1 /* 2 * Copyright 2004-2011, Haiku Inc. All rights reserved. 3 * Distributed under the terms of the MIT License. 4 * 5 * Authors: 6 * Michael Lotz <mmlr@mlotz.ch> 7 * Niels S. Reedijk 8 * Salvatore Benedetto <salvatore.benedetto@gmail.com> 9 */ 10 11 #include <module.h> 12 #include <PCI.h> 13 #include <USB3.h> 14 #include <KernelExport.h> 15 16 #include "uhci.h" 17 18 #define USB_MODULE_NAME "uhci" 19 20 pci_module_info *UHCI::sPCIModule = NULL; 21 22 static int32 sDebuggerCommandAdded = 0; 23 24 25 #ifdef HAIKU_TARGET_PLATFORM_HAIKU 26 27 28 class DebugTransfer : public Transfer { 29 public: 30 DebugTransfer(Pipe *pipe) 31 : 32 Transfer(pipe) 33 { 34 } 35 36 uhci_td *firstDescriptor; 37 uhci_qh *transferQueue; 38 }; 39 40 41 /*! The function is an evil hack to allow <tt> <kdebug>usb_keyboard </tt> to 42 execute transfers. 43 When invoked the first time, a new transfer is started, each time the 44 function is called afterwards, it is checked whether the transfer is already 45 completed. If called with argv[1] == "cancel" the function cancels a 46 possibly pending transfer. 47 */ 48 static int 49 debug_process_transfer(int argc, char **argv) 50 { 51 Pipe *pipe = (Pipe *)get_debug_variable("_usbPipe", 0); 52 if (pipe == NULL) 53 return 2; 54 55 // check if we have a UHCI bus at all 56 if (pipe->GetBusManager()->TypeName()[0] != 'u') 57 return 3; 58 59 uint8 *data = (uint8 *)get_debug_variable("_usbTransferData", 0); 60 if (data == NULL) 61 return 4; 62 63 size_t length = (size_t)get_debug_variable("_usbTransferLength", 0); 64 if (length == 0) 65 return 5; 66 67 static uint8 transferBuffer[sizeof(DebugTransfer)] 68 __attribute__((aligned(16))); 69 static DebugTransfer* transfer; 70 71 UHCI *bus = (UHCI *)pipe->GetBusManager(); 72 73 if (argc > 1 && strcmp(argv[1], "cancel") == 0) { 74 if (transfer != NULL) { 75 bus->CancelDebugTransfer(transfer); 76 transfer = NULL; 77 } 78 return 0; 79 } 80 81 if (transfer != NULL) { 82 bool stillPending; 83 status_t error = bus->CheckDebugTransfer(transfer, stillPending); 84 if (!stillPending) 85 transfer = NULL; 86 87 return error == B_OK ? 0 : 6; 88 } 89 90 transfer = new(transferBuffer) DebugTransfer(pipe); 91 transfer->SetData(data, length); 92 93 if (bus->StartDebugTransfer(transfer) != B_OK) { 94 transfer = NULL; 95 return 7; 96 } 97 98 return 0; 99 } 100 #endif 101 102 103 static int32 104 uhci_std_ops(int32 op, ...) 105 { 106 switch (op) { 107 case B_MODULE_INIT: 108 TRACE_MODULE("init module\n"); 109 return B_OK; 110 case B_MODULE_UNINIT: 111 TRACE_MODULE("uninit module\n"); 112 break; 113 default: 114 return EINVAL; 115 } 116 117 return B_OK; 118 } 119 120 121 usb_host_controller_info uhci_module = { 122 { 123 "busses/usb/uhci", 124 0, 125 uhci_std_ops 126 }, 127 NULL, 128 UHCI::AddTo 129 }; 130 131 132 module_info *modules[] = { 133 (module_info *)&uhci_module, 134 NULL 135 }; 136 137 138 // 139 // #pragma mark - 140 // 141 142 143 #ifdef TRACE_USB 144 145 void 146 print_descriptor_chain(uhci_td *descriptor) 147 { 148 while (descriptor) { 149 dprintf("ph: 0x%08lx; lp: 0x%08lx; vf: %s; q: %s; t: %s; st: 0x%08lx; to: 0x%08lx\n", 150 descriptor->this_phy & 0xffffffff, descriptor->link_phy & 0xfffffff0, 151 descriptor->link_phy & 0x4 ? "y" : "n", 152 descriptor->link_phy & 0x2 ? "qh" : "td", 153 descriptor->link_phy & 0x1 ? "y" : "n", 154 descriptor->status, descriptor->token); 155 156 if (descriptor->link_phy & TD_TERMINATE) 157 break; 158 159 descriptor = (uhci_td *)descriptor->link_log; 160 } 161 } 162 163 #endif // TRACE_USB 164 165 166 // 167 // #pragma mark - 168 // 169 170 171 Queue::Queue(Stack *stack) 172 { 173 fStack = stack; 174 175 mutex_init(&fLock, "uhci queue lock"); 176 177 void *physicalAddress; 178 fStatus = fStack->AllocateChunk((void **)&fQueueHead, &physicalAddress, 179 sizeof(uhci_qh)); 180 if (fStatus < B_OK) 181 return; 182 183 fQueueHead->this_phy = (addr_t)physicalAddress; 184 fQueueHead->element_phy = QH_TERMINATE; 185 186 fStrayDescriptor = NULL; 187 fQueueTop = NULL; 188 } 189 190 191 Queue::~Queue() 192 { 193 Lock(); 194 mutex_destroy(&fLock); 195 196 fStack->FreeChunk(fQueueHead, (void *)fQueueHead->this_phy, sizeof(uhci_qh)); 197 198 if (fStrayDescriptor) 199 fStack->FreeChunk(fStrayDescriptor, (void *)fStrayDescriptor->this_phy, 200 sizeof(uhci_td)); 201 } 202 203 204 status_t 205 Queue::InitCheck() 206 { 207 return fStatus; 208 } 209 210 211 bool 212 Queue::Lock() 213 { 214 return (mutex_lock(&fLock) == B_OK); 215 } 216 217 218 void 219 Queue::Unlock() 220 { 221 mutex_unlock(&fLock); 222 } 223 224 225 status_t 226 Queue::LinkTo(Queue *other) 227 { 228 if (!other) 229 return B_BAD_VALUE; 230 231 if (!Lock()) 232 return B_ERROR; 233 234 fQueueHead->link_phy = other->fQueueHead->this_phy | QH_NEXT_IS_QH; 235 fQueueHead->link_log = other->fQueueHead; 236 Unlock(); 237 238 return B_OK; 239 } 240 241 242 status_t 243 Queue::TerminateByStrayDescriptor() 244 { 245 // According to the *BSD USB sources, there needs to be a stray transfer 246 // descriptor in order to get some chipset to work nicely (like the PIIX). 247 void *physicalAddress; 248 status_t result = fStack->AllocateChunk((void **)&fStrayDescriptor, 249 &physicalAddress, sizeof(uhci_td)); 250 if (result < B_OK) { 251 TRACE_ERROR("failed to allocate a stray transfer descriptor\n"); 252 return result; 253 } 254 255 fStrayDescriptor->status = 0; 256 fStrayDescriptor->this_phy = (addr_t)physicalAddress; 257 fStrayDescriptor->link_phy = TD_TERMINATE; 258 fStrayDescriptor->link_log = NULL; 259 fStrayDescriptor->buffer_phy = 0; 260 fStrayDescriptor->buffer_log = NULL; 261 fStrayDescriptor->buffer_size = 0; 262 fStrayDescriptor->token = TD_TOKEN_NULL_DATA 263 | (0x7f << TD_TOKEN_DEVADDR_SHIFT) | TD_TOKEN_IN; 264 265 if (!Lock()) { 266 fStack->FreeChunk(fStrayDescriptor, (void *)fStrayDescriptor->this_phy, 267 sizeof(uhci_td)); 268 return B_ERROR; 269 } 270 271 fQueueHead->link_phy = fStrayDescriptor->this_phy; 272 fQueueHead->link_log = fStrayDescriptor; 273 Unlock(); 274 275 return B_OK; 276 } 277 278 279 status_t 280 Queue::AppendTransfer(uhci_qh *transfer, bool lock) 281 { 282 if (lock && !Lock()) 283 return B_ERROR; 284 285 transfer->link_log = NULL; 286 transfer->link_phy = fQueueHead->link_phy; 287 288 if (!fQueueTop) { 289 // the list is empty, make this the first element 290 fQueueTop = transfer; 291 fQueueHead->element_phy = transfer->this_phy | QH_NEXT_IS_QH; 292 } else { 293 // append the transfer queue to the list 294 uhci_qh *element = fQueueTop; 295 while (element && element->link_log) 296 element = (uhci_qh *)element->link_log; 297 298 element->link_log = transfer; 299 element->link_phy = transfer->this_phy | QH_NEXT_IS_QH; 300 } 301 302 if (lock) 303 Unlock(); 304 return B_OK; 305 } 306 307 308 status_t 309 Queue::RemoveTransfer(uhci_qh *transfer, bool lock) 310 { 311 if (lock && !Lock()) 312 return B_ERROR; 313 314 if (fQueueTop == transfer) { 315 // this was the top element 316 fQueueTop = (uhci_qh *)transfer->link_log; 317 if (!fQueueTop) { 318 // this was the only element, terminate this queue 319 fQueueHead->element_phy = QH_TERMINATE; 320 } else { 321 // there are elements left, adjust the element pointer 322 fQueueHead->element_phy = transfer->link_phy; 323 } 324 325 if (lock) 326 Unlock(); 327 return B_OK; 328 } else { 329 uhci_qh *element = fQueueTop; 330 while (element) { 331 if (element->link_log == transfer) { 332 element->link_log = transfer->link_log; 333 element->link_phy = transfer->link_phy; 334 if (lock) 335 Unlock(); 336 return B_OK; 337 } 338 339 element = (uhci_qh *)element->link_log; 340 } 341 } 342 343 if (lock) 344 Unlock(); 345 return B_BAD_VALUE; 346 } 347 348 349 addr_t 350 Queue::PhysicalAddress() 351 { 352 return fQueueHead->this_phy; 353 } 354 355 356 void 357 Queue::PrintToStream() 358 { 359 #ifdef TRACE_USB 360 TRACE("queue:\n"); 361 dprintf("link phy: 0x%08lx; link type: %s; terminate: %s\n", fQueueHead->link_phy & 0xfff0, fQueueHead->link_phy & 0x0002 ? "QH" : "TD", fQueueHead->link_phy & 0x0001 ? "yes" : "no"); 362 dprintf("elem phy: 0x%08lx; elem type: %s; terminate: %s\n", fQueueHead->element_phy & 0xfff0, fQueueHead->element_phy & 0x0002 ? "QH" : "TD", fQueueHead->element_phy & 0x0001 ? "yes" : "no"); 363 #endif 364 } 365 366 367 // 368 // #pragma mark - 369 // 370 371 372 UHCI::UHCI(pci_info *info, Stack *stack) 373 : BusManager(stack), 374 fPCIInfo(info), 375 fStack(stack), 376 fEnabledInterrupts(0), 377 fFrameArea(-1), 378 fFrameList(NULL), 379 fFrameBandwidth(NULL), 380 