xref: /haiku/src/add-ons/kernel/busses/usb/ehci.cpp (revision 15fb7d88e971c4d6c787c6a3a5c159afb1ebf77b)
1 /*
2  * Copyright 2006-2011, Haiku Inc. All rights reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Authors:
6  *		Michael Lotz <mmlr@mlotz.ch>
7  *		Jérôme Duval <korli@users.berlios.de>
8  */
9 
10 
11 #include <driver_settings.h>
12 #include <module.h>
13 #include <PCI.h>
14 #include <PCI_x86.h>
15 #include <USB3.h>
16 #include <KernelExport.h>
17 
18 #include "ehci.h"
19 
20 #define USB_MODULE_NAME	"ehci"
21 
22 pci_module_info *EHCI::sPCIModule = NULL;
23 pci_x86_module_info *EHCI::sPCIx86Module = NULL;
24 
25 
26 static int32
27 ehci_std_ops(int32 op, ...)
28 {
29 	switch (op) {
30 		case B_MODULE_INIT:
31 			TRACE_MODULE("ehci init module\n");
32 			return B_OK;
33 		case B_MODULE_UNINIT:
34 			TRACE_MODULE("ehci uninit module\n");
35 			return B_OK;
36 	}
37 
38 	return EINVAL;
39 }
40 
41 
42 usb_host_controller_info ehci_module = {
43 	{
44 		"busses/usb/ehci",
45 		0,
46 		ehci_std_ops
47 	},
48 	NULL,
49 	EHCI::AddTo
50 };
51 
52 
53 module_info *modules[] = {
54 	(module_info *)&ehci_module,
55 	NULL
56 };
57 
58 
59 //
60 // #pragma mark -
61 //
62 
63 
64 #ifdef TRACE_USB
65 
66 void
67 print_descriptor_chain(ehci_qtd *descriptor)
68 {
69 	while (descriptor) {
70 		dprintf(" %08" B_PRIx32 " n%08" B_PRIx32 " a%08" B_PRIx32 " t%08"
71 			B_PRIx32 " %08" B_PRIx32 " %08" B_PRIx32 " %08" B_PRIx32 " %08"
72 			B_PRIx32 " %08" B_PRIx32 " s%" B_PRIuSIZE "\n",
73 			descriptor->this_phy, descriptor->next_phy,
74 			descriptor->alt_next_phy, descriptor->token,
75 			descriptor->buffer_phy[0], descriptor->buffer_phy[1],
76 			descriptor->buffer_phy[2], descriptor->buffer_phy[3],
77 			descriptor->buffer_phy[4], descriptor->buffer_size);
78 
79 		if (descriptor->next_phy & EHCI_ITEM_TERMINATE)
80 			break;
81 
82 		descriptor = descriptor->next_log;
83 	}
84 }
85 
86 
87 void
88 print_queue(ehci_qh *queueHead)
89 {
90 	dprintf("queue:    t%08" B_PRIx32 " n%08" B_PRIx32 " ch%08" B_PRIx32
91 		" ca%08" B_PRIx32 " cu%08" B_PRIx32 "\n",
92 		queueHead->this_phy, queueHead->next_phy, queueHead->endpoint_chars,
93 		queueHead->endpoint_caps, queueHead->current_qtd_phy);
94 	dprintf("overlay:  n%08" B_PRIx32 " a%08" B_PRIx32 " t%08" B_PRIx32
95 		" %08" B_PRIx32 " %08" B_PRIx32 " %08" B_PRIx32 " %08" B_PRIx32
96 		" %08" B_PRIx32 "\n", queueHead->overlay.next_phy,
97 		queueHead->overlay.alt_next_phy, queueHead->overlay.token,
98 		queueHead->overlay.buffer_phy[0], queueHead->overlay.buffer_phy[1],
99 		queueHead->overlay.buffer_phy[2], queueHead->overlay.buffer_phy[3],
100 		queueHead->overlay.buffer_phy[4]);
101 	print_descriptor_chain(queueHead->element_log);
102 }
103 
104 
105 #endif // TRACE_USB
106 
107 
108 //
109 // #pragma mark -
110 //
111 
112 
113 status_t
114 EHCI::AddTo(Stack *stack)
115 {
116 	if (!sPCIModule) {
117 		status_t status = get_module(B_PCI_MODULE_NAME,
118 			(module_info **)&sPCIModule);
119 		if (status != B_OK) {
120 			TRACE_MODULE_ERROR("getting pci module failed! 0x%08" B_PRIx32
121 				"\n", status);
122 			return status;
123 		}
124 	}
125 
126 	TRACE_MODULE("searching devices\n");
127 	bool found = false;
128 	pci_info *item = new(std::nothrow) pci_info;
129 	if (!item) {
130 		sPCIModule = NULL;
131 		put_module(B_PCI_MODULE_NAME);
132 		return B_NO_MEMORY;
133 	}
134 
135 	// Try to get the PCI x86 module as well so we can enable possible MSIs.
136 	if (sPCIx86Module == NULL && get_module(B_PCI_X86_MODULE_NAME,
137 			(module_info **)&sPCIx86Module) != B_OK) {
138 		// If it isn't there, that's not critical though.
139 		TRACE_MODULE_ERROR("failed to get pci x86 module\n");
140 		sPCIx86Module = NULL;
141 	}
142 
143 	for (int32 i = 0; sPCIModule->get_nth_pci_info(i, item) >= B_OK; i++) {
144 		if (item->class_base == PCI_serial_bus && item->class_sub == PCI_usb
145 			&& item->class_api == PCI_usb_ehci) {
146 			TRACE_MODULE("found device at PCI:%d:%d:%d\n",
147 				item->bus, item->device, item->function);
148 			EHCI *bus = new(std::nothrow) EHCI(item, stack);
149 			if (bus == NULL) {
150 				delete item;
151 				put_module(B_PCI_MODULE_NAME);
152 				if (sPCIx86Module != NULL)
153 					put_module(B_PCI_X86_MODULE_NAME);
154 				return B_NO_MEMORY;
155 			}
156 
157 			// The bus will put the PCI modules when it is destroyed, so get
158 			// them again to increase their reference count.
159 			get_module(B_PCI_MODULE_NAME, (module_info **)&sPCIModule);
160 			if (sPCIx86Module != NULL)
161 				get_module(B_PCI_X86_MODULE_NAME, (module_info **)&sPCIx86Module);
162 
163 			if (bus->InitCheck() != B_OK) {
164 				TRACE_MODULE_ERROR("bus failed init check\n");
165 				delete bus;
166 				continue;
167 			}
168 
169 			// the bus took it away
170 			item = new(std::nothrow) pci_info;
171 
172 			if (bus->Start() != B_OK) {
173 				delete bus;
174 				continue;
175 			}
176 			found = true;
177 		}
178 	}
179 
180 	// The modules will have been gotten again if we successfully
181 	// initialized a bus, so we should put them here.
182 	put_module(B_PCI_MODULE_NAME);
183 	if (sPCIx86Module != NULL)
184 		put_module(B_PCI_X86_MODULE_NAME);
185 
186 	if (!found)
187 		TRACE_MODULE_ERROR("no devices found\n");
188 	delete item;
189 	return found ? B_OK : ENODEV;
190 }
191 
192 
193 EHCI::EHCI(pci_info *info, Stack *stack)
194 	:	BusManager(stack),
195 		fCapabilityRegisters(NULL),
196 		fOperationalRegisters(NULL),
197 		fRegisterArea(-1),
198 		fPCIInfo(info),
199 		fStack(stack),
200 		fEnabledInterrupts(0),
201 		fThreshold(0),
202 		fPeriodicFrameListArea(-1),
203 		fPeriodicFrameList(NULL),
204 		fInterruptEntries(NULL),
205 		fItdEntries(NULL),
206 		fSitdEntries(NULL),
207 		fAsyncQueueHead(NULL),
208 		fAsyncAdvanceSem(-1),
209 		fFirstTransfer(NULL),
210 		fLastTransfer(NULL),
211 		fFinishTransfersSem(-1),
212 		fFinishThread(-1),
213 		fProcessingPipe(NULL),
214 		fFreeListHead(NULL),
215 		fCleanupSem(-1),
216 		fCleanupThread(-1),
217 		fStopThreads(false),
218 		fNextStartingFrame(-1),
219 		fFrameBandwidth(NULL),
220 		fFirstIsochronousTransfer(NULL),
221 		fLastIsochronousTransfer(NULL),
222 		fFinishIsochronousTransfersSem(-1),
223 		fFinishIsochronousThread(-1),
224 		fRootHub(NULL),
225 		fRootHubAddress(0),
226 		fPortCount(0),
227 		fPortResetChange(0),
228 		fPortSuspendChange(0),
229 		fInterruptPollThread(-1),
230 		fIRQ(0),
231 		fUseMSI(false)
232 {
233 	// Create a lock for the isochronous transfer list
234 	mutex_init(&fIsochronousLock, "EHCI isochronous lock");
235 
236 	if (BusManager::InitCheck() != B_OK) {
237 		TRACE_ERROR("bus manager failed to init\n");
238 		return;
239 	}
240 
241 	TRACE("constructing new EHCI host controller driver\n");
242 	fInitOK = false;
243 
244 	// ATI/AMD SB600/SB700 periodic list cache workaround
245 	// Logic kindly borrowed from NetBSD PR 40056
246 	if (fPCIInfo->vendor_id == AMD_SBX00_VENDOR) {
247 		bool applyWorkaround = false;
248 
249 		if (fPCIInfo->device_id == AMD_SB600_EHCI_CONTROLLER) {
250 			// always apply on SB600
251 			applyWorkaround = true;
252 		} else if (fPCIInfo->device_id == AMD_SB700_SB800_EHCI_CONTROLLER) {
253 			// only apply on certain chipsets, determined by SMBus revision
254 			pci_info smbus;
255 			int32 index = 0;
256 			while (sPCIModule->get_nth_pci_info(index++, &smbus) == B_OK) {
257 				if (smbus.vendor_id == AMD_SBX00_VENDOR
258 					&& smbus.device_id == AMD_SBX00_SMBUS_CONTROLLER) {
259 
260 					// Only applies to chipsets < SB710 (rev A14)
261 					if (smbus.revision == 0x3a || smbus.revision == 0x3b)
262 						applyWorkaround = true;
263 
264 					break;
265 				}
266 			}
267 		}
268 
269 		if (applyWorkaround) {
270 			// According to AMD errata of SB700 and SB600 register documentation
271 			// this disables the Periodic List Cache on SB600 and the Advanced
272 			// Periodic List Cache on early SB700. Both the BSDs and Linux use
273 			// this workaround.
274 
275 			TRACE_ALWAYS("disabling SB600/SB700 periodic list cache\n");
276 			uint32 workaround = sPCIModule->read_pci_config(fPCIInfo->bus,
277 				fPCIInfo->device, fPCIInfo->function,
278 				AMD_SBX00_EHCI_MISC_REGISTER, 4);
279 
280 			sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device,
281 				fPCIInfo->function, AMD_SBX00_EHCI_MISC_REGISTER, 4,
282 				workaround | AMD_SBX00_EHCI_MISC_DISABLE_PERIODIC_LIST_CACHE);
283 		}
284 	}
285 
286 	// enable busmaster and memory mapped access
287 	uint16 command = sPCIModule->read_pci_config(fPCIInfo->bus,
288 		fPCIInfo->device, fPCIInfo->function, PCI_command, 2);
289 	command &= ~PCI_command_io;
290 	command |= PCI_command_master | PCI_command_memory;
291 
292 	sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device,
293 		fPCIInfo->function, PCI_command, 2, command);
294 
295 	// map the registers
296 	uint32 offset = fPCIInfo->u.h0.base_registers[0] & (B_PAGE_SIZE - 1);
297 	phys_addr_t physicalAddress = fPCIInfo->u.h0.base_registers[0] - offset;
298 	size_t mapSize = (fPCIInfo->u.h0.base_register_sizes[0] + offset
299 		+ B_PAGE_SIZE - 1) & ~(B_PAGE_SIZE - 1);
300 
301 	TRACE("map physical memory 0x%08" B_PRIx32 " (base: 0x%08" B_PRIxPHYSADDR
302 		"; offset: %" B_PRIx32 "); size: %" B_PRIu32 "\n",
303 		fPCIInfo->u.h0.base_registers[0], physicalAddress, offset,
304 		fPCIInfo->u.h0.base_register_sizes[0]);
305 
306 	fRegisterArea = map_physical_memory("EHCI memory mapped registers",
307 		physicalAddress, mapSize, B_ANY_KERNEL_BLOCK_ADDRESS,
308 		B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA,
309 		(void **)&fCapabilityRegisters);
310 	if (fRegisterArea < 0) {
311 		TRACE_ERROR("failed to map register memory\n");
312 		return;
313 	}
314 
315 	fCapabilityRegisters += offset;
316 	fOperationalRegisters = fCapabilityRegisters + ReadCapReg8(EHCI_CAPLENGTH);
317 	TRACE("mapped capability registers: 0x%p\n", fCapabilityRegisters);
318 	TRACE("mapped operational registers: 0x%p\n", fOperationalRegisters);
319 
320 	TRACE("structural parameters: 0x%08" B_PRIx32 "\n",
321 		ReadCapReg32(EHCI_HCSPARAMS));
322 	TRACE("capability parameters: 0x%08" B_PRIx32 "\n",
323 		ReadCapReg32(EHCI_HCCPARAMS));
324 
325 	if (EHCI_HCCPARAMS_FRAME_CACHE(ReadCapReg32(EHCI_HCCPARAMS)))
326 		fThreshold = 2 + 8;
327 	else
328 		fThreshold = 2 + EHCI_HCCPARAMS_IPT(ReadCapReg32(EHCI_HCCPARAMS));
329 
330 	// read port count from capability register
331 	fPortCount = ReadCapReg32(EHCI_HCSPARAMS) & 0x0f;
332 
333 	uint32 extendedCapPointer = ReadCapReg32(EHCI_HCCPARAMS) >> EHCI_ECP_SHIFT;
334 	extendedCapPointer &= EHCI_ECP_MASK;
335 	if (extendedCapPointer > 0) {
336 		TRACE("extended capabilities register at %" B_PRIu32 "\n",
337 			extendedCapPointer);
338 
339 		uint32 legacySupport = sPCIModule->read_pci_config(fPCIInfo->bus,
340 			fPCIInfo->device, fPCIInfo->function, extendedCapPointer, 4);
341 		if ((legacySupport & EHCI_LEGSUP_CAPID_MASK) == EHCI_LEGSUP_CAPID) {
342 			if ((legacySupport & EHCI_LEGSUP_BIOSOWNED) != 0) {
343 				TRACE_ALWAYS("the host controller is bios owned, claiming"
344 					" ownership\n");
345 
346 				sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device,
347 					fPCIInfo->function, extendedCapPointer + 3, 1, 1);
348 
349 				for (int32 i = 0; i < 20; i++) {
350 					legacySupport = sPCIModule->read_pci_config(fPCIInfo->bus,
351 						fPCIInfo->device, fPCIInfo->function,
352 						extendedCapPointer, 4);
353 
354 					if ((legacySupport & EHCI_LEGSUP_BIOSOWNED) == 0)
355 						break;
356 
357 					TRACE_ALWAYS("controller is still bios owned, waiting\n");
358 					snooze(50000);
359 				}
360 			}
361 
362 			if (legacySupport & EHCI_LEGSUP_BIOSOWNED) {
363 				TRACE_ERROR("bios won't give up control over the host "
364 					"controller (ignoring)\n");
365 			} else if (legacySupport & EHCI_LEGSUP_OSOWNED) {
366 				TRACE_ALWAYS(
367 					"successfully took ownership of the host controller\n");
368 			}
369 
370 			// Force off the BIOS owned flag, and clear all SMIs. Some BIOSes
371 			// do indicate a successful handover but do not remove their SMIs
372 			// and then freeze the system when interrupts are generated.
