xref: /haiku/src/add-ons/kernel/drivers/graphics/ati/driver.cpp (revision 4466b89c65970de4c7236ac87faa2bee4589f413)
1 /*
2 	Copyright 2007-2011 Haiku, Inc.  All rights reserved.
3 	Distributed under the terms of the MIT license.
4 
5 	Authors:
6 	Gerald Zajac
7 */
8 
9 #include <KernelExport.h>
10 #include <PCI.h>
11 #include <malloc.h>
12 #include <stdio.h>
13 #include <string.h>
14 #include <graphic_driver.h>
15 #include <boot_item.h>
16 #include <arch/x86/vm86.h>
17 
18 #include "DriverInterface.h"
19 
20 
21 #undef TRACE
22 
23 #ifdef ENABLE_DEBUG_TRACE
24 #	define TRACE(x...) dprintf("ati: " x)
25 #else
26 #	define TRACE(x...) ;
27 #endif
28 
29 
30 #define ATI_ACCELERANT_NAME    "ati.accelerant"
31 
32 #define ROUND_TO_PAGE_SIZE(x) (((x) + (B_PAGE_SIZE) - 1) & ~((B_PAGE_SIZE) - 1))
33 
34 #define VESA_MODES_BOOT_INFO "vesa_modes/v1"
35 
36 #define SKD_HANDLER_INSTALLED 0x80000000
37 #define MAX_DEVICES		4
38 #define DEVICE_FORMAT	"%04X_%04X_%02X%02X%02X"
39 
40 #define M64_BIOS_SIZE		0x10000		// 64KB
41 #define R128_BIOS_SIZE		0x10000		// 64KB
42 
43 int32 api_version = B_CUR_DRIVER_API_VERSION;	// revision of driver API used
44 
45 #define VENDOR_ID 0x1002	// ATI vendor ID
46 
47 // Mach64 register definitions.
48 #define M64_CLOCK_INTERNAL	4
49 #define M64_CONFIG_CHIP_ID	0x0CE0		// offset in register area
50 #define M64_CFG_CHIP_TYPE	0x0000FFFF
51 
52 
53 struct ChipInfo {
54 	uint16		chipID;			// PCI device id of the chip
55 	ChipType	chipType;		// assigned chip type identifier
56 	const char*	chipName;		// user recognizable name for chip
57 								//   (must be < 32 chars)
58 };
59 
60 
61 // Names for chip types.
62 
63 static char sRage128_GL[]		 = "RAGE 128 GL";
64 static char sRage128_VR[]		 = "RAGE 128 VR";
65 static char sRage128_Pro_GL[]	 = "RAGE 128 PRO GL";
66 static char sRage128_Pro_VR[]	 = "RAGE 128 PRO VR";
67 static char sRage128_Pro_Ultra[] = "RAGE 128 PRO Ultra";
68 
69 // This table maps a PCI device ID to a chip type identifier and the chip name.
70 // The table is split into two groups of chips, the Mach64 and Rage128 chips,
71 // with each group ordered by the chip ID.
72 
73 static const ChipInfo chipTable[] = {
74 	{ 0x4742, MACH64_264GTPRO,		"3D RAGE PRO, AGP"		},		// GB
75 	{ 0x4744, MACH64_264GTPRO,		"3D RAGE PRO, AGP"		},		// GD
76 	{ 0x4749, MACH64_264GTPRO,		"3D RAGE PRO, PCI"		},		// GI
77 	{ 0x474C, MACH64_264XL,			"3D RAGE XC, PCI"		},		// GL
78 	{ 0x474D, MACH64_264XL,			"3D RAGE XL, AGP"		},		// GM
79 	{ 0x474E, MACH64_264XL,			"3D RAGE XC, AGP"		},		// GN
80 	{ 0x474F, MACH64_264XL,			"3D RAGE XL, PCI"		},		// GO
81 	{ 0x4750, MACH64_264GTPRO,		"3D RAGE PRO, PCI"		},		// GP
82 	{ 0x4751, MACH64_264GTPRO,		"3D RAGE PRO, PCI"		},		// GQ
83 	{ 0x4752, MACH64_264XL,			"3D RAGE XL, PCI"		},		// GR
84 	{ 0x4753, MACH64_264XL,			"3D RAGE XC, PCI"		},		// GS
85 	{ 0x4754, MACH64_264GT,			"3D RAGE II"			},		// GT
86 	{ 0x4755, MACH64_264GTDVD,		"3D RAGE II+"			},		// GU
87 	{ 0x4756, MACH64_264GT2C,		"3D RAGE IIC, PCI"		},		// GV
88 	{ 0x4757, MACH64_264GT2C,		"3D RAGE IIC, AGP"		},		// GW
89 	{ 0x4759, MACH64_264GT2C,		"3D RAGE IIC, PCI"		},		// GY
90 	{ 0x475A, MACH64_264GT2C,		"3D RAGE IIC, AGP"		},		// GZ
91 	{ 0x4C42, MACH64_264LTPRO,		"3D RAGE LT PRO, AGP"	},		// LB
92 	{ 0x4C44, MACH64_264LTPRO,		"3D RAGE LT PRO, AGP"	},		// LD
93 	{ 0x4C47, MACH64_264LT,			"3D RAGE LT"			},		// LG
94 	{ 0x4C49, MACH64_264LTPRO,		"3D RAGE LT PRO, PCI"	},		// LI
95 	{ 0x4C4D, MACH64_MOBILITY,		"3D RAGE Mobility, AGP"	},		// LM
96 	{ 0x4C4E, MACH64_MOBILITY,		"3D RAGE Mobility, AGP"	},		// LN
97 	{ 0x4C50, MACH64_264LTPRO,		"3D RAGE LT PRO, PCI"	},		// LP
98 	{ 0x4C51, MACH64_264LTPRO,		"3D RAGE LT PRO, PCI"	},		// LQ
99 	{ 0x4C52, MACH64_MOBILITY,		"3D RAGE Mobility, PCI"	},		// LR
100 	{ 0x4C53, MACH64_MOBILITY,		"3D RAGE Mobility, PCI"	},		// LS
101 	{ 0x5654, MACH64_264VT,			"264VT2"				},		// VT
102 	{ 0x5655, MACH64_264VT3,		"264VT3"				},		// VU
103 	{ 0x5656, MACH64_264VT4,		"264VT4"				},		// VV
104 
105 	{ 0x4C45, RAGE128_MOBILITY,		"RAGE 128 Mobility 3"	},		// LE
106 	{ 0x4C46, RAGE128_MOBILITY,		"RAGE 128 Mobility 3"	},		// LF
107 	{ 0x4D46, RAGE128_MOBILITY,		"RAGE 128 Mobility 4"	},		// MF
108 	{ 0x4D4C, RAGE128_MOBILITY,		"RAGE 128 Mobility 4"	},		// ML
109 	{ 0x5041, RAGE128_PRO_GL,		sRage128_Pro_GL			},		// PA
110 	{ 0x5042, RAGE128_PRO_GL,		sRage128_Pro_GL			},		// PB
111 	{ 0x5043, RAGE128_PRO_GL,		sRage128_Pro_GL			},		// PC
112 	{ 0x5044, RAGE128_PRO_GL,		sRage128_Pro_GL			},		// PD
