xref: /haiku/src/add-ons/accelerants/radeon_hd/display.cpp (revision 225b6382637a7346d5378ee45a6581b4e2616055)
1 /*
2  * Copyright 2006-2013, Haiku, Inc. All Rights Reserved.
3  * Distributed under the terms of the MIT License.
4  *
5  * Authors:
6  *	Alexander von Gluck, kallisti5@unixzen.com
7  *	Bill Randle, billr@neocat.org
8  */
9 
10 /*
11  * It's dangerous to go alone, take this!
12  *	framebuffer -> crtc -> encoder -> transmitter -> connector -> monitor
13  */
14 
15 
16 #include "display.h"
17 
18 #include <stdlib.h>
19 #include <string.h>
20 
21 #include "accelerant.h"
22 #include "accelerant_protos.h"
23 #include "bios.h"
24 #include "connector.h"
25 #include "displayport.h"
26 #include "encoder.h"
27 
28 
29 #define TRACE_DISPLAY
30 #ifdef TRACE_DISPLAY
31 extern "C" void _sPrintf(const char* format, ...);
32 #   define TRACE(x...) _sPrintf("radeon_hd: " x)
33 #else
34 #   define TRACE(x...) ;
35 #endif
36 
37 #define ERROR(x...) _sPrintf("radeon_hd: " x)
38 
39 
40 /*! Populate regs with device dependant register locations */
41 status_t
42 init_registers(register_info* regs, uint8 crtcID)
43 {
44 	memset(regs, 0, sizeof(register_info));
45 
46 	radeon_shared_info &info = *gInfo->shared_info;
47 
48 	if (info.chipsetID >= RADEON_CEDAR) {
49 		// Evergreen
50 		uint32 offset = 0;
51 
52 		switch (crtcID) {
53 			case 0:
54 				offset = EVERGREEN_CRTC0_REGISTER_OFFSET;
55 				regs->vgaControl = AVIVO_D1VGA_CONTROL;
56 				break;
57 			case 1:
58 				offset = EVERGREEN_CRTC1_REGISTER_OFFSET;
59 				regs->vgaControl = AVIVO_D2VGA_CONTROL;
60 				break;
61 			case 2:
62 				offset = EVERGREEN_CRTC2_REGISTER_OFFSET;
63 				regs->vgaControl = EVERGREEN_D3VGA_CONTROL;
64 				break;
65 			case 3:
66 				offset = EVERGREEN_CRTC3_REGISTER_OFFSET;
67 				regs->vgaControl = EVERGREEN_D4VGA_CONTROL;
68 				break;
69 			case 4:
70 				offset = EVERGREEN_CRTC4_REGISTER_OFFSET;
71 				regs->vgaControl = EVERGREEN_D5VGA_CONTROL;
72 				break;
73 			case 5:
74 				offset = EVERGREEN_CRTC5_REGISTER_OFFSET;
75 				regs->vgaControl = EVERGREEN_D6VGA_CONTROL;
76 				break;
77 			default:
78 				ERROR("%s: Unknown CRTC %" B_PRIu32 "\n",
79 					__func__, crtcID);
80 				return B_ERROR;
81 		}
82 
83 		regs->crtcOffset = offset;
84 
85 		regs->grphEnable = EVERGREEN_GRPH_ENABLE + offset;
86 		regs->grphControl = EVERGREEN_GRPH_CONTROL + offset;
87 		regs->grphSwapControl = EVERGREEN_GRPH_SWAP_CONTROL + offset;
88 
89 		regs->grphPrimarySurfaceAddr
90 			= EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + offset;
91 		regs->grphSecondarySurfaceAddr
92 			= EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + offset;
93 		regs->grphPrimarySurfaceAddrHigh
94 			= EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + offset;
95 		regs->grphSecondarySurfaceAddrHigh
96 			= EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + offset;
97 
98 		regs->grphPitch = EVERGREEN_GRPH_PITCH + offset;
99 		regs->grphSurfaceOffsetX
100 			= EVERGREEN_GRPH_SURFACE_OFFSET_X + offset;
101 		regs->grphSurfaceOffsetY
102 			= EVERGREEN_GRPH_SURFACE_OFFSET_Y + offset;
103 		regs->grphXStart = EVERGREEN_GRPH_X_START + offset;
104 		regs->grphYStart = EVERGREEN_GRPH_Y_START + offset;
105 		regs->grphXEnd = EVERGREEN_GRPH_X_END + offset;
106 		regs->grphYEnd = EVERGREEN_GRPH_Y_END + offset;
107 		regs->modeDesktopHeight = EVERGREEN_DESKTOP_HEIGHT + offset;
108 		regs->modeDataFormat = EVERGREEN_DATA_FORMAT + offset;
109 		regs->viewportStart = EVERGREEN_VIEWPORT_START + offset;
110 		regs->viewportSize = EVERGREEN_VIEWPORT_SIZE + offset;
111 
112 	} else if (info.chipsetID >= RADEON_RV770) {
113 		// R700 series
114 		uint32 offset = 0;
115 
116 		switch (crtcID) {
117 			case 0:
118 				offset = R700_CRTC0_REGISTER_OFFSET;
119 				regs->vgaControl = AVIVO_D1VGA_CONTROL;
120 				regs->grphPrimarySurfaceAddrHigh
121 					= R700_D1GRPH_PRIMARY_SURFACE_ADDRESS_HIGH;
122 				break;
123 			case 1:
124 				offset = R700_CRTC1_REGISTER_OFFSET;
125 				regs->vgaControl = AVIVO_D2VGA_CONTROL;
126 				regs->grphPrimarySurfaceAddrHigh
127 					= R700_D2GRPH_PRIMARY_SURFACE_ADDRESS_HIGH;
128 				break;
129 			default:
130 				ERROR("%s: Unknown CRTC %" B_PRIu32 "\n",
131 					__func__, crtcID);
132 				return B_ERROR;
133 		}
134 
135 		regs->crtcOffset = offset;
136 
137 		regs->grphEnable = AVIVO_D1GRPH_ENABLE + offset;
138 		regs->grphControl = AVIVO_D1GRPH_CONTROL + offset;
139 		regs->grphSwapControl = AVIVO_D1GRPH_SWAP_CNTL + offset;
140 
141 		regs->grphPrimarySurfaceAddr
142 			= R700_D1GRPH_PRIMARY_SURFACE_ADDRESS + offset;
143 		regs->grphSecondarySurfaceAddr
144 			= R700_D1GRPH_SECONDARY_SURFACE_ADDRESS + offset;
145 
146 		regs->grphPitch = AVIVO_D1GRPH_PITCH + offset;
147 		regs->grphSurfaceOffsetX = AVIVO_D1GRPH_SURFACE_OFFSET_X + offset;
148 		regs->grphSurfaceOffsetY = AVIVO_D1GRPH_SURFACE_OFFSET_Y + offset;
149 		regs->grphXStart = AVIVO_D1GRPH_X_START + offset;