373 			sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device,
374 				fPCIInfo->function, extendedCapPointer + 2, 1, 0);
375 			sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device,
376 				fPCIInfo->function, extendedCapPointer + 4, 4, 0);
377 		} else {
378 			TRACE_ALWAYS(
379 				"extended capability is not a legacy support register\n");
380 		}
381 	} else {
382 		TRACE_ALWAYS("no extended capabilities register\n");
383 	}
384 
385 	// disable interrupts
386 	WriteOpReg(EHCI_USBINTR, 0);
387 
388 	// reset the host controller
389 	if (ControllerReset() != B_OK) {
390 		TRACE_ERROR("host controller failed to reset\n");
391 		return;
392 	}
393 
394 	// reset the segment register
395 	WriteOpReg(EHCI_CTRDSSEGMENT, 0);
396 
397 	// create semaphores the finisher thread will wait for
398 	fAsyncAdvanceSem = create_sem(0, "EHCI Async Advance");
399 	fFinishTransfersSem = create_sem(0, "EHCI Finish Transfers");
400 	fCleanupSem = create_sem(0, "EHCI Cleanup");
401 	if (fFinishTransfersSem < 0 || fAsyncAdvanceSem < 0 || fCleanupSem < 0) {
402 		TRACE_ERROR("failed to create semaphores\n");
403 		return;
404 	}
405 
406 	// create finisher service thread
407 	fFinishThread = spawn_kernel_thread(FinishThread, "ehci finish thread",
408 		B_NORMAL_PRIORITY, (void *)this);
409 	resume_thread(fFinishThread);
410 
411 	// Create semaphore the isochronous finisher thread will wait for
412 	fFinishIsochronousTransfersSem = create_sem(0,
413 		"EHCI Isochronous Finish Transfers");
414 	if (fFinishIsochronousTransfersSem < 0) {
415 		TRACE_ERROR("failed to create isochronous finisher semaphore\n");
416 		return;
417 	}
418 
419 	// Create the isochronous finisher service thread
420 	fFinishIsochronousThread = spawn_kernel_thread(FinishIsochronousThread,
421 		"ehci isochronous finish thread", B_URGENT_DISPLAY_PRIORITY,
422 		(void *)this);
423 	resume_thread(fFinishIsochronousThread);
424 
425 	// create cleanup service thread
426 	fCleanupThread = spawn_kernel_thread(CleanupThread, "ehci cleanup thread",
427 		B_NORMAL_PRIORITY, (void *)this);
428 	resume_thread(fCleanupThread);
429 
430 	// set up interrupts or interrupt polling now that the controller is ready
431 	bool polling = false;
432 	void *settings = load_driver_settings(B_SAFEMODE_DRIVER_SETTINGS);
433 	if (settings != NULL) {
434 		polling = get_driver_boolean_parameter(settings, "ehci_polling", false,
435 			false);
436 		unload_driver_settings(settings);
437 	}
438 
439 	if (polling) {
440 		// create and run the polling thread
441 		TRACE_ALWAYS("enabling ehci polling\n");
442 		fInterruptPollThread = spawn_kernel_thread(InterruptPollThread,
443 			"ehci interrupt poll thread", B_NORMAL_PRIORITY, (void *)this);
444 		resume_thread(fInterruptPollThread);
445 	} else {
446 		// Find the right interrupt vector, using MSIs if available.
447 		fIRQ = fPCIInfo->u.h0.interrupt_line;
448 		if (sPCIx86Module != NULL && sPCIx86Module->get_msi_count(
449 				fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function) >= 1) {
450 			uint8 msiVector = 0;
451 			if (sPCIx86Module->configure_msi(fPCIInfo->bus, fPCIInfo->device,
452 					fPCIInfo->function, 1, &msiVector) == B_OK
453 				&& sPCIx86Module->enable_msi(fPCIInfo->bus, fPCIInfo->device,
454 					fPCIInfo->function) == B_OK) {
455 				TRACE_ALWAYS("using message signaled interrupts\n");
456 				fIRQ = msiVector;
457 				fUseMSI = true;
458 			}
459 		}
460 
461 		if (fIRQ == 0 || fIRQ == 0xFF) {
462 			TRACE_MODULE_ERROR("device PCI:%d:%d:%d was assigned an invalid IRQ\n",
463 				fPCIInfo->bus, fPCIInfo->device, fPCIInfo->function);
464 			return;
465 		}
466 
467 		// install the interrupt handler and enable interrupts
468 		install_io_interrupt_handler(fIRQ, InterruptHandler,
469 			(void *)this, 0);
470 	}
471 
472 	// ensure that interrupts are en-/disabled on the PCI device
473 	command = sPCIModule->read_pci_config(fPCIInfo->bus, fPCIInfo->device,
474 		fPCIInfo->function, PCI_command, 2);
475 	if ((polling || fUseMSI) == ((command & PCI_command_int_disable) == 0)) {
476 		if (polling || fUseMSI)
477 			command &= ~PCI_command_int_disable;
478 		else
479 			command |= PCI_command_int_disable;
480 
481 		sPCIModule->write_pci_config(fPCIInfo->bus, fPCIInfo->device,
482 			fPCIInfo->function, PCI_command, 2, command);
483 	}
484 
485 	fEnabledInterrupts = EHCI_USBINTR_HOSTSYSERR | EHCI_USBINTR_USBERRINT
486 		| EHCI_USBINTR_USBINT | EHCI_USBINTR_INTONAA;
487 	WriteOpReg(EHCI_USBINTR, fEnabledInterrupts);
488 
489 	// structures don't span page boundaries
490 	size_t itdListSize = EHCI_VFRAMELIST_ENTRIES_COUNT
491 		/ (B_PAGE_SIZE / sizeof(itd_entry)) * B_PAGE_SIZE;
492 	size_t sitdListSize = EHCI_VFRAMELIST_ENTRIES_COUNT
493 		/ (B_PAGE_SIZE / sizeof(sitd_entry)) * B_PAGE_SIZE;
494 	size_t frameListSize = B_PAGE_SIZE + B_PAGE_SIZE + itdListSize
495 		+ sitdListSize;
496 
497 	// allocate the periodic frame list
498 	fPeriodicFrameListArea = fStack->AllocateArea((void **)&fPeriodicFrameList,
499 		&physicalAddress, frameListSize, "USB EHCI Periodic Framelist");
500 	if (fPeriodicFrameListArea < 0) {
501 		TRACE_ERROR("unable to allocate periodic framelist\n");
502 		return;
503 	}
504 
505 	if ((physicalAddress & 0xfff) != 0) {
506 		panic("EHCI_PERIODICLISTBASE not aligned on 4k: 0x%" B_PRIxPHYSADDR
507 			"\n", physicalAddress);
508 	}
509 
510 	// set the periodic frame list base on the controller
511 	WriteOpReg(EHCI_PERIODICLISTBASE, (uint32)physicalAddress);
512 
513 	// create the interrupt entries to support different polling intervals
514 	TRACE("creating interrupt entries\n");
515 	uint32_t physicalBase = physicalAddress + B_PAGE_SIZE;
516 	uint8 *logicalBase = (uint8 *)fPeriodicFrameList + B_PAGE_SIZE;
517 	memset(logicalBase, 0, B_PAGE_SIZE);
518 
519 	fInterruptEntries = (interrupt_entry *)logicalBase;
520 	for (int32 i = 0; i < EHCI_INTERRUPT_ENTRIES_COUNT; i++) {
521 		ehci_qh *queueHead = &fInterruptEntries[i].queue_head;
522 		queueHead->this_phy = physicalBase | EHCI_ITEM_TYPE_QH;
523 		queueHead->current_qtd_phy = 0;
524 		queueHead->overlay.next_phy = EHCI_ITEM_TERMINATE;
525 		queueHead->overlay.alt_next_phy = EHCI_ITEM_TERMINATE;
526 		queueHead->overlay.token = EHCI_QTD_STATUS_HALTED;
527 
528 		// set dummy endpoint information
529 		queueHead->endpoint_chars = EHCI_QH_CHARS_EPS_HIGH
530 			| (3 << EHCI_QH_CHARS_RL_SHIFT) | (64 << EHCI_QH_CHARS_MPL_SHIFT)
531 			| EHCI_QH_CHARS_TOGGLE;
532 		queueHead->endpoint_caps = (1 << EHCI_QH_CAPS_MULT_SHIFT)
533 			| (0xff << EHCI_QH_CAPS_ISM_SHIFT);
534 
535 		physicalBase += sizeof(interrupt_entry);
536 		if ((physicalBase & 0x1f) != 0) {
537 			panic("physical base for interrupt entry %" B_PRId32
538 				" not aligned on 32, interrupt entry structure size %lu\n",
539 					i, sizeof(interrupt_entry));
540 		}
541 	}
542 
543 	// create the itd and sitd entries
544 	TRACE("build up iso entries\n");
545 	uint32_t itdPhysicalBase = physicalAddress + B_PAGE_SIZE + B_PAGE_SIZE;
546 	itd_entry* itds = (itd_entry *)((uint8 *)fPeriodicFrameList + B_PAGE_SIZE
547 		+ B_PAGE_SIZE);
548 	memset(itds, 0, itdListSize);
549 
550 	uint32_t sitdPhysicalBase = itdPhysicalBase + itdListSize;
551 	sitd_entry* sitds = (sitd_entry *)((uint8 *)fPeriodicFrameList + B_PAGE_SIZE
552 		+ B_PAGE_SIZE + itdListSize);
553 	memset(sitds, 0, sitdListSize);
554 
555 	fItdEntries = new(std::nothrow) ehci_itd *[EHCI_VFRAMELIST_ENTRIES_COUNT];
556 	fSitdEntries = new(std::nothrow) ehci_sitd *[EHCI_VFRAMELIST_ENTRIES_COUNT];
557 
558 	dprintf("sitd entry size %lu, itd entry size %lu\n", sizeof(sitd_entry),
559 		sizeof(itd_entry));
560 	for (int32 i = 0; i < EHCI_VFRAMELIST_ENTRIES_COUNT; i++) {
561 		ehci_sitd *sitd = &sitds[i].sitd;
562 		sitd->this_phy = sitdPhysicalBase | EHCI_ITEM_TYPE_SITD;
563 		sitd->back_phy = EHCI_ITEM_TERMINATE;
564 		fSitdEntries[i] = sitd;
565 		TRACE("sitd entry %" B_PRId32 " %p 0x%" B_PRIx32 "\n", i, sitd,
566 			sitd->this_phy);
567 
568 		ehci_itd *itd = &itds[i].itd;
569 		itd->this_phy = itdPhysicalBase | EHCI_ITEM_TYPE_ITD;
570 		itd->next_phy = sitd->this_phy;
571 		fItdEntries[i] = itd;
572 		TRACE("itd entry %" B_PRId32 " %p 0x%" B_PRIx32 "\n", i, itd,
573 			itd->this_phy);
574 
575 		sitdPhysicalBase += sizeof(sitd_entry);
576 		itdPhysicalBase += sizeof(itd_entry);
577 		if ((sitdPhysicalBase & 0x10) != 0 || (itdPhysicalBase & 0x10) != 0)
578 			panic("physical base for entry %" B_PRId32 " not aligned on 32\n",
579 				i);
580 	}
581 
582 	// build flat interrupt tree
583 	TRACE("build up interrupt links\n");
584 	uint32 interval = EHCI_VFRAMELIST_ENTRIES_COUNT;
585 	uint32 intervalIndex = EHCI_INTERRUPT_ENTRIES_COUNT - 1;
586 	while (interval > 1) {
587 		for (uint32 insertIndex = interval / 2;
588 			insertIndex < EHCI_VFRAMELIST_ENTRIES_COUNT;
589 			insertIndex += interval) {
590 			fSitdEntries[insertIndex]->next_phy
591 				= fInterruptEntries[intervalIndex].queue_head.this_phy;
592 		}
593 
594 		intervalIndex--;
595 		interval /= 2;
596 	}
597 
598 	// setup the empty slot in the list and linking of all -> first
599 	ehci_qh *firstLogical = &fInterruptEntries[0].queue_head;
600 	fSitdEntries[0]->next_phy = firstLogical->this_phy;
601 	for (int32 i = 1; i < EHCI_INTERRUPT_ENTRIES_COUNT; i++) {
602 		fInterruptEntries[i].queue_head.next_phy = firstLogical->this_phy;
603 		fInterruptEntries[i].queue_head.next_log = firstLogical;
604 		fInterruptEntries[i].queue_head.prev_log = NULL;
605 	}
606 
607 	// terminate the first entry
608 	firstLogical->next_phy = EHCI_ITEM_TERMINATE;
609 	firstLogical->next_log = NULL;
610 	firstLogical->prev_log = NULL;
611 
612 	for (int32 i = 0; i < EHCI_FRAMELIST_ENTRIES_COUNT; i++) {
613 		fPeriodicFrameList[i]
614 			= fItdEntries[i & (EHCI_VFRAMELIST_ENTRIES_COUNT - 1)]->this_phy;
615 		TRACE("periodic entry %" B_PRId32 " linked to 0x%" B_PRIx32 "\n", i,
616 			fPeriodicFrameList[i]);
617 	}
618 
619 	// Create the array that will keep bandwidth information
620 	fFrameBandwidth = new(std::nothrow) uint16[EHCI_VFRAMELIST_ENTRIES_COUNT];
621 	for (int32 i = 0; i < EHCI_VFRAMELIST_ENTRIES_COUNT; i++) {
622 		fFrameBandwidth[i] = MAX_AVAILABLE_BANDWIDTH;
623 	}
624 
625 	// allocate a queue head that will always stay in the async frame list
626 	fAsyncQueueHead = CreateQueueHead();
627 	if (!fAsyncQueueHead) {
628 		TRACE_ERROR("unable to allocate stray async queue head\n");
629 		return;
630 	}
631 
632 	fAsyncQueueHead->next_phy = fAsyncQueueHead->this_phy;
633 	fAsyncQueueHead->next_log = fAsyncQueueHead;
634 	fAsyncQueueHead->prev_log = fAsyncQueueHead;
635 	fAsyncQueueHead->endpoint_chars = EHCI_QH_CHARS_EPS_HIGH
636 		| EHCI_QH_CHARS_RECHEAD;
637 	fAsyncQueueHead->endpoint_caps = 1 << EHCI_QH_CAPS_MULT_SHIFT;
638 	fAsyncQueueHead->overlay.next_phy = EHCI_ITEM_TERMINATE;
639 
640 	WriteOpReg(EHCI_ASYNCLISTADDR, (uint32)fAsyncQueueHead->this_phy);
641 	TRACE("set the async list addr to 0x%08" B_PRIx32 "\n",
642 		ReadOpReg(EHCI_ASYNCLISTADDR));
643 
644 	fInitOK = true;
645 	TRACE("EHCI host controller driver constructed\n");
646 }
647 
648 
649 EHCI::~EHCI()
650 {
651 	TRACE("tear down EHCI host controller driver\n");
652 
653 	WriteOpReg(EHCI_USBCMD, 0);
654 	WriteOpReg(EHCI_CONFIGFLAG, 0);
655 	CancelAllPendingTransfers();
656 
657 	int32 result = 0;
658 	fStopThreads = true;
659 	delete_sem(fAsyncAdvanceSem);
660 	delete_sem(fFinishTransfersSem);
661 	delete_sem(fFinishIsochronousTransfersSem);
662 	delete_sem(fCleanupSem);
663 	wait_for_thread(fFinishThread, &result);
664 	wait_for_thread(fCleanupThread, &result);
665 	wait_for_thread(fFinishIsochronousThread, &result);