113 	{ 0x5045, RAGE128_PRO_GL,		sRage128_Pro_GL			},		// PE
114 	{ 0x5046, RAGE128_PRO_GL,		sRage128_Pro_GL			},		// PF
115 	{ 0x5047, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PG
116 	{ 0x5048, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PH
117 	{ 0x5049, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PI
118 	{ 0x504A, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PJ
119 	{ 0x504B, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PK
120 	{ 0x504C, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PL
121 	{ 0x504D, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PM
122 	{ 0x504E, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PN
123 	{ 0x504F, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PO
124 	{ 0x5050, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PP
125 	{ 0x5051, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PQ
126 	{ 0x5052, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PR
127 	{ 0x5053, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PS
128 	{ 0x5054, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PT
129 	{ 0x5055, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PU
130 	{ 0x5056, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PV
131 	{ 0x5057, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PW
132 	{ 0x5058, RAGE128_PRO_VR,		sRage128_Pro_VR			},		// PX
133 	{ 0x5245, RAGE128_GL,			sRage128_GL				},		// RE
134 	{ 0x5246, RAGE128_GL,			sRage128_GL				},		// RF
135 	{ 0x5247, RAGE128_GL,			sRage128_GL				},		// RG
136 	{ 0x524B, RAGE128_VR,			sRage128_VR				},		// RK
137 	{ 0x524C, RAGE128_VR,			sRage128_VR				},		// RL
138 	{ 0x5345, RAGE128_VR,			sRage128_VR				},		// SE
139 	{ 0x5346, RAGE128_VR,			sRage128_VR				},		// SF
140 	{ 0x5347, RAGE128_VR,			sRage128_VR				},		// SG
141 	{ 0x5348, RAGE128_VR,			sRage128_VR				},		// SH
142 	{ 0x534B, RAGE128_GL,			sRage128_GL				},		// SK
143 	{ 0x534C, RAGE128_GL,			sRage128_GL				},		// SL
144 	{ 0x534D, RAGE128_GL,			sRage128_GL				},		// SM
145 	{ 0x534E, RAGE128_GL,			sRage128_GL				},		// SN
146 	{ 0x5446, RAGE128_PRO_ULTRA,	sRage128_Pro_Ultra		},		// TF
147 	{ 0x544C, RAGE128_PRO_ULTRA,	sRage128_Pro_Ultra		},		// TL
148 	{ 0x5452, RAGE128_PRO_ULTRA,	sRage128_Pro_Ultra		},		// TR
149 	{ 0x5453, RAGE128_PRO_ULTRA,	sRage128_Pro_Ultra		},		// TS
150 	{ 0x5454, RAGE128_PRO_ULTRA,	sRage128_Pro_Ultra		},		// TT
151 	{ 0x5455, RAGE128_PRO_ULTRA,	sRage128_Pro_Ultra		},		// TU
152 	{ 0,	  ATI_NONE,				NULL }
153 };
154 
155 
156 struct DeviceInfo {
157 	uint32			openCount;		// count of how many times device has been opened
158 	int32			flags;
159 	area_id 		sharedArea;		// area shared between driver and all accelerants
160 	SharedInfo* 	sharedInfo;		// pointer to shared info area memory
161 	vuint8*	 		regs;			// pointer to memory mapped registers
162 	const ChipInfo*	pChipInfo;		// info about the selected chip
163 	pci_info		pciInfo;		// copy of pci info for this device
164 	char			name[B_OS_NAME_LENGTH]; // name of device
165 };
166 
167 
168 static Benaphore		gLock;
169 static DeviceInfo		gDeviceInfo[MAX_DEVICES];
170 static char*			gDeviceNames[MAX_DEVICES + 1];
171 static pci_module_info*	gPCI;
172 
173 
174 // Prototypes for device hook functions.
175 
176 static status_t device_open(const char* name, uint32 flags, void** cookie);
177 static status_t device_close(void* dev);
178 static status_t device_free(void* dev);
179 static status_t device_read(void* dev, off_t pos, void* buf, size_t* len);
180 static status_t device_write(void* dev, off_t pos, const void* buf, size_t* len);
181 static status_t device_ioctl(void* dev, uint32 msg, void* buf, size_t len);
182 
183 static device_hooks gDeviceHooks =
184 {
185 	device_open,
186 	device_close,
187 	device_free,
188 	device_ioctl,
189 	device_read,
190 	device_write,
191 	NULL,
192 	NULL,
193 	NULL,
194 	NULL
195 };
196 
197 
198 
199 static inline uint32
200 GetPCI(pci_info& info, uint8 offset, uint8 size)
201 {
202 	return gPCI->read_pci_config(info.bus, info.device, info.function, offset,
203 		size);
204 }
205 
206 
207 static inline void
208 SetPCI(pci_info& info, uint8 offset, uint8 size, uint32 value)
209 {
210 	gPCI->write_pci_config(info.bus, info.device, info.function, offset, size,
211 		value);
212 }
213 
214 
215 // Functions for dealing with Vertical Blanking Interrupts.  Currently, I do
216 // not know the commands to handle these operations;  thus, these functions
217 // currently do nothing.