150 		regs->grphYStart = AVIVO_D1GRPH_Y_START + offset;
151 		regs->grphXEnd = AVIVO_D1GRPH_X_END + offset;
152 		regs->grphYEnd = AVIVO_D1GRPH_Y_END + offset;
153 
154 		regs->modeDesktopHeight = AVIVO_D1MODE_DESKTOP_HEIGHT + offset;
155 		regs->modeDataFormat = AVIVO_D1MODE_DATA_FORMAT + offset;
156 		regs->viewportStart = AVIVO_D1MODE_VIEWPORT_START + offset;
157 		regs->viewportSize = AVIVO_D1MODE_VIEWPORT_SIZE + offset;
158 
159 	} else if (info.chipsetID >= RADEON_RS600) {
160 		// Avivo+
161 		uint32 offset = 0;
162 
163 		switch (crtcID) {
164 			case 0:
165 				offset = R600_CRTC0_REGISTER_OFFSET;
166 				regs->vgaControl = AVIVO_D1VGA_CONTROL;
167 				break;
168 			case 1:
169 				offset = R600_CRTC1_REGISTER_OFFSET;
170 				regs->vgaControl = AVIVO_D2VGA_CONTROL;
171 				break;
172 			default:
173 				ERROR("%s: Unknown CRTC %" B_PRIu32 "\n",
174 					__func__, crtcID);
175 				return B_ERROR;
176 		}
177 
178 		regs->crtcOffset = offset;
179 
180 		regs->grphEnable = AVIVO_D1GRPH_ENABLE + offset;
181 		regs->grphControl = AVIVO_D1GRPH_CONTROL + offset;
182 		regs->grphSwapControl = AVIVO_D1GRPH_SWAP_CNTL + offset;
183 
184 		regs->grphPrimarySurfaceAddr
185 			= AVIVO_D1GRPH_PRIMARY_SURFACE_ADDRESS + offset;
186 		regs->grphSecondarySurfaceAddr
187 			= AVIVO_D1GRPH_SECONDARY_SURFACE_ADDRESS + offset;
188 
189 		// Surface Address high only used on r700 and higher
190 		regs->grphPrimarySurfaceAddrHigh = 0xDEAD;
191 		regs->grphSecondarySurfaceAddrHigh = 0xDEAD;
192 
193 		regs->grphPitch = AVIVO_D1GRPH_PITCH + offset;
194 		regs->grphSurfaceOffsetX = AVIVO_D1GRPH_SURFACE_OFFSET_X + offset;
195 		regs->grphSurfaceOffsetY = AVIVO_D1GRPH_SURFACE_OFFSET_Y + offset;
196 		regs->grphXStart = AVIVO_D1GRPH_X_START + offset;
197 		regs->grphYStart = AVIVO_D1GRPH_Y_START + offset;
198 		regs->grphXEnd = AVIVO_D1GRPH_X_END + offset;
199 		regs->grphYEnd = AVIVO_D1GRPH_Y_END + offset;
200 
201 		regs->modeDesktopHeight = AVIVO_D1MODE_DESKTOP_HEIGHT + offset;
202 		regs->modeDataFormat = AVIVO_D1MODE_DATA_FORMAT + offset;
203 		regs->viewportStart = AVIVO_D1MODE_VIEWPORT_START + offset;
204 		regs->viewportSize = AVIVO_D1MODE_VIEWPORT_SIZE + offset;
205 	} else {
206 		// this really shouldn't happen unless a driver PCIID chipset is wrong
207 		TRACE("%s, unknown Radeon chipset: %s\n", __func__,
208 			info.chipsetName);
209 		return B_ERROR;
210 	}
211 
212 	TRACE("%s, registers for ATI chipset %s crt #%d loaded\n", __func__,
213 		info.chipsetName, crtcID);
214 
215 	return B_OK;
216 }
217 
218 
219 status_t
220 detect_crt_ranges(uint32 crtid)
221 {
222 	edid1_info* edid = &gDisplay[crtid]->edidData;
223 
224 	// Scan each display EDID description for monitor ranges
225 	for (uint32 index = 0; index < EDID1_NUM_DETAILED_MONITOR_DESC; index++) {
226 
227 		edid1_detailed_monitor* monitor
228 			= &edid->detailed_monitor[index];
229 
230 		if (monitor->monitor_desc_type == EDID1_MONITOR_RANGES) {
231 			edid1_monitor_range range = monitor->data.monitor_range;
232 			gDisplay[crtid]->vfreqMin = range.min_v;   /* in Hz */
233 			gDisplay[crtid]->vfreqMax = range.max_v;
234 			gDisplay[crtid]->hfreqMin = range.min_h;   /* in kHz */
235 			gDisplay[crtid]->hfreqMax = range.max_h;
236 			return B_OK;
237 		}
238 	}
239 
240 	return B_ERROR;
241 }
242 
243 
244 status_t
245 detect_displays()
246 {
247 	// reset known displays
248 	for (uint32 id = 0; id < MAX_DISPLAY; id++) {
249 		gDisplay[id]->attached = false;
250 		gDisplay[id]->powered = false;
251 		gDisplay[id]->foundRanges = false;
252 	}
253 
254 	uint32 displayIndex = 0;
255 	for (uint32 id = 0; id < ATOM_MAX_SUPPORTED_DEVICE; id++) {
256 		if (gConnector[id]->valid == false)
257 			continue;
258 		if (displayIndex >= MAX_DISPLAY)
259 			continue;
260 
261 		if (gConnector[id]->type == VIDEO_CONNECTOR_9DIN) {
262 			TRACE("%s: connector(%" B_PRIu32 "): Skipping 9DIN connector "
263 				"(not yet supported)\n", __func__, id);
264 			continue;
265 		}
266 
267 		if (gConnector[id]->type == VIDEO_CONNECTOR_DP) {
268 			TRACE("%s: connector(%" B_PRIu32 "): Checking DP.\n", __func__, id);
269 
270 			edid1_info* edid = &gDisplay[displayIndex]->edidData;
271 			gDisplay[displayIndex]->attached
272 				= ddc2_dp_read_edid1(id, edid);
273 
274 			if (gDisplay[displayIndex]->attached) {
275 				TRACE("%s: connector(%" B_PRIu32 "): Found DisplayPort EDID!\n",
276 					__func__);
277 			}
278 		}
279 
280 		// TODO: Handle external DP brides - ??
281 		#if 0
282 		if (gConnector[id]->encoderExternal.isDPBridge == true) {
283 			// If this is a DisplayPort Bridge, setup ddc on bus
284 			// TRAVIS (LVDS) or NUTMEG (VGA)
285 			TRACE("%s: is bridge, performing bridge DDC setup\n", __func__);
286 			encoder_external_setup(id, 23860,
287 				EXTERNAL_ENCODER_ACTION_V3_DDC_SETUP);
288 			gDisplay[displayIndex]->attached = true;
289 
290 			// TODO: DDC Router switching for DisplayPort (and others?)