666 
667 	if (fInterruptPollThread >= 0)
668 		wait_for_thread(fInterruptPollThread, &result);
669 	else
670 		remove_io_interrupt_handler(fIRQ, InterruptHandler, (void *)this);
671 
672 	LockIsochronous();
673 	isochronous_transfer_data *isoTransfer = fFirstIsochronousTransfer;
674 	while (isoTransfer) {
675 		isochronous_transfer_data *next = isoTransfer->link;
676 		delete isoTransfer;
677 		isoTransfer = next;
678 	}
679 	mutex_destroy(&fIsochronousLock);
680 
681 	delete fRootHub;
682 	delete [] fFrameBandwidth;
683 	delete [] fItdEntries;
684 	delete [] fSitdEntries;
685 	delete_area(fPeriodicFrameListArea);
686 	delete_area(fRegisterArea);
687 
688 	if (fUseMSI && sPCIx86Module != NULL) {
689 		sPCIx86Module->disable_msi(fPCIInfo->bus,
690 			fPCIInfo->device, fPCIInfo->function);
691 		sPCIx86Module->unconfigure_msi(fPCIInfo->bus,
692 			fPCIInfo->device, fPCIInfo->function);
693 	}
694 
695 	put_module(B_PCI_MODULE_NAME);
696 	if (sPCIx86Module != NULL)
697 		put_module(B_PCI_X86_MODULE_NAME);
698 }
699 
700 
701 status_t
702 EHCI::Start()
703 {
704 	TRACE("starting EHCI host controller\n");
705 	TRACE("usbcmd: 0x%08" B_PRIx32 "; usbsts: 0x%08" B_PRIx32 "\n",
706 		ReadOpReg(EHCI_USBCMD), ReadOpReg(EHCI_USBSTS));
707 
708 	bool hasPerPortChangeEvent = (ReadCapReg32(EHCI_HCCPARAMS)
709 		& EHCI_HCCPARAMS_PPCEC) != 0;
710 
711 	uint32 config = ReadOpReg(EHCI_USBCMD);
712 	config &= ~((EHCI_USBCMD_ITC_MASK << EHCI_USBCMD_ITC_SHIFT)
713 		| EHCI_USBCMD_PPCEE);
714 	uint32 frameListSize = (config >> EHCI_USBCMD_FLS_SHIFT)
715 		& EHCI_USBCMD_FLS_MASK;
716 
717 	WriteOpReg(EHCI_USBCMD, config | EHCI_USBCMD_RUNSTOP
718 		| (hasPerPortChangeEvent ? EHCI_USBCMD_PPCEE : 0)
719 		| EHCI_USBCMD_ASENABLE | EHCI_USBCMD_PSENABLE
720 		| (frameListSize << EHCI_USBCMD_FLS_SHIFT)
721 		| (1 << EHCI_USBCMD_ITC_SHIFT));
722 
723 	switch (frameListSize) {
724 		case 0:
725 			TRACE("frame list size 1024\n");
726 			break;
727 		case 1:
728 			TRACE("frame list size 512\n");
729 			break;
730 		case 2:
731 			TRACE("frame list size 256\n");
732 			break;
733 		default:
734 			TRACE_ALWAYS("unknown frame list size\n");
735 	}
736 
737 	bool running = false;
738 	for (int32 i = 0; i < 10; i++) {
739 		uint32 status = ReadOpReg(EHCI_USBSTS);
740 		TRACE("try %" B_PRId32 ": status 0x%08" B_PRIx32 "\n", i, status);
741 
742 		if (status & EHCI_USBSTS_HCHALTED) {
743 			snooze(10000);
744 		} else {
745 			running = true;
746 			break;
747 		}
748 	}
749 
750 	if (!running) {
751 		TRACE_ERROR("host controller didn't start\n");
752 		return B_ERROR;
753 	}
754 
755 	// route all ports to us
756 	WriteOpReg(EHCI_CONFIGFLAG, EHCI_CONFIGFLAG_FLAG);
757 	snooze(10000);
758 
759 	fRootHubAddress = AllocateAddress();
760 	fRootHub = new(std::nothrow) EHCIRootHub(RootObject(), fRootHubAddress);
761 	if (!fRootHub) {
762 		TRACE_ERROR("no memory to allocate root hub\n");
763 		return B_NO_MEMORY;
764 	}
765 
766 	if (fRootHub->InitCheck() != B_OK) {
767 		TRACE_ERROR("root hub failed init check\n");
768 		return fRootHub->InitCheck();
769 	}
770 
771 	SetRootHub(fRootHub);
772 
773 	TRACE_ALWAYS("successfully started the controller\n");
774 	return BusManager::Start();
775 }
776 
777 
778 status_t
779 EHCI::StartDebugTransfer(Transfer *transfer)
780 {
781 	static transfer_data transferData;
782 
783 	transferData.queue_head = CreateQueueHead();
784 	if (transferData.queue_head == NULL)
785 		return B_NO_MEMORY;
786 
787 	Pipe *pipe = transfer->TransferPipe();
788 	status_t result = InitQueueHead(transferData.queue_head, pipe);
789 	if (result != B_OK) {
790 		FreeQueueHead(transferData.queue_head);
791 		return result;
792 	}
793 
794 	if ((pipe->Type() & USB_OBJECT_CONTROL_PIPE) != 0) {
795 		result = FillQueueWithRequest(transfer, transferData.queue_head,
796 			&transferData.data_descriptor, &transferData.incoming);
797 	} else {
798 		result = FillQueueWithData(transfer, transferData.queue_head,
799 			&transferData.data_descriptor, &transferData.incoming);
800 	}
801 
802 	if (result != B_OK) {
803 		FreeQueueHead(transferData.queue_head);
804 		return result;
805 	}
806 
807 	if ((pipe->Type() & USB_OBJECT_INTERRUPT_PIPE) != 0)
808 		LinkPeriodicDebugQueueHead(transferData.queue_head, pipe);
809 	else
810 		LinkAsyncDebugQueueHead(transferData.queue_head);
811 
812 	// we abuse the callback cookie to hold our transfer data
813 	transfer->SetCallback(NULL, &transferData);
814 	return B_OK;
815 }
816 
817 
818 void
819 EHCI::LinkAsyncDebugQueueHead(ehci_qh *queueHead)
820 {
821 	ehci_qh *prevHead = fAsyncQueueHead->prev_log;
822 	queueHead->next_phy = fAsyncQueueHead->this_phy;
823 	queueHead->next_log = fAsyncQueueHead;
824 	queueHead->prev_log = prevHead;
825 	fAsyncQueueHead->prev_log = queueHead;
826 	prevHead->next_log = queueHead;
827 	prevHead->next_phy = queueHead->this_phy;
828 }
829 
830 
831 void
832 EHCI::LinkPeriodicDebugQueueHead(ehci_qh *queueHead, Pipe *pipe)
833 {
834 	if (pipe->Speed() == USB_SPEED_HIGHSPEED)
835 		queueHead->endpoint_caps |= (0xff << EHCI_QH_CAPS_ISM_SHIFT);
836 	else {
837 		queueHead->endpoint_caps |= (0x01 << EHCI_QH_CAPS_ISM_SHIFT);
838 		queueHead->endpoint_caps |= (0x1c << EHCI_QH_CAPS_SCM_SHIFT);
839 	}
840 
841 	ehci_qh *interruptQueue = &fInterruptEntries[0].queue_head;
842 	queueHead->next_phy = interruptQueue->next_phy;
843 	queueHead->next_log = interruptQueue->next_log;
844 	queueHead->prev_log = interruptQueue;
845 	if (interruptQueue->next_log)
846 		interruptQueue->next_log->prev_log = queueHead;
847 	interruptQueue->next_log = queueHead;
848 	interruptQueue->next_phy = queueHead->this_phy;
849 }
850 
851 
852 status_t
853 EHCI::CheckDebugTransfer(Transfer *transfer)
854 {
855 	bool transferOK = false;
856 	bool transferError = false;
857 	transfer_data *transferData = (transfer_data *)transfer->CallbackCookie();
858 	ehci_qtd *descriptor = transferData->queue_head->element_log;
859 
860 	while (descriptor) {
861 		uint32 status = descriptor->token;
862 		if ((status & EHCI_QTD_STATUS_ACTIVE) != 0) {
863 			// still in progress
864 			break;
865 		}
866 
867 		if ((status & EHCI_QTD_STATUS_ERRMASK) != 0) {
868 			transferError = true;
869 			break;
870 		}
871 
872 		if ((descriptor->next_phy & EHCI_ITEM_TERMINATE) != 0) {
873 			// we arrived at the last (stray) descriptor, we're done
874 			transferOK = true;
875 			break;
876 		}
877 
878 		if (((status >> EHCI_QTD_PID_SHIFT) & EHCI_QTD_PID_MASK)
879 				== EHCI_QTD_PID_IN
880 			&& ((status >> EHCI_QTD_BYTES_SHIFT) & EHCI_QTD_BYTES_MASK) != 0) {
881 			// a short packet condition existed on this descriptor
882 			if (descriptor->alt_next_log != NULL) {
883 				descriptor = descriptor->alt_next_log;
884 				continue;
885 			}
886 
887 			transferOK = true;
888 			break;
889 		}
890 
891 		descriptor = descriptor->next_log;
892 	}
893 
894 	if (!transferOK && !transferError) {
895 		spin(75);
896 		return B_DEV_PENDING;
897 	}
898 
899 	if (transferOK) {
900 		bool nextDataToggle = false;
901 		if (transferData->data_descriptor != NULL && transferData->incoming) {
902 			// data to read out
903 			iovec *vector = transfer->Vector();
904 			size_t vectorCount = transfer->VectorCount();
905 
906 			ReadDescriptorChain(transferData->data_descriptor,
907 				vector, vectorCount, &nextDataToggle);
908 		} else if (transferData->data_descriptor != NULL)
909 			ReadActualLength(transferData->data_descriptor, &nextDataToggle);
910 
911 		transfer->TransferPipe()->SetDataToggle(nextDataToggle);
912 	}
913 
914 	CleanupDebugTransfer(transfer);
915 	return transferOK ? B_OK : B_IO_ERROR;
916 }
917 
918 
919 void
920 EHCI::CancelDebugTransfer(Transfer *transfer)
921 {
922 	transfer_data *transferData = (transfer_data *)transfer->CallbackCookie();
923 
924 	// clear the active bit so the descriptors are canceled
925 	ehci_qtd *descriptor = transferData->queue_head->element_log;
926 	while (descriptor != NULL) {
927 		descriptor->token &= ~EHCI_QTD_STATUS_ACTIVE;
928 		descriptor = descriptor->next_log;
929 	}
930 
931 	transfer->Finished(B_CANCELED, 0);
932 	CleanupDebugTransfer(transfer);
933 }
934 
935 
936 void
937 EHCI::CleanupDebugTransfer(Transfer *transfer)
938 {
939 	transfer_data *transferData = (transfer_data *)transfer->CallbackCookie();
940 	ehci_qh *queueHead = transferData->queue_head;
941 	ehci_qh *prevHead = queueHead->prev_log;
942 	if (prevHead != NULL) {
943 		prevHead->next_phy = queueHead->next_phy;
944 		prevHead->next_log = queueHead->next_log;
945 	}
946 
947 	ehci_qh *nextHead = queueHead->next_log;
948 	if (nextHead != NULL)
949 		nextHead->prev_log = queueHead->prev_log;
950 
951 	queueHead->next_phy = fAsyncQueueHead->this_phy;
952 	queueHead->prev_log = NULL;
953 	queueHead->next_log = NULL;
954 
955 	// wait for async advance to ensure the controller does not access this
956 	// queue head anymore.
957 	spin(125);
958 
959 	FreeQueueHead(queueHead);
960 }
961 
962 
963 status_t
964 EHCI::SubmitTransfer(Transfer *transfer)
965 {
966 	// short circuit the root hub
967 	if (transfer->TransferPipe()->DeviceAddress() == fRootHubAddress)
968 		return fRootHub->ProcessTransfer(this, transfer);
969 
970 	Pipe *pipe = transfer->TransferPipe();
971 	if ((pipe->Type() & USB_OBJECT_ISO_PIPE) != 0)
972 		return SubmitIsochronous(transfer);
973 
974 	ehci_qh *queueHead = CreateQueueHead();
975 	if (!queueHead) {
976 		TRACE_ERROR("failed to allocate queue head\n");
977 		return B_NO_MEMORY;
978 	}
979 
980 	status_t result = InitQueueHead(queueHead, pipe);
981 	if (result != B_OK) {
982 		TRACE_ERROR("failed to init queue head\n");
983 		FreeQueueHead(queueHead);
984 		return result;
985 	}
986 
987 	bool directionIn;
988 	ehci_qtd *dataDescriptor;
989 	if ((pipe->Type() & USB_OBJECT_CONTROL_PIPE) != 0) {
990 		result = FillQueueWithRequest(transfer, queueHead, &dataDescriptor,
991 			&directionIn);
992 	} else {
993 		result = FillQueueWithData(transfer, queueHead, &dataDescriptor,
994 			&directionIn);
995 	}
996 
997 	if (result != B_OK) {
998 		TRACE_ERROR("failed to fill transfer queue with data\n");
999 		FreeQueueHead(queueHead);
1000 		return result;
1001 	}
1002 
1003 	result = AddPendingTransfer(transfer, queueHead, dataDescriptor,
1004 		directionIn);
1005 	if (result != B_OK) {
1006 		TRACE_ERROR("failed to add pending transfer\n");
1007 		FreeQueueHead(queueHead);
1008 		return result;
1009 	}
1010 
1011 #ifdef TRACE_USB
1012 	TRACE("linking queue\n");
1013 	print_queue(queueHead);
1014 #endif
1015 
1016 	if ((pipe->Type() & USB_OBJECT_INTERRUPT_PIPE) != 0)
1017 		result = LinkInterruptQueueHead(queueHead, pipe);
1018 	else
1019 		result = LinkQueueHead(queueHead);
1020 
1021 	if (result != B_OK) {
1022 		TRACE_ERROR("failed to link queue head\n");
1023 		FreeQueueHead(queueHead);
1024 		return result;
1025 	}
1026 
1027 	return B_OK;
1028 }
1029 
1030 
1031 status_t
1032 EHCI::SubmitIsochronous(Transfer *transfer)
1033 {
1034 	Pipe *pipe = transfer->TransferPipe();
1035 	bool directionIn = (pipe->Direction() == Pipe::In);
1036 	usb_isochronous_data *isochronousData = transfer->IsochronousData();
1037 	size_t packetSize = transfer->DataLength();
1038 #ifdef TRACE_USB
1039 	size_t restSize = packetSize % isochronousData->packet_count;
1040 #endif
1041 	packetSize /= isochronousData->packet_count;
1042 	uint16 currentFrame;
1043 
1044 	if (packetSize > pipe->MaxPacketSize()) {
1045 		TRACE_ERROR(
1046 			"isochronous packetSize is bigger than pipe MaxPacketSize\n");
1047 		return B_BAD_VALUE;
1048 	}
1049 
1050 	// Ignore the fact that the last descriptor might need less bandwidth.