fFirstIsochronousDescriptor(NULL), 381 fLastIsochronousDescriptor(NULL), 382 fQueueCount(0), 383 fQueues(NULL), 384 fFirstTransfer(NULL), 385 fLastTransfer(NULL), 386 fFinishTransfersSem(-1), 387 fFinishThread(-1), 388 fStopThreads(false), 389 fProcessingPipe(NULL), 390 fFreeList(NULL), 391 fCleanupThread(-1), 392 fCleanupSem(-1), 393 fCleanupCount(0), 394 fFirstIsochronousTransfer(NULL), 395 fLastIsochronousTransfer(NULL), 396 fFinishIsochronousTransfersSem(-1), 397 fFinishIsochronousThread(-1), 398 fRootHub(NULL), 399 fRootHubAddress(0), 400 fPortResetChange(0) 401 { 402 // Create a lock for the isochronous transfer list 403 mutex_init(&fIsochronousLock, "UHCI isochronous lock"); 404 405 if (!fInitOK) { 406 TRACE_ERROR("bus manager failed to init\n"); 407 return; 408 } 409 410 TRACE("constructing new UHCI host controller driver\n"); 411 fInitOK = false; 412 413 fRegisterBase = sPCIModule->read_pci_config(fPCIInfo->bus, 414 fPCIInfo->device, fPCIInfo->function, PCI_memory_base, 4); 415 fRegisterBase &= PCI_address_io_mask; 416 TRACE("iospace offset: 0x%08lx\n", fRegisterBase); 417 418 if (fRegisterBase == 0) { 419 fRegisterBase = fPCIInfo->u.h0.base_registers[0]; 420 TRACE_ALWAYS("register base: 0x%08lx\n", fRegisterBase); 421 } 422 423 // enable pci address access 424 uint16 command = PCI_command_io | PCI_command_master | PCI_command_memory; 425 command |= sPCIModule->read_pci_config(fPCIInfo->bus, fPCIInfo->device, 426 fPCIInfo->function, PCI_command, 2); 427 428 sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device, 429 fPCIInfo->function, PCI_command, 2, command); 430 431 // disable interrupts 432 WriteReg16(UHCI_USBINTR, 0); 433 434 // make sure we gain control of the UHCI controller instead of the BIOS 435 sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device, 436 fPCIInfo->function, PCI_LEGSUP, 2, PCI_LEGSUP_USBPIRQDEN 437 | PCI_LEGSUP_CLEAR_SMI); 438 439 // do a global and host reset 440 GlobalReset(); 441 if (ControllerReset() < B_OK) { 442 TRACE_ERROR("host failed to reset\n"); 443 return; 444 } 445 446 // Setup the frame list 447 void *physicalAddress; 448 fFrameArea = fStack->AllocateArea((void **)&fFrameList, 449 (void **)&physicalAddress, 4096, "USB UHCI framelist"); 450 451 if (fFrameArea < B_OK) { 452 TRACE_ERROR("unable to create an area for the frame pointer list\n"); 453 return; 454 } 455 456 // Set base pointer and reset frame number 457 WriteReg32(UHCI_FRBASEADD, (uint32)physicalAddress); 458 WriteReg16(UHCI_FRNUM, 0); 459 460 // Set the max packet size for bandwidth reclamation to 64 bytes 461 WriteReg16(UHCI_USBCMD, ReadReg16(UHCI_USBCMD) | UHCI_USBCMD_MAXP); 462 463 // we will create four queues: 464 // 0: interrupt transfers 465 // 1: low speed control transfers 466 // 2: full speed control transfers 467 // 3: bulk transfers 468 // 4: debug queue 469 // TODO: 4: bandwidth reclamation queue 470 fQueueCount = 5; 471 fQueues = new(std::nothrow) Queue *[fQueueCount]; 472 if (!fQueues) { 473 delete_area(fFrameArea); 474 return; 475 } 476 477 for (int32 i = 0; i < fQueueCount; i++) { 478 fQueues[i] = new(std::nothrow) Queue(fStack); 479 if (!fQueues[i] || fQueues[i]->InitCheck() < B_OK) { 480 TRACE_ERROR("cannot create queues\n"); 481 delete_area(fFrameArea); 482 return; 483 } 484 485 if (i > 0) 486 fQueues[i - 1]->LinkTo(fQueues[i]); 487 } 488 489 // Make sure the last queue terminates 490 fQueues[fQueueCount - 1]->TerminateByStrayDescriptor(); 491 492 // Create the array that will keep bandwidth information 493 fFrameBandwidth = new(std::nothrow) uint16[NUMBER_OF_FRAMES]; 494 495 // Create lists for managing isochronous transfer descriptors 496 fFirstIsochronousDescriptor = new(std::nothrow) uhci_td *[NUMBER_OF_FRAMES]; 497 if (!fFirstIsochronousDescriptor) { 498 TRACE_ERROR("faild to allocate memory for first isochronous descriptor\n"); 499 return; 500 } 501 502 fLastIsochronousDescriptor = new(std::nothrow) uhci_td *[NUMBER_OF_FRAMES]; 503 if (!fLastIsochronousDescriptor) { 504 TRACE_ERROR("failed to allocate memory for last isochronous descriptor\n"); 505 delete [] fFirstIsochronousDescriptor; 506 return; 507 } 508 509 for (int32 i = 0; i < NUMBER_OF_FRAMES; i++) { 510 fFrameList[i] = fQueues[UHCI_INTERRUPT_QUEUE]->PhysicalAddress() 511 | FRAMELIST_NEXT_IS_QH; 512 fFrameBandwidth[i] = MAX_AVAILABLE_BANDWIDTH; 513 fFirstIsochronousDescriptor[i] = NULL; 514 fLastIsochronousDescriptor[i] = NULL; 515 } 516 517 // Create semaphore the finisher and cleanup threads will wait for 518 fFinishTransfersSem = create_sem(0, "UHCI Finish Transfers"); 519 if (fFinishTransfersSem < B_OK) { 520 TRACE_ERROR("failed to create finisher semaphore\n"); 521 return; 522 } 523 524 fCleanupSem = create_sem(0, "UHCI Cleanup"); 525 if (fCleanupSem < B_OK) { 526 TRACE_ERROR("failed to create cleanup semaphore\n"); 527 return; 528 } 529 530 // Create the finisher service and cleanup threads 531 fFinishThread = spawn_kernel_thread(FinishThread, 532 "uhci finish thread", B_URGENT_DISPLAY_PRIORITY, (void *)this); 533 resume_thread(fFinishThread); 534 535 fCleanupThread = spawn_kernel_thread(CleanupThread, 536 "uhci cleanup thread", B_NORMAL_PRIORITY, (void *)this); 537 resume_thread(fCleanupThread); 538 539 // Create semaphore the isochronous finisher thread will wait for 540 fFinishIsochronousTransfersSem = create_sem(0, 541 "UHCI Isochronous Finish Transfers"); 542 if (fFinishIsochronousTransfersSem < B_OK) { 543 TRACE_ERROR("failed to create isochronous finisher semaphore\n"); 544 return; 545 } 546 547 // Create the isochronous finisher service thread 548 fFinishIsochronousThread = spawn_kernel_thread(FinishIsochronousThread, 549 "uhci isochronous finish thread", B_URGENT_DISPLAY_PRIORITY, 550 (void *)this); 551 resume_thread(fFinishIsochronousThread); 552 553 // Install the interrupt handler 554 TRACE("installing interrupt handler\n"); 555 install_io_interrupt_handler(fPCIInfo->u.h0.interrupt_line, 556 InterruptHandler, (void *)this, 0); 557 558 // Enable interrupts 559 fEnabledInterrupts = UHCI_USBSTS_USBINT | UHCI_USBSTS_ERRINT 560 | UHCI_USBSTS_HOSTERR | UHCI_USBSTS_HCPRERR | UHCI_USBSTS_HCHALT; 561 WriteReg16(UHCI_USBINTR, UHCI_USBINTR_CRC | UHCI_USBINTR_IOC 562 | UHCI_USBINTR_SHORT); 563 564 #ifdef HAIKU_TARGET_PLATFORM_HAIKU 565 if (atomic_add(&sDebuggerCommandAdded, 1) == 0) { 566 add_debugger_command("uhci_process_transfer", 567 &debug_process_transfer, 568 "Processes a USB transfer with the given variables"); 569 } 570 #endif 571 572 TRACE("UHCI host controller driver constructed\n"); 573 fInitOK = true; 574 } 575 576 577 UHCI::~UHCI() 578 { 579 #ifdef HAIKU_TARGET_PLATFORM_HAIKU 580 if (atomic_add(&sDebuggerCommandAdded, -1) == 1) { 581 remove_debugger_command("uhci_process_transfer", 582 &debug_process_transfer); 583 } 584 #endif 585 586 int32 result = 0; 587 fStopThreads = true; 588 delete_sem(fFinishTransfersSem); 589 delete_sem(fCleanupSem); 590 delete_sem(fFinishIsochronousTransfersSem); 591 wait_for_thread(fFinishThread, &result); 592 wait_for_thread(fCleanupThread, &result); 593 wait_for_thread(fFinishIsochronousThread, &result); 594 595 LockIsochronous(); 596 isochronous_transfer_data *isoTransfer = fFirstIsochronousTransfer; 597 while (isoTransfer) { 598 isochronous_transfer_data *next = isoTransfer->link; 599 delete isoTransfer; 600 isoTransfer = next; 601 } 602 mutex_destroy(&fIsochronousLock); 603 604 Lock(); 605 transfer_data *transfer = fFirstTransfer; 606 while (transfer) { 607 transfer->transfer->Finished(B_CANCELED, 0); 608 delete transfer->transfer; 609 610 transfer_data *next = transfer->link; 611 delete transfer; 612 transfer = next; 613 } 614 615 for (int32 i = 0; i < fQueueCount; i++) 616 delete fQueues[i]; 617 618 delete [] fQueues; 619 delete [] fFrameBandwidth; 620 delete [] fFirstIsochronousDescriptor; 621 delete [] fLastIsochronousDescriptor; 622 delete fRootHub; 623 delete_area(fFrameArea); 624 625 put_module(B_PCI_MODULE_NAME); 626 Unlock(); 627 } 628 629 630 status_t 631 UHCI::Start() 632 { 633 // Start the host controller, then start the Busmanager 634 TRACE("starting UHCI BusManager\n"); 635 TRACE("usbcmd reg 0x%04x, usbsts reg 0x%04x\n", 636 ReadReg16(UHCI_USBCMD), ReadReg16(UHCI_USBSTS)); 637 638 // Set the run bit in the command register 639 WriteReg16(UHCI_USBCMD, ReadReg16(UHCI_USBCMD) | UHCI_USBCMD_RS); 640 641 bool running = false; 642 for (int32 i = 0; i < 10; i++) { 643 uint16 status = ReadReg16(UHCI_USBSTS); 644 TRACE("current loop %ld, status 0x%04x\n", i, status); 645 646 if (status & UHCI_USBSTS_HCHALT) 647 