xref: /haiku/src/add-ons/kernel/busses/mmc/sdhci_pci.cpp (revision 52c4471a3024d2eb81fe88e2c3982b9f8daa5e56)
1 /*
2  * Copyright 2018-2020 Haiku, Inc. All rights reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Authors:
6  *		B Krishnan Iyer, krishnaniyer97@gmail.com
7  *		Adrien Destugues, pulkomandy@pulkomandy.tk
8  */
9 #include <algorithm>
10 #include <new>
11 #include <stdio.h>
12 #include <string.h>
13 
14 #include <bus/PCI.h>
15 #include <PCI_x86.h>
16 
17 #include <KernelExport.h>
18 
19 #include "IOSchedulerSimple.h"
20 #include "mmc.h"
21 #include "sdhci_pci.h"
22 
23 
24 #define TRACE_SDHCI
25 #ifdef TRACE_SDHCI
26 #	define TRACE(x...) dprintf("\33[33msdhci_pci:\33[0m " x)
27 #else
28 #	define TRACE(x...) ;
29 #endif
30 #define TRACE_ALWAYS(x...)	dprintf("\33[33msdhci_pci:\33[0m " x)
31 #define ERROR(x...)			dprintf("\33[33msdhci_pci:\33[0m " x)
32 #define CALLED(x...)		TRACE("CALLED %s\n", __PRETTY_FUNCTION__)
33 
34 
35 #define SDHCI_PCI_DEVICE_MODULE_NAME "busses/mmc/sdhci_pci/driver_v1"
36 #define SDHCI_PCI_MMC_BUS_MODULE_NAME "busses/mmc/sdhci_pci/device/v1"
37 
38 #define SLOT_NUMBER				"device/slot"
39 #define BAR_INDEX				"device/bar"
40 
41 
42 class SdhciBus {
43 	public:
44 							SdhciBus(struct registers* registers, uint8_t irq);
45 							~SdhciBus();
46 
47 		void				EnableInterrupts(uint32_t mask);
48 		void				DisableInterrupts();
49 		status_t			ExecuteCommand(uint8_t command, uint32_t argument,
50 								uint32_t* response);
51 		int32				HandleInterrupt();
52 		status_t			InitCheck();
53 		void				Reset();
54 		void				SetClock(int kilohertz);
55 		status_t			DoIO(uint8_t command, IOOperation* operation,
56 								bool offsetAsSectors);
57 		void				SetScanSemaphore(sem_id sem);
58 		void				SetBusWidth(int width);
59 
60 	private:
61 		bool				PowerOn();
62 		void				RecoverError();
63 
64 	private:
65 		struct registers*	fRegisters;
66 		uint32_t			fCommandResult;
67 		uint8_t				fIrq;
68 		sem_id				fSemaphore;
69 		sem_id				fScanSemaphore;
70 		status_t			fStatus;
71 };
72 
73 
74 class SdhciDevice {
75 	public:
76 		device_node* fNode;
77 		uint8_t fRicohOriginalMode;
78 };
79 
80 
81 device_manager_info* gDeviceManager;
82 device_module_info* gMMCBusController;
83 
84 
85 static int32
86 sdhci_generic_interrupt(void* data)
87 {
88 	SdhciBus* bus = (SdhciBus*)data;
89 	return bus->HandleInterrupt();
90 }
91 
92 
93 SdhciBus::SdhciBus(struct registers* registers, uint8_t irq)
94 	:
95 	fRegisters(registers),
96 	fIrq(irq),
97 	fSemaphore(0)
98 {
99 	if (irq == 0 || irq == 0xff) {
100 		ERROR("PCI IRQ not assigned\n");
101 		fStatus = B_BAD_DATA;
102 		return;
103 	}
104 
105 	fSemaphore = create_sem(0, "SDHCI interrupts");
106 
107 	DisableInterrupts();
108 
109 	fStatus = install_io_interrupt_handler(fIrq,
110 		sdhci_generic_interrupt, this, 0);
111 
112 	if (fStatus != B_OK) {
113 		ERROR("can't install interrupt handler\n");
114 		return;
115 	}
116 
117 	// First of all, we have to make sure we are in a sane state. The easiest
118 	// way is to reset everything.