291 		}
292 		#endif
293 
294 		if (gConnector[id]->type == VIDEO_CONNECTOR_LVDS) {
295 			display_mode preferredMode;
296 			bool lvdsInfoFound = connector_read_mode_lvds(id,
297 				&preferredMode);
298 			TRACE("%s: connector(%" B_PRIu32 "): bit-banging LVDS for EDID.\n",
299 				__func__, id);
300 
301 			gDisplay[displayIndex]->attached = connector_read_edid(id,
302 				&gDisplay[displayIndex]->edidData);
303 
304 			if (!gDisplay[displayIndex]->attached && lvdsInfoFound) {
305 				// If we didn't find ddc edid data, fallback to lvdsInfo
306 				// We have to call connector_read_mode_lvds first to
307 				// collect SS data for the lvds connector
308 				TRACE("%s: connector(%" B_PRIu32 "): using AtomBIOS LVDS_Info "
309 					"preferred mode\n", __func__, id);
310 				gDisplay[displayIndex]->attached = true;
311 				memcpy(&gDisplay[displayIndex]->preferredMode,
312 					&preferredMode, sizeof(display_mode));
313 			}
314 		}
315 
316 		// If no display found yet, try more standard detection methods
317 		if (gDisplay[displayIndex]->attached == false) {
318 			TRACE("%s: connector(%" B_PRIu32 "): bit-banging ddc for EDID.\n",
319 				__func__, id);
320 
321 			// Bit-bang edid from connector
322 			gDisplay[displayIndex]->attached = connector_read_edid(id,
323 				&gDisplay[displayIndex]->edidData);
324 
325 			// Found EDID data?
326 			if (gDisplay[displayIndex]->attached) {
327 				TRACE("%s: connector(%" B_PRIu32 "): found EDID data.\n",
328 					__func__, id);
329 
330 				if (gConnector[id]->type == VIDEO_CONNECTOR_DVII
331 					|| gConnector[id]->type == VIDEO_CONNECTOR_HDMIB) {
332 					// These connectors can share gpio pins for data
333 					// communication between digital and analog encoders
334 					// (DVI-I is most common)
335 					edid1_info* edid = &gDisplay[displayIndex]->edidData;
336 
337 					bool analogEncoder
338 						= gConnector[id]->encoder.type == VIDEO_ENCODER_TVDAC
339 						|| gConnector[id]->encoder.type == VIDEO_ENCODER_DAC;
340 					bool digitalEncoder
341 						= gConnector[id]->encoder.type == VIDEO_ENCODER_TMDS;
342 
343 					bool digitalEdid = edid->display.input_type ? true : false;
344 
345 					if (digitalEdid && analogEncoder) {
346 						// Digital EDID + analog encoder? Lets try a load test
347 						gDisplay[displayIndex]->attached
348 							= encoder_analog_load_detect(id);
349 					} else if (!digitalEdid && digitalEncoder) {
350 						// non-digital EDID + digital encoder? Nope.
351 						gDisplay[displayIndex]->attached = false;
352 					}
353 
354 					// Else... everything aligns as it should and attached = 1
355 				}
356 			}
357 		}
358 
359 		if (gDisplay[displayIndex]->attached != true) {
360 			// Nothing interesting here, move along
361 			continue;
362 		}
363 
364 		// We found a valid / attached display
365 
366 		gDisplay[displayIndex]->connectorIndex = id;
367 			// Populate physical connector index from gConnector
368 
369 		init_registers(gDisplay[displayIndex]->regs, displayIndex);
370 
371 		if (gDisplay[displayIndex]->preferredMode.virtual_width > 0) {
372 			// Found a single preferred mode
373 			gDisplay[displayIndex]->foundRanges = false;
374 		} else {
375 			// Use edid data and pull ranges
376 			if (detect_crt_ranges(displayIndex) == B_OK)
377 				gDisplay[displayIndex]->foundRanges = true;
378 		}
379 
380 		displayIndex++;
381 	}
382 
383 	// fallback if no attached monitors were found
384 	if (displayIndex == 0) {
385 		// This is a hack, however as we don't support HPD just yet,
386 		// it tries to prevent a "no displays" situation.
387 		ERROR("%s: ERROR: 0 attached monitors were found on display connectors."
388 			" Injecting first connector as a last resort.\n", __func__);
389 		for (uint32 id = 0; id < ATOM_MAX_SUPPORTED_DEVICE; id++) {
390 			// skip TV DAC connectors as likely fallback isn't for TV
391 			if (gConnector[id]->encoder.type == VIDEO_ENCODER_TVDAC)
392 				continue;
393 			gDisplay[0]->attached = true;
394 			gDisplay[0]->connectorIndex = id;
395 			init_registers(gDisplay[0]->regs, 0);
396 			if (detect_crt_ranges(0) == B_OK)
397 				gDisplay[0]->foundRanges = true;
398 			break;
399 		}
400 	}
401 
402 	// Initial boot state is the first two crtc's powered
403 	if (gDisplay[0]->attached == true)
404 		gDisplay[0]->powered = true;
405 	if (gDisplay[1]->attached == true)
406 		gDisplay[1]->powered = true;
407 
408 	return B_OK;
409 }
410 
411 
412 void
413 debug_displays()
414 {
415 	TRACE("Currently detected monitors===============\n");
416 	for (uint32 id = 0; id < MAX_DISPLAY; id++) {
417 		ERROR("Display #%" B_PRIu32 " attached = %s\n",
418 			id, gDisplay[id]->attached ? "true" : "false");
419 
420 		uint32 connectorIndex = gDisplay[id]->connectorIndex;
421 
422 		if (gDisplay[id]->attached) {
423 			uint32 connectorType = gConnector[connectorIndex]->type;
424 			uint32 encoderType = gConnector[connectorIndex]->encoder.type;
425 			ERROR(" + connector ID:   %" B_PRIu32 "\n", connectorIndex);
426 			ERROR(" + connector type: %s\n", get_connector_name(connectorType));
427 			ERROR(" + encoder type:   %s\n", get_encoder_name(encoderType));
428 			ERROR(" + limits: Vert Min/Max: %" B_PRIu32 "/%" B_PRIu32"\n",
429 				gDisplay[id]->vfreqMin, gDisplay[id]->vfreqMax);
430 			ERROR(" + limits: Horz Min/Max: %" B_PRIu32 "/%" B_PRIu32"\n",
431 				gDisplay[id]->hfreqMin, gDisplay[id]->hfreqMax);
432 		}
433 	}
434 	TRACE("==========================================\n");
435 }
436 
437 
438 uint32
439 display_get_encoder_mode(uint32 connectorIndex)
440 {
441 	// Is external DisplayPort Bridge?