218 
219 static bool
220 InterruptIsVBI()
221 {
222 	// return true only if a vertical blanking interrupt has occured
223 	return false;
224 }
225 
226 
227 static void
228 ClearVBI()
229 {
230 }
231 
232 static void
233 EnableVBI()
234 {
235 }
236 
237 static void
238 DisableVBI()
239 {
240 }
241 
242 
243 
244 static status_t
245 GetEdidFromBIOS(edid1_raw& edidRaw)
246 {
247 	// Get the EDID info from the video BIOS, and return B_OK if successful.
248 
249 #define ADDRESS_SEGMENT(address) ((addr_t)(address) >> 4)
250 #define ADDRESS_OFFSET(address) ((addr_t)(address) & 0xf)
251 
252 	vm86_state vmState;
253 
254 	status_t status = vm86_prepare(&vmState, 0x2000);
255 	if (status != B_OK) {
256 		TRACE("GetEdidFromBIOS(); vm86_prepare() failed, status: 0x%lx\n",
257 			status);
258 		return status;
259 	}
260 
261 	vmState.regs.eax = 0x4f15;
262 	vmState.regs.ebx = 0;		// 0 = report DDC service
263 	vmState.regs.ecx = 0;
264 	vmState.regs.es = 0;
265 	vmState.regs.edi = 0;
266 
267 	status = vm86_do_int(&vmState, 0x10);
268 	if (status == B_OK) {
269 		// AH contains the error code, and AL determines wether or not the
270 		// function is supported.
271 		if (vmState.regs.eax != 0x4f)
272 			status = B_NOT_SUPPORTED;
273 
274 		// Test if DDC is supported by the monitor.
275 		if ((vmState.regs.ebx & 3) == 0)
276 			status = B_NOT_SUPPORTED;
277 	}
278 
279 	if (status == B_OK) {
280 		// According to the author of the vm86 functions, the address of any
281 		// object to receive data must be >= 0x1000 and within the ram size
282 		// specified in the second argument of the vm86_prepare() call above.
283 		// Thus, the address of the struct to receive the EDID info is set to
284 		// 0x1000.
285 
286 		edid1_raw* edid = (edid1_raw*)0x1000;
287 
288 		vmState.regs.eax = 0x4f15;
289 		vmState.regs.ebx = 1;		// 1 = read EDID
290 		vmState.regs.ecx = 0;
291 		vmState.regs.edx = 0;
292 		vmState.regs.es  = ADDRESS_SEGMENT(edid);
293 		vmState.regs.edi = ADDRESS_OFFSET(edid);
294 
295 		status = vm86_do_int(&vmState, 0x10);
296 		if (status == B_OK) {
297 			if (vmState.regs.eax != 0x4f) {
298 				status = B_NOT_SUPPORTED;
299 			} else {
300 				// Copy the EDID info to the caller's location, and compute the
301 				// checksum of the EDID info while copying.
302 
303 				uint8 sum = 0;
304 				uint8 allOr = 0;
305 				uint8* dest = (uint8*)&edidRaw;
306 				uint8* src = (uint8*)edid;
307 
308 				for (uint32 j = 0; j < sizeof(edidRaw); j++) {
309 					sum += *src;
310 					allOr |= *src;
311 					*dest++ = *src++;
312 				}
313 
314 				if (allOr == 0) {
315 					TRACE("GetEdidFromBIOS(); EDID info contains only zeros\n");
316 					status = B_ERROR;
317 				} else if (sum != 0) {
318 					TRACE("GetEdidFromBIOS(); Checksum error in EDID info\n");
319 					status = B_ERROR;
320 				}
321 			}
322 		}
323 	}
324 
325 	vm86_cleanup(&vmState);
326 
327 	return status;
328 }
329 
330 
331 static status_t
332 SetVesaDisplayMode(uint16 mode)
333 {
334 	// Set the VESA display mode, and return B_OK if successful.
335 
336 #define SET_MODE_MASK				0x01ff
337 #define SET_MODE_LINEAR_BUFFER		(1 << 14)
338 
339 	vm86_state vmState;
340 
341 	status_t status = vm86_prepare(&vmState, 0x2000);
342 	if (status != B_OK) {
343 		TRACE("SetVesaDisplayMode(); vm86_prepare() failed, status: 0x%lx\n",
344 			status);
345 		return status;
346 	}
347 
348 	vmState.regs.eax = 0x4f02;
349 	vmState.regs.ebx = (mode & SET_MODE_MASK) | SET_MODE_LINEAR_BUFFER;
350 
351 	status = vm86_do_int(&vmState, 0x10);
352 	if (status != B_OK) {
353 		TRACE("SetVesaDisplayMode(0x%x): vm86_do_int failed\n", mode);
354 	}
355 
356 	if (status == B_OK && (vmState.regs.eax & 0xffff) != 0x4f) {
357 		TRACE("SetVesaDisplayMode(0x%x): BIOS returned 0x%04lx\n", mode,
358 			vmState.regs.eax & 0xffff);
359 		status = B_ERROR;
360 	}
361 
362 	vm86_cleanup(&vmState);
363 
364 	return status;
365 }
366 
367 
368 
369 // Macros for accessing BIOS info.
370 
371 #define BIOS8(v)  (romAddr[v])
372 #define BIOS16(v) (romAddr[v] | \
373 				  (romAddr[(v) + 1] << 8))
374 #define BIOS32(v) (romAddr[v] | \
375 				  (romAddr[(v) + 1] << 8) | \
376 				  (romAddr[(v) + 2] << 16) | \
377 				  (romAddr[(v) + 3] << 24))
378 
379 
380 static status_t
381 Mach64_GetBiosParameters(DeviceInfo& di, uint8& clockType)
382 {
383 	// Get some clock parameters from the video BIOS, and if Mobility chip,
384 	// also get the LCD panel width & height.