119 	Reset();
120 
121 	// Turn on the power supply to the card, if there is a card inserted
122 	if (PowerOn()) {
123 		// Then we configure the clock to the frequency needed for
124 		// initialization
125 		SetClock(400);
126 	}
127 
128 	// Finally, configure some useful interrupts
129 	EnableInterrupts(SDHCI_INT_CMD_CMP | SDHCI_INT_CARD_REM
130 		| SDHCI_INT_TRANS_CMP);
131 
132 	// We want to see the error bits in the status register, but not have an
133 	// interrupt trigger on them (we get a "command complete" interrupt on
134 	// errors already)
135 	fRegisters->interrupt_status_enable |= SDHCI_INT_ERROR
136 		| SDHCI_INT_TIMEOUT | SDHCI_INT_CRC | SDHCI_INT_INDEX
137 		| SDHCI_INT_BUS_POWER | SDHCI_INT_END_BIT;
138 }
139 
140 
141 SdhciBus::~SdhciBus()
142 {
143 	DisableInterrupts();
144 
145 	if (fSemaphore != 0)
146 		delete_sem(fSemaphore);
147 
148 	if (fIrq != 0)
149 		remove_io_interrupt_handler(fIrq, sdhci_generic_interrupt, this);
150 
151 	area_id regs_area = area_for(fRegisters);
152 	delete_area(regs_area);
153 }
154 
155 
156 void
157 SdhciBus::EnableInterrupts(uint32_t mask)
158 {
159 	fRegisters->interrupt_status_enable |= mask;
160 	fRegisters->interrupt_signal_enable |= mask;
161 }
162 
163 
164 void
165 SdhciBus::DisableInterrupts()
166 {
167 	fRegisters->interrupt_status_enable = 0;
168 	fRegisters->interrupt_signal_enable = 0;
169 }
170 
171 
172 // #pragma mark -
173 /*
174 PartA2, SD Host Controller Simplified Specification, Version 4.20
175 §3.7.1.1 The sequence to issue an SD Command
176 */
177 status_t
178 SdhciBus::ExecuteCommand(uint8_t command, uint32_t argument, uint32_t* response)
179 {
180 	TRACE("ExecuteCommand(%d, %x)\n", command, argument);
181 
182 	// First of all clear the result
183 	fCommandResult = 0;
184 
185 	// Check if it's possible to send a command right now.
186 	// It is not possible to send a command as long as the command line is busy.
187 	// The spec says we should wait, but we can't do that on kernel side, since
188 	// it leaves no chance for the upper layers to handle the problem. So we
189 	// just say we're busy and the caller can retry later.
190 	// Note that this should normally never happen: the command line is busy
191 	// only during command execution, and we don't leave this function with ac
192 	// command running.
193 	if (fRegisters->present_state.CommandInhibit()) {
194 		panic("Command execution impossible, command inhibit\n");
195 		return B_BUSY;
196 	}
197 	if (fRegisters->present_state.DataInhibit()) {
198 		panic("Command execution unwise, data inhibit\n");
199 		return B_BUSY;
200 	}
201 
202 	uint32_t replyType;
203 
204 	switch (command) {
205 		case SD_GO_IDLE_STATE:
206 			replyType = Command::kNoReplyType;
207 			break;
208 		case SD_ALL_SEND_CID:
209 		case SD_SEND_CSD:
210 			replyType = Command::kR2Type;
211 			break;
212 		case SD_SEND_RELATIVE_ADDR:
213 			replyType = Command::kR6Type;
214 			break;
215 		case SD_SELECT_DESELECT_CARD:
216 		case SD_ERASE:
217 			replyType = Command::kR1bType;
218 			break;
219 		case SD_SEND_IF_COND:
220 			replyType = Command::kR7Type;
221 			break;
222 		case SD_READ_SINGLE_BLOCK:
223 		case SD_READ_MULTIPLE_BLOCKS:
224 		case SD_WRITE_SINGLE_BLOCK:
225 		case SD_WRITE_MULTIPLE_BLOCKS:
226 			replyType = Command::kR1Type | Command::kDataPresent;
227 			break;
228 		case SD_APP_CMD:
229 		case SD_ERASE_WR_BLK_START:
230 		case SD_ERASE_WR_BLK_END:
231 		case SD_SET_BUS_WIDTH: // SD Application command
232 			replyType = Command::kR1Type;
233 			break;
234 		case SD_SEND_OP_COND: // SD Application command
235 			replyType = Command::kR3Type;
236 			break;
237 		default:
238 			ERROR("Unknown command %x\n", command);
239 			return B_BAD_DATA;
240 	}
241 
242 	// Check if DATA line is available (if needed)
243 	if ((replyType & Command::k32BitResponseCheckBusy) != 0
244 		&& command != SD_STOP_TRANSMISSION && command != SD_IO_ABORT) {
245 		if (fRegisters->present_state.DataInhibit()) {
246 			ERROR("Execution aborted, data inhibit\n");
247 			return B_BUSY;
248 		}
249 	}
250 
251 	if (fRegisters->present_state.CommandInhibit())
252 		panic("Command line busy at start of execute command\n");
253 
254 	if (replyType == Command::kR1bType)
255 		fRegisters->transfer_mode = 0;
256 
257 	fRegisters->argument = argument;
258 	fRegisters->command.SendCommand(command, replyType);
259 
260 	// Wait for command response to be available ("command complete" interrupt)
261 	TRACE("Wait for command complete...");
262 	do {
263 		acquire_sem(fSemaphore);
264 		TRACE("command complete sem acquired, status: %x\n", fCommandResult);
265 		TRACE("real status = %x command line busy: %d\n",
266 			fRegisters->interrupt_status,
267 			fRegisters->present_state.CommandInhibit());
268 	} while (fCommandResult == 0);
269 
270 	TRACE("Command response available\n");
271 
272 	if (fCommandResult & SDHCI_INT_ERROR) {
273 		fRegisters->interrupt_status |= fCommandResult;