442 	if (gConnector[connectorIndex]->encoderExternal.valid == true
443 		&& gConnector[connectorIndex]->encoderExternal.isDPBridge == true) {
444 		return ATOM_ENCODER_MODE_DP;
445 	}
446 
447 	// DVO Encoders (should be bridges)
448 	switch (gConnector[connectorIndex]->encoder.objectID) {
449 		case ENCODER_OBJECT_ID_INTERNAL_DVO1:
450 		case ENCODER_OBJECT_ID_INTERNAL_DDI:
451 		case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1:
452 			return ATOM_ENCODER_MODE_DVO;
453 	}
454 
455 	// Find crtc for connector so we can identify source of edid data
456 	int32 crtc = -1;
457 	for (int32 id = 0; id < MAX_DISPLAY; id++) {
458 		if (gDisplay[id]->connectorIndex == connectorIndex) {
459 			crtc = id;
460 			break;
461 		}
462 	}
463 	bool edidDigital = false;
464 	if (crtc == -1) {
465 		ERROR("%s: BUG: executed on connector without crtc!\n", __func__);
466 	} else {
467 		edid1_info* edid = &gDisplay[crtc]->edidData;
468 		edidDigital = edid->display.input_type ? true : false;
469 	}
470 
471 	// Normal encoder situations
472 	switch (gConnector[connectorIndex]->type) {
473 		case VIDEO_CONNECTOR_DVII:
474 		case VIDEO_CONNECTOR_HDMIB: /* HDMI-B is DL-DVI; analog works fine */
475 			// TODO: if audio detected on edid and DCE4, ATOM_ENCODER_MODE_DVI
476 			//        if audio detected on edid not DCE4, ATOM_ENCODER_MODE_HDMI
477 			if (edidDigital)
478 				return ATOM_ENCODER_MODE_DVI;
479 			else
480 				return ATOM_ENCODER_MODE_CRT;
481 			break;
482 		case VIDEO_CONNECTOR_DVID:
483 		case VIDEO_CONNECTOR_HDMIA:
484 		default:
485 			// TODO: if audio detected on edid and DCE4, ATOM_ENCODER_MODE_DVI
486 			//        if audio detected on edid not DCE4, ATOM_ENCODER_MODE_HDMI
487 			return ATOM_ENCODER_MODE_DVI;
488 		case VIDEO_CONNECTOR_LVDS:
489 			return ATOM_ENCODER_MODE_LVDS;
490 		case VIDEO_CONNECTOR_DP:
491 			// dig_connector = radeon_connector->con_priv;
492 			// if ((dig_connector->dp_sink_type
493 			//	== CONNECTOR_OBJECT_ID_DISPLAYPORT)
494 			// 	|| (dig_connector->dp_sink_type == CONNECTOR_OBJECT_ID_eDP)) {
495 			// 	return ATOM_ENCODER_MODE_DP;
496 			// }
497 			// TODO: if audio detected on edid and DCE4, ATOM_ENCODER_MODE_DVI
498 			//        if audio detected on edid not DCE4, ATOM_ENCODER_MODE_HDMI
499 			return ATOM_ENCODER_MODE_DP;
500 		case VIDEO_CONNECTOR_EDP:
501 			return ATOM_ENCODER_MODE_DP;
502 		case VIDEO_CONNECTOR_DVIA:
503 		case VIDEO_CONNECTOR_VGA:
504 			return ATOM_ENCODER_MODE_CRT;
505 		case VIDEO_CONNECTOR_COMPOSITE:
506 		case VIDEO_CONNECTOR_SVIDEO:
507 		case VIDEO_CONNECTOR_9DIN:
508 			return ATOM_ENCODER_MODE_TV;
509 	}
510 }
511 
512 
513 void
514 display_crtc_lock(uint8 crtcID, int command)
515 {
516 	TRACE("%s\n", __func__);
517 
518 	ENABLE_CRTC_PS_ALLOCATION args;
519 	int index
520 		= GetIndexIntoMasterTable(COMMAND, UpdateCRTC_DoubleBufferRegisters);
521 
522 	memset(&args, 0, sizeof(args));
523 
524 	args.ucCRTC = crtcID;
525 	args.ucEnable = command;
526 
527 	atom_execute_table(gAtomContext, index, (uint32*)&args);
528 }
529 
530 
531 void
532 display_crtc_blank(uint8 crtcID, int command)
533 {
534 	TRACE("%s\n", __func__);
535 
536 	BLANK_CRTC_PS_ALLOCATION args;
537 	int index = GetIndexIntoMasterTable(COMMAND, BlankCRTC);
538 
539 	memset(&args, 0, sizeof(args));
540 
541 	args.ucCRTC = crtcID;
542 	args.ucBlanking = command;
543 
544 	args.usBlackColorRCr = 0;
545 	args.usBlackColorGY = 0;
546 	args.usBlackColorBCb = 0;
547 
548 	atom_execute_table(gAtomContext, index, (uint32*)&args);
549 }
550 
551 
552 void
553 display_crtc_scale(uint8 crtcID, display_mode* mode)
554 {
555 	TRACE("%s\n", __func__);
556 	ENABLE_SCALER_PS_ALLOCATION args;
557 	int index = GetIndexIntoMasterTable(COMMAND, EnableScaler);
558 
559 	memset(&args, 0, sizeof(args));
560 
561 	args.ucScaler = crtcID;
562 	args.ucEnable = ATOM_SCALER_DISABLE;
563 
564 	atom_execute_table(gAtomContext, index, (uint32*)&args);
565 }
566 
567 
568 void
569 display_crtc_dpms(uint8 crtcID, int mode)
570 {
571 	radeon_shared_info &info = *gInfo->shared_info;
572 
573 	switch (mode) {
574 		case B_DPMS_ON:
575 			TRACE("%s: crtc %" B_PRIu8 " dpms powerup\n", __func__, crtcID);
576 			if (gDisplay[crtcID]->attached == false)
577 				return;
578 			display_crtc_power(crtcID, ATOM_ENABLE);
579 			gDisplay[crtcID]->powered = true;
580 			if (info.dceMajor >= 3)
581 				display_crtc_memreq(crtcID, ATOM_ENABLE);
582 			display_crtc_blank(crtcID, ATOM_BLANKING_OFF);
583 			break;
584 		case B_DPMS_STAND_BY:
585 		case B_DPMS_SUSPEND:
586 		case B_DPMS_OFF:
587 			TRACE("%s: crtc %" B_PRIu8 " dpms powerdown\n", __func__, crtcID);
588 			if (gDisplay[crtcID]->attached == false)
589 				return;
590 			if (gDisplay[crtcID]->powered == true)
591 				display_crtc_blank(crtcID, ATOM_BLANKING);
592 			if (info.dceMajor >= 3)
593 				display_crtc_memreq(crtcID, ATOM_DISABLE);
594 			display_crtc_power(crtcID, ATOM_DISABLE);
595 			gDisplay[crtcID]->powered = false;