1051 	// The overhead is not worthy.
1052 	uint16 bandwidth = transfer->Bandwidth() / isochronousData->packet_count;
1053 
1054 	TRACE("isochronous transfer descriptor bandwidth %d\n", bandwidth);
1055 
1056 	// The following holds the list of transfer descriptor of the
1057 	// isochronous request. It is used to quickly remove all the isochronous
1058 	// descriptors from the frame list, as descriptors are not link to each
1059 	// other in a queue like for every other transfer.
1060 	ehci_itd **isoRequest
1061 		= new(std::nothrow) ehci_itd *[isochronousData->packet_count];
1062 	if (isoRequest == NULL) {
1063 		TRACE("failed to create isoRequest array!\n");
1064 		return B_NO_MEMORY;
1065 	}
1066 
1067 	TRACE("isochronous submitted size=%" B_PRIuSIZE " bytes, TDs=%" B_PRIu32
1068 		", maxPacketSize=%" B_PRIuSIZE ", packetSize=%" B_PRIuSIZE
1069 		", restSize=%" B_PRIuSIZE "\n", transfer->DataLength(),
1070 		isochronousData->packet_count, pipe->MaxPacketSize(), packetSize,
1071 		restSize);
1072 
1073 	// Find the entry where to start inserting the first Isochronous descriptor
1074 	if ((isochronousData->flags & USB_ISO_ASAP) != 0 ||
1075 		isochronousData->starting_frame_number == NULL) {
1076 
1077 		if (fFirstIsochronousTransfer != NULL && fNextStartingFrame != -1)
1078 			currentFrame = fNextStartingFrame;
1079 		else {
1080 			uint32 threshold = fThreshold;
1081 			TRACE("threshold: %" B_PRIu32 "\n", threshold);
1082 
1083 			// find the first available frame with enough bandwidth.
1084 			// This should always be the case, as defining the starting frame
1085 			// number in the driver makes no sense for many reason, one of which
1086 			// is that frame numbers value are host controller specific, and the
1087 			// driver does not know which host controller is running.
1088 			currentFrame = ((ReadOpReg(EHCI_FRINDEX) + threshold) / 8)
1089 				& (EHCI_FRAMELIST_ENTRIES_COUNT - 1);
1090 		}
1091 
1092 		// Make sure that:
1093 		// 1. We are at least 5ms ahead the controller
1094 		// 2. We stay in the range 0-127
1095 		// 3. There is enough bandwidth in the first entry
1096 		currentFrame &= EHCI_VFRAMELIST_ENTRIES_COUNT - 1;
1097 	} else {
1098 		// Find out if the frame number specified has enough bandwidth,
1099 		// otherwise find the first next available frame with enough bandwidth
1100 		currentFrame = *isochronousData->starting_frame_number;
1101 	}
1102 
1103 	TRACE("isochronous starting frame=%d\n", currentFrame);
1104 
1105 	uint16 itdIndex = 0;
1106 	size_t dataLength = transfer->DataLength();
1107 	void* bufferLog;
1108 	phys_addr_t bufferPhy;
1109 	if (fStack->AllocateChunk(&bufferLog, &bufferPhy, dataLength) != B_OK) {
1110 		TRACE_ERROR("unable to allocate itd buffer\n");
1111 		delete[] isoRequest;
1112 		return B_NO_MEMORY;
1113 	}
1114 
1115 	memset(bufferLog, 0, dataLength);
1116 
1117 	phys_addr_t currentPhy = bufferPhy;
1118 	uint32 frameCount = 0;
1119 	while (dataLength > 0) {
1120 		ehci_itd* itd = CreateItdDescriptor();
1121 		isoRequest[itdIndex++] = itd;
1122 		uint16 pg = 0;
1123 		itd->buffer_phy[pg] = currentPhy & 0xfffff000;
1124 		uint32 offset = currentPhy & 0xfff;
1125 		TRACE("isochronous created itd, filling it with phy %" B_PRIxPHYSADDR
1126 			"\n", currentPhy);
1127 		for (int32 i = 0; i < 8 && dataLength > 0; i++) {
1128 			size_t length = min_c(dataLength, packetSize);
1129 			itd->token[i] = (EHCI_ITD_STATUS_ACTIVE << EHCI_ITD_STATUS_SHIFT)
1130 				| (length << EHCI_ITD_TLENGTH_SHIFT) | (pg << EHCI_ITD_PG_SHIFT)
1131 				| (offset << EHCI_ITD_TOFFSET_SHIFT);
1132 			itd->last_token = i;
1133 			TRACE("isochronous filled slot %" B_PRId32 " 0x%" B_PRIx32 "\n", i,
1134 				itd->token[i]);
1135 			dataLength -= length;
1136 			offset += length;
1137 			if (dataLength > 0 && offset > 0xfff) {
1138 				offset -= B_PAGE_SIZE;
1139 				currentPhy += B_PAGE_SIZE;
1140 				itd->buffer_phy[pg + 1] = currentPhy & 0xfffff000;
1141 				pg++;
1142 			}
1143 			if (dataLength <= 0)
1144 				itd->token[i] |= EHCI_ITD_IOC;
1145 		}
1146 
1147 		currentPhy += (offset & 0xfff) - (currentPhy & 0xfff);
1148 
1149 		itd->buffer_phy[0]
1150 			|= (pipe->EndpointAddress() << EHCI_ITD_ENDPOINT_SHIFT)
1151 				| (pipe->DeviceAddress() << EHCI_ITD_ADDRESS_SHIFT);
1152 		itd->buffer_phy[1]
1153 			|= (pipe->MaxPacketSize() & EHCI_ITD_MAXPACKETSIZE_MASK)
1154 				| (directionIn << EHCI_ITD_DIR_SHIFT);
1155 		itd->buffer_phy[2]
1156 			|= ((((pipe->MaxPacketSize() >> EHCI_ITD_MAXPACKETSIZE_LENGTH) + 1)
1157 				& EHCI_ITD_MUL_MASK) << EHCI_ITD_MUL_SHIFT);
1158 
1159 		TRACE("isochronous filled itd buffer_phy[0,1,2] 0x%" B_PRIx32 ", 0x%"
1160 			B_PRIx32 " 0x%" B_PRIx32 "\n",
1161 			itd->buffer_phy[0], itd->buffer_phy[1], itd->buffer_phy[2]);
1162 
1163 		if (!LockIsochronous())
1164 			continue;
1165 		LinkITDescriptors(itd, &fItdEntries[currentFrame]);
1166 		UnlockIsochronous();
1167 		fFrameBandwidth[currentFrame] -= bandwidth;
1168 		currentFrame = (currentFrame + 1) & (EHCI_VFRAMELIST_ENTRIES_COUNT - 1);
1169 		frameCount++;
1170 	}
1171 
1172 	TRACE("isochronous filled itds count %d\n", itdIndex);
1173 
1174 	// Add transfer to the list
1175 	status_t result = AddPendingIsochronousTransfer(transfer, isoRequest,
1176 		itdIndex - 1, directionIn, bufferPhy, bufferLog,
1177 		transfer->DataLength());
1178 	if (result != B_OK) {
1179 		TRACE_ERROR("failed to add pending isochronous transfer\n");
1180 		for (uint32 i = 0; i < itdIndex; i++)
1181 			FreeDescriptor(isoRequest[i]);
1182 		delete[] isoRequest;
1183 		return result;
1184 	}
1185 
1186 	TRACE("appended isochronous transfer by starting at frame number %d\n",
1187 		currentFrame);
1188 	fNextStartingFrame = currentFrame + 1;
1189 
1190 	// Wake up the isochronous finisher thread
1191 	release_sem_etc(fFinishIsochronousTransfersSem, 1 /*frameCount*/,
1192 		B_DO_NOT_RESCHEDULE);
1193 
1194 	return B_OK;
1195 }
1196 
1197 
1198 isochronous_transfer_data *
1199 EHCI::FindIsochronousTransfer(ehci_itd *itd)
1200 {
1201 	// Simply check every last descriptor of the isochronous transfer list
1202 	isochronous_transfer_data *transfer = fFirstIsochronousTransfer;
1203 	if (transfer) {
1204 		while (transfer->descriptors[transfer->last_to_process]
1205 			!= itd) {
1206 			transfer = transfer->link;
1207 			if (!transfer)
1208 				break;
1209 		}
1210 	}
1211 	return transfer;
1212 }
1213 
1214 
1215 status_t
1216 EHCI::NotifyPipeChange(Pipe *pipe, usb_change change)
1217 {
1218 	TRACE("pipe change %d for pipe %p\n", change, pipe);
1219 	switch (change) {
1220 		case USB_CHANGE_CREATED:
1221 		case USB_CHANGE_DESTROYED: {
1222 			// ToDo: we should create and keep a single queue head
1223 			// for all transfers to/from this pipe
1224 			break;
1225 		}
1226 
1227 		case USB_CHANGE_PIPE_POLICY_CHANGED: {
1228 			// ToDo: for isochronous pipes we might need to adapt to new
1229 			// pipe policy settings here
1230 			break;
1231 		}
1232 	}
1233 
1234 	return B_OK;
1235 }
1236 
1237 
1238 status_t
1239 EHCI::GetPortStatus(uint8 index, usb_port_status *status)
1240 {
1241 	if (index >= fPortCount)
1242 		return B_BAD_INDEX;
1243 
1244 	status->status = status->change = 0;
1245 	uint32 portStatus = ReadOpReg(EHCI_PORTSC + index * sizeof(uint32));
1246 
1247 	// build the status
1248 	if (portStatus & EHCI_PORTSC_CONNSTATUS)
1249 		status->status |= PORT_STATUS_CONNECTION;
1250 	if (portStatus & EHCI_PORTSC_ENABLE)
1251 		status->status |= PORT_STATUS_ENABLE;
1252 	if (portStatus & EHCI_PORTSC_ENABLE)
1253 		status->status |= PORT_STATUS_HIGH_SPEED;
1254 	if (portStatus & EHCI_PORTSC_OCACTIVE)
1255 		status->status |= PORT_STATUS_OVER_CURRENT;
1256 	if (portStatus & EHCI_PORTSC_PORTRESET)
1257 		status->status |= PORT_STATUS_RESET;
1258 	if (portStatus & EHCI_PORTSC_PORTPOWER)
1259 		status->status |= PORT_STATUS_POWER;
1260 	if (portStatus & EHCI_PORTSC_SUSPEND)
1261 		status->status |= PORT_STATUS_SUSPEND;
1262 	if (portStatus & EHCI_PORTSC_DMINUS)
1263 		status->status |= PORT_STATUS_LOW_SPEED;
1264 
1265 	// build the change
1266 	if (portStatus & EHCI_PORTSC_CONNCHANGE)
1267 		status->change |= PORT_STATUS_CONNECTION;
1268 	if (portStatus & EHCI_PORTSC_ENABLECHANGE)
1269 		status->change |= PORT_STATUS_ENABLE;
1270 	if (portStatus & EHCI_PORTSC_OCCHANGE)
1271 		status->change |= PORT_STATUS_OVER_CURRENT;
1272 
1273 	// there are no bits to indicate suspend and reset change
1274 	if (fPortResetChange & (1 << index))
1275 		status->change |= PORT_STATUS_RESET;
1276 	if (fPortSuspendChange & (1 << index))
1277 		status->change |= PORT_STATUS_SUSPEND;
1278 
1279 	return B_OK;
1280 }
1281 
1282 
1283 status_t
1284 EHCI::SetPortFeature(uint8 index, uint16 feature)
1285 {
1286 	if (index >= fPortCount)
1287 		return B_BAD_INDEX;
1288 
1289 	uint32 portRegister = EHCI_PORTSC + index * sizeof(uint32);
1290 	uint32 portStatus = ReadOpReg(portRegister) & EHCI_PORTSC_DATAMASK;
1291 
1292 	switch (feature) {
1293 		case PORT_SUSPEND:
1294 			return SuspendPort(index);
1295 
1296 		case PORT_RESET:
1297 			return ResetPort(index);
1298 
1299 		case PORT_POWER:
1300 			WriteOpReg(portRegister, portStatus | EHCI_PORTSC_PORTPOWER);
1301 			return B_OK;
1302 	}
1303 
1304 	return B_BAD_VALUE;
1305 }
1306 
1307 
1308 status_t
1309 EHCI::ClearPortFeature(uint8 index, uint16 feature)
1310 {
1311 	if (index >= fPortCount)
1312 		return B_BAD_INDEX;
1313 
1314 	uint32 portRegister = EHCI_PORTSC + index * sizeof(uint32);
1315 	uint32 portStatus = ReadOpReg(portRegister) & EHCI_PORTSC_DATAMASK;
1316 
1317 	switch (feature) {
1318 		case PORT_ENABLE:
1319 			WriteOpReg(portRegister, portStatus & ~EHCI_PORTSC_ENABLE);
1320 			return B_OK;
1321 
1322 		case PORT_POWER:
1323 			WriteOpReg(portRegister, portStatus & ~EHCI_PORTSC_PORTPOWER);
1324 			return B_OK;
1325 
1326 		case C_PORT_CONNECTION:
1327 			WriteOpReg(portRegister, portStatus | EHCI_PORTSC_CONNCHANGE);
1328 			return B_OK;
1329 
1330 		case C_PORT_ENABLE:
1331 			WriteOpReg(portRegister, portStatus | EHCI_PORTSC_ENABLECHANGE);
1332 			return B_OK;
1333 
1334 		case C_PORT_OVER_CURRENT:
1335 			WriteOpReg(portRegister, portStatus | EHCI_PORTSC_OCCHANGE);
1336 			return B_OK;
1337 
1338 		case C_PORT_RESET:
1339 			fPortResetChange &= ~(1 << index);
1340 			return B_OK;
1341 
1342 		case C_PORT_SUSPEND:
1343 			fPortSuspendChange &= ~(1 << index);
1344 			return B_OK;
1345 	}
1346 
1347 	return B_BAD_VALUE;
1348 }
1349 
1350 
1351 status_t
1352 EHCI::ResetPort(uint8 index)
1353 {
1354 	TRACE("reset port %d\n", index);
1355 	uint32 portRegister = EHCI_PORTSC + index * sizeof(uint32);
1356 	uint32 portStatus = ReadOpReg(portRegister) & EHCI_PORTSC_DATAMASK;
1357 
1358 	if (portStatus & EHCI_PORTSC_DMINUS) {
1359 		TRACE_ALWAYS("lowspeed device connected, giving up port ownership\n");
1360 		// there is a lowspeed device connected.