274 		if (fCommandResult & SDHCI_INT_TIMEOUT) {
275 			ERROR("Command execution timed out\n");
276 			if (fRegisters->present_state.CommandInhibit()) {
277 				TRACE("Command line is still busy, clearing it\n");
278 				// Clear the stall
279 				fRegisters->software_reset.ResetCommandLine();
280 			}
281 			return B_TIMED_OUT;
282 		}
283 		if (fCommandResult & SDHCI_INT_CRC) {
284 			ERROR("CRC error\n");
285 			return B_BAD_VALUE;
286 		}
287 		ERROR("Command execution failed %x\n", fCommandResult);
288 		// TODO look at errors in interrupt_status register for more details
289 		// and return a more appropriate error code
290 		return B_ERROR;
291 	}
292 
293 	if (fRegisters->present_state.CommandInhibit()) {
294 		TRACE("Command execution failed, card stalled\n");
295 		// Clear the stall
296 		fRegisters->software_reset.ResetCommandLine();
297 		return B_ERROR;
298 	}
299 
300 	switch (replyType & Command::kReplySizeMask) {
301 		case Command::k32BitResponse:
302 			*response = fRegisters->response[0];
303 			break;
304 		case Command::k128BitResponse:
305 			response[0] = fRegisters->response[0];
306 			response[1] = fRegisters->response[1];
307 			response[2] = fRegisters->response[2];
308 			response[3] = fRegisters->response[3];
309 			break;
310 
311 		default:
312 			// No response
313 			break;
314 	}
315 
316 	if (replyType == Command::kR1bType
317 			&& (fCommandResult & SDHCI_INT_TRANS_CMP) == 0) {
318 		// R1b commands may use the data line so we must wait for the
319 		// "transfer complete" interrupt here.
320 		TRACE("Waiting for data line...\n");
321 		do {
322 			acquire_sem(fSemaphore);
323 		} while (fRegisters->present_state.DataInhibit());
324 		TRACE("Dataline is released.\n");
325 	}
326 
327 	ERROR("Command execution %d complete\n", command);
328 	return B_OK;
329 }
330 
331 
332 status_t
333 SdhciBus::InitCheck()
334 {
335 	return fStatus;
336 }
337 
338 
339 void
340 SdhciBus::Reset()
341 {
342 	if (!fRegisters->software_reset.ResetAll())
343 		ERROR("SdhciBus::Reset: SoftwareReset timeout\n");
344 }
345 
346 
347 void
348 SdhciBus::SetClock(int kilohertz)
349 {
350 	int base_clock = fRegisters->capabilities.BaseClockFrequency();
351 	// Try to get as close to 400kHz as possible, but not faster
352 	int divider = base_clock * 1000 / kilohertz;
353 
354 	if (fRegisters->host_controller_version.specVersion <= 1) {
355 		// Old controller only support power of two dividers up to 256,
356 		// round to next power of two up to 256
357 		if (divider > 256)
358 			divider = 256;
359 
360 		divider--;
361 		divider |= divider >> 1;
362 		divider |= divider >> 2;
363 		divider |= divider >> 4;
364 		divider++;
365 	}
366 
367 	divider = fRegisters->clock_control.SetDivider(divider);
368 
369 	// Log the value after possible rounding by SetDivider (only even values
370 	// are allowed).
371 	TRACE("SDCLK frequency: %dMHz / %d = %dkHz\n", base_clock, divider,
372 		base_clock * 1000 / divider);
373 
374 	// We have set the divider, now we can enable the internal clock.
375 	fRegisters->clock_control.EnableInternal();
376 
377 	// wait until internal clock is stabilized
378 	while (!(fRegisters->clock_control.InternalStable()));
379 
380 	fRegisters->clock_control.EnablePLL();
381 	while (!(fRegisters->clock_control.InternalStable()));
382 
383 	// Finally, route the clock to the SD card
384 	fRegisters->clock_control.EnableSD();
385 }
386 
387 
388 status_t
389 SdhciBus::DoIO(uint8_t command, IOOperation* operation, bool offsetAsSectors)
390 {
391 	bool isWrite = operation->IsWrite();
392 
393 	static const uint32 kBlockSize = 512;
394 	off_t offset = operation->Offset();
395 	generic_size_t length = operation->Length();
396 
397 	TRACE("%s %" B_PRIu64 " bytes at %" B_PRIdOFF "\n",
398 		isWrite ? "Write" : "Read", length, offset);
399 
400 	// Check that the IO scheduler did its job in following our DMA restrictions
401 	// We can start a read only at a sector boundary
402 	ASSERT(offset % kBlockSize == 0);
403 	// We can only read complete sectors
404 	ASSERT(length % kBlockSize == 0);
405 
406 	const generic_io_vec* vecs = operation->Vecs();
407 	generic_size_t vecOffset = 0;
408 
409 	// FIXME can this be moved to the init function instead?
410 	//
411 	// For simplicity we use a transfer size equal to the sector size. We could
412 	// go up to 2K here if the length to read in each individual vec is a
413 	// multiple of 2K, but we have no easy way to know this (we would need to
414 	// iterate through the IOOperation vecs and check the size of each of them).
415 	// We could also do smaller transfers, but it is not possible to start a
416 	// transfer anywhere else than the start of a sector, so it's a lot simpler
417 	// to always work in complete sectors. We set the B_DMA_ALIGNMENT device
418 	// node property accordingly, making sure that we don't get asked to do
419 	// transfers that are not aligned with sectors.