snooze(10000); 648 else { 649 running = true; 650 break; 651 } 652 } 653 654 if (!running) { 655 TRACE_ERROR("controller won't start running\n"); 656 return B_ERROR; 657 } 658 659 fRootHubAddress = AllocateAddress(); 660 fRootHub = new(std::nothrow) UHCIRootHub(RootObject(), fRootHubAddress); 661 if (!fRootHub) { 662 TRACE_ERROR("no memory to allocate root hub\n"); 663 return B_NO_MEMORY; 664 } 665 666 if (fRootHub->InitCheck() < B_OK) { 667 TRACE_ERROR("root hub failed init check\n"); 668 delete fRootHub; 669 return B_ERROR; 670 } 671 672 SetRootHub(fRootHub); 673 674 TRACE("controller is started. status: %u curframe: %u\n", 675 ReadReg16(UHCI_USBSTS), ReadReg16(UHCI_FRNUM)); 676 TRACE_ALWAYS("successfully started the controller\n"); 677 return BusManager::Start(); 678 } 679 680 681 status_t 682 UHCI::SubmitTransfer(Transfer *transfer) 683 { 684 // Short circuit the root hub 685 Pipe *pipe = transfer->TransferPipe(); 686 if (pipe->DeviceAddress() == fRootHubAddress) 687 return fRootHub->ProcessTransfer(this, transfer); 688 689 TRACE("submit transfer called for device %d\n", pipe->DeviceAddress()); 690 if (pipe->Type() & USB_OBJECT_CONTROL_PIPE) 691 return SubmitRequest(transfer); 692 693 // Process isochronous transfers 694 if (pipe->Type() & USB_OBJECT_ISO_PIPE) 695 return SubmitIsochronous(transfer); 696 697 uhci_td *firstDescriptor = NULL; 698 uhci_qh *transferQueue = NULL; 699 status_t result = CreateFilledTransfer(transfer, &firstDescriptor, 700 &transferQueue); 701 if (result < B_OK) 702 return result; 703 704 Queue *queue = NULL; 705 if (pipe->Type() & USB_OBJECT_INTERRUPT_PIPE) 706 queue = fQueues[UHCI_INTERRUPT_QUEUE]; 707 else 708 queue = fQueues[UHCI_BULK_QUEUE]; 709 710 bool directionIn = (pipe->Direction() == Pipe::In); 711 result = AddPendingTransfer(transfer, queue, transferQueue, 712 firstDescriptor, firstDescriptor, directionIn); 713 if (result < B_OK) { 714 TRACE_ERROR("failed to add pending transfer\n"); 715 FreeDescriptorChain(firstDescriptor); 716 FreeTransferQueue(transferQueue); 717 return result; 718 } 719 720 queue->AppendTransfer(transferQueue); 721 return B_OK; 722 } 723 724 725 status_t 726 UHCI::StartDebugTransfer(DebugTransfer *transfer) 727 { 728 transfer->firstDescriptor = NULL; 729 transfer->transferQueue = NULL; 730 status_t result = CreateFilledTransfer(transfer, &transfer->firstDescriptor, 731 &transfer->transferQueue); 732 if (result < B_OK) 733 return result; 734 735 fQueues[UHCI_DEBUG_QUEUE]->AppendTransfer(transfer->transferQueue, false); 736 737 return B_OK; 738 } 739 740 741 status_t 742 UHCI::CheckDebugTransfer(DebugTransfer *transfer, bool &_stillPending) 743 { 744 bool transferOK = false; 745 bool transferError = false; 746 uhci_td *descriptor = transfer->firstDescriptor; 747 748 while (descriptor) { 749 uint32 status = descriptor->status; 750 if (status & TD_STATUS_ACTIVE) 751 break; 752 753 if (status & TD_ERROR_MASK) { 754 transferError = true; 755 break; 756 } 757 758 if ((descriptor->link_phy & TD_TERMINATE) 759 || uhci_td_actual_length(descriptor) 760 < uhci_td_maximum_length(descriptor)) { 761 transferOK = true; 762 break; 763 } 764 765 descriptor = (uhci_td *)descriptor->link_log; 766 } 767 768 if (!transferOK && !transferError) { 769 spin(200); 770 _stillPending = true; 771 return B_OK; 772 } 773 774 if (transferOK) { 775 uint8 lastDataToggle = 0; 776 if (transfer->TransferPipe()->Direction() == Pipe::In) { 777 // data to read out 778 iovec *vector = transfer->Vector(); 779 size_t vectorCount = transfer->VectorCount(); 780 781 ReadDescriptorChain(transfer->firstDescriptor, 782 vector, vectorCount, &lastDataToggle); 783 } else { 784 // read the actual length that was sent 785 ReadActualLength(transfer->firstDescriptor, &lastDataToggle); 786 } 787 788 transfer->TransferPipe()->SetDataToggle(lastDataToggle == 0); 789 } 790 791 fQueues[UHCI_DEBUG_QUEUE]->RemoveTransfer(transfer->transferQueue, false); 792 FreeDescriptorChain(transfer->firstDescriptor); 793 FreeTransferQueue(transfer->transferQueue); 794 _stillPending = false; 795 return transferOK ? B_OK : B_IO_ERROR; 796 } 797 798 799 void 800 UHCI::CancelDebugTransfer(DebugTransfer *transfer) 801 { 802 // clear the active bit so the descriptors are canceled 803 uhci_td *descriptor = transfer->firstDescriptor; 804 while (descriptor) { 805 descriptor->status &= ~TD_STATUS_ACTIVE; 806 descriptor = (uhci_td *)descriptor->link_log; 807 } 808 809 transfer->Finished(B_CANCELED, 0); 810 811 // dequeue and free resources 812 fQueues[UHCI_DEBUG_QUEUE]->RemoveTransfer(transfer->transferQueue, false); 813 FreeDescriptorChain(transfer->firstDescriptor); 814 FreeTransferQueue(transfer->transferQueue); 815 // TODO: [bonefish] The Free*() calls cause "PMA: provided address resulted 816 // in invalid index" to be printed, so apparently something is not right. 817 // Though I have not clue what. This is the same cleanup code as in 818 // CheckDebugTransfer() that should undo the CreateFilledTransfer() from 819 // StartDebugTransfer(). 820 } 821 822 823 status_t 824 UHCI::CancelQueuedTransfers(Pipe *pipe, bool force) 825 { 826 if (pipe->Type() & USB_OBJECT_ISO_PIPE) 827 return CancelQueuedIsochronousTransfers(pipe, force); 828 829 if (!Lock()) 830 return B_ERROR; 831 832 struct transfer_entry { 833 Transfer * transfer; 834 transfer_entry * next; 835 }; 836 837 transfer_entry *list = NULL; 838 transfer_data *current = fFirstTransfer; 839 while (current) { 840 if (current->transfer && current->transfer->TransferPipe() == pipe) { 841 // clear the active bit so the descriptors are canceled 842 uhci_td *descriptor = current->first_descriptor; 843 while (descriptor) { 844 descriptor->status &= ~TD_STATUS_ACTIVE; 845 descriptor = (uhci_td *)descriptor->link_log; 846 } 847 848 if (!force) { 849 // if the transfer is canceled by force, the one causing the 850 // cancel is probably not the one who initiated the transfer 851 // and the callback is likely not safe anymore 852 transfer_entry *entry 853 = (transfer_entry *)malloc(sizeof(transfer_entry)); 854 if (entry != NULL) { 855 entry->transfer = current->transfer; 856 current->transfer = NULL; 857 entry->next = list; 858 list = entry; 859 } 860 } 861 862 current->canceled = true; 863 } 864 current = current->link; 865 } 866 867 Unlock(); 868 869 while (list != NULL) { 870 transfer_entry *next = list->next; 871 list->transfer->Finished(B_CANCELED, 0); 872 delete list->transfer; 873 free(list); 874 list = next; 875 } 876 877 // wait for any transfers that might have made it before canceling 878 while (fProcessingPipe == pipe) 879 snooze(1000); 880 881 // notify the finisher so it can clean up the canceled transfers 882 release_sem_etc(fFinishTransfersSem, 1, B_DO_NOT_RESCHEDULE); 883 return B_OK; 884 } 885 886 887 status_t 888 UHCI::CancelQueuedIsochronousTransfers(Pipe *pipe, bool force) 889 { 890 isochronous_transfer_data *current = fFirstIsochronousTransfer; 891 892 while (current) { 893 if (current->transfer->TransferPipe() == pipe) { 894 int32 packetCount 895 = current->transfer->IsochronousData()->packet_count; 896 // Set the active bit off on every descriptor in order to prevent 897 // the controller from processing them. Then set off the is_active 898 // field of the transfer in order to make the finisher thread skip 899 // the transfer. The FinishIsochronousThread will do the rest. 900 for (int32 i = 0; i < packetCount; i++) 901 current->descriptors[i]->status &= ~TD_STATUS_ACTIVE; 902 903 // TODO: Use the force paramater in order to avoid calling 904 // invalid callbacks 905 current->is_active = false; 906 } 907 908 current = current->link; 909 } 910 911 TRACE_ERROR("no isochronous transfer found!