385 
386 	// In case mapping the ROM area fails or other error occurs, set default
387 	// values for the parameters which will be obtained from the BIOS ROM.
388 
389 	clockType = M64_CLOCK_INTERNAL;
390 
391 	SharedInfo& si = *(di.sharedInfo);
392 	M64_Params& params = si.m64Params;
393 	params.clockNumberToProgram = 3;
394 
395 	si.panelX = 0;
396 	si.panelY = 0;
397 
398 	// Map the ROM area.  The Mach64 chips do not assign a ROM address in the
399 	// PCI info;  thus, access the ROM via the ISA legacy memory map.
400 
401 	uint8* romAddr;
402 	area_id romArea = map_physical_memory("ATI Mach64 ROM",
403 		0x000c0000,
404 		M64_BIOS_SIZE,
405 		B_ANY_KERNEL_ADDRESS,
406 		B_READ_AREA,
407 		(void**)&(romAddr));
408 
409 	if (romArea < 0) {
410 		TRACE("Mach64_GetBiosParameters(), ROM mapping error: %ld\n", romArea);
411 		return romArea;		// ROM mapping failed; return error code
412 	}
413 
414 	// Check if we have the BIOS signature (might fail on laptops..).
415 
416 	if (BIOS8(0) != 0x55 || BIOS8(1) != 0xaa) {
417 		TRACE("Mach64_GetBiosParameters(), ROM does not contain BIOS signature\n");
418 		delete_area(romArea);
419 		return B_ERROR;
420 	}
421 
422 	// Get clock info from BIOS.
423 
424 	uint32 romTable = BIOS16(0x48);
425 	uint32 clockTable = BIOS16(romTable + 16);
426 	clockType = BIOS8(clockTable);
427 	params.clockNumberToProgram = BIOS8(clockTable + 6);
428 	params.maxPixelClock = BIOS16(clockTable + 4) * 10;
429 	params.refFreq = BIOS16(clockTable + 8);
430 	params.refDivider = BIOS16(clockTable + 10);
431 
432 	// If Mobility chip, get the LCD panel width & height.
433 
434 	if (si.chipType == MACH64_MOBILITY) {
435 		uint32 lcdTable = BIOS16(0x78);
436 		if (BIOS32(lcdTable) == 0x544d5224) {	// is LCD table signature correct?
437 			uint32 lcdPanelInfo = BIOS16(lcdTable + 10);
438 			si.panelX = BIOS16(lcdPanelInfo + 25);
439 			si.panelY = BIOS16(lcdPanelInfo + 27);
440 			TRACE("Mobility LCD Panel size: %dx%d\n", si.panelX, si.panelY);
441 		} else {
442 			TRACE("Mobility LCD table signature 0x%x in BIOS is incorrect\n",
443 				 BIOS32(lcdTable));
444 		}
445 	}
446 
447 	delete_area(romArea);
448 
449 	return B_OK;
450 }
451 
452 
453 
454 static status_t
455 Rage128_GetBiosParameters(DeviceInfo& di)
456 {
457 	// Get the PLL parameters from the video BIOS, and if Mobility chips, also
458 	// get the LCD panel width & height and a few other related parameters.
459 
460 	// In case mapping the ROM area fails or other error occurs, set default
461 	// values for the parameters which will be obtained from the BIOS ROM.
462 	// The default PLL parameters values probably will not work for all chips.
463 	// For example, reference freq can be 29.50MHz, 28.63MHz, or 14.32MHz.
464 
465 	SharedInfo& si = *(di.sharedInfo);
466 	R128_PLLParams& pll = si.r128PLLParams;
467 	pll.reference_freq = 2950;
468 	pll.reference_div = 65;
469 	pll.min_pll_freq = 12500;
470 	pll.max_pll_freq = 25000;
471 	pll.xclk = 10300;
472 
473 	si.panelX = 0;
474 	si.panelY = 0;
475 	si.panelPowerDelay = 1;
476 
477 	// Map the ROM area.  The Rage128 chips do not assign a ROM address in the
478 	// PCI info;  thus, access the ROM via the ISA legacy memory map.
479 
480 	uint8* romAddr;
481 	area_id romArea = map_physical_memory("ATI Rage128 ROM",
482 		0x000c0000,
483 		R128_BIOS_SIZE,
484 		B_ANY_KERNEL_ADDRESS,
485 		B_READ_AREA,
486 		(void**)&(romAddr));
487 
488 	if (romArea < 0) {
489 		TRACE("Rage128_GetBiosParameters(), ROM mapping error: %ld\n", romArea);
490 		return romArea;		// ROM mapping failed; return error code
491 	}
492 
493 	// Check if we got the BIOS signature (might fail on laptops..).
494 
495 	if (BIOS8(0) != 0x55 || BIOS8(1) != 0xaa) {
496 		TRACE("Rage128_GetBiosParameters(), ROM does not contain BIOS signature\n");
497 		delete_area(romArea);
498 		return B_ERROR;
499 	}
500 
501 	// Get the PLL values from the mapped ROM area.
502 
503 	uint16 biosHeader = BIOS16(0x48);
504 	uint16 pllInfoBlock = BIOS16(biosHeader + 0x30);
505 
506 	pll.reference_freq = BIOS16(pllInfoBlock + 0x0e);
507 	pll.reference_div = BIOS16(pllInfoBlock + 0x10);
508 	pll.min_pll_freq = BIOS32(pllInfoBlock + 0x12);
509 	pll.max_pll_freq = BIOS32(pllInfoBlock + 0x16);
510 	pll.xclk = BIOS16(pllInfoBlock + 0x08);
511 
512 	TRACE("PLL parameters: rf=%d rd=%d min=%ld max=%ld; xclk=%d\n",
513 		pll.reference_freq, pll.reference_div, pll.min_pll_freq,
514 		pll.max_pll_freq, pll.xclk);
515 
516 	// If Mobility chip, get the LCD panel width & height and a few other
517 	// related parameters.