420 	//
421 	// Additionnally, set SDMA buffer boundary aligment to 512K. This is the
422 	// largest possible size. We also set the B_DMA_BOUNDARY property on the
423 	// published device node, so that the DMA resource manager knows that it
424 	// must respect this boundary. As a result, we will never be asked to
425 	// do a transfer that crosses this boundary, and we don't need to handle
426 	// the DMA boundary interrupt (the transfer will be split in two at an
427 	// upper layer).
428 	fRegisters->block_size.ConfigureTransfer(kBlockSize,
429 		BlockSize::kDmaBoundary512K);
430 	status_t result = B_OK;
431 
432 	while (length > 0) {
433 		size_t toCopy = std::min((generic_size_t)length,
434 			vecs->length - vecOffset);
435 
436 		// If the current vec is empty, we can move to the next
437 		if (toCopy == 0) {
438 			vecs++;
439 			vecOffset = 0;
440 			continue;
441 		}
442 
443 		// With SDMA we can only transfer multiples of 1 sector
444 		ASSERT(toCopy % kBlockSize == 0);
445 
446 		fRegisters->system_address = vecs->base + vecOffset;
447 		// fRegisters->adma_system_address = fDmaMemory;
448 
449 		fRegisters->block_count = toCopy / kBlockSize;
450 
451 		uint16 direction;
452 		if (isWrite)
453 			direction = TransferMode::kWrite;
454 		else
455 			direction = TransferMode::kRead;
456 		fRegisters->transfer_mode = TransferMode::kMulti | direction
457 			| TransferMode::kAutoCmd12Enable
458 			| TransferMode::kBlockCountEnable | TransferMode::kDmaEnable;
459 
460 		uint32_t response;
461 		result = ExecuteCommand(command,
462 			offset / (offsetAsSectors ? kBlockSize : 1), &response);
463 		if (result != B_OK)
464 			break;
465 
466 		// Wait for DMA transfer to complete
467 		// In theory we could go on and send other commands as long as they
468 		// don't need the DAT lines, but it's overcomplicating things.
469 		TRACE("Wait for transfer complete...");
470 		acquire_sem(fSemaphore);
471 		TRACE("transfer complete OK.\n");
472 
473 		length -= toCopy;
474 		vecOffset += toCopy;
475 		offset += toCopy;
476 	}
477 
478 	return result;
479 }
480 
481 
482 void
483 SdhciBus::SetScanSemaphore(sem_id sem)
484 {
485 	fScanSemaphore = sem;
486 
487 	// If there is already a card in, start a scan immediately
488 	if (fRegisters->present_state.IsCardInserted())
489 		release_sem(fScanSemaphore);
490 
491 	// We can now enable the card insertion interrupt for next time a card
492 	// is inserted
493 	EnableInterrupts(SDHCI_INT_CARD_INS);
494 }
495 
496 
497 void
498 SdhciBus::SetBusWidth(int width)
499 {
500 	uint8_t widthBits;
501 	switch(width) {
502 		case 1:
503 			widthBits = HostControl::kDataTransfer1Bit;
504 			break;
505 		case 4:
506 			widthBits = HostControl::kDataTransfer4Bit;
507 			break;
508 		case 8:
509 			widthBits = HostControl::kDataTransfer8Bit;
510 			break;
511 		default:
512 			panic("Incorrect bitwidth value");
513 			return;
514 	}
515 	fRegisters->host_control.SetDataTransferWidth(widthBits);
516 }
517 
518 
519 bool
520 SdhciBus::PowerOn()
521 {
522 	if (!fRegisters->present_state.IsCardInserted()) {
523 		TRACE("Card not inserted, not powering on for now\n");
524 		return false;
525 	}
526 
527 	uint8_t supportedVoltages = fRegisters->capabilities.SupportedVoltages();
528 	if ((supportedVoltages & Capabilities::k3v3) != 0)
529 		fRegisters->power_control.SetVoltage(PowerControl::k3v3);
530 	else if ((supportedVoltages & Capabilities::k3v0) != 0)
531 		fRegisters->power_control.SetVoltage(PowerControl::k3v0);
532 	else if ((supportedVoltages & Capabilities::k1v8) != 0)
533 		fRegisters->power_control.SetVoltage(PowerControl::k1v8);
534 	else {
535 		fRegisters->power_control.PowerOff();
536 		ERROR("No voltage is supported\n");
537 		return false;
538 	}
539 
540 	return true;
541 }
542 
543 
544 void
545 SdhciBus::RecoverError()
546 {
547 	fRegisters->interrupt_signal_enable &= ~(SDHCI_INT_CMD_CMP
548 		| SDHCI_INT_TRANS_CMP | SDHCI_INT_CARD_INS | SDHCI_INT_CARD_REM);
549 
550 	if (fRegisters->interrupt_status & 7)
551 		fRegisters->software_reset.ResetCommandLine();
552 
553 	int16_t error_status = fRegisters->interrupt_status;
554 	fRegisters->interrupt_status &= ~(error_status);
555 }
556 
557 
558 int32
559 SdhciBus::HandleInterrupt()
560 {
561 #if 0
562 	// We could use the slot register to quickly see for which slot the
563 	// interrupt is. But since we have an interrupt handler call for each slot
564 	// anyway, it's just as simple to let each of them scan its own interrupt
565 	// status register.