\n"); 912 return B_ERROR; 913 } 914 915 916 status_t 917 UHCI::SubmitRequest(Transfer *transfer) 918 { 919 Pipe *pipe = transfer->TransferPipe(); 920 usb_request_data *requestData = transfer->RequestData(); 921 bool directionIn = (requestData->RequestType & USB_REQTYPE_DEVICE_IN) > 0; 922 923 uhci_td *setupDescriptor = CreateDescriptor(pipe, TD_TOKEN_SETUP, 924 sizeof(usb_request_data)); 925 926 uhci_td *statusDescriptor = CreateDescriptor(pipe, 927 directionIn ? TD_TOKEN_OUT : TD_TOKEN_IN, 0); 928 929 if (!setupDescriptor || !statusDescriptor) { 930 TRACE_ERROR("failed to allocate descriptors\n"); 931 FreeDescriptor(setupDescriptor); 932 FreeDescriptor(statusDescriptor); 933 return B_NO_MEMORY; 934 } 935 936 iovec vector; 937 vector.iov_base = requestData; 938 vector.iov_len = sizeof(usb_request_data); 939 WriteDescriptorChain(setupDescriptor, &vector, 1); 940 941 statusDescriptor->status |= TD_CONTROL_IOC; 942 statusDescriptor->token |= TD_TOKEN_DATA1; 943 statusDescriptor->link_phy = TD_TERMINATE; 944 statusDescriptor->link_log = NULL; 945 946 uhci_td *dataDescriptor = NULL; 947 if (transfer->VectorCount() > 0) { 948 uhci_td *lastDescriptor = NULL; 949 status_t result = CreateDescriptorChain(pipe, &dataDescriptor, 950 &lastDescriptor, directionIn ? TD_TOKEN_IN : TD_TOKEN_OUT, 951 transfer->VectorLength()); 952 953 if (result < B_OK) { 954 FreeDescriptor(setupDescriptor); 955 FreeDescriptor(statusDescriptor); 956 return result; 957 } 958 959 if (!directionIn) { 960 WriteDescriptorChain(dataDescriptor, transfer->Vector(), 961 transfer->VectorCount()); 962 } 963 964 LinkDescriptors(setupDescriptor, dataDescriptor); 965 LinkDescriptors(lastDescriptor, statusDescriptor); 966 } else { 967 // Link transfer and status descriptors directly 968 LinkDescriptors(setupDescriptor, statusDescriptor); 969 } 970 971 Queue *queue = NULL; 972 if (pipe->Speed() == USB_SPEED_LOWSPEED) 973 queue = fQueues[UHCI_LOW_SPEED_CONTROL_QUEUE]; 974 else 975 queue = fQueues[UHCI_FULL_SPEED_CONTROL_QUEUE]; 976 977 uhci_qh *transferQueue = CreateTransferQueue(setupDescriptor); 978 status_t result = AddPendingTransfer(transfer, queue, transferQueue, 979 setupDescriptor, dataDescriptor, directionIn); 980 if (result < B_OK) { 981 TRACE_ERROR("failed to add pending transfer\n"); 982 FreeDescriptorChain(setupDescriptor); 983 FreeTransferQueue(transferQueue); 984 return result; 985 } 986 987 queue->AppendTransfer(transferQueue); 988 return B_OK; 989 } 990 991 992 status_t 993 UHCI::AddPendingTransfer(Transfer *transfer, Queue *queue, 994 uhci_qh *transferQueue, uhci_td *firstDescriptor, uhci_td *dataDescriptor, 995 bool directionIn) 996 { 997 if (!transfer || !queue || !transferQueue || !firstDescriptor) 998 return B_BAD_VALUE; 999 1000 transfer_data *data = new(std::nothrow) transfer_data; 1001 if (!data) 1002 return B_NO_MEMORY; 1003 1004 status_t result = transfer->InitKernelAccess(); 1005 if (result < B_OK) { 1006 delete data; 1007 return result; 1008 } 1009 1010 data->transfer = transfer; 1011 data->queue = queue; 1012 data->transfer_queue = transferQueue; 1013 data->first_descriptor = firstDescriptor; 1014 data->data_descriptor = dataDescriptor; 1015 data->incoming = directionIn; 1016 data->canceled = false; 1017 data->link = NULL; 1018 1019 if (!Lock()) { 1020 delete data; 1021 return B_ERROR; 1022 } 1023 1024 if (fLastTransfer) 1025 fLastTransfer->link = data; 1026 if (!fFirstTransfer) 1027 fFirstTransfer = data; 1028 1029 fLastTransfer = data; 1030 Unlock(); 1031 return B_OK; 1032 } 1033 1034 1035 status_t 1036 UHCI::AddPendingIsochronousTransfer(Transfer *transfer, uhci_td **isoRequest, 1037 bool directionIn) 1038 { 1039 if (!transfer || !isoRequest) 1040 return B_BAD_VALUE; 1041 1042 isochronous_transfer_data *data 1043 = new(std::nothrow) isochronous_transfer_data; 1044 if (!data) 1045 return B_NO_MEMORY; 1046 1047 status_t result = transfer->InitKernelAccess(); 1048 if (result < B_OK) { 1049 delete data; 1050 return result; 1051 } 1052 1053 data->transfer = transfer; 1054 data->descriptors = isoRequest; 1055 data->last_to_process = transfer->IsochronousData()->packet_count - 1; 1056 data->incoming = directionIn; 1057 data->is_active = true; 1058 data->link = NULL; 1059 1060 // Put in the isochronous transfer list 1061 if (!LockIsochronous()) { 1062 delete data; 1063 return B_ERROR; 1064 } 1065 1066 if (fLastIsochronousTransfer) 1067 fLastIsochronousTransfer->link = data; 1068 if (!fFirstIsochronousTransfer) 1069 fFirstIsochronousTransfer = data; 1070 1071 fLastIsochronousTransfer = data; 1072 UnlockIsochronous(); 1073 return B_OK; 1074 } 1075 1076 1077 status_t 1078 UHCI::SubmitIsochronous(Transfer *transfer) 1079 { 1080 Pipe *pipe = transfer->TransferPipe(); 1081 bool directionIn = (pipe->Direction() == Pipe::In); 1082 usb_isochronous_data *isochronousData = transfer->IsochronousData(); 1083 size_t packetSize = transfer->DataLength(); 1084 size_t restSize = packetSize % isochronousData->packet_count; 1085 packetSize /= isochronousData->packet_count; 1086 uint16 currentFrame; 1087 1088 if (packetSize > pipe->MaxPacketSize()) { 1089 TRACE_ERROR("isochronous packetSize is bigger than pipe MaxPacketSize\n"); 1090 return B_BAD_VALUE; 1091 } 1092 1093 // Ignore the fact that the last descriptor might need less bandwidth. 1094 // The overhead is not worthy. 1095 uint16 bandwidth = transfer->Bandwidth() / isochronousData->packet_count; 1096 1097 TRACE("isochronous transfer descriptor bandwidth %d\n", bandwidth); 1098 1099 // The following holds the list of transfer descriptor of the 1100 // isochronous request. It is used to quickly remove all the isochronous 1101 // descriptors from the frame list, as descriptors are not link to each 1102 // other in a queue like for every other transfer. 1103 uhci_td **isoRequest 1104 = new(std::nothrow) uhci_td *[isochronousData->packet_count]; 1105 if (isoRequest == NULL) { 1106 TRACE("failed to create isoRequest array!\n"); 1107 return B_NO_MEMORY; 1108 } 1109 1110 // Create the list of transfer descriptors 1111 for (uint32 i = 0; i < (isochronousData->packet_count - 1); i++) { 1112 isoRequest[i] = CreateDescriptor(pipe, 1113 directionIn ? TD_TOKEN_IN : TD_TOKEN_OUT, packetSize); 1114 // If we ran out of memory, clean up and return 1115 if (isoRequest[i] == NULL) { 1116 for (uint32 j = 0; j < i; j++) 1117 FreeDescriptor(isoRequest[j]); 1118 delete [] isoRequest; 1119 return B_NO_MEMORY; 1120 } 1121 // Make sure data toggle is set to zero 1122 isoRequest[i]->token &= ~TD_TOKEN_DATA1; 1123 } 1124 1125 // Create the last transfer descriptor which should be of smaller size 1126 // and set the IOC bit 1127 isoRequest[isochronousData->packet_count - 1] = CreateDescriptor(pipe, 1128 directionIn ? TD_TOKEN_IN : TD_TOKEN_OUT, 1129 (restSize) ? restSize : packetSize); 1130 // If we are that unlucky... 1131 if (!isoRequest[isochronousData->packet_count - 1]) { 1132 for (uint32 i = 0; i < (isochronousData->packet_count - 2); i++) 1133 FreeDescriptor(isoRequest[i]); 1134 delete [] isoRequest; 1135 return B_NO_MEMORY; 1136 } 1137 isoRequest[isochronousData->packet_count - 1]->token &= ~TD_TOKEN_DATA1; 1138 1139 // If direction is out set every descriptor data 1140 if (!directionIn) { 1141 iovec *vector = transfer->Vector(); 1142 WriteIsochronousDescriptorChain(isoRequest, 1143 isochronousData->packet_count, vector); 1144 } else { 1145 // Initialize the packet descriptors 1146 for (uint32 i = 0; i < isochronousData->packet_count; i++) { 1147 isochronousData->packet_descriptors[i].actual_length = 0; 1148 isochronousData->packet_descriptors[i].status = B_NO_INIT; 1149 } 1150 } 1151 1152 TRACE("isochronous submitted size=%ld bytes, TDs=%ld, " 1153 "packetSize=%ld, restSize=%ld\n", transfer->DataLength(), 1154 isochronousData->packet_count, packetSize, restSize); 1155 1156 // Find the entry where to start inserting the first Isochronous descriptor 1157 if (isochronousData->flags & USB_ISO_ASAP || 1158 isochronousData->starting_frame_number == NULL) { 1159 // find the first available frame with enough bandwidth. 1160 // This should always be the case, as defining the starting frame 1161 // number in the driver makes no sense for many reason, one of which 1162 // is that frame numbers value are host controller specific, and the 1163 // driver does not know which host controller is running. 1164 currentFrame = ReadReg16(UHCI_FRNUM); 1165 1166 // Make sure that: 1167 // 1. We are at least 5ms ahead the controller 1168 // 2. We stay in the range 0-1023 1169 // 3. There is enough bandwidth in the first entry 1170 currentFrame = (currentFrame + 5) % NUMBER_OF_FRAMES; 1171 } else { 1172 // Find out if the frame number specified has enough bandwidth, 1173 // otherwise find the first next available frame with enough bandwidth 1174 currentFrame = *isochronousData->starting_frame_number; 1175 } 1176 1177 // Find the first entry with enough bandwidth 1178 // TODO: should we also check the bandwidth of the following packet_count frames? 