return B_OK; 855 } 856 857 858 static const ChipInfo* 859 GetNextSupportedDevice(uint32& pciIndex, pci_info& pciInfo) 860 { 861 // Search the PCI devices for a device that is supported by this driver. 862 // The search starts at the device specified by argument pciIndex, and 863 // continues until a supported device is found or there are no more devices 864 // to examine. Argument pciIndex is incremented after each device is 865 // examined. 866 867 // If a supported device is found, return a pointer to the struct containing 868 // the chip info; else return NULL. 869 870 while (gPCI->get_nth_pci_info(pciIndex, &pciInfo) == B_OK) { 871 872 if (pciInfo.vendor_id == VENDOR_ID) { 873 874 // Search the table of supported devices to find a chip/device that 875 // matches device ID of the current PCI device. 876 877 const ChipInfo* pDevice = chipTable; 878 879 while (pDevice->chipID != 0) { // end of table? 880 if (pDevice->chipID == pciInfo.device_id) { 881 // Matching device/chip found. If chip is 264VT, reject it 882 // if its version is zero since the mode can not be set on 883 // that chip. 884 885 if (pDevice->chipType == MACH64_264VT 886 && (pciInfo.revision & 0x7) == 0) 887 break; 888 889 return pDevice; // matching device/chip found 890 } 891 892 pDevice++; 893 } 894 } 895 896 pciIndex++; 897 } 898 899 return NULL; // no supported device found 900 } 901 902 903 904 // #pragma mark - Kernel Interface 905 906 907 status_t 908 init_hardware(void) 909 { 910 // Return B_OK if a device supported by this driver is found; otherwise, 911 // return B_ERROR so the driver will be unloaded. 912 913 if (get_module(B_PCI_MODULE_NAME, (module_info**)&gPCI) != B_OK) 914 return B_ERROR; // unable to access PCI bus 915 916 // Check pci devices for a device supported by this driver. 917 918 uint32 pciIndex = 0; 919 pci_info pciInfo; 920 const ChipInfo* pDevice = GetNextSupportedDevice(pciIndex, pciInfo); 921 922 TRACE("init_hardware() - %s\n", 923 pDevice == NULL ? "no supported devices" : "device supported"); 924 925 put_module(B_PCI_MODULE_NAME); // put away the module manager 926 927 return (pDevice == NULL ? B_ERROR : B_OK); 928 } 929 930 931 status_t 932 init_driver(void) 933 { 934 // Get handle for the pci bus. 935 936 if (get_module(B_PCI_MODULE_NAME, (module_info**)&gPCI) != B_OK) 937 return B_ERROR; 938 939 status_t status = gLock.Init("ATI driver lock"); 940 if (status < B_OK) 941 return status; 942 943 // Get info about all the devices supported by this driver. 944 945 uint32 pciIndex = 0; 946 uint32 count = 0; 947 948 while (count < MAX_DEVICES) { 949 DeviceInfo& di = gDeviceInfo[count]; 950 951 const ChipInfo* pDevice = GetNextSupportedDevice(pciIndex, di.pciInfo); 952 if (pDevice == NULL) 953 break; // all supported devices have been obtained 954 955 // Compose device name. 956 sprintf(di.name, "graphics/" DEVICE_FORMAT, 957 di.pciInfo.vendor_id, di.pciInfo.device_id, 958 di.pciInfo.bus, di.pciInfo.device, di.pciInfo.function); 959 TRACE("init_driver() match found; name: %s\n", di.name); 960 961 gDeviceNames[count] = di.name; 962 di.openCount = 0; // mark driver as available for R/W open 963 di.sharedArea = -1; // indicate shared area not yet created 964 di.sharedInfo = NULL; 965 di.pChipInfo = pDevice; 966 count++; 967 pciIndex++; 968 } 969 970 gDeviceNames[count] = NULL; // terminate list with null pointer 971 972 TRACE("init_driver() %ld supported devices\n", count); 973 974 return B_OK; 975 } 976 977 978 void 979 uninit_driver(void) 980 { 981 // Free the driver data. 982 983 gLock.Delete(); 984 put_module(B_PCI_MODULE_NAME); // put the pci module away 985 } 986 987 988 const char** 989 publish_devices(void) 990 { 991 return (const char**)gDeviceNames; // return list of supported devices 992 } 993 994 995 device_hooks* 996 find_device(const char* name) 997 { 998 int i = 0; 999 while (gDeviceNames[i] != NULL) { 1000 if (strcmp(name, gDeviceNames[i]) == 0) 1001 return &gDeviceHooks; 1002 i++; 1003 } 1004 1005 return NULL; 1006 } 1007 1008 1009 1010 // #pragma mark - Device Hooks 1011 1012 1013 static status_t 1014 device_open(const char* name, uint32 /*flags*/, void** cookie) 1015 { 1016 status_t status = B_OK; 1017 1018 TRACE("device_open() - name: %s\n", name); 1019 1020 // Find the device name in the list of devices. 