566 	if ( !(fRegisters->slot_interrupt_status & (1 << fSlot)) ) {
567 		TRACE("interrupt not for me.\n");
568 		return B_UNHANDLED_INTERRUPT;
569 	}
570 #endif
571 
572 	uint32_t intmask = fRegisters->interrupt_status;
573 
574 	// Shortcut: exit early if there is no interrupt or if the register is
575 	// clearly invalid.
576 	if ((intmask == 0) || (intmask == 0xffffffff)) {
577 		return B_UNHANDLED_INTERRUPT;
578 	}
579 
580 	TRACE("interrupt function called %x\n", intmask);
581 
582 	// handling card presence interrupts
583 	if ((intmask & SDHCI_INT_CARD_REM) != 0) {
584 		// We can get spurious interrupts as the card is inserted or removed,
585 		// so check the actual state before acting
586 		if (!fRegisters->present_state.IsCardInserted())
587 			fRegisters->power_control.PowerOff();
588 		else
589 			TRACE("Card removed interrupt, but card is inserted\n");
590 
591 		fRegisters->interrupt_status |= SDHCI_INT_CARD_REM;
592 		TRACE("Card removal interrupt handled\n");
593 	}
594 
595 	if ((intmask & SDHCI_INT_CARD_INS) != 0) {
596 		// We can get spurious interrupts as the card is inserted or removed,
597 		// so check the actual state before acting
598 		if (fRegisters->present_state.IsCardInserted()) {
599 			if (PowerOn())
600 				SetClock(400);
601 			release_sem_etc(fScanSemaphore, 1, B_DO_NOT_RESCHEDULE);
602 		} else
603 			TRACE("Card insertion interrupt, but card is removed\n");
604 
605 		fRegisters->interrupt_status |= SDHCI_INT_CARD_INS;
606 		TRACE("Card presence interrupt handled\n");
607 	}
608 
609 	// handling command interrupt
610 	if (intmask & SDHCI_INT_CMD_MASK) {
611 		fCommandResult = intmask;
612 			// Save the status before clearing so the thread can handle it
613 		fRegisters->interrupt_status |= (intmask & SDHCI_INT_CMD_MASK);
614 
615 		// Notify the thread
616 		release_sem_etc(fSemaphore, 1, B_DO_NOT_RESCHEDULE);
617 		TRACE("Command complete interrupt handled\n");
618 	}
619 
620 	if (intmask & SDHCI_INT_TRANS_CMP) {
621 		fCommandResult = intmask;
622 		fRegisters->interrupt_status |= SDHCI_INT_TRANS_CMP;
623 		release_sem_etc(fSemaphore, 1, B_DO_NOT_RESCHEDULE);
624 		TRACE("Transfer complete interrupt handled\n");
625 	}
626 
627 	// handling bus power interrupt
628 	if (intmask & SDHCI_INT_BUS_POWER) {
629 		fRegisters->interrupt_status |= SDHCI_INT_BUS_POWER;
630 		TRACE("card is consuming too much power\n");
631 	}
632 
633 	// Check that all interrupts have been cleared (we check all the ones we
634 	// enabled, so that should always be the case)
635 	intmask = fRegisters->interrupt_status;
636 	if (intmask != 0) {
637 		ERROR("Remaining interrupts at end of handler: %x\n", intmask);
638 	}
639 
640 	return B_HANDLED_INTERRUPT;
641 }
642 // #pragma mark -
643 
644 
645 static status_t
646 init_bus(device_node* node, void** bus_cookie)
647 {
648 	CALLED();
649 
650 	// Get the PCI driver and device
651 	pci_device_module_info* pci;
652 	pci_device* device;
653 
654 	device_node* parent = gDeviceManager->get_parent_node(node);
655 	device_node* pciParent = gDeviceManager->get_parent_node(parent);
656 	gDeviceManager->get_driver(pciParent, (driver_module_info**)&pci,
657 	        (void**)&device);
658 	gDeviceManager->put_node(pciParent);
659 	gDeviceManager->put_node(parent);
660 
661 	uint8_t bar, slot;
662 	if (gDeviceManager->get_attr_uint8(node, SLOT_NUMBER, &slot, false) < B_OK
663 		|| gDeviceManager->get_attr_uint8(node, BAR_INDEX, &bar, false) < B_OK)
664 		return B_BAD_TYPE;
665 
666 	// Ignore invalid bars
667 	TRACE("Register SD bus at slot %d, using bar %d\n", slot + 1, bar);
668 
669 	pci_info pciInfo;
670 	pci->get_pci_info(device, &pciInfo);
671 
672 	for (; bar < 6 && slot > 0; bar++, slot--) {
673 		if ((pciInfo.u.h0.base_register_flags[bar] & PCI_address_type)
674 			== PCI_address_type_64) {