518 
519 	if (si.chipType == RAGE128_MOBILITY) {
520 		// There should be direct access to the start of the FP info table, but
521 		// until we find out where that offset is stored, we must search for
522 		// the ATI signature string: "M3      ".
523 
524 		int i;
525 		for (i = 4; i < R128_BIOS_SIZE - 8; i++) {
526 			if (BIOS8(i) == 'M' &&
527 					BIOS8(i + 1) == '3' &&
528 					BIOS8(i + 2) == ' ' &&
529 					BIOS8(i + 3) == ' ' &&
530 					BIOS8(i + 4) == ' ' &&
531 					BIOS8(i + 5) == ' ' &&
532 					BIOS8(i + 6) == ' ' &&
533 					BIOS8(i + 7) == ' ') {
534 				int fpHeader = i - 2;
535 
536 				// Assume that only one panel is attached and supported.
537 
538 				for (i = fpHeader + 20; i < fpHeader + 84; i += 2) {
539 					if (BIOS16(i) != 0) {
540 						int fpStart = BIOS16(i);
541 						si.panelX = BIOS16(fpStart + 25);
542 						si.panelY = BIOS16(fpStart + 27);
543 						si.panelPowerDelay = BIOS8(fpStart + 56);
544 						TRACE("LCD Panel size: %dx%d  Panel type: 0x%x   power delay: %d\n",
545 							si.panelX, si.panelY, BIOS16(fpStart + 29),
546 							si.panelPowerDelay);
547 						break;
548 					}
549 				}
550 
551 				break;
552 			}
553 		}
554 	}
555 
556 	delete_area(romArea);
557 
558 	return B_OK;
559 }
560 
561 
562 static status_t
563 MapDevice(DeviceInfo& di)
564 {
565 	SharedInfo& si = *(di.sharedInfo);
566 	pci_info& pciInfo = di.pciInfo;
567 
568 	// Enable memory mapped IO and bus master.
569 
570 	SetPCI(pciInfo, PCI_command, 2, GetPCI(pciInfo, PCI_command, 2)
571 		| PCI_command_io | PCI_command_memory | PCI_command_master);
572 
573 	// Map the video memory.
574 
575 	phys_addr_t videoRamAddr = pciInfo.u.h0.base_registers[0];
576 	uint32 videoRamSize = pciInfo.u.h0.base_register_sizes[0];
577 	si.videoMemPCI = videoRamAddr;
578 	char frameBufferAreaName[] = "ATI frame buffer";
579 
580 	si.videoMemArea = map_physical_memory(
581 		frameBufferAreaName,
582 		videoRamAddr,
583 		videoRamSize,
584 		B_ANY_KERNEL_BLOCK_ADDRESS | B_MTR_WC,
585 		B_READ_AREA + B_WRITE_AREA,
586 		(void**)&(si.videoMemAddr));
587 
588 	if (si.videoMemArea < 0) {
589 		// Try to map this time without write combining.
590 		si.videoMemArea = map_physical_memory(
591 			frameBufferAreaName,
592 			videoRamAddr,
593 			videoRamSize,
594 			B_ANY_KERNEL_BLOCK_ADDRESS,
595 			B_READ_AREA + B_WRITE_AREA,
596 			(void**)&(si.videoMemAddr));
597 	}
598 
599 	if (si.videoMemArea < 0)
600 		return si.videoMemArea;
601 
602 	// Map the MMIO register area.
603 
604 	phys_addr_t regsBase = pciInfo.u.h0.base_registers[2];
605 	uint32 regAreaSize = pciInfo.u.h0.base_register_sizes[2];
606 
607 	// If the register area address or size is not in the PCI info, it should
608 	// be at the end of the video memory.  Check if it is there.
609 
610 	if (MACH64_FAMILY(si.chipType) && (regsBase == 0 || regAreaSize == 0)) {
611 		uint32 regsOffset = 0x7ff000;	// offset to regs area in video memory
612 		uint32 regs = uint32(si.videoMemAddr) + regsOffset;
613 		uint32 chipInfo = *((vuint32*)(regs + M64_CONFIG_CHIP_ID));
614 
615 		if (si.deviceID != (chipInfo & M64_CFG_CHIP_TYPE)) {
616 			// Register area not found;  delete any other areas that were
617 			// created.
618 			delete_area(si.videoMemArea);
619 			si.videoMemArea = -1;
620 			TRACE("Mach64 register area not found\n");
621 			return B_ERROR;
622 		}
623 
624 		// Adjust params for creating register area below.
625 
626 		regsBase = videoRamAddr + regsOffset;
627 		regAreaSize = 0x1000;
628 		TRACE("Register address is at end of frame buffer memory at 0x%lx\n",
629 			uint32(regsBase));
630 	}
631 
632 	si.regsArea = map_physical_memory("ATI mmio registers",
633 		regsBase,
634 		regAreaSize,
635 		B_ANY_KERNEL_ADDRESS,
636 		0,		// neither read nor write, to hide it from user space apps
637 		(void**)&di.regs);
638 
639 	// If there was an error, delete other areas.
640 	if (si.regsArea < 0) {
641 		delete_area(si.videoMemArea);
642 		si.videoMemArea = -1;
643 	}
644 
645 	return si.regsArea;
646 }
647 
648 
649 static void
650 UnmapDevice(DeviceInfo& di)
651 {
652 	SharedInfo& si = *(di.sharedInfo);
653 
654 	if (si.regsArea >= 0)
655 		delete_area(si.regsArea);
656 	if (si.videoMemArea >= 0)
657 		delete_area(si.videoMemArea);
658 
659 	si.regsArea = si.videoMemArea = -1;
660 	si.videoMemAddr = (addr_t)NULL;
661 	di.regs = NULL;
662 }
663 
664 
665 static int32
666 InterruptHandler(void* data)
667 {
668 	int32 handled = B_UNHANDLED_INTERRUPT;
669 	DeviceInfo& di = *((DeviceInfo*)data);
670 	int32* flags = &(di.flags);
671 
672 	// Is someone already handling an interrupt for this device?