1179 uint16 startSeekingFromFrame = currentFrame; 1180 while (fFrameBandwidth[currentFrame] < bandwidth) { 1181 currentFrame = (currentFrame + 1) % NUMBER_OF_FRAMES; 1182 if (currentFrame == startSeekingFromFrame) { 1183 TRACE_ERROR("not enough bandwidth to queue the isochronous request"); 1184 for (uint32 i = 0; i < isochronousData->packet_count; i++) 1185 FreeDescriptor(isoRequest[i]); 1186 delete [] isoRequest; 1187 return B_ERROR; 1188 } 1189 } 1190 1191 if (isochronousData->starting_frame_number) 1192 *isochronousData->starting_frame_number = currentFrame; 1193 1194 // Add transfer to the list 1195 status_t result = AddPendingIsochronousTransfer(transfer, isoRequest, 1196 directionIn); 1197 if (result < B_OK) { 1198 TRACE_ERROR("failed to add pending isochronous transfer\n"); 1199 for (uint32 i = 0; i < isochronousData->packet_count; i++) 1200 FreeDescriptor(isoRequest[i]); 1201 delete [] isoRequest; 1202 return result; 1203 } 1204 1205 TRACE("appended isochronous transfer by starting at frame number %d\n", 1206 currentFrame); 1207 1208 // Insert the Transfer Descriptor by starting at 1209 // the starting_frame_number entry 1210 // TODO: We don't consider bInterval, and assume it's 1! 1211 for (uint32 i = 0; i < isochronousData->packet_count; i++) { 1212 result = LinkIsochronousDescriptor(isoRequest[i], currentFrame); 1213 if (result < B_OK) { 1214 TRACE_ERROR("failed to add pending isochronous transfer\n"); 1215 for (uint32 i = 0; i < isochronousData->packet_count; i++) 1216 FreeDescriptor(isoRequest[i]); 1217 delete [] isoRequest; 1218 return result; 1219 } 1220 1221 fFrameBandwidth[currentFrame] -= bandwidth; 1222 currentFrame = (currentFrame + 1) % NUMBER_OF_FRAMES; 1223 } 1224 1225 // Wake up the isochronous finisher thread 1226 release_sem_etc(fFinishIsochronousTransfersSem, 1, B_DO_NOT_RESCHEDULE); 1227 1228 return B_OK; 1229 } 1230 1231 1232 isochronous_transfer_data * 1233 UHCI::FindIsochronousTransfer(uhci_td *descriptor) 1234 { 1235 // Simply check every last descriptor of the isochronous transfer list 1236 if (LockIsochronous()) { 1237 isochronous_transfer_data *transfer = fFirstIsochronousTransfer; 1238 if (transfer) { 1239 while (transfer->descriptors[transfer->last_to_process] 1240 != descriptor) { 1241 transfer = transfer->link; 1242 if (!transfer) 1243 break; 1244 } 1245 } 1246 UnlockIsochronous(); 1247 return transfer; 1248 } 1249 return NULL; 1250 } 1251 1252 1253 status_t 1254 UHCI::LinkIsochronousDescriptor(uhci_td *descriptor, uint16 frame) 1255 { 1256 // The transfer descriptor is appended to the last 1257 // existing isochronous transfer descriptor (if any) 1258 // in that frame. 1259 if (LockIsochronous()) { 1260 if (!fFirstIsochronousDescriptor[frame]) { 1261 // Insert the transfer descriptor in the first position 1262 fFrameList[frame] = descriptor->this_phy & ~FRAMELIST_NEXT_IS_QH; 1263 fFirstIsochronousDescriptor[frame] = descriptor; 1264 fLastIsochronousDescriptor[frame] = descriptor; 1265 } else { 1266 // Append to the last transfer descriptor 1267 fLastIsochronousDescriptor[frame]->link_log = descriptor; 1268 fLastIsochronousDescriptor[frame]->link_phy 1269 = descriptor->this_phy & ~TD_NEXT_IS_QH; 1270 fLastIsochronousDescriptor[frame] = descriptor; 1271 } 1272 1273 descriptor->link_phy 1274 = fQueues[UHCI_INTERRUPT_QUEUE]->PhysicalAddress() | TD_NEXT_IS_QH; 1275 UnlockIsochronous(); 1276 return B_OK; 1277 } 1278 return B_ERROR; 1279 } 1280 1281 1282 uhci_td * 1283 UHCI::UnlinkIsochronousDescriptor(uint16 frame) 1284 { 1285 // We always unlink from the top 1286 if (LockIsochronous()) { 1287 uhci_td *descriptor = fFirstIsochronousDescriptor[frame]; 1288 if (descriptor) { 1289 // The descriptor will be freed later. 1290 fFrameList[frame] = descriptor->link_phy; 1291 if (descriptor->link_log) { 1292 fFirstIsochronousDescriptor[frame] 1293 = (uhci_td *)descriptor->link_log; 1294 } else { 1295 fFirstIsochronousDescriptor[frame] = NULL; 1296 fLastIsochronousDescriptor[frame] = NULL; 1297 } 1298 } 1299 UnlockIsochronous(); 1300 return descriptor; 1301 } 1302 return NULL; 1303 } 1304 1305 1306 int32 1307 UHCI::FinishThread(void *data) 1308 { 1309 ((UHCI *)data)->FinishTransfers(); 1310 return B_OK; 1311 } 1312 1313 1314 void 1315 UHCI::FinishTransfers() 1316 { 1317 while (!fStopThreads) { 1318 if (acquire_sem(fFinishTransfersSem) < B_OK) 1319 continue; 1320 1321 // eat up sems that have been released by multiple interrupts 1322 int32 semCount = 0; 1323 get_sem_count(fFinishTransfersSem, &semCount); 1324 if (semCount > 0) 1325 acquire_sem_etc(fFinishTransfersSem, semCount, B_RELATIVE_TIMEOUT, 0); 1326 1327 if (!Lock()) 1328 continue; 1329 1330 TRACE("finishing transfers (first transfer: 0x%08lx; last" 1331 " transfer: 0x%08lx)\n", (uint32)fFirstTransfer, 1332 (uint32)fLastTransfer); 1333 transfer_data *lastTransfer = NULL; 1334 transfer_data *transfer = fFirstTransfer; 1335 Unlock(); 1336 1337 while (transfer) { 1338 bool transferDone = false; 1339 uhci_td *descriptor = transfer->first_descriptor; 1340 status_t callbackStatus = B_OK; 1341 1342 while (descriptor) { 1343 uint32 status = descriptor->status; 1344 if (status & TD_STATUS_ACTIVE) { 1345 // still in progress 1346 TRACE("td (0x%08lx) still active\n", descriptor->this_phy); 1347 break; 1348 } 1349 1350 if (status & TD_ERROR_MASK) { 1351 // an error occured 1352 TRACE_ERROR("td (0x%08lx) error: status: 0x%08lx;" 1353 " token: 0x%08lx;\n", descriptor->this_phy, status, 1354 descriptor->token); 1355 1356 uint8 errorCount = status >> TD_ERROR_COUNT_SHIFT; 1357 errorCount &= TD_ERROR_COUNT_MASK; 1358 if (errorCount == 0) { 1359 // the error counter counted down to zero, report why 1360 int32 reasons = 0; 1361 if (status & TD_STATUS_ERROR_BUFFER) { 1362 callbackStatus = transfer->incoming ? B_DEV_DATA_OVERRUN : B_DEV_DATA_UNDERRUN; 1363 reasons++; 1364 } 1365 if (status & TD_STATUS_ERROR_TIMEOUT) { 1366 callbackStatus = transfer->incoming ? B_DEV_CRC_ERROR : B_TIMED_OUT; 1367 reasons++; 1368 } 1369 if (status & TD_STATUS_ERROR_NAK) { 1370 callbackStatus = B_DEV_UNEXPECTED_PID; 1371 reasons++; 1372 } 1373 if (status & TD_STATUS_ERROR_BITSTUFF) { 1374 callbackStatus = B_DEV_CRC_ERROR; 1375 reasons++; 1376 } 1377 1378 if (reasons > 1) 1379 callbackStatus = B_DEV_MULTIPLE_ERRORS; 1380 } else if (status & TD_STATUS_ERROR_BABBLE) { 1381 // there is a babble condition 1382 callbackStatus = transfer->incoming ? B_DEV_FIFO_OVERRUN : B_DEV_FIFO_UNDERRUN; 1383 } else { 1384 // if the error counter didn't count down to zero 1385 // and there was no babble, then this halt was caused 1386 // by a stall handshake 1387 callbackStatus = B_DEV_STALLED; 1388 } 1389 1390 transferDone = true; 1391 break; 1392 } 1393 1394 if ((descriptor->link_phy & TD_TERMINATE) 1395 || ((descriptor->status & TD_CONTROL_SPD) != 0 1396 && uhci_td_actual_length(descriptor) 1397 < uhci_td_maximum_length(descriptor))) { 1398 // all descriptors are done, or we have a short packet 1399 TRACE("td (0x%08lx) ok\n", descriptor->this_phy); 1400 callbackStatus = B_OK; 1401 transferDone = true; 1402 break; 1403 } 1404 1405 descriptor = (uhci_td *)descriptor->link_log; 1406 } 1407 1408 if (!transferDone) { 1409 lastTransfer = transfer; 1410 transfer = transfer->link; 1411 continue; 1412 } 1413 1414 // remove the transfer from the list first so we are sure 1415 // it doesn't get canceled while we still process it 1416 transfer_data *next = transfer->link; 1417 if (Lock()) { 1418 if (lastTransfer) 1419 lastTransfer->link = transfer->link; 1420 1421 if (transfer == fFirstTransfer) 1422 fFirstTransfer = transfer->link; 1423 if (transfer == fLastTransfer) 1424 fLastTransfer = lastTransfer; 1425 1426 // store the currently processing pipe here so we can wait 1427 // in cancel if we are processing something on the target pipe 1428 if (!transfer->canceled) 1429 fProcessingPipe = transfer->transfer->TransferPipe(); 1430 1431 transfer->link = NULL; 1432 Unlock(); 1433 } 1434 1435 // if canceled the callback has already been called 1436 if (!transfer->canceled) { 1437 size_t actualLength = 0; 1438 if (callbackStatus == B_OK) { 1439 uint8 lastDataToggle = 0; 1440 if (transfer->data_descriptor && transfer->incoming) { 1441 // data to read out 1442 iovec *vector = transfer->transfer->Vector(); 1443 size_t vectorCount = transfer->transfer->VectorCount(); 1444 1445 transfer->transfer->PrepareKernelAccess(); 1446 actualLength = ReadDescriptorChain( 1447 transfer->data_descriptor, 1448 vector, vectorCount, 1449 &lastDataToggle); 1450 } else if (transfer->data_descriptor) { 1451 // read the actual length that was sent 1452 actualLength = ReadActualLength( 1453 transfer->data_descriptor, &lastDataToggle); 1454 } 1455 1456 transfer->transfer->TransferPipe()->SetDataToggle(lastDataToggle == 0); 1457 1458 if (transfer->transfer->IsFragmented()) { 1459 // this transfer may still have data left 1460 TRACE("advancing fragmented transfer\n"); 1461 