675 			bar++;
676 		}
677 	}
678 
679 	phys_addr_t physicalAddress = pciInfo.u.h0.base_registers[bar];
680 	uint64 barSize = pciInfo.u.h0.base_register_sizes[bar];
681 	if ((pciInfo.u.h0.base_register_flags[bar] & PCI_address_type)
682 			== PCI_address_type_64) {
683 		physicalAddress |= (uint64)pciInfo.u.h0.base_registers[bar + 1] << 32;
684 		barSize |= (uint64)pciInfo.u.h0.base_register_sizes[bar + 1] << 32;
685 	}
686 
687 	if (physicalAddress == 0 || barSize == 0) {
688 		ERROR("No registers to map\n");
689 		return B_IO_ERROR;
690 	}
691 
692 	// enable bus master and io
693 	uint16 pcicmd = pci->read_pci_config(device, PCI_command, 2);
694 	pcicmd &= ~(PCI_command_int_disable | PCI_command_io);
695 	pcicmd |= PCI_command_master | PCI_command_memory;
696 	pci->write_pci_config(device, PCI_command, 2, pcicmd);
697 
698 	// map the slot registers
699 	area_id	regs_area;
700 	struct registers* _regs;
701 	regs_area = map_physical_memory("sdhc_regs_map",
702 		physicalAddress, barSize, B_ANY_KERNEL_BLOCK_ADDRESS,
703 		B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, (void**)&_regs);
704 
705 	if (regs_area < B_OK) {
706 		ERROR("Could not map registers\n");
707 		return B_BAD_VALUE;
708 	}
709 
710 	// the interrupt is shared between all busses in an SDHC controller, but
711 	// they each register an handler. Not a problem, we will just test the
712 	// interrupt registers for all busses one after the other and find no
713 	// interrupts on the idle busses.
714 	uint8_t irq = pciInfo.u.h0.interrupt_line;
715 	TRACE("irq interrupt line: %d\n", irq);
716 
717 	SdhciBus* bus = new(std::nothrow) SdhciBus(_regs, irq);
718 
719 	status_t status = B_NO_MEMORY;
720 	if (bus != NULL)
721 		status = bus->InitCheck();
722 
723 	if (status != B_OK) {
724 		if (bus != NULL)
725 			delete bus;
726 		else
727 			delete_area(regs_area);
728 		return status;
729 	}
730 
731 	// Store the created object as a cookie, allowing users of the bus to
732 	// locate it.
733 	*bus_cookie = bus;
734 
735 	return status;
736 }
737 
738 
739 static void
740 uninit_bus(void* bus_cookie)
741 {
742 	SdhciBus* bus = (SdhciBus*)bus_cookie;
743 	delete bus;
744 
745 	// FIXME do we need to put() the PCI module here?
746 }
747 
748 
749 static void
750 bus_removed(void* bus_cookie)
751 {
752 	return;
753 }
754 
755 
756 static status_t
757 register_child_devices(void* cookie)
758 {
759 	CALLED();
760 	SdhciDevice* context = (SdhciDevice*)cookie;
761 	device_node* parent = gDeviceManager->get_parent_node(context->fNode);
762 	pci_device_module_info* pci;
763 	pci_device* device;
764 
765 	gDeviceManager->get_driver(parent, (driver_module_info**)&pci,
766 		(void**)&device);
767 	uint8 slotsInfo = pci->read_pci_config(device, SDHCI_PCI_SLOT_INFO, 1);
768 	uint8 bar = SDHCI_PCI_SLOT_INFO_FIRST_BASE_INDEX(slotsInfo);
769 	uint8 slotsCount = SDHCI_PCI_SLOTS(slotsInfo);
770 
771 	TRACE("register_child_devices: %u, %u\n", bar, slotsCount);
772 
773 	char prettyName[25];
774 
775 	if (slotsCount > 6 || bar > 5) {
776 		ERROR("Invalid slots count: %d or BAR count: %d \n", slotsCount, bar);
777 		return B_BAD_VALUE;
778 	}
779 
780 	for (uint8_t slot = 0; slot < slotsCount; slot++) {
781 		sprintf(prettyName, "SDHC bus %" B_PRIu8, slot);
782 		device_attr attrs[] = {
783 			// properties of this controller for mmc bus manager
784 			{ B_DEVICE_PRETTY_NAME, B_STRING_TYPE, { .string = prettyName } },
785 			{ B_DEVICE_FIXED_CHILD, B_STRING_TYPE,
786 				{.string = MMC_BUS_MODULE_NAME} },
787 			{ B_DEVICE_BUS, B_STRING_TYPE, {.string = "mmc"} },
788 
789 			// DMA properties
790 			// The high alignment is to force access only to complete sectors
791 			// These constraints could be removed by using ADMA which allows
792 			// use of the full 64bit address space and can do scatter-gather.