1361 		// we give the ownership to a companion controller.
1362 		WriteOpReg(portRegister, portStatus | EHCI_PORTSC_PORTOWNER);
1363 		fPortResetChange |= (1 << index);
1364 		return B_OK;
1365 	}
1366 
1367 	// enable reset signaling
1368 	WriteOpReg(portRegister, (portStatus & ~EHCI_PORTSC_ENABLE)
1369 		| EHCI_PORTSC_PORTRESET);
1370 	snooze(50000);
1371 
1372 	// disable reset signaling
1373 	portStatus = ReadOpReg(portRegister) & EHCI_PORTSC_DATAMASK;
1374 	WriteOpReg(portRegister, portStatus & ~EHCI_PORTSC_PORTRESET);
1375 	snooze(2000);
1376 
1377 	portStatus = ReadOpReg(portRegister) & EHCI_PORTSC_DATAMASK;
1378 	if (portStatus & EHCI_PORTSC_PORTRESET) {
1379 		TRACE_ERROR("port reset won't complete\n");
1380 		return B_ERROR;
1381 	}
1382 
1383 	if ((portStatus & EHCI_PORTSC_ENABLE) == 0) {
1384 		TRACE_ALWAYS("fullspeed device connected, giving up port ownership\n");
1385 		// the port was not enabled, this means that no high speed device is
1386 		// attached to this port. we give up ownership to a companion controler
1387 		WriteOpReg(portRegister, portStatus | EHCI_PORTSC_PORTOWNER);
1388 	}
1389 
1390 	fPortResetChange |= (1 << index);
1391 	return B_OK;
1392 }
1393 
1394 
1395 status_t
1396 EHCI::SuspendPort(uint8 index)
1397 {
1398 	uint32 portRegister = EHCI_PORTSC + index * sizeof(uint32);
1399 	uint32 portStatus = ReadOpReg(portRegister) & EHCI_PORTSC_DATAMASK;
1400 	WriteOpReg(portRegister, portStatus | EHCI_PORTSC_SUSPEND);
1401 	fPortSuspendChange |= (1 << index);
1402 	return B_OK;
1403 }
1404 
1405 
1406 status_t
1407 EHCI::ControllerReset()
1408 {
1409 	// halt the controller first
1410 	WriteOpReg(EHCI_USBCMD, 0);
1411 	snooze(10000);
1412 
1413 	// then reset it
1414 	WriteOpReg(EHCI_USBCMD, EHCI_USBCMD_HCRESET);
1415 
1416 	int32 tries = 5;
1417 	while (ReadOpReg(EHCI_USBCMD) & EHCI_USBCMD_HCRESET) {
1418 		snooze(10000);
1419 		if (tries-- < 0)
1420 			return B_ERROR;
1421 	}
1422 
1423 	return B_OK;
1424 }
1425 
1426 
1427 status_t
1428 EHCI::LightReset()
1429 {
1430 	return B_ERROR;
1431 }
1432 
1433 
1434 int32
1435 EHCI::InterruptHandler(void *data)
1436 {
1437 	return ((EHCI *)data)->Interrupt();
1438 }
1439 
1440 
1441 int32
1442 EHCI::Interrupt()
1443 {
1444 	static spinlock lock = B_SPINLOCK_INITIALIZER;
1445 	acquire_spinlock(&lock);
1446 
1447 	// check if any interrupt was generated
1448 	uint32 status = ReadOpReg(EHCI_USBSTS) & EHCI_USBSTS_INTMASK;
1449 	if ((status & fEnabledInterrupts) == 0) {
1450 		if (status != 0) {
1451 			TRACE("discarding not enabled interrupts 0x%08" B_PRIx32 "\n",
1452 				status);
1453 			WriteOpReg(EHCI_USBSTS, status);
1454 		}
1455 
1456 		release_spinlock(&lock);
1457 		return B_UNHANDLED_INTERRUPT;
1458 	}
1459 
1460 	bool asyncAdvance = false;
1461 	bool finishTransfers = false;
1462 	int32 result = B_HANDLED_INTERRUPT;
1463 
1464 	if (status & EHCI_USBSTS_USBINT) {
1465 		TRACE("transfer finished\n");
1466 		result = B_INVOKE_SCHEDULER;
1467 		finishTransfers = true;
1468 	}
1469 
1470 	if (status & EHCI_USBSTS_USBERRINT) {
1471 		TRACE("transfer error\n");
1472 		result = B_INVOKE_SCHEDULER;
1473 		finishTransfers = true;
1474 	}
1475 
1476 	if (status & EHCI_USBSTS_FLROLLOVER)
1477 		TRACE("frame list rollover\n");
1478 
1479 	if (status & EHCI_USBSTS_PORTCHANGE)
1480 		TRACE("port change detected\n");
1481 
1482 	if (status & EHCI_USBSTS_INTONAA) {
1483 		TRACE("interrupt on async advance\n");
1484 		asyncAdvance = true;
1485 		result = B_INVOKE_SCHEDULER;
1486 	}
1487 
1488 	if (status & EHCI_USBSTS_HOSTSYSERR)
1489 		TRACE_ERROR("host system error!\n");
1490 
1491 	WriteOpReg(EHCI_USBSTS, status);
1492 	release_spinlock(&lock);
1493 
1494 	if (asyncAdvance)
1495 		release_sem_etc(fAsyncAdvanceSem, 1, B_DO_NOT_RESCHEDULE);
1496 	if (finishTransfers)
1497 		release_sem_etc(fFinishTransfersSem, 1, B_DO_NOT_RESCHEDULE);
1498 
1499 	return result;
1500 }
1501 
1502 
1503 int32
1504 EHCI::InterruptPollThread(void *data)
1505 {
1506 	EHCI *ehci = (EHCI *)data;
1507 
1508 	while (!ehci->fStopThreads) {
1509 		// TODO: this could be handled much better by only polling when there
1510 		// are actual transfers going on...
1511 		snooze(1000);
1512 
1513 		cpu_status status = disable_interrupts();
1514 		ehci->Interrupt();
1515 		restore_interrupts(status);
1516 	}
1517 
1518 	return 0;
1519 }
1520 
1521 
1522 status_t
1523 EHCI::AddPendingTransfer(Transfer *transfer, ehci_qh *queueHead,
1524 	ehci_qtd *dataDescriptor, bool directionIn)
1525 {
1526 	transfer_data *data = new(std::nothrow) transfer_data;
1527 	if (!data)
1528 		return B_NO_MEMORY;
1529 
1530 	status_t result = transfer->InitKernelAccess();
1531 	if (result != B_OK) {
1532 		delete data;
1533 		return result;
1534 	}
1535 
1536 	data->transfer = transfer;
1537 	data->queue_head = queueHead;
1538 	data->data_descriptor = dataDescriptor;
1539 	data->incoming = directionIn;
1540 	data->canceled = false;
1541 	data->link = NULL;
1542 
1543 	if (!Lock()) {
1544 		delete data;
1545 		return B_ERROR;
1546 	}
1547 
1548 	if (fLastTransfer)
1549 		fLastTransfer->link = data;
1550 	else
1551 		fFirstTransfer = data;
1552 
1553 	fLastTransfer = data;
1554 	Unlock();
1555 
1556 	return B_OK;
1557 }
1558 
1559 
1560 status_t
1561 EHCI::AddPendingIsochronousTransfer(Transfer *transfer, ehci_itd **isoRequest,
1562 	uint32 lastIndex, bool directionIn, addr_t bufferPhy, void* bufferLog,
1563 	size_t bufferSize)
1564 {
1565 	if (!transfer || !isoRequest)
1566 		return B_BAD_VALUE;
1567 
1568 	isochronous_transfer_data *data
1569 		= new(std::nothrow) isochronous_transfer_data;
1570 	if (!data)
1571 		return B_NO_MEMORY;
1572 
1573 	status_t result = transfer->InitKernelAccess();
1574 	if (result != B_OK) {
1575 		delete data;
1576 		return result;
1577 	}
1578 
1579 	data->transfer = transfer;
1580 	data->descriptors = isoRequest;
1581 	data->last_to_process = lastIndex;
1582 	data->incoming = directionIn;
1583 	data->is_active = true;
1584 	data->link = NULL;
1585 	data->buffer_phy = bufferPhy;
1586 	data->buffer_log = bufferLog;
1587 	data->buffer_size = bufferSize;
1588 
1589 	// Put in the isochronous transfer list
1590 	if (!LockIsochronous()) {
1591 		delete data;
1592 		return B_ERROR;
1593 	}
1594 
1595 	if (fLastIsochronousTransfer)
1596 		fLastIsochronousTransfer->link = data;
1597 	else if (!fFirstIsochronousTransfer)
1598 		fFirstIsochronousTransfer = data;
1599 
1600 	fLastIsochronousTransfer = data;
1601 	UnlockIsochronous();
1602 	return B_OK;
1603 }
1604 
1605 
1606 status_t
1607 EHCI::CancelQueuedTransfers(Pipe *pipe, bool force)
1608 {
1609 	if ((pipe->Type() & USB_OBJECT_ISO_PIPE) != 0)
1610 		return CancelQueuedIsochronousTransfers(pipe, force);
1611 
1612 	if (!Lock())
1613 		return B_ERROR;
1614 
1615 	struct transfer_entry {
1616 		Transfer *			transfer;
1617 		transfer_entry *	next;
1618 	};
1619 
1620 	transfer_entry *list = NULL;
1621 	transfer_data *current = fFirstTransfer;
1622 	while (current) {
1623 		if (current->transfer && current->transfer->TransferPipe() == pipe) {
1624 			// clear the active bit so the descriptors are canceled
1625 			ehci_qtd *descriptor = current->queue_head->element_log;
1626 			while (descriptor) {
1627 				descriptor->token &= ~EHCI_QTD_STATUS_ACTIVE;
1628 				descriptor = descriptor->next_log;
1629 			}
1630 
1631 			if (!force) {
1632 				// if the transfer is canceled by force, the one causing the
1633 				// cancel is probably not the one who initiated the transfer
1634 				// and the callback is likely not safe anymore
1635 				transfer_entry *entry
1636 					= (transfer_entry *)malloc(sizeof(transfer_entry));
1637 				if (entry != NULL) {
1638 					entry->transfer = current->transfer;
1639 					current->transfer = NULL;
1640 					entry->next = list;
1641 					list = entry;
1642 				}
1643 			}
1644 
1645 			current->canceled = true;
1646 		}
1647 
1648 		current = current->link;
1649 	}
1650 
1651 	Unlock();
1652 
1653 	while (list != NULL) {
1654 		transfer_entry *next = list->next;
1655 		list->transfer->Finished(B_CANCELED, 0);
1656 		delete list->transfer;
1657 		free(list);
1658 		list = next;
1659 	}
1660 
1661 	// wait for any transfers that might have made it before canceling
1662 	while (fProcessingPipe == pipe)
1663 		snooze(1000);
1664 
1665 	// notify the finisher so it can clean up the canceled transfers
1666 	release_sem_etc(fFinishTransfersSem, 1, B_DO_NOT_RESCHEDULE);
1667 	return B_OK;
1668 }
1669 
1670 
1671 status_t
1672 EHCI::CancelQueuedIsochronousTransfers(Pipe *pipe, bool force)
1673 {
1674 	isochronous_transfer_data *current = fFirstIsochronousTransfer;
1675 
1676 	while (current) {
1677 		if (current->transfer->TransferPipe() == pipe) {
1678 			// TODO implement
1679 
1680 			// TODO: Use the force paramater in order to avoid calling
1681 			// invalid callbacks
1682 			current->is_active = false;
1683 		}
1684 
1685 		current = current->link;
1686 	}
1687 
1688 	TRACE_ERROR("no isochronous transfer found!\n");
1689 	return B_ERROR;
1690 }
1691 
1692 
1693 status_t
1694 EHCI::CancelAllPendingTransfers()
1695 {
1696 	if (!Lock())
1697 		return B_ERROR;
1698 
1699 	transfer_data *transfer = fFirstTransfer;
1700 	while (transfer) {
1701 		transfer->transfer->Finished(B_CANCELED, 0);
1702 		delete transfer->transfer;
1703 
1704 		transfer_data *next = transfer->link;
1705 		delete transfer;
1706 		transfer = next;
1707 	}
1708 
1709 	fFirstTransfer = NULL;
1710 	fLastTransfer = NULL;
1711 	Unlock();
1712 	return B_OK;
1713 }
1714 
1715 
1716 int32
1717 EHCI::FinishThread(void *data)
1718 {
1719 	((EHCI *)data)->FinishTransfers();
1720 	return B_OK;
1721 }
1722 
1723 
1724 void
1725 EHCI::FinishTransfers()
1726 {
1727 	while (!fStopThreads) {
1728 		if (acquire_sem(fFinishTransfersSem) != B_OK)
1729 			continue;
1730 
1731 		// eat up sems that have been released by multiple interrupts
1732 		int32 semCount = 0;
1733 		get_sem_count(fFinishTransfersSem, &semCount);
1734 		if (semCount > 0) {
1735 			acquire_sem_etc(fFinishTransfersSem, semCount, B_RELATIVE_TIMEOUT,
1736 				0);
1737 		}
1738 
1739 		if (!Lock())
1740 			continue;
1741 
1742 		TRACE("finishing transfers\n");
1743 		transfer_data *lastTransfer = NULL;
1744 		transfer_data *transfer = fFirstTransfer;
1745 		Unlock();
1746 
1747 		while (transfer) {
1748 			bool transferDone = false;
1749 			ehci_qtd *descriptor = transfer->queue_head->element_log;
1750 			status_t callbackStatus = B_OK;
1751 
1752 			while (descriptor) {
1753 				uint32 status = descriptor->token;
1754 				if (status & EHCI_QTD_STATUS_ACTIVE) {
1755 					// still in progress
1756 					TRACE("qtd (0x%08" B_PRIx32 ") still active\n",
1757 						descriptor->this_phy);
1758 					break;
1759 				}
1760 
1761 				if (status & EHCI_QTD_STATUS_ERRMASK) {
1762 					// a transfer error occured
1763 					TRACE_ERROR("qtd (0x%" B_PRIx32 ") error: 0x%08" B_PRIx32
1764 						"\n", descriptor->this_phy, status);
1765 
1766 					uint8 errorCount = status >> EHCI_QTD_ERRCOUNT_SHIFT;
1767 					errorCount &= EHCI_QTD_ERRCOUNT_MASK;
1768 					if (errorCount == 0) {
1769 						// the error counter counted down to zero, report why
1770 						int32 reasons = 0;
1771 						if (status & EHCI_QTD_STATUS_BUFFER) {
1772 							callbackStatus = transfer->incoming
1773 								? B_DEV_DATA_OVERRUN : B_DEV_DATA_UNDERRUN;
1774 							reasons++;
1775 						}
1776 						if (status & EHCI_QTD_STATUS_TERROR) {
1777 							callbackStatus = B_DEV_CRC_ERROR;
1778 							reasons++;
1779 						}
1780 						if ((transfer->queue_head->endpoint_chars
1781 								& EHCI_QH_CHARS_EPS_HIGH) == 0) {
1782 							// For full-/lowspeed endpoints the unused ping
1783 							// state bit is used as another error bit, it is
1784 							// unspecific however.