transfer->transfer->AdvanceByFragment(actualLength); 1462 if (transfer->transfer->VectorLength() > 0) { 1463 TRACE("still %ld bytes left on transfer\n", 1464 transfer->transfer->VectorLength()); 1465 1466 Transfer *resubmit = transfer->transfer; 1467 1468 // free the used descriptors 1469 transfer->queue->RemoveTransfer( 1470 transfer->transfer_queue); 1471 AddToFreeList(transfer); 1472 1473 // resubmit the advanced transfer so the rest 1474 // of the buffers are transmitted over the bus 1475 resubmit->PrepareKernelAccess(); 1476 if (SubmitTransfer(resubmit) != B_OK) 1477 resubmit->Finished(B_ERROR, 0); 1478 1479 transfer = next; 1480 continue; 1481 } 1482 1483 // the transfer is done, but we already set the 1484 // actualLength with AdvanceByFragment() 1485 actualLength = 0; 1486 } 1487 } 1488 1489 transfer->transfer->Finished(callbackStatus, actualLength); 1490 fProcessingPipe = NULL; 1491 } 1492 1493 // remove and free the hardware queue and its descriptors 1494 transfer->queue->RemoveTransfer(transfer->transfer_queue); 1495 delete transfer->transfer; 1496 AddToFreeList(transfer); 1497 transfer = next; 1498 } 1499 } 1500 } 1501 1502 1503 void 1504 UHCI::AddToFreeList(transfer_data *transfer) 1505 { 1506 transfer->free_after_frame = ReadReg16(UHCI_FRNUM); 1507 if (!Lock()) 1508 return; 1509 1510 transfer->link = fFreeList; 1511 fFreeList = transfer; 1512 Unlock(); 1513 1514 if (atomic_add(&fCleanupCount, 1) == 0) 1515 release_sem(fCleanupSem); 1516 } 1517 1518 1519 int32 1520 UHCI::CleanupThread(void *data) 1521 { 1522 ((UHCI *)data)->Cleanup(); 1523 return B_OK; 1524 } 1525 1526 1527 void 1528 UHCI::Cleanup() 1529 { 1530 while (!fStopThreads) { 1531 if (acquire_sem(fCleanupSem) != B_OK) 1532 continue; 1533 1534 bigtime_t nextTime = system_time() + 1000; 1535 while (atomic_get(&fCleanupCount) != 0) { 1536 // wait for the frame to pass 1537 snooze_until(nextTime, B_SYSTEM_TIMEBASE); 1538 nextTime += 1000; 1539 1540 if (!Lock()) 1541 continue; 1542 1543 // find the first entry we may free 1544 transfer_data **link = &fFreeList; 1545 transfer_data *transfer = fFreeList; 1546 uint16 frameNumber = ReadReg16(UHCI_FRNUM); 1547 while (transfer) { 1548 if (transfer->free_after_frame != frameNumber) { 1549 *link = NULL; 1550 break; 1551 } 1552 1553 link = &transfer->link; 1554 transfer = transfer->link; 1555 } 1556 1557 Unlock(); 1558 1559 // the transfers below this one are all freeable 1560 while (transfer) { 1561 transfer_data *next = transfer->link; 1562 FreeDescriptorChain(transfer->first_descriptor); 1563 FreeTransferQueue(transfer->transfer_queue); 1564 delete transfer; 1565 atomic_add(&fCleanupCount, -1); 1566 transfer = next; 1567 } 1568 } 1569 } 1570 } 1571 1572 1573 int32 1574 UHCI::FinishIsochronousThread(void *data) 1575 { 1576 ((UHCI *)data)->FinishIsochronousTransfers(); 1577 return B_OK; 1578 } 1579 1580 1581 void 1582 UHCI::FinishIsochronousTransfers() 1583 { 1584 /* This thread stays one position behind the controller and processes every 1585 * isochronous descriptor. Once it finds the last isochronous descriptor 1586 * of a transfer, it processes the entire transfer. 1587 */ 1588 1589 while (!fStopThreads) { 1590 // Go to sleep if there are not isochronous transfer to process 1591 if (acquire_sem(fFinishIsochronousTransfersSem) < B_OK) 1592 return; 1593 1594 bool transferDone = false; 1595 uint16 currentFrame = ReadReg16(UHCI_FRNUM); 1596 1597 // Process the frame list until one transfer is processed 1598 while (!transferDone) { 1599 // wait 1ms in order to be sure to be one position behind 1600 // the controller 1601 if (currentFrame == ReadReg16(UHCI_FRNUM)) 1602 snooze(1000); 1603 1604 // Process the frame till it has isochronous descriptors in it. 1605 while (!(fFrameList[currentFrame] & FRAMELIST_NEXT_IS_QH)) { 1606 uhci_td *current = UnlinkIsochronousDescriptor(currentFrame); 1607 1608 // Process the transfer if we found the last descriptor 1609 isochronous_transfer_data *transfer 1610 = FindIsochronousTransfer(current); 1611 // Process the descriptors only if it is still active and 1612 // belongs to an inbound transfer. If the transfer is not 1613 // active, it means the request has been removed, so simply 1614 // remove the descriptors. 1615 if (transfer && transfer->is_active) { 1616 if (current->token & TD_TOKEN_IN) { 1617 iovec *vector = transfer->transfer->Vector(); 1618 transfer->transfer->PrepareKernelAccess(); 1619 ReadIsochronousDescriptorChain(transfer, vector); 1620 } 1621 1622 // Remove the transfer 1623 if (LockIsochronous()) { 1624 if (transfer == fFirstIsochronousTransfer) { 1625 fFirstIsochronousTransfer = transfer->link; 1626 if (transfer == fLastIsochronousTransfer) 1627 fLastIsochronousTransfer = NULL; 1628 } else { 1629 isochronous_transfer_data *temp 1630 = fFirstIsochronousTransfer; 1631 while (transfer != temp->link) 1632 temp = temp->link; 1633 1634 if (transfer == fLastIsochronousTransfer) 1635 fLastIsochronousTransfer = temp; 1636 temp->link = temp->link->link; 1637 } 1638 UnlockIsochronous(); 1639 } 1640 1641 transfer->transfer->Finished(B_OK, 0); 1642 1643 uint32 packetCount = 1644 transfer->transfer->IsochronousData()->packet_count; 1645 for (uint32 i = 0; i < packetCount; i++) 1646 FreeDescriptor(transfer->descriptors[i]); 1647 1648 delete [] transfer->descriptors; 1649 delete transfer->transfer; 1650 delete transfer; 1651 transferDone = true; 1652 } 1653 } 1654 1655 // Make sure to reset the frame bandwidth 1656 fFrameBandwidth[currentFrame] = MAX_AVAILABLE_BANDWIDTH; 1657 currentFrame = (currentFrame + 1) % NUMBER_OF_FRAMES; 1658 } 1659 } 1660 } 1661 1662 1663 void 1664 UHCI::GlobalReset() 1665 { 1666 uint8 sofValue = ReadReg8(UHCI_SOFMOD); 1667 1668 WriteReg16(UHCI_USBCMD, UHCI_USBCMD_GRESET); 1669 snooze(100000); 1670 WriteReg16(UHCI_USBCMD, 0); 1671 snooze(10000); 1672 1673 WriteReg8(UHCI_SOFMOD, sofValue); 1674 } 1675 1676 1677 status_t 1678 UHCI::ControllerReset() 1679 { 1680 WriteReg16(UHCI_USBCMD, UHCI_USBCMD_HCRESET); 1681 1682 int32 tries = 5; 1683 while (ReadReg16(UHCI_USBCMD) & UHCI_USBCMD_HCRESET) { 1684 snooze(10000); 1685 if (tries-- < 0) 1686 return B_ERROR; 1687 } 1688 1689 return B_OK; 1690 } 1691 1692 1693 status_t 1694 UHCI::GetPortStatus(uint8 index, usb_port_status *status) 1695 { 1696 if (index > 1) 1697 return B_BAD_INDEX; 1698 1699 status->status = status->change = 0; 1700 uint16 portStatus = ReadReg16(UHCI_PORTSC1 + index * 2); 1701 1702 // build the status 1703 if (portStatus & UHCI_PORTSC_CURSTAT) 1704 status->status |= PORT_STATUS_CONNECTION; 1705 if (portStatus & UHCI_PORTSC_ENABLED) 1706 status->status |= PORT_STATUS_ENABLE; 1707 if (portStatus & UHCI_PORTSC_RESET) 1708 status->status |= PORT_STATUS_RESET; 1709 if (portStatus & UHCI_PORTSC_LOWSPEED) 1710 status->status |= PORT_STATUS_LOW_SPEED; 1711 1712 // build the change 1713 if (portStatus & UHCI_PORTSC_STATCHA) 1714 status->change |= PORT_STATUS_CONNECTION; 1715 if (portStatus & UHCI_PORTSC_ENABCHA) 1716 status->change |= PORT_STATUS_ENABLE; 1717 1718 // ToDo: work out suspended/resume 1719 1720 // there are no bits to indicate reset change 1721 if (fPortResetChange & (1 << index)) 1722 status->change |= PORT_STATUS_RESET; 1723 1724 // the port is automagically powered on 1725 status->status |= PORT_STATUS_POWER; 1726 return B_OK; 1727 } 1728 1729 1730 status_t 1731 UHCI::SetPortFeature(uint8 index, uint16 feature) 1732 { 1733 if (index > 1) 1734 return B_BAD_INDEX; 1735 1736 switch (feature) { 1737 case PORT_RESET: 1738 return ResetPort(index); 1739 1740 case PORT_POWER: 1741 // the ports are automatically powered 1742 return B_OK; 1743 } 1744 1745 return B_BAD_VALUE; 1746 } 1747 1748 1749 status_t 1750 UHCI::ClearPortFeature(uint8 index, uint16 feature) 1751 { 1752 if (index > 1) 1753 return B_BAD_INDEX; 1754 1755 uint32 portRegister = UHCI_PORTSC1 + index * 2; 1756 uint16 portStatus = ReadReg16(portRegister) & UHCI_PORTSC_DATAMASK; 1757 1758 switch (feature) { 1759 case C_PORT_RESET: 1760 fPortResetChange &= ~(1 << index); 1761 return B_OK; 1762 1763 case C_PORT_CONNECTION: 1764 WriteReg16(portRegister, portStatus | UHCI_PORTSC_STATCHA); 1765 return B_OK; 1766 1767 case C_PORT_ENABLE: 1768 WriteReg16(portRegister, portStatus | UHCI_PORTSC_ENABCHA); 1769 return B_OK; 1770 } 1771 1772 return B_BAD_VALUE; 1773 } 1774 1775 1776 status_t 1777 UHCI::ResetPort(uint8 index) 1778 { 1779 if (index > 1) 1780 return B_BAD_INDEX; 1781 1782 TRACE("reset port %d\n", index); 1783 1784 uint32 port = UHCI_PORTSC1 + index * 2; 1785 uint16 status = ReadReg16(port); 1786 status &= UHCI_PORTSC_DATAMASK; 1787 WriteReg16(port, status | UHCI_PORTSC_RESET); 1788 snooze(250000); 1789 1790 status = ReadReg16(port); 1791 status &= UHCI_PORTSC_DATAMASK; 1792 WriteReg16(port, status & ~UHCI_PORTSC_RESET); 1793 snooze(1000); 1794 1795 for (int32 i = 10; i > 0; i--) { 1796 // try to enable the port 1797 status = ReadReg16(port); 1798 status &= UHCI_PORTSC_DATAMASK; 1799 WriteReg16(port, status | UHCI_PORTSC_ENABLED); 1800 snooze(50000); 1801 1802 status = ReadReg16(port); 1803 1804 if ((status & UHCI_PORTSC_CURSTAT) == 0) { 1805 // no device connected. since we waited long enough we can assume 1806 // that the port was reset and no device is connected. 