793 			{ B_DMA_ALIGNMENT, B_UINT32_TYPE, { .ui32 = 511 }},
794 			{ B_DMA_HIGH_ADDRESS, B_UINT64_TYPE, { .ui64 = 0x100000000LL }},
795 			{ B_DMA_BOUNDARY, B_UINT32_TYPE, { .ui32 = (1 << 19) - 1 }},
796 			{ B_DMA_MAX_SEGMENT_COUNT, B_UINT32_TYPE, { .ui32 = 1 }},
797 			{ B_DMA_MAX_SEGMENT_BLOCKS, B_UINT32_TYPE, { .ui32 = (1 << 10) - 1 }},
798 
799 			// private data to identify device
800 			{ SLOT_NUMBER, B_UINT8_TYPE, { .ui8 = slot} },
801 			{ BAR_INDEX, B_UINT8_TYPE, { .ui8 = bar} },
802 			{ NULL }
803 		};
804 		device_node* node;
805 		if (gDeviceManager->register_node(context->fNode,
806 				SDHCI_PCI_MMC_BUS_MODULE_NAME, attrs, NULL,
807 				&node) != B_OK)
808 			return B_BAD_VALUE;
809 	}
810 	return B_OK;
811 }
812 
813 
814 static status_t
815 init_device(device_node* node, void** device_cookie)
816 {
817 	CALLED();
818 
819 	// Get the PCI driver and device
820 	pci_device_module_info* pci;
821 	pci_device* device;
822 	uint16 vendorId, deviceId;
823 
824 	device_node* pciParent = gDeviceManager->get_parent_node(node);
825 	gDeviceManager->get_driver(pciParent, (driver_module_info**)&pci,
826 	        (void**)&device);
827 	gDeviceManager->put_node(pciParent);
828 
829 	SdhciDevice* context = new(std::nothrow)SdhciDevice;
830 	if (context == NULL)
831 		return B_NO_MEMORY;
832 	context->fNode = node;
833 	*device_cookie = context;
834 
835 	if (gDeviceManager->get_attr_uint16(node, B_DEVICE_VENDOR_ID,
836 			&vendorId, true) != B_OK
837 		|| gDeviceManager->get_attr_uint16(node, B_DEVICE_ID, &deviceId,
838 			true) != B_OK) {
839 		panic("No vendor or device id attribute\n");
840 		return B_OK; // Let's hope it didn't need the quirk?
841 	}
842 
843 	if (vendorId == 0x1180 && deviceId == 0xe823) {
844 		// Switch the device to SD2.0 mode
845 		// This should change its device id to 0xe822 if succesful.
846 		// The device then remains in SD2.0 mode even after reboot.
847 		pci->write_pci_config(device, SDHCI_PCI_RICOH_MODE_KEY, 1, 0xfc);
848 		context->fRicohOriginalMode = pci->read_pci_config(device,
849 			SDHCI_PCI_RICOH_MODE, 1);
850 		pci->write_pci_config(device, SDHCI_PCI_RICOH_MODE, 1,
851 			SDHCI_PCI_RICOH_MODE_SD20);
852 		pci->write_pci_config(device, SDHCI_PCI_RICOH_MODE_KEY, 1, 0);
853 
854 		deviceId = pci->read_pci_config(device, 2, 2);
855 		TRACE("Device ID after Ricoh quirk: %x\n", deviceId);
856 	}
857 
858 	return B_OK;
859 }
860 
861 
862 static void
863 uninit_device(void* device_cookie)
864 {
865 	// Get the PCI driver and device
866 	pci_device_module_info* pci;
867 	pci_device* device;
868 	uint16 vendorId, deviceId;
869 
870 	SdhciDevice* context = (SdhciDevice*)device_cookie;
871 	device_node* pciParent = gDeviceManager->get_parent_node(context->fNode);
872 	gDeviceManager->get_driver(pciParent, (driver_module_info**)&pci,
873 	        (void**)&device);
874 
875 	if (gDeviceManager->get_attr_uint16(context->fNode, B_DEVICE_VENDOR_ID,
876 			&vendorId, true) != B_OK
877 		|| gDeviceManager->get_attr_uint16(context->fNode, B_DEVICE_ID,
878 			&deviceId, false) != B_OK) {
879 		ERROR("No vendor or device id attribute\n");
880 	} else if (vendorId == 0x1180 && deviceId == 0xe823) {
881 		pci->write_pci_config(device, SDHCI_PCI_RICOH_MODE_KEY, 1, 0xfc);
882 		pci->write_pci_config(device, SDHCI_PCI_RICOH_MODE, 1,
883 			context->fRicohOriginalMode);
884 		pci->write_pci_config(device, SDHCI_PCI_RICOH_MODE_KEY, 1, 0);
885 	}
886 
887 	gDeviceManager->put_node(pciParent);
888 
889 	delete context;
890 }
891 
892 
893 static status_t
894 register_device(device_node* parent)
895 {
896 	device_attr attrs[] = {
897 		{B_DEVICE_PRETTY_NAME, B_STRING_TYPE, {.string = "SD Host Controller"}},
898 		{}
899 	};
900 
901 	return gDeviceManager->register_node(parent, SDHCI_PCI_DEVICE_MODULE_NAME,
902 		attrs, NULL, NULL);
903 }
904 
905 
906 static float
907 supports_device(device_node* parent)
908 {
909 	const char* bus;
910 	uint16 type, subType;
911 	uint16 vendorId, deviceId;
912 
913 	// make sure parent is a PCI SDHCI device node
914 	if (gDeviceManager->get_attr_string(parent, B_DEVICE_BUS, &bus, false)
915 		!= B_OK) {
916 		TRACE("Could not find required attribute device/bus\n");
917 		return -1;
918 	}
919 
920 	if (strcmp(bus, "pci") != 0)
921 		return 0.0f;
922 
923 	if (gDeviceManager->get_attr_uint16(parent, B_DEVICE_VENDOR_ID, &vendorId,
924 			false) != B_OK
925 		|| gDeviceManager->get_attr_uint16(parent, B_DEVICE_ID, &deviceId,
926 			false) != B_OK) {
927 		TRACE("No vendor or device id attribute\n");
928 		return 0.0f;
929 	}
930 
931 	TRACE("supports_device(vid:%04x pid:%04x)\n", vendorId, deviceId);
932 
933 	if (gDeviceManager->get_attr_uint16(parent, B_DEVICE_SUB_TYPE, &subType,
934 			false) < B_OK
935 		|| gDeviceManager->get_attr_uint16(parent, B_DEVICE_TYPE, &type,
936 			false) < B_OK) {
937 		TRACE("Could not find type/subtype attributes\n");
938 		return -1;
939 	}
940 
941 	if (type == PCI_base_peripheral) {
942 		if (subType != PCI_sd_host) {
943 			// Also accept some compliant devices that do not advertise
944 			// themselves as such.