1785 							if ((status & EHCI_QTD_STATUS_LS_ERR) != 0) {
1786 								callbackStatus = B_DEV_STALLED;
1787 								reasons++;
1788 							}
1789 						}
1790 
1791 						if (reasons > 1)
1792 							callbackStatus = B_DEV_MULTIPLE_ERRORS;
1793 						else if (reasons == 0) {
1794 							TRACE_ERROR("error counter counted down to zero "
1795 								"but none of the error bits are set\n");
1796 							callbackStatus = B_DEV_STALLED;
1797 						}
1798 					} else if (status & EHCI_QTD_STATUS_BABBLE) {
1799 						// there is a babble condition
1800 						callbackStatus = transfer->incoming
1801 							? B_DEV_FIFO_OVERRUN : B_DEV_FIFO_UNDERRUN;
1802 					} else {
1803 						// if the error counter didn't count down to zero
1804 						// and there was no babble, then this halt was caused
1805 						// by a stall handshake
1806 						callbackStatus = B_DEV_STALLED;
1807 					}
1808 
1809 					transferDone = true;
1810 					break;
1811 				}
1812 
1813 				if (descriptor->next_phy & EHCI_ITEM_TERMINATE) {
1814 					// we arrived at the last (stray) descriptor, we're done
1815 					TRACE("qtd (0x%08" B_PRIx32 ") done\n",
1816 						descriptor->this_phy);
1817 					callbackStatus = B_OK;
1818 					transferDone = true;
1819 					break;
1820 				}
1821 
1822 				if (((status >> EHCI_QTD_PID_SHIFT) & EHCI_QTD_PID_MASK)
1823 						== EHCI_QTD_PID_IN
1824 					&& ((status >> EHCI_QTD_BYTES_SHIFT) & EHCI_QTD_BYTES_MASK)
1825 						!= 0) {
1826 					// a short packet condition existed on this descriptor,
1827 					// follow the alternate next pointer if set
1828 					if (descriptor->alt_next_log != NULL) {
1829 						descriptor = descriptor->alt_next_log;
1830 						continue;
1831 					}
1832 
1833 					// no alternate next, transfer is done
1834 					callbackStatus = B_OK;
1835 					transferDone = true;
1836 					break;
1837 				}
1838 
1839 				descriptor = descriptor->next_log;
1840 			}
1841 
1842 			if (!transferDone) {
1843 				lastTransfer = transfer;
1844 				transfer = transfer->link;
1845 				continue;
1846 			}
1847 
1848 			// remove the transfer from the list first so we are sure
1849 			// it doesn't get canceled while we still process it
1850 			transfer_data *next = transfer->link;
1851 			if (Lock()) {
1852 				if (lastTransfer)
1853 					lastTransfer->link = transfer->link;
1854 
1855 				if (transfer == fFirstTransfer)
1856 					fFirstTransfer = transfer->link;
1857 				if (transfer == fLastTransfer)
1858 					fLastTransfer = lastTransfer;
1859 
1860 				// store the currently processing pipe here so we can wait
1861 				// in cancel if we are processing something on the target pipe
1862 				if (!transfer->canceled)
1863 					fProcessingPipe = transfer->transfer->TransferPipe();
1864 
1865 				transfer->link = NULL;
1866 				Unlock();
1867 			}
1868 
1869 			// if canceled the callback has already been called
1870 			if (!transfer->canceled) {
1871 				size_t actualLength = 0;
1872 
1873 				if (callbackStatus == B_OK) {
1874 					bool nextDataToggle = false;
1875 					if (transfer->data_descriptor && transfer->incoming) {
1876 						// data to read out
1877 						iovec *vector = transfer->transfer->Vector();
1878 						size_t vectorCount = transfer->transfer->VectorCount();
1879 						transfer->transfer->PrepareKernelAccess();
1880 						actualLength = ReadDescriptorChain(
1881 							transfer->data_descriptor,
1882 							vector, vectorCount,
1883 							&nextDataToggle);
1884 					} else if (transfer->data_descriptor) {
1885 						// calculate transfered length
1886 						actualLength = ReadActualLength(
1887 							transfer->data_descriptor, &nextDataToggle);
1888 					}
1889 
1890 					transfer->transfer->TransferPipe()->SetDataToggle(
1891 						nextDataToggle);
1892 
1893 					if (transfer->transfer->IsFragmented()) {
1894 						// this transfer may still have data left
1895 						transfer->transfer->AdvanceByFragment(actualLength);
1896 						if (transfer->transfer->VectorLength() > 0) {
1897 							FreeDescriptorChain(transfer->data_descriptor);
1898 							transfer->transfer->PrepareKernelAccess();
1899 							status_t result = FillQueueWithData(
1900 								transfer->transfer,
1901 								transfer->queue_head,
1902 								&transfer->data_descriptor, NULL);
1903 
1904 							if (result == B_OK && Lock()) {
1905 								// reappend the transfer
1906 								if (fLastTransfer)
1907 									fLastTransfer->link = transfer;
1908 								if (!fFirstTransfer)
1909 									fFirstTransfer = transfer;
1910 
1911 								fLastTransfer = transfer;
1912 								Unlock();
1913 
1914 								transfer = next;
1915 								continue;
1916 							}
1917 						}
1918 
1919 						// the transfer is done, but we already set the
1920 						// actualLength with AdvanceByFragment()
1921 						actualLength = 0;
1922 					}
1923 				}
1924 
1925 				transfer->transfer->Finished(callbackStatus, actualLength);
1926 				fProcessingPipe = NULL;
1927 			}
1928 
1929 			// unlink hardware queue and delete the transfer
1930 			UnlinkQueueHead(transfer->queue_head, &fFreeListHead);
1931 			delete transfer->transfer;
1932 			delete transfer;
1933 			transfer = next;
1934 			release_sem(fCleanupSem);
1935 		}
1936 	}
1937 }
1938 
1939 
1940 int32
1941 EHCI::CleanupThread(void *data)
1942 {
1943 	((EHCI *)data)->Cleanup();
1944 	return B_OK;
1945 }
1946 
1947 
1948 void
1949 EHCI::Cleanup()
1950 {
1951 	ehci_qh *lastFreeListHead = NULL;
1952 
1953 	while (!fStopThreads) {
1954 		if (acquire_sem(fCleanupSem) != B_OK)
1955 			continue;
1956 
1957 		ehci_qh *freeListHead = fFreeListHead;
1958 		if (freeListHead == lastFreeListHead)
1959 			continue;
1960 
1961 		// set the doorbell and wait for the host controller to notify us
1962 		WriteOpReg(EHCI_USBCMD, ReadOpReg(EHCI_USBCMD) | EHCI_USBCMD_INTONAAD);
1963 		if (acquire_sem(fAsyncAdvanceSem) != B_OK)
1964 			continue;
1965 
1966 		ehci_qh *current = freeListHead;
1967 		while (current != lastFreeListHead) {
1968 			ehci_qh *next = current->next_log;
1969 			FreeQueueHead(current);
1970 			current = next;
1971 		}
1972 
1973 		lastFreeListHead = freeListHead;
1974 	}
1975 }
1976 
1977 
1978 int32
1979 EHCI::FinishIsochronousThread(void *data)
1980 {
1981 	((EHCI *)data)->FinishIsochronousTransfers();
1982 	return B_OK;
1983 }
1984 
1985 
1986 void
1987 EHCI::FinishIsochronousTransfers()
1988 {
1989 	/* This thread stays one position behind the controller and processes every
1990 	* isochronous descriptor. Once it finds the last isochronous descriptor
1991 	* of a transfer, it processes the entire transfer.
1992 	*/
1993 	while (!fStopThreads) {
1994 		// Go to sleep if there are no isochronous transfers to process
1995 		if (acquire_sem(fFinishIsochronousTransfersSem) != B_OK)
1996 			return;
1997 
1998 		bool transferDone = false;
1999 
2000 		uint32 frame = (ReadOpReg(EHCI_FRINDEX) / 8 )
2001 			& (EHCI_FRAMELIST_ENTRIES_COUNT - 1);
2002 		uint32 currentFrame = (frame + EHCI_VFRAMELIST_ENTRIES_COUNT - 5)
2003 			& (EHCI_VFRAMELIST_ENTRIES_COUNT - 1);
2004 		uint32 loop = 0;
2005 
2006 		// Process the frame list until one transfer is processed
2007 		while (!transferDone && loop++ < EHCI_VFRAMELIST_ENTRIES_COUNT) {
2008 			// wait 1ms in order to be sure to be one position behind
2009 			// the controller
2010 			while (currentFrame == (((ReadOpReg(EHCI_FRINDEX) / 8)
2011 				& (EHCI_VFRAMELIST_ENTRIES_COUNT - 1)))) {
2012 				snooze(1000);
2013 			}
2014 
2015 			ehci_itd *itd = fItdEntries[currentFrame];
2016 
2017 			TRACE("FinishIsochronousTransfers itd %p phy 0x%" B_PRIx32
2018 				" prev (%p/0x%" B_PRIx32 ") at frame %" B_PRId32 "\n", itd,
2019 				itd->this_phy, itd->prev, itd->prev != NULL
2020 					? itd->prev->this_phy : 0, currentFrame);
2021 
2022 			if (!LockIsochronous())
2023 				continue;
2024 
2025 			// Process the frame till it has isochronous descriptors in it.
2026 			while (!(itd->next_phy & EHCI_ITEM_TERMINATE) && itd->prev != NULL) {
2027 				TRACE("FinishIsochronousTransfers checking itd %p last_token"
2028 					" %" B_PRId32 "\n", itd, itd->last_token);
2029 				TRACE("FinishIsochronousTransfers tokens 0x%" B_PRIx32 " 0x%"
2030 					B_PRIx32 " 0x%" B_PRIx32 " 0x%" B_PRIx32 " 0x%" B_PRIx32
2031 					" 0x%" B_PRIx32 " 0x%" B_PRIx32 " 0x%" B_PRIx32 "\n",
2032 					itd->token[0], itd->token[1], itd->token[2], itd->token[3],
2033 					itd->token[4], itd->token[5], itd->token[6], itd->token[7]);
2034 				if (((itd->token[itd->last_token] >> EHCI_ITD_STATUS_SHIFT)
2035 					& EHCI_ITD_STATUS_ACTIVE) == EHCI_ITD_STATUS_ACTIVE) {
2036 					TRACE("FinishIsochronousTransfers unprocessed active itd\n");
2037 				}
2038 				UnlinkITDescriptors(itd, &fItdEntries[currentFrame]);
2039 
2040 				// Process the transfer if we found the last descriptor
2041 				isochronous_transfer_data *transfer
2042 					= FindIsochronousTransfer(itd);
2043 					// Process the descriptors only if it is still active and
2044 					// belongs to an inbound transfer. If the transfer is not
2045 					// active, it means the request has been removed, so simply
2046 					// remove the descriptors.
2047 				if (transfer && transfer->is_active) {
2048 					TRACE("FinishIsochronousTransfers active transfer\n");
2049 					size_t actualLength = 0;
2050 					if (((itd->buffer_phy[1] >> EHCI_ITD_DIR_SHIFT) & 1) != 0) {
2051 						transfer->transfer->PrepareKernelAccess();
2052 						actualLength = ReadIsochronousDescriptorChain(transfer);
2053 					}
2054 
2055 					// Remove the transfer
2056 					if (transfer == fFirstIsochronousTransfer) {
2057 						fFirstIsochronousTransfer = transfer->link;
2058 						if (transfer == fLastIsochronousTransfer)
2059 							fLastIsochronousTransfer = NULL;
2060 					} else {
2061 						isochronous_transfer_data *temp
2062 							= fFirstIsochronousTransfer;
2063 						while (temp != NULL && transfer != temp->link)
2064 							temp = temp->link;
2065 
2066 						if (transfer == fLastIsochronousTransfer)
2067 							fLastIsochronousTransfer = temp;
2068 						if (temp != NULL && temp->link != NULL)
2069 							temp->link = temp->link->link;
2070 					}
2071 					transfer->link = NULL;
2072 
2073 					transfer->transfer->Finished(B_OK, actualLength);
2074 
2075 					itd = itd->prev;
2076 
2077 					for (uint32 i = 0; i <= transfer->last_to_process; i++)
2078 						FreeDescriptor(transfer->descriptors[i]);
2079 
2080 					TRACE("FinishIsochronousTransfers descriptors freed\n");
2081 
2082 					delete [] transfer->descriptors;
2083 					delete transfer->transfer;
2084 					fStack->FreeChunk(transfer->buffer_log,
2085 						(phys_addr_t)transfer->buffer_phy,
2086 						transfer->buffer_size);
2087 					delete transfer;
2088 					transferDone = true;
2089 				} else {
2090 					TRACE("FinishIsochronousTransfers not end of transfer\n");
2091 					itd = itd->prev;
2092 				}
2093 			}
2094 
2095 			UnlockIsochronous();
2096 
2097 			TRACE("FinishIsochronousTransfers next frame\n");
2098 
2099 			// Make sure to reset the frame bandwidth
2100 			fFrameBandwidth[currentFrame] = MAX_AVAILABLE_BANDWIDTH;
2101 			currentFrame = (currentFrame + 1) % EHCI_VFRAMELIST_ENTRIES_COUNT;
2102 		}
2103 	}
2104 }
2105 
2106 
2107 ehci_qh *
2108 EHCI::CreateQueueHead()
2109 {
2110 	ehci_qh *result;
2111 	phys_addr_t physicalAddress;
2112 	if (fStack->AllocateChunk((void **)&result, &physicalAddress,
2113 			sizeof(ehci_qh)) != B_OK) {
2114 		TRACE_ERROR("failed to allocate queue head\n");
2115 		return NULL;
2116 	}
2117 
2118 	result->this_phy = (addr_t)physicalAddress | EHCI_ITEM_TYPE_QH;
2119 	result->next_phy = EHCI_ITEM_TERMINATE;
2120 	result->next_log = NULL;
2121 	result->prev_log = NULL;
2122 
2123 	ehci_qtd *descriptor = CreateDescriptor(0, 0);
2124 	if (!descriptor) {
2125 		TRACE_ERROR("failed to allocate initial qtd for queue head\n");
2126 		fStack->FreeChunk(result, physicalAddress, sizeof(ehci_qh));
2127 		return NULL;
2128 	}
2129 
2130 	descriptor->token &= ~EHCI_QTD_STATUS_ACTIVE;
2131 	result->stray_log = descriptor;
2132 	result->element_log = descriptor;
2133 	result->current_qtd_phy = 0;
2134 	result->overlay.next_phy = descriptor->this_phy;
2135 	result->overlay.alt_next_phy = EHCI_ITEM_TERMINATE;
2136 	result->overlay.token = 0;
2137 	for (int32 i = 0; i < 5; i++) {
2138 		result->overlay.buffer_phy[i] = 0;
2139 		result->overlay.ext_buffer_phy[i] = 0;
2140 	}
2141 
2142 	return result;
2143 }
2144 
2145 
2146 status_t
2147 EHCI::InitQueueHead(ehci_qh *queueHead, Pipe *pipe)
2148 {
2149 	switch (pipe->Speed()) {
2150 		case USB_SPEED_LOWSPEED:
2151 			queueHead->endpoint_chars = EHCI_QH_CHARS_EPS_LOW;
2152 			break;
2153 		case USB_SPEED_FULLSPEED:
2154 			queueHead->endpoint_chars = EHCI_QH_CHARS_EPS_FULL;
2155 			break;
2156 		case USB_SPEED_HIGHSPEED:
2157 			queueHead->endpoint_chars = EHCI_QH_CHARS_EPS_HIGH;
2158 			break;
2159 		default:
2160 			TRACE_ERROR("unknown pipe speed\n");
2161 			return B_ERROR;
2162 	}
2163 
2164 	queueHead->endpoint_chars |= (3 << EHCI_QH_CHARS_RL_SHIFT)
2165 		| (pipe->MaxPacketSize() << EHCI_QH_CHARS_MPL_SHIFT)
2166 		| (pipe->EndpointAddress() << EHCI_QH_CHARS_EPT_SHIFT)
2167 		| (pipe->DeviceAddress() << EHCI_QH_CHARS_DEV_SHIFT)
2168 		| EHCI_QH_CHARS_TOGGLE;
2169 
2170 	queueHead->endpoint_caps = (1 << EHCI_QH_CAPS_MULT_SHIFT);
2171 	if (pipe->Speed() != USB_SPEED_HIGHSPEED) {
2172 		if ((pipe->Type() & USB_OBJECT_CONTROL_PIPE) != 0)
2173 			queueHead->endpoint_chars |= EHCI_QH_CHARS_CONTROL;
2174 
2175 		queueHead->endpoint_caps |= (pipe->HubPort() << EHCI_QH_CAPS_PORT_SHIFT)
2176 			| (pipe->HubAddress() << EHCI_QH_CAPS_HUB_SHIFT);
2177 	}
2178 
2179 	return B_OK;
2180 }
2181 
2182 
2183 void
2184 EHCI::FreeQueueHead(ehci_qh *queueHead)
2185 {
2186 	if (!queueHead)
2187 		return;
2188 
2189 	FreeDescriptorChain(queueHead->element_log);
2190 	FreeDescriptor(queueHead->stray_log);
2191 	fStack->FreeChunk(queueHead, (phys_addr_t)queueHead->this_phy,
2192 		sizeof(ehci_qh));
2193 }
2194 
2195 
2196 status_t
2197 EHCI::LinkQueueHead(ehci_qh *queueHead)
2198 {
2199 	if (!Lock())
2200 		return B_ERROR;
2201 
2202 	ehci_qh *prevHead = fAsyncQueueHead->prev_log;
2203 	queueHead->next_phy = fAsyncQueueHead->this_phy;
2204 	queueHead->next_log = fAsyncQueueHead;
2205 	queueHead->prev_log = prevHead;
2206 	fAsyncQueueHead->prev_log = queueHead;
2207 	prevHead->next_log = queueHead;
2208 	prevHead->next_phy = queueHead->this_phy;
2209 
2210 	Unlock();
2211 	return B_OK;
2212 }
2213 
2214 
2215 status_t
2216 EHCI::LinkInterruptQueueHead(ehci_qh *queueHead, Pipe *pipe)
2217 {
2218 	uint8 interval = pipe->Interval();
2219 	if (pipe->Speed() == USB_SPEED_HIGHSPEED) {
2220 		// Allow interrupts to be scheduled on each possible micro frame.