596 	}
597 }
598 
599 
600 void
601 display_dce45_crtc_load_lut(uint8 crtcID)
602 {
603 	radeon_shared_info &info = *gInfo->shared_info;
604 	register_info* regs = gDisplay[crtcID]->regs;
605 
606 	TRACE("%s: crtcID %" B_PRIu8 "\n", __func__, crtcID);
607 
608 	uint16* r = info.color_data;
609 	uint16* g = r + 256;
610 	uint16* b = r + 512;
611 
612 	if (info.dceMajor >= 5) {
613 		Write32(OUT, NI_INPUT_CSC_CONTROL + regs->crtcOffset,
614 		   (NI_INPUT_CSC_GRPH_MODE(NI_INPUT_CSC_BYPASS) |
615 		   NI_INPUT_CSC_OVL_MODE(NI_INPUT_CSC_BYPASS)));
616 		Write32(OUT, NI_PRESCALE_GRPH_CONTROL + regs->crtcOffset,
617 			NI_GRPH_PRESCALE_BYPASS);
618 		Write32(OUT, NI_PRESCALE_OVL_CONTROL + regs->crtcOffset,
619 			NI_OVL_PRESCALE_BYPASS);
620 		Write32(OUT, NI_INPUT_GAMMA_CONTROL + regs->crtcOffset,
621 			(NI_GRPH_INPUT_GAMMA_MODE(NI_INPUT_GAMMA_USE_LUT) |
622 			NI_OVL_INPUT_GAMMA_MODE(NI_INPUT_GAMMA_USE_LUT)));
623 	}
624 
625 	Write32(OUT, EVERGREEN_DC_LUT_CONTROL + regs->crtcOffset, 0);
626 
627 	Write32(OUT, EVERGREEN_DC_LUT_BLACK_OFFSET_BLUE + regs->crtcOffset, 0);
628 	Write32(OUT, EVERGREEN_DC_LUT_BLACK_OFFSET_GREEN + regs->crtcOffset, 0);
629 	Write32(OUT, EVERGREEN_DC_LUT_BLACK_OFFSET_RED + regs->crtcOffset, 0);
630 
631 	Write32(OUT, EVERGREEN_DC_LUT_WHITE_OFFSET_BLUE + regs->crtcOffset, 0xffff);
632 	Write32(OUT, EVERGREEN_DC_LUT_WHITE_OFFSET_GREEN + regs->crtcOffset, 0xffff);
633 	Write32(OUT, EVERGREEN_DC_LUT_WHITE_OFFSET_RED + regs->crtcOffset, 0xffff);
634 
635 	Write32(OUT, EVERGREEN_DC_LUT_RW_MODE, 0);
636 	Write32(OUT, EVERGREEN_DC_LUT_WRITE_EN_MASK, 0x00000007);
637 
638 	Write32(OUT, EVERGREEN_DC_LUT_RW_INDEX, 0);
639 	for (int i = 0; i < 256; i++) {
640 		Write32(OUT, EVERGREEN_DC_LUT_30_COLOR + regs->crtcOffset,
641 			 (r[i] << 20) |
642 			 (g[i] << 10) |
643 			 (b[i] << 0));
644 	}
645 
646 	if (info.dceMajor >= 5) {
647 		Write32(OUT, NI_DEGAMMA_CONTROL + regs->crtcOffset,
648 		   (NI_GRPH_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) |
649 		   NI_OVL_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) |
650 		   NI_ICON_DEGAMMA_MODE(NI_DEGAMMA_BYPASS) |
651 		   NI_CURSOR_DEGAMMA_MODE(NI_DEGAMMA_BYPASS)));
652 		Write32(OUT, NI_GAMUT_REMAP_CONTROL + regs->crtcOffset,
653 			(NI_GRPH_GAMUT_REMAP_MODE(NI_GAMUT_REMAP_BYPASS) |
654 			NI_OVL_GAMUT_REMAP_MODE(NI_GAMUT_REMAP_BYPASS)));
655 		Write32(OUT, NI_REGAMMA_CONTROL + regs->crtcOffset,
656 			(NI_GRPH_REGAMMA_MODE(NI_REGAMMA_BYPASS) |
657 			NI_OVL_REGAMMA_MODE(NI_REGAMMA_BYPASS)));
658 		Write32(OUT, NI_OUTPUT_CSC_CONTROL + regs->crtcOffset,
659 			(NI_OUTPUT_CSC_GRPH_MODE(NI_OUTPUT_CSC_BYPASS) |
660 			NI_OUTPUT_CSC_OVL_MODE(NI_OUTPUT_CSC_BYPASS)));
661 		/* XXX match this to the depth of the crtc fmt block, move to modeset? */
662 		Write32(OUT, 0x6940 + regs->crtcOffset, 0);
663 	}
664 }
665 
666 
667 void
668 display_avivo_crtc_load_lut(uint8 crtcID)
669 {
670 	radeon_shared_info &info = *gInfo->shared_info;
671 	register_info* regs = gDisplay[crtcID]->regs;
672 
673 	TRACE("%s: crtcID %" B_PRIu8 "\n", __func__, crtcID);
674 
675 	uint16* r = info.color_data;
676 	uint16* g = r + 256;
677 	uint16* b = r + 512;
678 
679 	Write32(OUT, AVIVO_DC_LUTA_CONTROL + regs->crtcOffset, 0);
680 
681 	Write32(OUT, AVIVO_DC_LUTA_BLACK_OFFSET_BLUE + regs->crtcOffset, 0);
682 	Write32(OUT, AVIVO_DC_LUTA_BLACK_OFFSET_GREEN + regs->crtcOffset, 0);
683 	Write32(OUT, AVIVO_DC_LUTA_BLACK_OFFSET_RED + regs->crtcOffset, 0);
684 
685 	Write32(OUT, AVIVO_DC_LUTA_WHITE_OFFSET_BLUE + regs->crtcOffset, 0xffff);
686 	Write32(OUT, AVIVO_DC_LUTA_WHITE_OFFSET_GREEN + regs->crtcOffset, 0xffff);
687 	Write32(OUT, AVIVO_DC_LUTA_WHITE_OFFSET_RED + regs->crtcOffset, 0xffff);
688 
689 	Write32(OUT, AVIVO_DC_LUT_RW_SELECT, crtcID);
690 	Write32(OUT, AVIVO_DC_LUT_RW_MODE, 0);
691 	Write32(OUT, AVIVO_DC_LUT_WRITE_EN_MASK, 0x0000003f);
692 
693 	Write32(OUT, AVIVO_DC_LUT_RW_INDEX, 0);
694 	for (int i = 0; i < 256; i++) {
695 		Write32(OUT, AVIVO_DC_LUT_30_COLOR,
696 			 (r[i] << 20) |
697 			 (g[i] << 10) |
698 			 (b[i] << 0));
699 	}
700 
701 	Write32(OUT, AVIVO_D1GRPH_LUT_SEL + regs->crtcOffset, crtcID);
702 }
703 
704 
705 void
706 display_crtc_fb_set(uint8 crtcID, display_mode* mode)
707 {
708 	radeon_shared_info &info = *gInfo->shared_info;
709 	register_info* regs = gDisplay[crtcID]->regs;
710 
711 	uint16* r = info.color_data;
712 	uint16* g = r + 256;
713 	uint16* b = r + 512;
714 
715 	uint32 fbSwap;
716 	if (info.dceMajor >= 4)
717 		fbSwap = EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_NONE);
718 	else
719 		fbSwap = R600_D1GRPH_SWAP_ENDIAN_NONE;
720 
721 	uint32 fbFormat;
722 
723 	uint32 bytesPerPixel;
724 	uint32 bitsPerPixel;
725 
726 	switch (mode->space) {
727 		case B_CMAP8:
728 			bytesPerPixel = 1;
729 			bitsPerPixel = 8;
730 			if (info.dceMajor >= 4) {
731 				fbFormat = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_8BPP)
732 					| EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_INDEXED));