945 			if (vendorId != 0x1180
946 				|| (deviceId != 0xe823 && deviceId != 0xe822)) {
947 				TRACE("Not the right subclass, and not a Ricoh device\n");
948 				return 0.0f;
949 			}
950 		}
951 
952 		pci_device_module_info* pci;
953 		pci_device* device;
954 		gDeviceManager->get_driver(parent, (driver_module_info**)&pci,
955 			(void**)&device);
956 		TRACE("SDHCI Device found! Subtype: 0x%04x, type: 0x%04x\n",
957 			subType, type);
958 
959 		return 0.8f;
960 	}
961 
962 	return 0.0f;
963 }
964 
965 
966 static status_t
967 set_clock(void* controller, uint32_t kilohertz)
968 {
969 	SdhciBus* bus = (SdhciBus*)controller;
970 	bus->SetClock(kilohertz);
971 	return B_OK;
972 }
973 
974 
975 static status_t
976 execute_command(void* controller, uint8_t command, uint32_t argument,
977 	uint32_t* response)
978 {
979 	SdhciBus* bus = (SdhciBus*)controller;
980 	return bus->ExecuteCommand(command, argument, response);
981 }
982 
983 
984 static status_t
985 do_io(void* controller, uint8_t command, IOOperation* operation,
986 	bool offsetAsSectors)
987 {
988 	CALLED();
989 
990 	SdhciBus* bus = (SdhciBus*)controller;
991 	return bus->DoIO(command, operation, offsetAsSectors);
992 }
993 
994 
995 static void
996 set_scan_semaphore(void* controller, sem_id sem)
997 {
998 	CALLED();
999 
1000 	SdhciBus* bus = (SdhciBus*)controller;
1001 	return bus->SetScanSemaphore(sem);
1002 }
1003 
1004 
1005 static void
1006 set_bus_width(void* controller, int width)
1007 {
1008 	CALLED();
1009 
1010 	SdhciBus* bus = (SdhciBus*)controller;
1011 	return bus->SetBusWidth(width);
1012 }
1013 
1014 
1015 module_dependency module_dependencies[] = {
1016 	{ MMC_BUS_MODULE_NAME, (module_info**)&gMMCBusController},
1017 	{ B_DEVICE_MANAGER_MODULE_NAME, (module_info**)&gDeviceManager },
1018 	{}
1019 };
1020 
1021 
1022 // Device node registered for each SD slot. It implements the MMC operations so
1023 // the bus manager can use it to communicate with SD cards.
1024 static mmc_bus_interface gSDHCIPCIDeviceModule = {
1025 	{
1026 		{
1027 			SDHCI_PCI_MMC_BUS_MODULE_NAME,
1028 			0,
1029 			NULL
1030 		},
1031 		NULL,	// supports device
1032 		NULL,	// register device
1033 		init_bus,
1034 		uninit_bus,
1035 		NULL,	// register child devices
1036 		NULL,	// rescan
1037 		bus_removed,
1038 	},
1039 
1040 	set_clock,
1041 	execute_command,
1042 	do_io,
1043 	set_scan_semaphore,
1044 	set_bus_width
1045 };
1046 
1047 
1048 // Root device that binds to the PCI bus. It will register an mmc_bus_interface
1049 // node for each SD slot in the device.
1050 static driver_module_info sSDHCIDevice = {
1051 	{
1052 		SDHCI_PCI_DEVICE_MODULE_NAME,
1053 		0,
1054 		NULL
1055 	},
1056 	supports_device,
1057 	register_device,
1058 	init_device,
1059 	uninit_device,
1060 	register_child_devices,
1061 	NULL,	// rescan
1062 	NULL,	// device removed
1063 };
1064 
1065 
1066 module_info* modules[] = {
1067 	(module_info* )&sSDHCIDevice,
1068 	(module_info* )&gSDHCIPCIDeviceModule,
1069 	NULL
1070 };
1071