673 	if (atomic_or(flags, SKD_HANDLER_INSTALLED) & SKD_HANDLER_INSTALLED)
674 		return B_UNHANDLED_INTERRUPT;
675 
676 	if (InterruptIsVBI()) {	// was interrupt a VBI?
677 		ClearVBI();			// clear interrupt
678 
679 		handled = B_HANDLED_INTERRUPT;
680 
681 		// Release vertical blanking semaphore.
682 		sem_id& sem = di.sharedInfo->vertBlankSem;
683 
684 		if (sem >= 0) {
685 			int32 blocked;
686 			if ((get_sem_count(sem, &blocked) == B_OK) && (blocked < 0)) {
687 				release_sem_etc(sem, -blocked, B_DO_NOT_RESCHEDULE);
688 				handled = B_INVOKE_SCHEDULER;
689 			}
690 		}
691 	}
692 
693 	atomic_and(flags, ~SKD_HANDLER_INSTALLED);	// note we're not in handler anymore
694 
695 	return handled;
696 }
697 
698 
699 static void
700 InitInterruptHandler(DeviceInfo& di)
701 {
702 	SharedInfo& si = *(di.sharedInfo);
703 
704 	DisableVBI();					// disable & clear any pending interrupts
705 	si.bInterruptAssigned = false;	// indicate interrupt not assigned yet
706 
707 	// Create a semaphore for vertical blank management.
708 	si.vertBlankSem = create_sem(0, di.name);
709 	if (si.vertBlankSem < 0)
710 		return;
711 
712 	// Change the owner of the semaphores to the calling team (usually the
713 	// app_server).  This is required because apps can't aquire kernel
714 	// semaphores.
715 
716 	thread_id threadID = find_thread(NULL);
717 	thread_info threadInfo;
718 	status_t status = get_thread_info(threadID, &threadInfo);
719 	if (status == B_OK)
720 		status = set_sem_owner(si.vertBlankSem, threadInfo.team);
721 
722 	// If there is a valid interrupt assigned, set up interrupts.
723 
724 	if (status == B_OK && di.pciInfo.u.h0.interrupt_pin != 0x00
725 		&& di.pciInfo.u.h0.interrupt_line != 0xff) {
726 		// We have a interrupt line to use.
727 
728 		status = install_io_interrupt_handler(di.pciInfo.u.h0.interrupt_line,
729 			InterruptHandler, (void*)(&di), 0);
730 
731 		if (status == B_OK)
732 			si.bInterruptAssigned = true;	// we can use interrupt related functions
733 	}
734 
735 	if (status != B_OK) {
736 		// Interrupt does not exist; thus delete semaphore as it won't be used.
737 		delete_sem(si.vertBlankSem);
738 		si.vertBlankSem = -1;
739 	}
740 }
741 
742 
743 static status_t
744 InitDevice(DeviceInfo& di)
745 {
746 	// Perform initialization and mapping of the device, and return B_OK if
747 	// sucessful;  else, return error code.
748 
749 	// Get the table of VESA modes that the chip supports.  Note that we will
750 	// need this table only for chips that are currently connected to a laptop
751 	// display or a monitor connected via a DVI interface.
752 
753 	size_t vesaModeTableSize = 0;
754 	VesaMode* vesaModes = (VesaMode*)get_boot_item(VESA_MODES_BOOT_INFO,
755 		&vesaModeTableSize);
756 
757 	size_t sharedSize = (sizeof(SharedInfo) + 7) & ~7;
758 
759 	// Create the area for shared info with NO user-space read or write
760 	// permissions, to prevent accidental damage.
761 
762 	di.sharedArea = create_area("ATI shared info",
763 		(void**) &(di.sharedInfo),
764 		B_ANY_KERNEL_ADDRESS,
765 		ROUND_TO_PAGE_SIZE(sharedSize + vesaModeTableSize),
766 		B_FULL_LOCK, 0);
767 	if (di.sharedArea < 0)
768 		return di.sharedArea;	// return error code
769 
770 	SharedInfo& si = *(di.sharedInfo);
771 
772 	memset(&si, 0, sharedSize);
773 
774 	if (vesaModes != NULL) {
775 		si.vesaModeTableOffset = sharedSize;
776 		si.vesaModeCount = vesaModeTableSize / sizeof(VesaMode);
777 
778 		memcpy((uint8*)&si + si.vesaModeTableOffset, vesaModes,
779 			vesaModeTableSize);
780 	}
781 
782 	pci_info& pciInfo = di.pciInfo;
783 
784 	si.vendorID = pciInfo.vendor_id;
785 	si.deviceID = pciInfo.device_id;
786 	si.revision = pciInfo.revision;
787 	si.chipType = di.pChipInfo->chipType;
788 	strcpy(si.chipName, di.pChipInfo->chipName);
789 
790 	TRACE("Chip revision: 0x%x\n", si.revision);
791 
792 	// 264GT has two chip versions.  If version is non-zero, chip is 264GTB.
793 
794 	if (si.chipType == MACH64_264GT && si.revision & 0x7)
795 		si.chipType = MACH64_264GTB;
796 
797 	// 264VT has two chip versions.  If version is non-zero, chip is 264VTB.
798 
799 	if (si.chipType == MACH64_264VT && si.revision & 0x7)
800 		si.chipType = MACH64_264VTB;
801 
802 	status_t status = MapDevice(di);
803 
804 	// If device mapped without any error, get the bios parameters from the
805 	// chip's BIOS ROM.
806 
807 	if (status >= 0) {
808 		if (MACH64_FAMILY(si.chipType)) {
809 			uint8 clockType;
810 			Mach64_GetBiosParameters(di, clockType);
811 
812 			// All chips supported by this driver should have an internal clock.