733 			} else {
734 				fbFormat = AVIVO_D1GRPH_CONTROL_DEPTH_8BPP
735 					| AVIVO_D1GRPH_CONTROL_8BPP_INDEXED;
736 			}
737 			// TODO: copy system color map into shared info
738 			break;
739 		case B_RGB15_LITTLE:
740 			bytesPerPixel = 2;
741 			bitsPerPixel = 15;
742 			if (info.dceMajor >= 4) {
743 				fbFormat = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP)
744 					| EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB1555));
745 			} else {
746 				fbFormat = AVIVO_D1GRPH_CONTROL_DEPTH_16BPP
747 					| AVIVO_D1GRPH_CONTROL_16BPP_ARGB1555;
748 			}
749 			break;
750 		case B_RGB16_LITTLE:
751 			bytesPerPixel = 2;
752 			bitsPerPixel = 16;
753 
754 			if (info.dceMajor >= 4) {
755 				fbFormat = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP)
756 					| EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB565));
757 				#ifdef __POWERPC__
758 				fbSwap
759 					= EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN16);
760 				#endif
761 			} else {
762 				fbFormat = AVIVO_D1GRPH_CONTROL_DEPTH_16BPP
763 					| AVIVO_D1GRPH_CONTROL_16BPP_RGB565;
764 				#ifdef __POWERPC__
765 				fbSwap = R600_D1GRPH_SWAP_ENDIAN_16BIT;
766 				#endif
767 			}
768 
769 			{
770 				// default gamma table
771 				uint16 gamma = 0;
772 				for (int i = 0; i < 256; i++) {
773 					r[i] = gamma;
774 					g[i] = gamma;
775 					b[i] = gamma;
776 					gamma += 4;
777 				}
778 			}
779 			break;
780 		case B_RGB24_LITTLE:
781 		case B_RGB32_LITTLE:
782 		default:
783 			bytesPerPixel = 4;
784 			bitsPerPixel = 32;
785 			if (info.dceMajor >= 4) {
786 				fbFormat = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_32BPP)
787 					| EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB8888));
788 				#ifdef __POWERPC__
789 				fbSwap
790 					= EVERGREEN_GRPH_ENDIAN_SWAP(EVERGREEN_GRPH_ENDIAN_8IN32);
791 				#endif
792 			} else {
793 				fbFormat = AVIVO_D1GRPH_CONTROL_DEPTH_32BPP
794 					| AVIVO_D1GRPH_CONTROL_32BPP_ARGB8888;
795 				#ifdef __POWERPC__
796 				fbSwap = R600_D1GRPH_SWAP_ENDIAN_32BIT;
797 				#endif
798 			}
799 
800 			{
801 				// default gamma table
802 				uint16 gamma = 0;
803 				for (int i = 0; i < 256; i++) {
804 					r[i] = gamma;
805 					g[i] = gamma;
806 					b[i] = gamma;
807 					gamma += 4;
808 				}
809 			}
810 			break;
811 	}
812 
813 	Write32(OUT, regs->vgaControl, 0);
814 
815 	uint64 fbAddress = gInfo->fb.vramStart;
816 
817 	TRACE("%s: Framebuffer at: 0x%" B_PRIX64 "\n", __func__, fbAddress);
818 
819 	if (info.chipsetID >= RADEON_RV770) {
820 		TRACE("%s: Set SurfaceAddress High: 0x%" B_PRIX32 "\n",
821 			__func__, (fbAddress >> 32) & 0xf);
822 
823 		Write32(OUT, regs->grphPrimarySurfaceAddrHigh,
824 			(fbAddress >> 32) & 0xf);
825 		Write32(OUT, regs->grphSecondarySurfaceAddrHigh,
826 			(fbAddress >> 32) & 0xf);
827 	}
828 
829 	TRACE("%s: Set SurfaceAddress: 0x%" B_PRIX64 "\n",
830 		__func__, (fbAddress & 0xFFFFFFFF));
831 
832 	Write32(OUT, regs->grphPrimarySurfaceAddr, (fbAddress & 0xFFFFFFFF));
833 	Write32(OUT, regs->grphSecondarySurfaceAddr, (fbAddress & 0xFFFFFFFF));
834 
835 	if (info.chipsetID >= RADEON_R600) {
836 		Write32(CRT, regs->grphControl, fbFormat);
837 		Write32(CRT, regs->grphSwapControl, fbSwap);
838 	}
839 
840 	// Align our framebuffer width
841 	uint32 widthAligned = mode->virtual_width;
842 	uint32 pitchMask = 0;
843 
844 	// assume micro-linear/macro-linear mode (i.e., not tiled)
845 	switch (bytesPerPixel) {
846 		case 1:
847 			pitchMask = 63;
848 			break;
849 		case 2:
850 			pitchMask = 31;
851 			break;
852 		case 3:
853 		case 4:
854 			pitchMask = 31;
855 			break;
856 	}
857 	widthAligned += pitchMask;
858 	widthAligned &= ~pitchMask;
859 
860 	TRACE("%s: fb: %" B_PRIu32 "x%" B_PRIu32 " (%" B_PRIu32 " bpp)\n", __func__,
861 		mode->virtual_width, mode->virtual_height, bitsPerPixel);
862 	TRACE("%s: fb pitch: %" B_PRIu32 " \n", __func__,
863 		widthAligned);
864 	TRACE("%s: fb width aligned: %" B_PRIu32 "\n", __func__,
865 		widthAligned);
866 
867 	Write32(CRT, regs->grphSurfaceOffsetX, 0);
868 	Write32(CRT, regs->grphSurfaceOffsetY, 0);
869 	Write32(CRT, regs->grphXStart, 0);
870 	Write32(CRT, regs->grphYStart, 0);
871 	Write32(CRT, regs->grphXEnd, mode->virtual_width);
872 	Write32(CRT, regs->grphYEnd, mode->virtual_height);
873 	Write32(CRT, regs->grphPitch, widthAligned);
874 
875 	Write32(CRT, regs->grphEnable, 1);
876 		// Enable Frame buffer
877 
878 	Write32(CRT, regs->modeDesktopHeight, mode->virtual_height);
879 
880 	uint32 viewportWidth = mode->timing.h_display;
881 	uint32 viewportHeight = (mode->timing.v_display + 1) & ~1;
882 
883 	Write32(CRT, regs->viewportStart, 0);
884 	Write32(CRT, regs->viewportSize,
885 		(viewportWidth << 16) | viewportHeight);
886 
887 	// Pageflip setup
888 	if (info.dceMajor >= 4) {
889 		uint32 tmp
890 			= Read32(OUT, EVERGREEN_GRPH_FLIP_CONTROL + regs->crtcOffset);
891 		tmp &= ~EVERGREEN_GRPH_SURFACE_UPDATE_H_RETRACE_EN;