2221 		queueHead->endpoint_caps |= (0xff << EHCI_QH_CAPS_ISM_SHIFT);
2222 	} else {
2223 		// As we do not yet support FSTNs to correctly reference low/full
2224 		// speed interrupt transfers, we simply put them into the 1 interval
2225 		// queue. This way we ensure that we reach them on every micro frame
2226 		// and can do the corresponding start/complete split transactions.
2227 		// ToDo: use FSTNs to correctly link non high speed interrupt transfers
2228 		interval = 1;
2229 
2230 		// For now we also force start splits to be in micro frame 0 and
2231 		// complete splits to be in micro frame 2, 3 and 4.
2232 		queueHead->endpoint_caps |= (0x01 << EHCI_QH_CAPS_ISM_SHIFT);
2233 		queueHead->endpoint_caps |= (0x1c << EHCI_QH_CAPS_SCM_SHIFT);
2234 	}
2235 
2236 	// this should not happen
2237 	if (interval < 1)
2238 		interval = 1;
2239 
2240 	// this may happen as intervals can go up to 16; we limit the value to
2241 	// EHCI_INTERRUPT_ENTRIES_COUNT as you cannot support intervals above
2242 	// that with a frame list of just EHCI_VFRAMELIST_ENTRIES_COUNT entries...
2243 	if (interval > EHCI_INTERRUPT_ENTRIES_COUNT)
2244 		interval = EHCI_INTERRUPT_ENTRIES_COUNT;
2245 
2246 	if (!Lock())
2247 		return B_ERROR;
2248 
2249 	ehci_qh *interruptQueue = &fInterruptEntries[interval - 1].queue_head;
2250 	queueHead->next_phy = interruptQueue->next_phy;
2251 	queueHead->next_log = interruptQueue->next_log;
2252 	queueHead->prev_log = interruptQueue;
2253 	if (interruptQueue->next_log)
2254 		interruptQueue->next_log->prev_log = queueHead;
2255 	interruptQueue->next_log = queueHead;
2256 	interruptQueue->next_phy = queueHead->this_phy;
2257 
2258 	Unlock();
2259 	return B_OK;
2260 }
2261 
2262 
2263 status_t
2264 EHCI::UnlinkQueueHead(ehci_qh *queueHead, ehci_qh **freeListHead)
2265 {
2266 	if (!Lock())
2267 		return B_ERROR;
2268 
2269 	ehci_qh *prevHead = queueHead->prev_log;
2270 	ehci_qh *nextHead = queueHead->next_log;
2271 	if (prevHead) {
2272 		prevHead->next_phy = queueHead->next_phy;
2273 		prevHead->next_log = queueHead->next_log;
2274 	}
2275 
2276 	if (nextHead)
2277 		nextHead->prev_log = queueHead->prev_log;
2278 
2279 	queueHead->next_phy = fAsyncQueueHead->this_phy;
2280 	queueHead->prev_log = NULL;
2281 
2282 	queueHead->next_log = *freeListHead;
2283 	*freeListHead = queueHead;
2284 
2285 	Unlock();
2286 	return B_OK;
2287 }
2288 
2289 
2290 status_t
2291 EHCI::FillQueueWithRequest(Transfer *transfer, ehci_qh *queueHead,
2292 	ehci_qtd **_dataDescriptor, bool *_directionIn)
2293 {
2294 	Pipe *pipe = transfer->TransferPipe();
2295 	usb_request_data *requestData = transfer->RequestData();
2296 	bool directionIn = (requestData->RequestType & USB_REQTYPE_DEVICE_IN) > 0;
2297 
2298 	ehci_qtd *setupDescriptor = CreateDescriptor(sizeof(usb_request_data),
2299 		EHCI_QTD_PID_SETUP);
2300 	ehci_qtd *statusDescriptor = CreateDescriptor(0,
2301 		directionIn ? EHCI_QTD_PID_OUT : EHCI_QTD_PID_IN);
2302 
2303 	if (!setupDescriptor || !statusDescriptor) {
2304 		TRACE_ERROR("failed to allocate descriptors\n");
2305 		FreeDescriptor(setupDescriptor);
2306 		FreeDescriptor(statusDescriptor);
2307 		return B_NO_MEMORY;
2308 	}
2309 
2310 	iovec vector;
2311 	vector.iov_base = requestData;
2312 	vector.iov_len = sizeof(usb_request_data);
2313 	WriteDescriptorChain(setupDescriptor, &vector, 1);
2314 
2315 	ehci_qtd *strayDescriptor = queueHead->stray_log;
2316 	statusDescriptor->token |= EHCI_QTD_IOC | EHCI_QTD_DATA_TOGGLE;
2317 
2318 	ehci_qtd *dataDescriptor = NULL;
2319 	if (transfer->VectorCount() > 0) {
2320 		ehci_qtd *lastDescriptor = NULL;
2321 		status_t result = CreateDescriptorChain(pipe, &dataDescriptor,
2322 			&lastDescriptor, statusDescriptor, transfer->VectorLength(),
2323 			directionIn ? EHCI_QTD_PID_IN : EHCI_QTD_PID_OUT);
2324 
2325 		if (result != B_OK) {
2326 			FreeDescriptor(setupDescriptor);
2327 			FreeDescriptor(statusDescriptor);
2328 			return result;
2329 		}
2330 
2331 		if (!directionIn) {
2332 			WriteDescriptorChain(dataDescriptor, transfer->Vector(),
2333 				transfer->VectorCount());
2334 		}
2335 
2336 		LinkDescriptors(setupDescriptor, dataDescriptor, strayDescriptor);
2337 		LinkDescriptors(lastDescriptor, statusDescriptor, statusDescriptor);
2338 	} else {
2339 		// no data: link setup and status descriptors directly
2340 		LinkDescriptors(setupDescriptor, statusDescriptor, strayDescriptor);
2341 	}
2342 
2343 	queueHead->element_log = setupDescriptor;
2344 	queueHead->overlay.next_phy = setupDescriptor->this_phy;
2345 	queueHead->overlay.alt_next_phy = EHCI_ITEM_TERMINATE;
2346 
2347 	*_dataDescriptor = dataDescriptor;
2348 	*_directionIn = directionIn;
2349 	return B_OK;
2350 }
2351 
2352 
2353 status_t
2354 EHCI::FillQueueWithData(Transfer *transfer, ehci_qh *queueHead,
2355 	ehci_qtd **_dataDescriptor, bool *_directionIn)
2356 {
2357 	Pipe *pipe = transfer->TransferPipe();
2358 	bool directionIn = (pipe->Direction() == Pipe::In);
2359 
2360 	ehci_qtd *firstDescriptor = NULL;
2361 	ehci_qtd *lastDescriptor = NULL;
2362 	ehci_qtd *strayDescriptor = queueHead->stray_log;
2363 	status_t result = CreateDescriptorChain(pipe, &firstDescriptor,
2364 		&lastDescriptor, strayDescriptor, transfer->VectorLength(),
2365 		directionIn ? EHCI_QTD_PID_IN : EHCI_QTD_PID_OUT);
2366 
2367 	if (result != B_OK)
2368 		return result;
2369 
2370 	lastDescriptor->token |= EHCI_QTD_IOC;
2371 	if (!directionIn) {
2372 		WriteDescriptorChain(firstDescriptor, transfer->Vector(),
2373 			transfer->VectorCount());
2374 	}
2375 
2376 	queueHead->element_log = firstDescriptor;
2377 	queueHead->overlay.next_phy = firstDescriptor->this_phy;
2378 	queueHead->overlay.alt_next_phy = EHCI_ITEM_TERMINATE;
2379 
2380 	*_dataDescriptor = firstDescriptor;
2381 	if (_directionIn)
2382 		*_directionIn = directionIn;
2383 	return B_OK;
2384 }
2385 
2386 
2387 ehci_qtd *
2388 EHCI::CreateDescriptor(size_t bufferSize, uint8 pid)
2389 {
2390 	ehci_qtd *result;
2391 	phys_addr_t physicalAddress;
2392 	if (fStack->AllocateChunk((void **)&result, &physicalAddress,
2393 			sizeof(ehci_qtd)) != B_OK) {
2394 		TRACE_ERROR("failed to allocate a qtd\n");
2395 		return NULL;
2396 	}
2397 
2398 	result->this_phy = (addr_t)physicalAddress;
2399 	result->next_phy = EHCI_ITEM_TERMINATE;
2400 	result->next_log = NULL;
2401 	result->alt_next_phy = EHCI_ITEM_TERMINATE;
2402 	result->alt_next_log = NULL;
2403 	result->buffer_size = bufferSize;
2404 	result->token = bufferSize << EHCI_QTD_BYTES_SHIFT;
2405 	result->token |= 3 << EHCI_QTD_ERRCOUNT_SHIFT;
2406 	result->token |= pid << EHCI_QTD_PID_SHIFT;
2407 	result->token |= EHCI_QTD_STATUS_ACTIVE;
2408 	if (bufferSize == 0) {
2409 		result->buffer_log = NULL;
2410 		for (int32 i = 0; i < 5; i++) {
2411 			result->buffer_phy[i] = 0;
2412 			result->ext_buffer_phy[i] = 0;
2413 		}
2414 
2415 		return result;
2416 	}
2417 
2418 	if (fStack->AllocateChunk(&result->buffer_log, &physicalAddress,
2419 			bufferSize) != B_OK) {
2420 		TRACE_ERROR("unable to allocate qtd buffer\n");
2421 		fStack->FreeChunk(result, (phys_addr_t)result->this_phy,
2422 			sizeof(ehci_qtd));
2423 		return NULL;
2424 	}
2425 
2426 	addr_t physicalBase = (addr_t)physicalAddress;
2427 	result->buffer_phy[0] = physicalBase;
2428 	result->ext_buffer_phy[0] = 0;
2429 	for (int32 i = 1; i < 5; i++) {
2430 		physicalBase += B_PAGE_SIZE;
2431 		result->buffer_phy[i] = physicalBase & EHCI_QTD_PAGE_MASK;
2432 		result->ext_buffer_phy[i] = 0;
2433 	}
2434 
2435 	return result;
2436 }
2437 
2438 
2439 status_t
2440 EHCI::CreateDescriptorChain(Pipe *pipe, ehci_qtd **_firstDescriptor,
2441 	ehci_qtd **_lastDescriptor, ehci_qtd *strayDescriptor, size_t bufferSize,
2442 	uint8 pid)
2443 {
2444 	size_t packetSize = B_PAGE_SIZE * 4;
2445 	int32 descriptorCount = (bufferSize + packetSize - 1) / packetSize;
2446 
2447 	bool dataToggle = pipe->DataToggle();
2448 	ehci_qtd *firstDescriptor = NULL;
2449 	ehci_qtd *lastDescriptor = *_firstDescriptor;
2450 	for (int32 i = 0; i < descriptorCount; i++) {
2451 		ehci_qtd *descriptor = CreateDescriptor(min_c(packetSize, bufferSize),
2452 			pid);
2453 
2454 		if (!descriptor) {
2455 			FreeDescriptorChain(firstDescriptor);
2456 			return B_NO_MEMORY;
2457 		}
2458 
2459 		if (dataToggle)
2460 			descriptor->token |= EHCI_QTD_DATA_TOGGLE;
2461 
2462 		if (lastDescriptor)
2463 			LinkDescriptors(lastDescriptor, descriptor, strayDescriptor);
2464 
2465 		bufferSize -= packetSize;
2466 		lastDescriptor = descriptor;
2467 		if (!firstDescriptor)
2468 			firstDescriptor = descriptor;
2469 	}
2470 
2471 	*_firstDescriptor = firstDescriptor;
2472 	*_lastDescriptor = lastDescriptor;
2473 	return B_OK;
2474 }
2475 
2476 
2477 void
2478 EHCI::FreeDescriptor(ehci_qtd *descriptor)
2479 {
2480 	if (!descriptor)
2481 		return;
2482 
2483 	if (descriptor->buffer_log) {
2484 		fStack->FreeChunk(descriptor->buffer_log,
2485 			(phys_addr_t)descriptor->buffer_phy[0], descriptor->buffer_size);
2486 	}
2487 
2488 	fStack->FreeChunk(descriptor, (phys_addr_t)descriptor->this_phy,
2489 		sizeof(ehci_qtd));
2490 }
2491 
2492 
2493 void
2494 EHCI::FreeDescriptorChain(ehci_qtd *topDescriptor)
2495 {
2496 	ehci_qtd *current = topDescriptor;
2497 	ehci_qtd *next = NULL;
2498 
2499 	while (current) {
2500 		next = current->next_log;
2501 		FreeDescriptor(current);
2502 		current = next;
2503 	}
2504 }
2505 
2506 
2507 ehci_itd *
2508 EHCI::CreateItdDescriptor()
2509 {
2510 	ehci_itd *result;
2511 	phys_addr_t physicalAddress;
2512 	if (fStack->AllocateChunk((void **)&result, &physicalAddress,
2513 			sizeof(ehci_itd)) != B_OK) {
2514 		TRACE_ERROR("failed to allocate a itd\n");
2515 		return NULL;
2516 	}
2517 
2518 	memset(result, 0, sizeof(ehci_itd));
2519 	result->this_phy = (addr_t)physicalAddress;
2520 	result->next_phy = EHCI_ITEM_TERMINATE;
2521 
2522 	return result;
2523 }
2524 
2525 
2526 ehci_sitd *
2527 EHCI::CreateSitdDescriptor()
2528 {
2529 	ehci_sitd *result;
2530 	phys_addr_t physicalAddress;
2531 	if (fStack->AllocateChunk((void **)&result, &physicalAddress,
2532 			sizeof(ehci_sitd)) != B_OK) {
2533 		TRACE_ERROR("failed to allocate a sitd\n");
2534 		return NULL;
2535 	}
2536 
2537 	memset(result, 0, sizeof(ehci_sitd));
2538 	result->this_phy = (addr_t)physicalAddress | EHCI_ITEM_TYPE_SITD;