813 			// If the clock is not an internal clock, the video chip is not
814 			// supported.
815 
816 			if (clockType != M64_CLOCK_INTERNAL) {
817 				TRACE("Video chip clock type %d not supported\n", clockType);
818 				status = B_UNSUPPORTED;
819 			}
820 		}
821 		else if (RAGE128_FAMILY(si.chipType))
822 			Rage128_GetBiosParameters(di);
823 	}
824 
825 	if (status < 0) {
826 		delete_area(di.sharedArea);
827 		di.sharedArea = -1;
828 		di.sharedInfo = NULL;
829 		return status;		// return error code
830 	}
831 
832 	InitInterruptHandler(di);
833 
834 	TRACE("Interrupt assigned:  %s\n", si.bInterruptAssigned ? "yes" : "no");
835 	return B_OK;
836 }
837 
838 
839 static const ChipInfo*
840 GetNextSupportedDevice(uint32& pciIndex, pci_info& pciInfo)
841 {
842 	// Search the PCI devices for a device that is supported by this driver.
843 	// The search starts at the device specified by argument pciIndex, and
844 	// continues until a supported device is found or there are no more devices
845 	// to examine.  Argument pciIndex is incremented after each device is
846 	// examined.
847 
848 	// If a supported device is found, return a pointer to the struct containing
849 	// the chip info; else return NULL.
850 
851 	while (gPCI->get_nth_pci_info(pciIndex, &pciInfo) == B_OK) {
852 
853 		if (pciInfo.vendor_id == VENDOR_ID) {
854 
855 			// Search the table of supported devices to find a chip/device that
856 			// matches device ID of the current PCI device.
857 
858 			const ChipInfo* pDevice = chipTable;
859 
860 			while (pDevice->chipID != 0) {	// end of table?
861 				if (pDevice->chipID == pciInfo.device_id) {
862 					// Matching device/chip found.  If chip is 264VT, reject it
863 					// if its version is zero since the mode can not be set on
864 					// that chip.
865 
866 					if (pDevice->chipType == MACH64_264VT
867 							&& (pciInfo.revision & 0x7) == 0)
868 						break;
869 
870 					return pDevice;		// matching device/chip found
871 				}
872 
873 				pDevice++;
874 			}
875 		}
876 
877 		pciIndex++;
878 	}
879 
880 	return NULL;		// no supported device found
881 }
882 
883 
884 
885 //	#pragma mark - Kernel Interface
886 
887 
888 status_t
889 init_hardware(void)
890 {
891 	// Return B_OK if a device supported by this driver is found; otherwise,
892 	// return B_ERROR so the driver will be unloaded.
893 
894 	if (get_module(B_PCI_MODULE_NAME, (module_info**)&gPCI) != B_OK)
895 		return B_ERROR;		// unable to access PCI bus
896 
897 	// Check pci devices for a device supported by this driver.
898 
899 	uint32 pciIndex = 0;
900 	pci_info pciInfo;
901 	const ChipInfo* pDevice = GetNextSupportedDevice(pciIndex, pciInfo);
902 
903 	TRACE("init_hardware() - %s\n",
904 		pDevice == NULL ? "no supported devices" : "device supported");
905 
906 	put_module(B_PCI_MODULE_NAME);		// put away the module manager
907 
908 	return (pDevice == NULL ? B_ERROR : B_OK);
909 }
910 
911 
912 status_t
913 init_driver(void)
914 {
915 	// Get handle for the pci bus.
916 
917 	if (get_module(B_PCI_MODULE_NAME, (module_info**)&gPCI) != B_OK)
918 		return B_ERROR;
919 
920 	status_t status = gLock.Init("ATI driver lock");
921 	if (status < B_OK)
922 		return status;
923 
924 	// Get info about all the devices supported by this driver.
925 
926 	uint32 pciIndex = 0;
927 	uint32 count = 0;
928 
929 	while (count < MAX_DEVICES) {
930 		DeviceInfo& di = gDeviceInfo[count];
931 
932 		const ChipInfo* pDevice = GetNextSupportedDevice(pciIndex, di.pciInfo);
933 		if (pDevice == NULL)
934 			break;			// all supported devices have been obtained
935 
936 		// Compose device name.
937 		sprintf(di.name, "graphics/" DEVICE_FORMAT,
938 				  di.pciInfo.vendor_id, di.pciInfo.device_id,
939 				  di.pciInfo.bus, di.pciInfo.device, di.pciInfo.function);
940 		TRACE("init_driver() match found; name: %s\n", di.name);
941 
942 		gDeviceNames[count] = di.name;
943 		di.openCount = 0;		// mark driver as available for R/W open
944 		di.sharedArea = -1;		// indicate shared area not yet created
945 		di.sharedInfo = NULL;
946 		di.pChipInfo = pDevice;
947 		count++;
948 		pciIndex++;
949 	}
950 
951 	gDeviceNames[count] = NULL;	// terminate list with null pointer
952 
953 	TRACE("init_driver() %ld supported devices\n", count);
954 
955 	return B_OK;
956 }
957 
958 
959 void
960 uninit_driver(void)
961 {
962 	// Free the driver data.
963 
964 	gLock.Delete();
965 	put_module(B_PCI_MODULE_NAME);	// put the pci module away
966 }
967 
968 
969 const char**
970 publish_devices(void)
971 {
972 	return (const char**)gDeviceNames;	// return list of supported devices
973 }
974 
975 
976 device_hooks*
977 find_device(const char* name)
978 {
979 	int i = 0;
980 	while (gDeviceNames[i] != NULL) {
981 		if (strcmp(name, gDeviceNames[i]) == 0)
982 			return &gDeviceHooks;
983 		i++;
984 	}
985 
986 	return NULL;
987 }
988 
989 
990 
991 //	#pragma mark - Device Hooks
992 
993 
994 static status_t
995 device_open(const char* name, uint32 /*flags*/, void** cookie)
996 {
997 	status_t status = B_OK;
998 
999 	TRACE("device_open() - name: %s\n", name);
1000 
1001 	// Find the device name in the list of devices.