892 		Write32(OUT, EVERGREEN_GRPH_FLIP_CONTROL + regs->crtcOffset, tmp);
893 
894 		Write32(OUT, EVERGREEN_MASTER_UPDATE_MODE + regs->crtcOffset, 0);
895 			// Pageflip to happen anywhere in vblank
896 		display_dce45_crtc_load_lut(crtcID);
897 	} else {
898 		uint32 tmp = Read32(OUT, AVIVO_D1GRPH_FLIP_CONTROL + regs->crtcOffset);
899 		tmp &= ~AVIVO_D1GRPH_SURFACE_UPDATE_H_RETRACE_EN;
900 		Write32(OUT, AVIVO_D1GRPH_FLIP_CONTROL + regs->crtcOffset, tmp);
901 
902 		Write32(OUT, AVIVO_D1MODE_MASTER_UPDATE_MODE + regs->crtcOffset, 0);
903 			// Pageflip to happen anywhere in vblank
904 		display_avivo_crtc_load_lut(crtcID);
905 	}
906 
907 	// update shared info
908 	gInfo->shared_info->bytes_per_row = widthAligned * bytesPerPixel;
909 	gInfo->shared_info->current_mode = *mode;
910 	gInfo->shared_info->bits_per_pixel = bitsPerPixel;
911 }
912 
913 
914 void
915 display_crtc_set(uint8 crtcID, display_mode* mode)
916 {
917 	display_timing& displayTiming = mode->timing;
918 
919 	TRACE("%s called to do %dx%d\n",
920 		__func__, displayTiming.h_display, displayTiming.v_display);
921 
922 	SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION args;
923 	int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_Timing);
924 	uint16 misc = 0;
925 
926 	memset(&args, 0, sizeof(args));
927 
928 	args.usH_Total = B_HOST_TO_LENDIAN_INT16(displayTiming.h_total);
929 	args.usH_Disp = B_HOST_TO_LENDIAN_INT16(displayTiming.h_display);
930 	args.usH_SyncStart = B_HOST_TO_LENDIAN_INT16(displayTiming.h_sync_start);
931 	args.usH_SyncWidth = B_HOST_TO_LENDIAN_INT16(displayTiming.h_sync_end
932 		- displayTiming.h_sync_start);
933 
934 	args.usV_Total = B_HOST_TO_LENDIAN_INT16(displayTiming.v_total);
935 	args.usV_Disp = B_HOST_TO_LENDIAN_INT16(displayTiming.v_display);
936 	args.usV_SyncStart = B_HOST_TO_LENDIAN_INT16(displayTiming.v_sync_start);
937 	args.usV_SyncWidth = B_HOST_TO_LENDIAN_INT16(displayTiming.v_sync_end
938 		- displayTiming.v_sync_start);
939 
940 	args.ucOverscanRight = 0;
941 	args.ucOverscanLeft = 0;
942 	args.ucOverscanBottom = 0;
943 	args.ucOverscanTop = 0;
944 
945 	if ((displayTiming.flags & B_POSITIVE_HSYNC) == 0)
946 		misc |= ATOM_HSYNC_POLARITY;
947 	if ((displayTiming.flags & B_POSITIVE_VSYNC) == 0)
948 		misc |= ATOM_VSYNC_POLARITY;
949 
950 	args.susModeMiscInfo.usAccess = B_HOST_TO_LENDIAN_INT16(misc);
951 	args.ucCRTC = crtcID;
952 
953 	atom_execute_table(gAtomContext, index, (uint32*)&args);
954 }
955 
956 
957 void
958 display_crtc_set_dtd(uint8 crtcID, display_mode* mode)
959 {
960 	display_timing& displayTiming = mode->timing;
961 
962 	TRACE("%s called to do %dx%d\n", __func__,
963 		displayTiming.h_display, displayTiming.v_display);
964 
965 	SET_CRTC_USING_DTD_TIMING_PARAMETERS args;
966 	int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_UsingDTDTiming);
967 	uint16 misc = 0;
968 
969 	memset(&args, 0, sizeof(args));
970 
971 	// Note: the code below assumes H & V borders are both zero
972 	uint16 blankStart
973 		= MIN(displayTiming.h_sync_start, displayTiming.h_display);
974 	uint16 blankEnd
975 		= MAX(displayTiming.h_sync_end, displayTiming.h_total);
976 	args.usH_Size = B_HOST_TO_LENDIAN_INT16(displayTiming.h_display);
977 	args.usH_Blanking_Time = B_HOST_TO_LENDIAN_INT16(blankEnd - blankStart);
978 
979 	blankStart = MIN(displayTiming.v_sync_start, displayTiming.v_display);
980 	blankEnd = MAX(displayTiming.v_sync_end, displayTiming.v_total);
981 	args.usV_Size = B_HOST_TO_LENDIAN_INT16(displayTiming.v_display);
982 	args.usV_Blanking_Time = B_HOST_TO_LENDIAN_INT16(blankEnd - blankStart);
983 
984 	args.usH_SyncOffset = B_HOST_TO_LENDIAN_INT16(displayTiming.h_sync_start
985 		- displayTiming.h_display);
986 	args.usH_SyncWidth = B_HOST_TO_LENDIAN_INT16(displayTiming.h_sync_end
987 		- displayTiming.h_sync_start);
988 
989 	args.usV_SyncOffset = B_HOST_TO_LENDIAN_INT16(displayTiming.v_sync_start
990 		- displayTiming.v_display);
991 	args.usV_SyncWidth = B_HOST_TO_LENDIAN_INT16(displayTiming.v_sync_end
992 		- displayTiming.v_sync_start);
993 
994 	args.ucH_Border = 0;
995 	args.ucV_Border = 0;
996 
997 	if ((displayTiming.flags & B_POSITIVE_HSYNC) == 0)
998 		misc |= ATOM_HSYNC_POLARITY;
999 	if ((displayTiming.flags & B_POSITIVE_VSYNC) == 0)
1000 		misc |= ATOM_VSYNC_POLARITY;
1001 
1002 	args.susModeMiscInfo.usAccess = B_HOST_TO_LENDIAN_INT16(misc);
1003 	args.ucCRTC = crtcID;
1004 
1005 	atom_execute_table(gAtomContext, index, (uint32*)&args);
1006 }
1007 
1008 
1009 void
1010 display_crtc_ss(pll_info* pll, int command)
1011 {
1012 	TRACE("%s\n", __func__);
1013 	radeon_shared_info &info = *gInfo->shared_info;
1014 
1015 	int index = GetIndexIntoMasterTable(COMMAND, EnableSpreadSpectrumOnPPLL);
1016 
1017 	union enableSS {
1018 		ENABLE_LVDS_SS_PARAMETERS lvds_ss;
1019 		ENABLE_LVDS_SS_PARAMETERS_V2 lvds_ss_2;
1020 		ENABLE_SPREAD_SPECTRUM_ON_PPLL_PS_ALLOCATION v1;
1021 		ENABLE_SPREAD_SPECTRUM_ON_PPLL_V2 v2;