1807 break; 1808 } 1809 1810 if (status & (UHCI_PORTSC_STATCHA | UHCI_PORTSC_ENABCHA)) { 1811 // port enabled changed or connection status were set. 1812 // acknowledge either / both and wait again. 1813 status &= UHCI_PORTSC_DATAMASK; 1814 WriteReg16(port, status | UHCI_PORTSC_STATCHA | UHCI_PORTSC_ENABCHA); 1815 continue; 1816 } 1817 1818 if (status & UHCI_PORTSC_ENABLED) { 1819 // the port is enabled 1820 break; 1821 } 1822 } 1823 1824 fPortResetChange |= (1 << index); 1825 TRACE("port was reset: 0x%04x\n", ReadReg16(port)); 1826 return B_OK; 1827 } 1828 1829 1830 int32 1831 UHCI::InterruptHandler(void *data) 1832 { 1833 return ((UHCI *)data)->Interrupt(); 1834 } 1835 1836 1837 int32 1838 UHCI::Interrupt() 1839 { 1840 static spinlock lock = B_SPINLOCK_INITIALIZER; 1841 acquire_spinlock(&lock); 1842 1843 // Check if we really had an interrupt 1844 uint16 status = ReadReg16(UHCI_USBSTS); 1845 if ((status & fEnabledInterrupts) == 0) { 1846 if (status != 0) { 1847 TRACE("discarding not enabled interrupts 0x%08x\n", status); 1848 WriteReg16(UHCI_USBSTS, status); 1849 } 1850 1851 release_spinlock(&lock); 1852 return B_UNHANDLED_INTERRUPT; 1853 } 1854 1855 uint16 acknowledge = 0; 1856 bool finishTransfers = false; 1857 int32 result = B_HANDLED_INTERRUPT; 1858 1859 if (status & UHCI_USBSTS_USBINT) { 1860 TRACE_MODULE("transfer finished\n"); 1861 acknowledge |= UHCI_USBSTS_USBINT; 1862 result = B_INVOKE_SCHEDULER; 1863 finishTransfers = true; 1864 } 1865 1866 if (status & UHCI_USBSTS_ERRINT) { 1867 TRACE_MODULE("transfer error\n"); 1868 acknowledge |= UHCI_USBSTS_ERRINT; 1869 result = B_INVOKE_SCHEDULER; 1870 finishTransfers = true; 1871 } 1872 1873 if (status & UHCI_USBSTS_RESDET) { 1874 TRACE_MODULE("resume detected\n"); 1875 acknowledge |= UHCI_USBSTS_RESDET; 1876 } 1877 1878 if (status & UHCI_USBSTS_HOSTERR) { 1879 TRACE_MODULE_ERROR("host system error\n"); 1880 acknowledge |= UHCI_USBSTS_HOSTERR; 1881 } 1882 1883 if (status & UHCI_USBSTS_HCPRERR) { 1884 TRACE_MODULE_ERROR("process error\n"); 1885 acknowledge |= UHCI_USBSTS_HCPRERR; 1886 } 1887 1888 if (status & UHCI_USBSTS_HCHALT) { 1889 TRACE_MODULE_ERROR("host controller halted\n"); 1890 // at least disable interrupts so we do not flood the system 1891 WriteReg16(UHCI_USBINTR, 0); 1892 fEnabledInterrupts = 0; 1893 // ToDo: cancel all transfers and reset the host controller 1894 // acknowledge not needed 1895 } 1896 1897 if (acknowledge) 1898 WriteReg16(UHCI_USBSTS, acknowledge); 1899 1900 release_spinlock(&lock); 1901 1902 if (finishTransfers) 1903 release_sem_etc(fFinishTransfersSem, 1, B_DO_NOT_RESCHEDULE); 1904 1905 return result; 1906 } 1907 1908 1909 status_t 1910 UHCI::AddTo(Stack *stack) 1911 { 1912 #ifdef TRACE_USB 1913 set_dprintf_enabled(true); 1914 #ifndef HAIKU_TARGET_PLATFORM_HAIKU 1915 load_driver_symbols("uhci"); 1916 #endif 1917 #endif 1918 1919 if (!sPCIModule) { 1920 status_t status = get_module(B_PCI_MODULE_NAME, (module_info **)&sPCIModule); 1921 if (status < B_OK) { 1922 TRACE_MODULE_ERROR("AddTo(): getting pci module failed! 0x%08lx\n", 1923 status); 1924 return status; 1925 } 1926 } 1927 1928 TRACE_MODULE("AddTo(): setting up hardware\n"); 1929 1930 bool found = false; 1931 pci_info *item = new(std::nothrow) pci_info; 1932 if (!item) { 1933 sPCIModule = NULL; 1934 put_module(B_PCI_MODULE_NAME); 1935 return B_NO_MEMORY; 1936 } 1937 1938 for (int32 i = 0; sPCIModule->get_nth_pci_info(i, item) >= B_OK; i++) { 1939 1940 if (item->class_base == PCI_serial_bus && item->class_sub == PCI_usb 1941 && item->class_api == PCI_usb_uhci) { 1942 if (item->u.h0.interrupt_line == 0 1943 || item->u.h0.interrupt_line == 0xFF) { 1944 TRACE_MODULE_ERROR("AddTo(): found with invalid IRQ - check IRQ assignement\n"); 1945 continue; 1946 } 1947 1948 TRACE_MODULE("AddTo(): found at IRQ %u\n", 1949 item->u.h0.interrupt_line); 1950 UHCI *bus = new(std::nothrow) UHCI(item, stack); 1951 if (!bus) { 1952 delete item; 1953 sPCIModule = NULL; 1954 put_module(B_PCI_MODULE_NAME); 1955 return B_NO_MEMORY; 1956 } 1957 1958 if (bus->InitCheck() < B_OK) { 1959 TRACE_MODULE_ERROR("AddTo(): InitCheck() failed 0x%08lx\n", 1960 bus->InitCheck()); 1961 delete bus; 1962 continue; 1963 } 1964 1965 // the bus took it away 1966 item = new(std::nothrow) pci_info; 1967 1968 bus->Start(); 1969 stack->AddBusManager(bus); 1970 found = true; 1971 } 1972 } 1973 1974 if (!found) { 1975 TRACE_MODULE_ERROR("no devices found\n"); 1976 delete item; 1977 sPCIModule = NULL; 1978 put_module(B_PCI_MODULE_NAME); 1979 return ENODEV; 1980 } 1981 1982 delete item; 1983 return B_OK; 1984 } 1985 1986 1987 status_t 1988 UHCI::CreateFilledTransfer(Transfer *transfer, uhci_td **_firstDescriptor, 1989 uhci_qh **_transferQueue) 1990 { 1991 Pipe *pipe = transfer->TransferPipe(); 1992 bool directionIn = (pipe->Direction() == Pipe::In); 1993 1994 uhci_td *firstDescriptor = NULL; 1995 uhci_td *lastDescriptor = NULL; 1996 status_t result = CreateDescriptorChain(pipe, &firstDescriptor, 1997 &lastDescriptor, directionIn ? TD_TOKEN_IN : TD_TOKEN_OUT, 1998 transfer->VectorLength()); 1999 2000 if (result < B_OK) 2001 return result; 2002 if (!firstDescriptor || !lastDescriptor) 2003 return B_NO_MEMORY; 2004 2005 lastDescriptor->status |= TD_CONTROL_IOC; 2006 lastDescriptor->link_phy = TD_TERMINATE; 2007 lastDescriptor->link_log = NULL; 2008 2009 if (!directionIn) { 2010 WriteDescriptorChain(firstDescriptor, transfer->Vector(), 2011 transfer->VectorCount()); 2012 } 2013 2014 uhci_qh *transferQueue = CreateTransferQueue(firstDescriptor); 2015 if (!transferQueue) { 2016 FreeDescriptorChain(firstDescriptor); 2017 return B_NO_MEMORY; 2018 } 2019 2020 *_firstDescriptor = firstDescriptor; 2021 *_transferQueue = transferQueue; 2022 return B_OK; 2023 } 2024 2025 2026 uhci_qh * 2027 UHCI::CreateTransferQueue(uhci_td *descriptor) 2028 { 2029 uhci_qh *queueHead; 2030 void *physicalAddress; 2031 if (fStack->AllocateChunk((void **)&queueHead, 2032 &physicalAddress, sizeof(uhci_qh)) < B_OK) 2033 return NULL; 2034 2035 queueHead->this_phy = (addr_t)physicalAddress; 2036 queueHead->element_phy = descriptor->this_phy; 2037 return queueHead; 2038 } 2039 2040 2041 void 2042 UHCI::FreeTransferQueue(uhci_qh *queueHead) 2043 { 2044 if (!queueHead) 2045 return; 2046 2047 fStack->FreeChunk(queueHead, (void *)queueHead->this_phy, sizeof(uhci_qh)); 2048 } 2049 2050 2051 uhci_td * 2052 UHCI::CreateDescriptor(Pipe *pipe, uint8 direction, size_t bufferSize) 2053 { 2054 uhci_td *result; 2055 void *physicalAddress; 2056 2057 if (fStack->AllocateChunk((void **)&result, &physicalAddress, 2058 sizeof(uhci_td)) < B_OK) { 2059 TRACE_ERROR("failed to allocate a transfer descriptor\n"); 2060 return NULL; 2061 } 2062 2063 result->this_phy = (addr_t)physicalAddress; 2064 result->status = TD_STATUS_ACTIVE; 2065 if (pipe->Type() & USB_OBJECT_ISO_PIPE) 2066 result->status |= TD_CONTROL_ISOCHRONOUS; 2067 else { 2068 result->status |= TD_CONTROL_3_ERRORS; 2069 if (direction == TD_TOKEN_IN 2070 && (pipe->Type() & USB_OBJECT_CONTROL_PIPE) == 0) 2071 result->status |= TD_CONTROL_SPD; 2072 } 2073 if (pipe->Speed() == USB_SPEED_LOWSPEED) 2074 result->status |= TD_CONTROL_LOWSPEED; 2075 2076 result->buffer_size = bufferSize; 2077 if (bufferSize == 0) 2078 result->token = TD_TOKEN_NULL_DATA; 2079 else 2080 result->token = (bufferSize - 1) << TD_TOKEN_MAXLEN_SHIFT; 2081 2082 result->token |= (pipe->EndpointAddress() << TD_TOKEN_ENDPTADDR_SHIFT) 2083 | (pipe->DeviceAddress() << 8) | direction; 2084 2085 result->link_phy = 0; 2086 result->link_log = NULL; 2087 if (bufferSize <= 0) { 2088 result->buffer_log = NULL; 2089 result->buffer_phy = 0; 2090 return result; 2091 } 2092 2093 if (fStack->AllocateChunk(&result->buffer_log, (void **)&result->buffer_phy, 2094 bufferSize) < B_OK) { 2095 TRACE_ERROR("unable to allocate space for