2539 	result->next_phy = EHCI_ITEM_TERMINATE;
2540 
2541 	return result;
2542 }
2543 
2544 
2545 void
2546 EHCI::FreeDescriptor(ehci_itd *descriptor)
2547 {
2548 	if (!descriptor)
2549 		return;
2550 
2551 	fStack->FreeChunk(descriptor, (phys_addr_t)descriptor->this_phy,
2552 		sizeof(ehci_itd));
2553 }
2554 
2555 
2556 void
2557 EHCI::FreeDescriptor(ehci_sitd *descriptor)
2558 {
2559 	if (!descriptor)
2560 		return;
2561 
2562 	fStack->FreeChunk(descriptor, (phys_addr_t)descriptor->this_phy,
2563 		sizeof(ehci_sitd));
2564 }
2565 
2566 
2567 void
2568 EHCI::LinkDescriptors(ehci_qtd *first, ehci_qtd *last, ehci_qtd *alt)
2569 {
2570 	first->next_phy = last->this_phy;
2571 	first->next_log = last;
2572 
2573 	if (alt) {
2574 		first->alt_next_phy = alt->this_phy;
2575 		first->alt_next_log = alt;
2576 	} else {
2577 		first->alt_next_phy = EHCI_ITEM_TERMINATE;
2578 		first->alt_next_log = NULL;
2579 	}
2580 }
2581 
2582 
2583 void
2584 EHCI::LinkITDescriptors(ehci_itd *itd, ehci_itd **_last)
2585 {
2586 	ehci_itd *last = *_last;
2587 	itd->next_phy = last->next_phy;
2588 	itd->next = NULL;
2589 	itd->prev = last;
2590 	last->next = itd;
2591 	last->next_phy = itd->this_phy;
2592 	*_last = itd;
2593 }
2594 
2595 
2596 void
2597 EHCI::LinkSITDescriptors(ehci_sitd *sitd, ehci_sitd **_last)
2598 {
2599 	ehci_sitd *last = *_last;
2600 	sitd->next_phy = last->next_phy;
2601 	sitd->next = NULL;
2602 	sitd->prev = last;
2603 	last->next = sitd;
2604 	last->next_phy = sitd->this_phy;
2605 	*_last = sitd;
2606 }
2607 
2608 
2609 void
2610 EHCI::UnlinkITDescriptors(ehci_itd *itd, ehci_itd **last)
2611 {
2612 	itd->prev->next_phy = itd->next_phy;
2613 	itd->prev->next = itd->next;
2614 	if (itd->next != NULL)
2615 		itd->next->prev = itd->prev;
2616 	if (itd == *last)
2617 		*last = itd->prev;
2618 }
2619 
2620 
2621 void
2622 EHCI::UnlinkSITDescriptors(ehci_sitd *sitd, ehci_sitd **last)
2623 {
2624 	sitd->prev->next_phy = sitd->next_phy;
2625 	sitd->prev->next = sitd->next;
2626 	if (sitd->next != NULL)
2627 		sitd->next->prev = sitd->prev;
2628 	if (sitd == *last)
2629 		*last = sitd->prev;
2630 }
2631 
2632 
2633 size_t
2634 EHCI::WriteDescriptorChain(ehci_qtd *topDescriptor, iovec *vector,
2635 	size_t vectorCount)
2636 {
2637 	ehci_qtd *current = topDescriptor;
2638 	size_t actualLength = 0;
2639 	size_t vectorIndex = 0;
2640 	size_t vectorOffset = 0;
2641 	size_t bufferOffset = 0;
2642 
2643 	while (current) {
2644 		if (!current->buffer_log)
2645 			break;
2646 
2647 		while (true) {
2648 			size_t length = min_c(current->buffer_size - bufferOffset,
2649 				vector[vectorIndex].iov_len - vectorOffset);
2650 
2651 			memcpy((uint8 *)current->buffer_log + bufferOffset,
2652 				(uint8 *)vector[vectorIndex].iov_base + vectorOffset, length);
2653 
2654 			actualLength += length;
2655 			vectorOffset += length;
2656 			bufferOffset += length;
2657 
2658 			if (vectorOffset >= vector[vectorIndex].iov_len) {
2659 				if (++vectorIndex >= vectorCount) {
2660 					TRACE("wrote descriptor chain (%ld bytes, no more vectors)"
2661 						"\n", actualLength);
2662 					return actualLength;
2663 				}
2664 
2665 				vectorOffset = 0;
2666 			}
2667 
2668 			if (bufferOffset >= current->buffer_size) {
2669 				bufferOffset = 0;
2670 				break;
2671 			}
2672 		}
2673 
2674 		if (current->next_phy & EHCI_ITEM_TERMINATE)
2675 			break;
2676 
2677 		current = current->next_log;
2678 	}
2679 
2680 	TRACE("wrote descriptor chain (%ld bytes)\n", actualLength);
2681 	return actualLength;
2682 }
2683 
2684 
2685 size_t
2686 EHCI::ReadDescriptorChain(ehci_qtd *topDescriptor, iovec *vector,
2687 	size_t vectorCount, bool *nextDataToggle)
2688 {
2689 	uint32 dataToggle = 0;
2690 	ehci_qtd *current = topDescriptor;
2691 	size_t actualLength = 0;
2692 	size_t vectorIndex = 0;
2693 	size_t vectorOffset = 0;
2694 	size_t bufferOffset = 0;
2695 
2696 	while (current && (current->token & EHCI_QTD_STATUS_ACTIVE) == 0) {
2697 		if (!current->buffer_log)
2698 			break;
2699 
2700 		dataToggle = current->token & EHCI_QTD_DATA_TOGGLE;
2701 		size_t bufferSize = current->buffer_size;
2702 		bufferSize -= (current->token >> EHCI_QTD_BYTES_SHIFT)
2703 			& EHCI_QTD_BYTES_MASK;
2704 
2705 		while (true) {
2706 			size_t length = min_c(bufferSize - bufferOffset,
2707 				vector[vectorIndex].iov_len - vectorOffset);
2708 
2709 			memcpy((uint8 *)vector[vectorIndex].iov_base + vectorOffset,
2710 				(uint8 *)current->buffer_log + bufferOffset, length);
2711 
2712 			actualLength += length;
2713 			vectorOffset += length;
2714 			bufferOffset += length;
2715 
2716 			if (vectorOffset >= vector[vectorIndex].iov_len) {
2717 				if (++vectorIndex >= vectorCount) {
2718 					TRACE("read descriptor chain (%ld bytes, no more vectors)"
2719 						"\n", actualLength);
2720 					*nextDataToggle = dataToggle > 0 ? true : false;
2721 					return actualLength;
2722 				}
2723 
2724 				vectorOffset = 0;
2725 			}
2726 
2727 			if (bufferOffset >= bufferSize) {
2728 				bufferOffset = 0;
2729 				break;
2730 			}
2731 		}
2732 
2733 		if (current->next_phy & EHCI_ITEM_TERMINATE)
2734 			break;
2735 
2736 		current = current->next_log;
2737 	}
2738 
2739 	TRACE("read descriptor chain (%ld bytes)\n", actualLength);
2740 	*nextDataToggle = dataToggle > 0 ? true : false;
2741 	return actualLength;
2742 }
2743 
2744 
2745 size_t
2746 EHCI::ReadActualLength(ehci_qtd *topDescriptor, bool *nextDataToggle)
2747 {
2748 	size_t actualLength = 0;
2749 	ehci_qtd *current = topDescriptor;
2750 	uint32 dataToggle = 0;
2751 
2752 	while (current && (current->token & EHCI_QTD_STATUS_ACTIVE) == 0) {
2753 		dataToggle = current->token & EHCI_QTD_DATA_TOGGLE;
2754 		size_t length = current->buffer_size;
2755 		length -= (current->token >> EHCI_QTD_BYTES_SHIFT)
2756 			& EHCI_QTD_BYTES_MASK;
2757 		actualLength += length;
2758 
2759 		if (current->next_phy & EHCI_ITEM_TERMINATE)
2760 			break;
2761 
2762 		current = current->next_log;
2763 	}
2764 
2765 	TRACE("read actual length (%ld bytes)\n", actualLength);
2766 	*nextDataToggle = dataToggle > 0 ? true : false;
2767 	return actualLength;
2768 }
2769 
2770 
2771 size_t
2772 EHCI::WriteIsochronousDescriptorChain(isochronous_transfer_data *transfer,
2773 	uint32 packetCount,	iovec *vector)
2774 {
2775 	// TODO implement
2776 	return 0;
2777 }
2778 
2779 
2780 size_t
2781 EHCI::ReadIsochronousDescriptorChain(isochronous_transfer_data *transfer)
2782 {
2783 	iovec *vector = transfer->transfer->Vector();
2784 	size_t vectorCount = transfer->transfer->VectorCount();
2785 	size_t vectorOffset = 0;
2786 	size_t vectorIndex = 0;
2787 	usb_isochronous_data *isochronousData
2788 		= transfer->transfer->IsochronousData();
2789 	uint32 packet = 0;
2790 	size_t totalLength = 0;
2791 	size_t bufferOffset = 0;
2792 
2793 	size_t packetSize = transfer->transfer->DataLength();
2794 	packetSize /= isochronousData->packet_count;
2795 
2796 	for (uint32 i = 0; i <= transfer->last_to_process; i++) {
2797 		ehci_itd *itd = transfer->descriptors[i];
2798 		for (uint32 j = 0; j <= itd->last_token
2799 			&& packet < isochronousData->packet_count; j++) {
2800 
2801 			size_t bufferSize = (itd->token[j] >> EHCI_ITD_TLENGTH_SHIFT)
2802 				& EHCI_ITD_TLENGTH_MASK;
2803 			if (((itd->token[j] >> EHCI_ITD_STATUS_SHIFT)
2804 				& EHCI_ITD_STATUS_MASK) != 0) {
2805 				bufferSize = 0;
2806 			}
2807 			isochronousData->packet_descriptors[packet].actual_length
2808 				= bufferSize;
2809 
2810 			if (bufferSize > 0)
2811 				isochronousData->packet_descriptors[packet].status = B_OK;
2812 			else
2813 				isochronousData->packet_descriptors[packet].status = B_ERROR;
2814 
2815 			totalLength += bufferSize;
2816 
2817 			size_t offset = bufferOffset;
2818 			size_t skipSize = packetSize - bufferSize;
2819 			while (bufferSize > 0) {
2820 				size_t length = min_c(bufferSize,
2821 					vector[vectorIndex].iov_len - vectorOffset);
2822 				memcpy((uint8 *)vector[vectorIndex].iov_base + vectorOffset,
2823 					(uint8 *)transfer->buffer_log + bufferOffset, length);
2824 				offset += length;
2825 				vectorOffset += length;
2826 				bufferSize -= length;
2827 
2828 				if (vectorOffset >= vector[vectorIndex].iov_len) {
2829 					if (++vectorIndex >= vectorCount) {
2830 						TRACE("read isodescriptor chain (%ld bytes, no more "
2831 							"vectors)\n", totalLength);
2832 						return totalLength;
2833 					}
2834 
2835 					vectorOffset = 0;
2836 				}
2837 			}
2838 
2839 			// skip to next packet offset
2840 			while (skipSize > 0) {
2841 				size_t length = min_c(skipSize,
2842 					vector[vectorIndex].iov_len - vectorOffset);
2843 				vectorOffset += length;
2844 				skipSize -= length;
2845 				if (vectorOffset >= vector[vectorIndex].iov_len) {
2846 					if (++vectorIndex >= vectorCount) {
2847 						TRACE("read isodescriptor chain (%ld bytes, no more "
2848 							"vectors)\n", totalLength);
2849 						return totalLength;
2850 					}
2851 
2852 					vectorOffset = 0;
2853 				}
2854 			}
2855 
2856 			bufferOffset += packetSize;
2857 			if (bufferOffset >= transfer->buffer_size)
2858 				return totalLength;
2859 
2860 			packet++;
2861 		}
2862 	}
2863 
2864 	TRACE("ReadIsochronousDescriptorChain packet count %" B_PRId32 "\n",
2865 		packet);
2866 
2867 	return totalLength;
2868 }
2869 
2870 
2871 bool
2872 EHCI::LockIsochronous()
2873 {
2874 	return (mutex_lock(&fIsochronousLock) == B_OK);
2875 }
2876 
2877 
2878 void
2879 EHCI::UnlockIsochronous()
2880 {
2881 	mutex_unlock(&fIsochronousLock);
2882 }
2883 
2884 
2885 inline void
2886 EHCI::WriteOpReg(uint32 reg, uint32 value)
2887 {
2888 	*(volatile uint32 *)(fOperationalRegisters + reg) = value;
2889 }
2890 
2891 
2892 inline uint32
2893 EHCI::ReadOpReg(uint32 reg)
2894 {
2895 	return *(volatile uint32 *)(fOperationalRegisters + reg);
2896 }
2897 
2898 
2899 inline uint8
2900 EHCI::ReadCapReg8(uint32 reg)
2901 {
2902 	return *(volatile uint8 *)(fCapabilityRegisters + reg);
2903 }
2904 
2905 
2906 inline uint16
2907 EHCI::ReadCapReg16(uint32 reg)
2908 {
2909 	return *(volatile uint16 *)(fCapabilityRegisters + reg);
2910 }
2911 
2912 
2913 inline uint32
2914 EHCI::ReadCapReg32(uint32 reg)
2915 {
2916 	return *(volatile uint32 *)(fCapabilityRegisters + reg);
2917 }
2918