1021 1022 int32 i = 0; 1023 while (gDeviceNames[i] != NULL && (strcmp(name, gDeviceNames[i]) != 0)) 1024 i++; 1025 1026 if (gDeviceNames[i] == NULL) 1027 return B_BAD_VALUE; // device name not found in list of devices 1028 1029 DeviceInfo& di = gDeviceInfo[i]; 1030 1031 gLock.Acquire(); // make sure no one else has write access to common data 1032 1033 if (di.openCount == 0) 1034 status = InitDevice(di); 1035 1036 gLock.Release(); 1037 1038 if (status == B_OK) { 1039 di.openCount++; // mark device open 1040 *cookie = &di; // send cookie to opener 1041 } 1042 1043 TRACE("device_open() returning 0x%lx, open count: %ld\n", status, 1044 di.openCount); 1045 return status; 1046 } 1047 1048 1049 static status_t 1050 device_read(void* dev, off_t pos, void* buf, size_t* len) 1051 { 1052 // Following 3 lines of code are here to eliminate "unused parameter" 1053 // warnings. 1054 (void)dev; 1055 (void)pos; 1056 (void)buf; 1057 1058 *len = 0; 1059 return B_NOT_ALLOWED; 1060 } 1061 1062 1063 static status_t 1064 device_write(void* dev, off_t pos, const void* buf, size_t* len) 1065 { 1066 // Following 3 lines of code are here to eliminate "unused parameter" 1067 // warnings. 1068 (void)dev; 1069 (void)pos; 1070 (void)buf; 1071 1072 *len = 0; 1073 return B_NOT_ALLOWED; 1074 } 1075 1076 1077 static status_t 1078 device_close(void* dev) 1079 { 1080 (void)dev; // avoid compiler warning for unused arg 1081 1082 return B_NO_ERROR; 1083 } 1084 1085 1086 static status_t 1087 device_free(void* dev) 1088 { 1089 DeviceInfo& di = *((DeviceInfo*)dev); 1090 SharedInfo& si = *(di.sharedInfo); 1091 pci_info& pciInfo = di.pciInfo; 1092 1093 TRACE("enter device_free()\n"); 1094 1095 gLock.Acquire(); // lock driver 1096 1097 // If opened multiple times, merely decrement the open count and exit. 1098 1099 if (di.openCount <= 1) { 1100 DisableVBI(); // disable & clear any pending interrupts 1101 1102 if (si.bInterruptAssigned) { 1103 remove_io_interrupt_handler(pciInfo.u.h0.interrupt_line, 1104 InterruptHandler, &di); 1105 } 1106 1107 // Delete the semaphores, ignoring any errors because the owning team 1108 // may have died. 1109 if (si.vertBlankSem >= 0) 1110 delete_sem(si.vertBlankSem); 1111 si.vertBlankSem = -1; 1112 1113 UnmapDevice(di); // free regs and frame buffer areas 1114 1115 delete_area(di.sharedArea); 1116 di.sharedArea = -1; 1117 di.sharedInfo = NULL; 1118 } 1119 1120 if (di.openCount > 0) 1121 di.openCount--; // mark device available 1122 1123 gLock.Release(); // unlock driver 1124 1125 TRACE("exit device_free() openCount: %ld\n", di.openCount); 1126 return B_OK; 1127 } 1128 1129 1130 static status_t 1131 device_ioctl(void* dev, uint32 msg, void* buffer, size_t bufferLength) 1132 { 1133 DeviceInfo& di = *((DeviceInfo*)dev); 1134 1135 // TRACE("device_ioctl(); ioctl: %lu, buffer: 0x%08lx, bufLen: %lu\n", msg, 1136 // (uint32)buffer, bufferLength); 1137 1138 switch (msg) { 1139 case B_GET_ACCELERANT_SIGNATURE: 1140 strcpy((char*)buffer, ATI_ACCELERANT_NAME); 1141 return B_OK; 1142 1143 case ATI_DEVICE_NAME: 1144 strncpy((char*)buffer, di.name, B_OS_NAME_LENGTH); 1145 ((char*)buffer)[B_OS_NAME_LENGTH -1] = '\0'; 1146 return B_OK; 1147 1148 case ATI_GET_SHARED_DATA: 1149 if (bufferLength != sizeof(area_id)) 1150 return B_BAD_DATA; 1151 1152 *((area_id*)buffer) = di.sharedArea; 1153 return B_OK; 1154 1155 case ATI_GET_EDID: 1156 { 1157 if (bufferLength != sizeof(edid1_raw)) 1158 return B_BAD_DATA; 1159 1160 edid1_raw rawEdid; 1161 status_t status = GetEdidFromBIOS(rawEdid); 1162 if (status == B_OK) 1163 user_memcpy((edid1_raw*)buffer, &rawEdid, sizeof(rawEdid)); 1164 return status; 1165 } 1166 1167 case ATI_SET_VESA_DISPLAY_MODE: 1168 if (bufferLength != sizeof(uint16)) 1169 return B_BAD_DATA; 1170 1171 return SetVesaDisplayMode(*((uint16*)buffer)); 1172 1173 case ATI_RUN_INTERRUPTS: 1174 if (bufferLength != sizeof(bool)) 1175 return B_BAD_DATA; 1176 1177 if (*((bool*)buffer)) 1178 EnableVBI(); 1179 else 1180 DisableVBI(); 1181 1182 return B_OK; 1183 } 1184 1185 return B_DEV_INVALID_IOCTL; 1186 } 1187