the buffer\n"); 2096 fStack->FreeChunk(result, (void *)result->this_phy, sizeof(uhci_td)); 2097 return NULL; 2098 } 2099 2100 return result; 2101 } 2102 2103 2104 status_t 2105 UHCI::CreateDescriptorChain(Pipe *pipe, uhci_td **_firstDescriptor, 2106 uhci_td **_lastDescriptor, uint8 direction, size_t bufferSize) 2107 { 2108 size_t packetSize = pipe->MaxPacketSize(); 2109 int32 descriptorCount = (bufferSize + packetSize - 1) / packetSize; 2110 if (descriptorCount == 0) 2111 descriptorCount = 1; 2112 2113 bool dataToggle = pipe->DataToggle(); 2114 uhci_td *firstDescriptor = NULL; 2115 uhci_td *lastDescriptor = *_firstDescriptor; 2116 for (int32 i = 0; i < descriptorCount; i++) { 2117 uhci_td *descriptor = CreateDescriptor(pipe, direction, 2118 min_c(packetSize, bufferSize)); 2119 2120 if (!descriptor) { 2121 FreeDescriptorChain(firstDescriptor); 2122 return B_NO_MEMORY; 2123 } 2124 2125 if (dataToggle) 2126 descriptor->token |= TD_TOKEN_DATA1; 2127 2128 // link to previous 2129 if (lastDescriptor) 2130 LinkDescriptors(lastDescriptor, descriptor); 2131 2132 dataToggle = !dataToggle; 2133 bufferSize -= packetSize; 2134 lastDescriptor = descriptor; 2135 if (!firstDescriptor) 2136 firstDescriptor = descriptor; 2137 } 2138 2139 *_firstDescriptor = firstDescriptor; 2140 *_lastDescriptor = lastDescriptor; 2141 return B_OK; 2142 } 2143 2144 2145 void 2146 UHCI::FreeDescriptor(uhci_td *descriptor) 2147 { 2148 if (!descriptor) 2149 return; 2150 2151 if (descriptor->buffer_log) { 2152 fStack->FreeChunk(descriptor->buffer_log, 2153 (void *)descriptor->buffer_phy, descriptor->buffer_size); 2154 } 2155 2156 fStack->FreeChunk(descriptor, (void *)descriptor->this_phy, sizeof(uhci_td)); 2157 } 2158 2159 2160 void 2161 UHCI::FreeDescriptorChain(uhci_td *topDescriptor) 2162 { 2163 uhci_td *current = topDescriptor; 2164 uhci_td *next = NULL; 2165 2166 while (current) { 2167 next = (uhci_td *)current->link_log; 2168 FreeDescriptor(current); 2169 current = next; 2170 } 2171 } 2172 2173 2174 void 2175 UHCI::LinkDescriptors(uhci_td *first, uhci_td *second) 2176 { 2177 first->link_phy = second->this_phy | TD_DEPTH_FIRST; 2178 first->link_log = second; 2179 } 2180 2181 2182 size_t 2183 UHCI::WriteDescriptorChain(uhci_td *topDescriptor, iovec *vector, 2184 size_t vectorCount) 2185 { 2186 uhci_td *current = topDescriptor; 2187 size_t actualLength = 0; 2188 size_t vectorIndex = 0; 2189 size_t vectorOffset = 0; 2190 size_t bufferOffset = 0; 2191 2192 while (current) { 2193 if (!current->buffer_log) 2194 break; 2195 2196 while (true) { 2197 size_t length = min_c(current->buffer_size - bufferOffset, 2198 vector[vectorIndex].iov_len - vectorOffset); 2199 2200 TRACE("copying %ld bytes to bufferOffset %ld from" 2201 " vectorOffset %ld at index %ld of %ld\n", length, bufferOffset, 2202 vectorOffset, vectorIndex, vectorCount); 2203 memcpy((uint8 *)current->buffer_log + bufferOffset, 2204 (uint8 *)vector[vectorIndex].iov_base + vectorOffset, length); 2205 2206 actualLength += length; 2207 vectorOffset += length; 2208 bufferOffset += length; 2209 2210 if (vectorOffset >= vector[vectorIndex].iov_len) { 2211 if (++vectorIndex >= vectorCount) { 2212 TRACE("wrote descriptor chain (%ld bytes, no more vectors)\n", 2213 actualLength); 2214 return actualLength; 2215 } 2216 2217 vectorOffset = 0; 2218 } 2219 2220 if (bufferOffset >= current->buffer_size) { 2221 bufferOffset = 0; 2222 break; 2223 } 2224 } 2225 2226 if (current->link_phy & TD_TERMINATE) 2227 break; 2228 2229 current = (uhci_td *)current->link_log; 2230 } 2231 2232 TRACE("wrote descriptor chain (%ld bytes)\n", actualLength); 2233 return actualLength; 2234 } 2235 2236 2237 size_t 2238 UHCI::ReadDescriptorChain(uhci_td *topDescriptor, iovec *vector, 2239 size_t vectorCount, uint8 *lastDataToggle) 2240 { 2241 uint8 dataToggle = 0; 2242 uhci_td *current = topDescriptor; 2243 size_t actualLength = 0; 2244 size_t vectorIndex = 0; 2245 size_t vectorOffset = 0; 2246 size_t bufferOffset = 0; 2247 2248 while (current && (current->status & TD_STATUS_ACTIVE) == 0) { 2249 if (!current->buffer_log) 2250 break; 2251 2252 dataToggle = (current->token >> TD_TOKEN_DATA_TOGGLE_SHIFT) & 0x01; 2253 size_t bufferSize = uhci_td_actual_length(current); 2254 2255 while (true) { 2256 size_t length = min_c(bufferSize - bufferOffset, 2257 vector[vectorIndex].iov_len - vectorOffset); 2258 2259 TRACE("copying %ld bytes to vectorOffset %ld from" 2260 " bufferOffset %ld at index %ld of %ld\n", length, vectorOffset, 2261 bufferOffset, vectorIndex, vectorCount); 2262 memcpy((uint8 *)vector[vectorIndex].iov_base + vectorOffset, 2263 (uint8 *)current->buffer_log + bufferOffset, length); 2264 2265 actualLength += length; 2266 vectorOffset += length; 2267 bufferOffset += length; 2268 2269 if (vectorOffset >= vector[vectorIndex].iov_len) { 2270 if (++vectorIndex >= vectorCount) { 2271 TRACE("read descriptor chain (%ld bytes, no more vectors)\n", 2272 actualLength); 2273 if (lastDataToggle) 2274 *lastDataToggle = dataToggle; 2275 return actualLength; 2276 } 2277 2278 vectorOffset = 0; 2279 } 2280 2281 if (bufferOffset >= bufferSize) { 2282 bufferOffset = 0; 2283 break; 2284 } 2285 } 2286 2287 if (current->link_phy & TD_TERMINATE) 2288 break; 2289 2290 current = (uhci_td *)current->link_log; 2291 } 2292 2293 if (lastDataToggle) 2294 *lastDataToggle = dataToggle; 2295 2296 TRACE("read descriptor chain (%ld bytes)\n", actualLength); 2297 return actualLength; 2298 } 2299 2300 2301 size_t 2302 UHCI::ReadActualLength(uhci_td *topDescriptor, uint8 *lastDataToggle) 2303 { 2304 size_t actualLength = 0; 2305 uhci_td *current = topDescriptor; 2306 uint8 dataToggle = 0; 2307 2308 while (current && (current->status & TD_STATUS_ACTIVE) == 0) { 2309 actualLength += uhci_td_actual_length(current); 2310 dataToggle = (current->token >> TD_TOKEN_DATA_TOGGLE_SHIFT) & 0x01; 2311 2312 if (current->link_phy & TD_TERMINATE) 2313 break; 2314 2315 current = (uhci_td *)current->link_log; 2316 } 2317 2318 if (lastDataToggle) 2319 *lastDataToggle = dataToggle; 2320 2321 TRACE("read actual length (%ld bytes)\n", actualLength); 2322 return actualLength; 2323 } 2324 2325 2326 void 2327 UHCI::WriteIsochronousDescriptorChain(uhci_td **isoRequest, uint32 packetCount, 2328 iovec *vector) 2329 { 2330 size_t vectorOffset = 0; 2331 for (uint32 i = 0; i < packetCount; i++) { 2332 size_t bufferSize = isoRequest[i]->buffer_size; 2333 memcpy((uint8 *)isoRequest[i]->buffer_log, 2334 (uint8 *)vector->iov_base + vectorOffset, bufferSize); 2335 vectorOffset += bufferSize; 2336 } 2337 } 2338 2339 2340 void 2341 UHCI::ReadIsochronousDescriptorChain(isochronous_transfer_data *transfer, 2342 iovec *vector) 2343 { 2344 size_t vectorOffset = 0; 2345 usb_isochronous_data *isochronousData 2346 = transfer->transfer->IsochronousData(); 2347 2348 for (uint32 i = 0; i < isochronousData->packet_count; i++) { 2349 uhci_td *current = transfer->descriptors[i]; 2350 2351 size_t bufferSize = current->buffer_size; 2352 size_t actualLength = uhci_td_actual_length(current); 2353 2354 isochronousData->packet_descriptors[i].actual_length = actualLength; 2355 2356 if (actualLength > 0) 2357 isochronousData->packet_descriptors[i].status = B_OK; 2358 else { 2359 isochronousData->packet_descriptors[i].status = B_ERROR; 2360 vectorOffset += bufferSize; 2361 continue; 2362 } 2363 memcpy((uint8 *)vector->iov_base + vectorOffset, 2364 (uint8 *)current->buffer_log, bufferSize); 2365 2366 vectorOffset += bufferSize; 2367 } 2368 } 2369 2370 2371 bool 2372 UHCI::LockIsochronous() 2373 { 2374 return (mutex_lock(&fIsochronousLock) == B_OK); 2375 } 2376 2377 2378 void 2379 UHCI::UnlockIsochronous() 2380 { 2381 mutex_unlock(&fIsochronousLock); 2382 } 2383 2384 2385 inline void 2386 UHCI::WriteReg8(uint32 reg, uint8 value) 2387 { 2388 sPCIModule->write_io_8(fRegisterBase + reg, value); 2389 } 2390 2391 2392 inline void 2393 UHCI::WriteReg16(uint32 reg, uint16 value) 2394 { 2395 sPCIModule->write_io_16(fRegisterBase + reg, value); 2396 } 2397 2398 2399 inline void 2400 UHCI::WriteReg32(uint32 reg, uint32 value) 2401 { 2402 sPCIModule->write_io_32(fRegisterBase + reg, value); 2403 } 2404 2405 2406 inline uint8 2407 UHCI::ReadReg8(uint32 reg) 2408 { 2409 return sPCIModule->read_io_8(fRegisterBase + reg); 2410 } 2411 2412 2413 inline uint16 2414 UHCI::ReadReg16(uint32 reg) 2415 { 2416 return sPCIModule->read_io_16(fRegisterBase + reg); 2417 } 2418 2419 2420 inline uint32 2421 UHCI::ReadReg32(uint32 reg) 2422 { 2423 return sPCIModule->read_io_32(fRegisterBase + reg); 2424 } 2425