1002 
1003 	int32 i = 0;
1004 	while (gDeviceNames[i] != NULL && (strcmp(name, gDeviceNames[i]) != 0))
1005 		i++;
1006 
1007 	if (gDeviceNames[i] == NULL)
1008 		return B_BAD_VALUE;		// device name not found in list of devices
1009 
1010 	DeviceInfo& di = gDeviceInfo[i];
1011 
1012 	gLock.Acquire();	// make sure no one else has write access to common data
1013 
1014 	if (di.openCount == 0)
1015 		status = InitDevice(di);
1016 
1017 	gLock.Release();
1018 
1019 	if (status == B_OK) {
1020 		di.openCount++;		// mark device open
1021 		*cookie = &di;		// send cookie to opener
1022 	}
1023 
1024 	TRACE("device_open() returning 0x%lx,  open count: %ld\n", status,
1025 		di.openCount);
1026 	return status;
1027 }
1028 
1029 
1030 static status_t
1031 device_read(void* dev, off_t pos, void* buf, size_t* len)
1032 {
1033 	// Following 3 lines of code are here to eliminate "unused parameter"
1034 	// warnings.
1035 	(void)dev;
1036 	(void)pos;
1037 	(void)buf;
1038 
1039 	*len = 0;
1040 	return B_NOT_ALLOWED;
1041 }
1042 
1043 
1044 static status_t
1045 device_write(void* dev, off_t pos, const void* buf, size_t* len)
1046 {
1047 	// Following 3 lines of code are here to eliminate "unused parameter"
1048 	// warnings.
1049 	(void)dev;
1050 	(void)pos;
1051 	(void)buf;
1052 
1053 	*len = 0;
1054 	return B_NOT_ALLOWED;
1055 }
1056 
1057 
1058 static status_t
1059 device_close(void* dev)
1060 {
1061 	(void)dev;		// avoid compiler warning for unused arg
1062 
1063 	return B_NO_ERROR;
1064 }
1065 
1066 
1067 static status_t
1068 device_free(void* dev)
1069 {
1070 	DeviceInfo& di = *((DeviceInfo*)dev);
1071 	SharedInfo& si = *(di.sharedInfo);
1072 	pci_info& pciInfo = di.pciInfo;
1073 
1074 	TRACE("enter device_free()\n");
1075 
1076 	gLock.Acquire();		// lock driver
1077 
1078 	// If opened multiple times, merely decrement the open count and exit.
1079 
1080 	if (di.openCount <= 1) {
1081 		DisableVBI();		// disable & clear any pending interrupts
1082 
1083 		if (si.bInterruptAssigned) {
1084 			remove_io_interrupt_handler(pciInfo.u.h0.interrupt_line,
1085 				InterruptHandler, &di);
1086 		}
1087 
1088 		// Delete the semaphores, ignoring any errors because the owning team
1089 		// may have died.
1090 		if (si.vertBlankSem >= 0)
1091 			delete_sem(si.vertBlankSem);
1092 		si.vertBlankSem = -1;
1093 
1094 		UnmapDevice(di);	// free regs and frame buffer areas
1095 
1096 		delete_area(di.sharedArea);
1097 		di.sharedArea = -1;
1098 		di.sharedInfo = NULL;
1099 	}
1100 
1101 	if (di.openCount > 0)
1102 		di.openCount--;		// mark device available
1103 
1104 	gLock.Release();	// unlock driver
1105 
1106 	TRACE("exit device_free() openCount: %ld\n", di.openCount);
1107 	return B_OK;
1108 }
1109 
1110 
1111 static status_t
1112 device_ioctl(void* dev, uint32 msg, void* buffer, size_t bufferLength)
1113 {
1114 	DeviceInfo& di = *((DeviceInfo*)dev);
1115 
1116 //	TRACE("device_ioctl(); ioctl: %lu, buffer: 0x%08lx, bufLen: %lu\n", msg,
1117 //		(uint32)buffer, bufferLength);
1118 
1119 	switch (msg) {
1120 		case B_GET_ACCELERANT_SIGNATURE:
1121 			strcpy((char*)buffer, ATI_ACCELERANT_NAME);
1122 			return B_OK;
1123 
1124 		case ATI_DEVICE_NAME:
1125 			strncpy((char*)buffer, di.name, B_OS_NAME_LENGTH);
1126 			((char*)buffer)[B_OS_NAME_LENGTH -1] = '\0';
1127 			return B_OK;
1128 
1129 		case ATI_GET_SHARED_DATA:
1130 			if (bufferLength != sizeof(area_id))
1131 				return B_BAD_DATA;
1132 
1133 			*((area_id*)buffer) = di.sharedArea;
1134 			return B_OK;
1135 
1136 		case ATI_GET_EDID:
1137 		{
1138 			if (bufferLength != sizeof(edid1_raw))
1139 				return B_BAD_DATA;
1140 
1141 			edid1_raw rawEdid;
1142 			status_t status = GetEdidFromBIOS(rawEdid);
1143 			if (status == B_OK)
1144 				user_memcpy((edid1_raw*)buffer, &rawEdid, sizeof(rawEdid));
1145 			return status;
1146 		}
1147 
1148 		case ATI_SET_VESA_DISPLAY_MODE:
1149 			if (bufferLength != sizeof(uint16))
1150 				return B_BAD_DATA;
1151 
1152 			return SetVesaDisplayMode(*((uint16*)buffer));
1153 
1154 		case ATI_RUN_INTERRUPTS:
1155 			if (bufferLength != sizeof(bool))
1156 				return B_BAD_DATA;
1157 
1158 			if (*((bool*)buffer))
1159 				EnableVBI();
1160 			else
1161 				DisableVBI();
1162 
1163 			return B_OK;
1164 	}
1165 
1166 	return B_DEV_INVALID_IOCTL;
1167 }
1168