1022 		ENABLE_SPREAD_SPECTRUM_ON_PPLL_V3 v3;
1023 	};
1024 
1025 	union enableSS args;
1026 	memset(&args, 0, sizeof(args));
1027 
1028 	if (info.dceMajor >= 5) {
1029 		args.v3.usSpreadSpectrumAmountFrac = B_HOST_TO_LENDIAN_INT16(0);
1030 		args.v3.ucSpreadSpectrumType
1031 			= pll->ssType & ATOM_SS_CENTRE_SPREAD_MODE_MASK;
1032 		switch (pll->id) {
1033 			case ATOM_PPLL1:
1034 				args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_P1PLL;
1035 				args.v3.usSpreadSpectrumAmount
1036 					= B_HOST_TO_LENDIAN_INT16(pll->ssAmount);
1037 				args.v3.usSpreadSpectrumStep
1038 					= B_HOST_TO_LENDIAN_INT16(pll->ssStep);
1039 				break;
1040 			case ATOM_PPLL2:
1041 				args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_P2PLL;
1042 				args.v3.usSpreadSpectrumAmount
1043 					= B_HOST_TO_LENDIAN_INT16(pll->ssAmount);
1044 				args.v3.usSpreadSpectrumStep
1045 					= B_HOST_TO_LENDIAN_INT16(pll->ssStep);
1046 				break;
1047 			case ATOM_DCPLL:
1048 				args.v3.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_DCPLL;
1049 				args.v3.usSpreadSpectrumAmount = B_HOST_TO_LENDIAN_INT16(0);
1050 				args.v3.usSpreadSpectrumStep = B_HOST_TO_LENDIAN_INT16(0);
1051 				break;
1052 			default:
1053 				ERROR("%s: BUG: Invalid PLL ID!\n", __func__);
1054 				return;
1055 		}
1056 		if (pll->ssPercentage == 0
1057 			|| ((pll->ssType & ATOM_EXTERNAL_SS_MASK) != 0)) {
1058 			command = ATOM_DISABLE;
1059 		}
1060 		args.v3.ucEnable = command;
1061 	} else if (info.dceMajor >= 4) {
1062 		args.v2.usSpreadSpectrumPercentage
1063 			= B_HOST_TO_LENDIAN_INT16(pll->ssPercentage);
1064 		args.v2.ucSpreadSpectrumType
1065 			= pll->ssType & ATOM_SS_CENTRE_SPREAD_MODE_MASK;
1066 		switch (pll->id) {
1067 			case ATOM_PPLL1:
1068 				args.v2.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V2_P1PLL;
1069 				args.v2.usSpreadSpectrumAmount
1070 					= B_HOST_TO_LENDIAN_INT16(pll->ssAmount);
1071 				args.v2.usSpreadSpectrumStep
1072 					= B_HOST_TO_LENDIAN_INT16(pll->ssStep);
1073 				break;
1074 			case ATOM_PPLL2:
1075 				args.v2.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_P2PLL;
1076 				args.v2.usSpreadSpectrumAmount
1077 					= B_HOST_TO_LENDIAN_INT16(pll->ssAmount);
1078 				args.v2.usSpreadSpectrumStep
1079 					= B_HOST_TO_LENDIAN_INT16(pll->ssStep);
1080 				break;
1081 			case ATOM_DCPLL:
1082 				args.v2.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V3_DCPLL;
1083 				args.v2.usSpreadSpectrumAmount = B_HOST_TO_LENDIAN_INT16(0);
1084 				args.v2.usSpreadSpectrumStep = B_HOST_TO_LENDIAN_INT16(0);
1085 				break;
1086 			default:
1087 				ERROR("%s: BUG: Invalid PLL ID!\n", __func__);
1088 				return;
1089 		}
1090 		if (pll->ssPercentage == 0
1091 			|| ((pll->ssType & ATOM_EXTERNAL_SS_MASK) != 0)
1092 			|| (info.chipsetFlags & CHIP_APU) != 0 ) {
1093 			command = ATOM_DISABLE;
1094 		}
1095 		args.v2.ucEnable = command;
1096 	} else if (info.dceMajor >= 3) {
1097 		args.v1.usSpreadSpectrumPercentage
1098 			= B_HOST_TO_LENDIAN_INT16(pll->ssPercentage);
1099 		args.v1.ucSpreadSpectrumType
1100 			= pll->ssType & ATOM_SS_CENTRE_SPREAD_MODE_MASK;
1101 		args.v1.ucSpreadSpectrumStep = pll->ssStep;
1102 		args.v1.ucSpreadSpectrumDelay = pll->ssDelay;
1103 		args.v1.ucSpreadSpectrumRange = pll->ssRange;
1104 		args.v1.ucPpll = pll->id;
1105 		args.v1.ucEnable = command;
1106 	} else if (info.dceMajor >= 2) {
1107 		if ((command == ATOM_DISABLE) || (pll->ssPercentage == 0)
1108 			|| (pll->ssType & ATOM_EXTERNAL_SS_MASK)) {
1109 			radeon_gpu_ss_control(pll, false);
1110 			return;
1111 		}
1112 		args.lvds_ss_2.usSpreadSpectrumPercentage
1113 			= B_HOST_TO_LENDIAN_INT16(pll->ssPercentage);
1114 		args.lvds_ss_2.ucSpreadSpectrumType
1115 			= pll->ssType & ATOM_SS_CENTRE_SPREAD_MODE_MASK;
1116 		args.lvds_ss_2.ucSpreadSpectrumStep = pll->ssStep;
1117 		args.lvds_ss_2.ucSpreadSpectrumDelay = pll->ssDelay;
1118 		args.lvds_ss_2.ucSpreadSpectrumRange = pll->ssRange;
1119 		args.lvds_ss_2.ucEnable = command;
1120 	} else {
1121 		ERROR("%s: TODO: Old card SS control\n", __func__);
1122 		return;
1123 	}
1124 
1125 	atom_execute_table(gAtomContext, index, (uint32*)&args);
1126 }
1127 
1128 
1129 void
1130 display_crtc_power(uint8 crtcID, int command)
1131 {
1132 	TRACE("%s\n", __func__);
1133 	int index = GetIndexIntoMasterTable(COMMAND, EnableCRTC);
1134 	ENABLE_CRTC_PS_ALLOCATION args;
1135 
1136 	memset(&args, 0, sizeof(args));
1137 
1138 	args.ucCRTC = crtcID;
1139 	args.ucEnable = command;
1140 
1141 	atom_execute_table(gAtomContext, index, (uint32*)&args);
1142 }
1143 
1144 
1145 void
1146 display_crtc_memreq(uint8 crtcID, int command)
1147 {
1148 	TRACE("%s\n", __func__);
1149 	int index = GetIndexIntoMasterTable(COMMAND, EnableCRTCMemReq);
1150 	ENABLE_CRTC_PS_ALLOCATION args;
1151 
1152 	memset(&args, 0, sizeof(args));
1153 
1154 	args.ucCRTC = crtcID;
1155 	args.ucEnable = command;
1156 
1157 	atom_execute_table(gAtomContext, index, (uint32*)&args);
1158 }
1159